

Curriculum and Programme Structure

Integrated M.Sc in Mathematics

Programme Educational Objectives (PEOs)

PEO_01. Graduates will acquire knowledge and expertise to excel in professional career.

PEO_02. Graduates will obtain and apply the practical and technical skills to identify, analyse and solve the problems related to the industries.

PEO_03. Graduates will develop and possess professional attitude and skills to be socially responsible individual and work as team in their work place and society considering the professionals ethics, environmental factors, and contribute to the economic growth of the country.

PEO_04. Graduates will utilize their expertise gained to pursue higher studies and outshine in careers like teaching, research or technologists.

PEO_05. Graduates will be competent to exhibit their acquired multidisciplinary skills for the lifelong learning in their professional and personal upliftment.

Programme Outcomes (POs)

PO_01. Fundamental Knowledge: Having an ability to acquire in-depth knowledge of the fundamental concepts and techniques.

PO_02. **Problem analysis**: Having an ability to apply the imbibed knowledge in assessing, analysing and providing solution for the industry related real time issues

PO_03. **Design/development of solutions**: Having an ability to design, conduct experiments, capture data, analyse, interpret and synthesis the information for valuable decision making.

PO_04. Technical skills: Having an ability to obtain technical skills and apply the same for the discovery of new patterns and solutions for demanding needs in mankind.

PO_05. **Innovative solutions**: Having the ability to understand and update on the contemporary issues and changes in fields and become self-reliant to provide solutions in an innovative style.

PO_06. **Real time solutions**: Having the problem-solving ability to assess the environmental impact caused to the society and applies measures to tackle the issues.

PO_07. **Sustainability**: Having an ability to be apply and innovate considering the adaptivity of the products and solution for the sustainable growth of the ecosystem.

PO_08. Ethics: Having an ability to develop clear understanding of being a professional ethical individual.

PO_09. **Individual and team work**: Having an ability to exhibit competency to work as teams in a cross-cultural environment.

PO_10.Communication: Having an ability to display the command over the English language to communicate orally and in written.

PO_11.Management: Having an ability to develop and apply business management skills in career growth.

PO_12.Life-long learning: Having an ability to develop lifelong learning interest and application in day-to-day activities.

Programme Specific Outcomes (PSOs)

PSO_01. Develop a multi-disciplinary approach for solving real life problems through various Foundational Core courses.

PSO_02. Use advanced knowledge on mathematics to pursue higher degrees at reputed academic institutions around the world.

PSO_03. Pursue research or careers in industry in mathematical sciences and allied fields.

PSO_04. Interact with international researchers and developing collaborations..

Integrated M.Sc. in Mathematics School of Advanced Sciences

Programme Credit Structure

Foundation Core Courses Discipline Core Courses Discipline Elective Courses Project and Internship Open Electives Ability Enhancement Courses Skill Enhancement Courses Total Credit Requirement Non-graded Core Requirements	50 68 45 23 09 09 08 212 12
Foundation Core courses (50 cred Calculus and Analytical Geometry Calculus and Analytical Geometry	its) 3-0-0-3 0-0-2-1
Laboratory Physics of Waves Physics of Waves Laboratory Inorganic and Organic Chemistry Inorganic and Organic Chemistry	3-0-0-3 0-0-2-1 3-0-0-3 0-0-2-1
Laboratory Programming in Python Programming in Python Laboratory	2-0-0-2 0-0-4-2
Ethics and Values Ordinary and partial differential equations	2-0-0-2 3-1-0-4
Modern Physics Modern Physics Laboratory Biological Sciences Biological Sciences Laboratory Physical and Analytical Chemistry Physical and Analytical Chemistry	3-0-0-3 0-0-2-1 3-0-0-3 0-0-2-1 3-0-0-3 0-0-2-1
Laboratory Structured and Object Oriented Programming (C & C++) Structured and Object Oriented Programming (C & C++)	2-0-0-2 0-0-4-2
Laboratory Critical Thinking Intra and Interpersonal skills Principles of Management Research Methodology Foreign Language	2-0-0-2 2-0-0-2 3-0-0-3 3-0-0-3 2-0-0-2
Ability Enhancement Courses (09 Effective English Communication	credits) 0-0-4-2
Technical English Communication	2-0-0-2 0-0-2-1
Laboratory Technical Report Writing Laboratory	0-0-2-1
Environmental Studies	3-0-0-3

Skill Enhancement Courses (08 credits)

Programming in Java	3-0-0-3
Programming in Java Laboratory	0-0-2-1
Scientific Computing Laboratory	0-0-4-2
Data Analysis Laboratory	0-0-4-2

Non-graded Core Requirement (12 credits) Extra-curricular/Co-curricular

Project / Internship (23 Credits) Project -III- 3 credits

Capstone Project Stage-I (6 credits) Capstone Project Stage-II (14 credits)

Discipline Core courses (68 credits)

Linear Algebra	3-1-0-4
Real Analysis	3-1-0-4
Ordinary Differential Equations	3-1-0-4
Complex Analysis	3-1-0-4
Introduction to Probability and Statistics	3-0-0-3
Introduction to Probability and Statistics Laboratory	0-0-2-1
Numerical Analysis	3-0-0-3
Numerical Analysis Laboratory	0-0-2-1
Basic Abstract Algebra	3-1-0-4
Operations Research	3-1-0-4
Discrete Mathematical Structures	3-1-0-4
Topology	3-1-0-4
Calculus of Variations and Integral	3-1-0-4
Equations	
Graph Theory	3-1-0-4
Functional Analysis	3-1-0-4
Partial Differential Equations	3-1-0-4
Transform Techniques	3-1-0-4
Measure and Integration	3-1-0-4
Statistical Inference	3-0-0-3
Statistical Inference Laboratory	0-0-2-1

Discipline elective courses (45 credits)

Number Theory	3-0-0-3
Fuzzy Set Theory and its Applications	3-0-0-3
Mathematical Statistics	3-1-0-4
Optimization	3-1-0-4
Tensors and Differential Geometry	3-0-0-3
Classical Mechanics	3-1-0-4
Mathematical Ecology	3-0-0-3
Data Structures	3-1-0-4
Project-I	3-0-0-3
Mathematical Finance	3-0-0-3
Fluid Dynamics	3-1-0-4
Difference Equations and its Applications	3-0-0-3
Database Management	3-1-0-4
Project-II	3-0-0-3
Advanced Abstract Algebra	3-0-0-3
Advanced Complex Analysis	3-0-0-3
Numerical Solution to Partial Differential Equations	3-0-0-3

Stochastic Processes	3-0-0-3
Magnetohydrodynamics	3-0-0-3
Fractional Calculus with Applications	3-0-0-3
Finite Element Methods and Applications	3-0-0-3
Sobolev Spaces	3-0-0-3
Computational Fluid Dynamics	3-0-0-3
Mathematical Modelling and Simulation	3-0-0-3
Infinite Dimensional optimization and Control theory	3-0-0-3

Open elective courses (09 credits)

Exploratory Data Analysis and	3-0-0-3
Visualisation	
Artificial Intelligence	3-0-0-3
Principles of Neural Networks	3-0-0-3
Machine Learning	3-0-0-3
Quantum Computing	3-0-0-3
Deep Learning	3-0-0-3

Category		B.Sc	B.Sc Honours	M.Sc
CORE	Foundation Core Courses	47	47	50
	Discipline Core Courses	40	56	68
ELECTIVES Discipline Elective Courses		30	33	45
	Open Elective Courses	-	06	09
AECC	Ability Enhancement Courses	09	09	09
SEC	Skill Enhancement Courses	06	08	08
PROJECT	Project/Capstone Project	-	08	23
EXC	Non-graded core requirements	12	12	12
Total		132	167	212

	indicative i rogram		First Y	'ear	Se in Mathematics		
	SEMESTER-I				SEMESTER -II		
Course Code	Course	L-T-P	С	Course Code	Course	L-T-P	С
ENGXXX	Effective English Communication Laboratory	0-0-4	2	ENGXXX	Technical English Communication	2-0-0	2
CHY1003	Environmental Studies	3-0-0	3	ENGXXX	Technical English Communication Laboratory	0-0-2	1
CSEXXX	Programming in Python	2-0-0	2	CSEXXX	Structured and Object Oriented Programming (C & C++)	2-0-0	2
CSEXXX	Programming in Python Laboratory	0-0-4	2	CSEXXX	Structured and Object Oriented Programming (C & C++)Laboratory	0-0-4	2
MATXXX	Calculus and Analytical Geometry	3-0-0	3	MATXXX	Ordinary and partial differential equations	3-1-0	4
MATXXX	Calculus and Analytical Geometry Laboratory	0-0-2	1	PHYXXX	Modern Physics	3-0-0	3
PHYXXX	Physics of Waves	3-0-0	3	PHYXXX	Modern Physics Laboratory	0-0-2	1
PHYXXX	Physics of Waves Laboratory	0-0-2	1	BITXXX	Biological Sciences	3-0-0	3
CHYXXX	Inorganic and Organic Chemistry	3-0-0	3	BITXXX	Biological Sciences Laboratory	0-0-2	1
CHYXXX	Inorganic and Organic Chemistry Laboratory	0-0-2	1	CHYXXX	Physical and Analytical Chemistry	3-0-0	3
EXCXXX (NGC)	Extra Co-curricular	2-0-0	2	CHYXXX	Physical and Analytical Chemistry Laboratory	0-0-2	1
				EXCXXX (NGC)	Extra Co-curricular	2-0-0	2
	Total Credits		21		Total Credits		23
		S	econd	Year			
	SEMESTER -III			0	SEMESTER -IV		
Course Code	Course	L-I-P	C	Course Code	Course	L-I-P	C
LFSXXX	Critical thinking	2-0-0	2	LFSXXX	Intra and Interpersonal skills	2-0-0	2
ENGXXX	Technical Report Writing Laboratory	0-0-2	1	FLPXXX	Foreign Language	2-0-0	2
CSEXXX	Programming in Java	3-0-0	3	MATXXX	Ordinary Differential Equations	3-1-0	4
CSEXXX	Programming in Java Laboratory	0-0-2	1	MATXXX	Complex Analysis	3-1-0	4
HUM1032	Ethics and Values	2-0-0	2	MATXXX	Introduction to Probability and Statistics	3-0-0	3
IMSXXX	Research Methodology	3-0-0	3	MATXXX	Introduction to Probability and Statistics Laboratory	0-0-2	1
MATXXX	Linear Algebra	3-1-0	4	MATXXX	Discipline Elective-I	3-0-0	3
MATXXX	Real Analysis	3-1-0	4	MATXXX	Discipline Elective-II	3-1-0	4
EXCXXX (NGC)	Extra Co-curricular	2-0-0	2	EXCXXX (NGC)	Extra Co-curricular	2-0-0	2
	Tot	al Credits	20		Total Credits		23

			Third \	Year			
	SEMESTER -V				SEMESTER-VI		
Course Code	Course	L-T-P	С	Course Code	Course	L-T-P	С
MATXXX	Numerical Analysis	3-0-0	3	MATXXX	Scientific computing Laboratory	0-0-4	2
MATXXX	Numerical Analysis Laboratory	0-0-2	1	MATXXXX	Discrete Mathematical Structures	3-1-0	4
MATXXX	Basic Abstract Algebra	3-1-0	4	MATXXX	Topology	3-1-0	4
MATXXX	Discipline Elective-III	3-0-0	3	MATXXX	Operations Research	3-1-0	4
MATXXX	Discipline Elective-IV	3-0-0	3	MATXXX	Discipline Elective-VII	3-0-0	3
MATXXX	Discipline Elective-V	3-1-0	4	MATXXX	Discipline Elective-VIII	3-1-0	4
MATXXX	Discipline Elective-VI (Theory/Project-I)	3-0-0	3	MATXXX	Discipline Elective-IX (Project-II)	3-0-0	3
EXCXXX (NGC)	Extra Co-curricular	2-0-0	2	EXCXXX (NGC)	Extra Co-curricular	2-0-0	2
	Total Credits		21		Total Credits		24
	B.Sc N	lathemat	tics Ex	kit with 132	credits		
		F	ourth	Year			
	SEMESTER-VII			SEMESTER-VIII			r
Course Code	Course	L-T-P	С	Course Code	Course	L-T-P	С
MATXXX	Data analysis Laboratory	0-0-4	2	MGTXXX	Principles of Management	3-0-0	3
ΜΑΤΧΧΧ	Calculus of Variations and Integral Equations	3-1-0	4	MATXXX	Project-III	0-0-0	3
MATXXX	Graph Theory	3-1-0	4	MATXXX	Transform Techniques	3-1-0	4
MATXXX	Functional Analysis	3-1-0	4	MATXXX	Measure and Integration	3-1-0	4
MATXXX	Partial Differential Equations	3-1-0	4	MATXXX	Statistical Inference	3-0-0	3
MATXXX	Open Elective-I	3-0-0	3	MATXXX	Statistical Inference Laboratory	0-0-2	1
MATXXX	Open Elective-II	3-0-0	3	MATXXX	Open Elective-III	3-0-0	3
MATXXX	Discipline Elective-X	3-0-0	3	MATXXX	Discipline Elective-XI	3-0-0	3
				MATXXX	Discipline Elective-XII	3-0-0	3
	Total Credits		27		Total Credits		27
	B.Sc Honours Exit	with 16	7 cred	lits (132+27	+8) 8th sem project		
		Fifth	Year	I			
	SEMESTER-IX			-	SEMESTER -X		
Course Code	Course	L-T-P	С	Course Code	Course	L-T-P	С
MATXXX	Capstone Project Stage-I	0-0-0	6	MATXXX	Capstone Project Stage-II	0-0-0	14
MATXXX	Discipline Elective-XIII	3-0-0	3				
MATXXX	Discipline Elective-XIV	3-0-0	3				
		o Moth -	12 matia	Critwith (I OTAL Credits		14
	M.S	oc watne	matic		212		

MATXXX Calculus and Analytical Geometry

3 Credits (3-0-0)

Successive differentiation, Taylor's and Maclaurin's expansions, Tangent and Normal, Curvature, Evolutes and envelopes, Limit and continuity, Partial Differentiation, Maxima and minima, Definite integral, Length of a plane curve, Areas, Volumes, Improper integral, Double and triple integrals, Direction cosines, Equation of plane, Sphere, Vector Differentiation, Vector Integration

MATXXX Calculus and Analytical Geometry Laboratory

1 Credit (0-0-2)

Introduction to MATLAB, Plotting of 2D curves, limits and derivatives, Applications of differentiation, Maxima and Minima, Taylor's and Maclaurin's series, Area and volume, Double Integrals, Triple Integrals, Equation of line and angle between two planes, Divergence, Curl and Gradient and visualization of vector fields

MATXXX Ordinary and Partial Differential Equations

4 Credits (3-1-0)

Differential equation of first order, Linear equations, Homogeneous linear equations with constant coefficients, Nonhomogenous equation, Power Series method, Method of Frobenius, Construction of Partial Differential equations, Nonlinear Equation, Homogeneous linear equation with constant coefficient, Nonhomogenous linear equations of any order, Non-linear equations of second order, Laplace Transform, Application to the solution of Differential Equations, Fourier Series, Complex Fourier Series, Fourier Transform

Course code	Course title	L	Т	Ρ	С	
xxxx	Calculus and analytical geo	metrv	3	0	0	3
Pre-requisite	Nil		Svlla	ous	vers	sion
						1.0
Course Objective	S					
1. To reinforces ca	Iculus to give a better understanding of the r	nathematical co	ncepts	und	erlvi	ng
them and to prepa	re students for more advanced mathematics		•		,	0
2. To Learn to ana	lyze and solve problems relating analytical g	geometry and ve	ector ca	lcul	us	
3. To consider prol	plems that could be solved by applying appro	priate theories,	princip	les	and	
concepts relevant	to functions, continuity, derivatives, analytic	geometry and ve	ectors.			
Course Outcome						
At the end of this c	ourse the students should be able to					
1. To Apply single	variable differentiation and integration to solv	ve applied proble	ems in	eng	inee	ring
and find the maxim	a and minima of functions					
2. Evaluate partial	derivatives, limits, total differentials, Jacobia	ns, Taylor series	s and o	ptim	nizati	on
problems involving	several variables with or without constraints		_			
3. Apply integrals t	o find area and volume and to find masses,	moments, force,	work a	and	ener	ду
4. Study the equat	ons of lines, planes and spheres and the rol	e of direction co	sines a	ind	direc	tion
ratio		ad vootan fialala			• • • • •	
5. Evaluate the line	e, surface and volume integral of a scalar al	na vector fields a	and ap	ріу і	Gree	ns,
Gauss and Sloke						
	ontial calculus and its geometrical				7 ho	
appli	cations				7 110	ui 5
Review of continuit	v and differentiability. Successive differentia	tion. Leibnitz's r	ule. Ta	vlor	's an	d
Maclaurin's expans	sions. Indeterminate forms. Tangent and No	mal. Curvature.	Evolut	es a	and	-
envelopes		, ,				
Module:2 Funct	tions of several variables				6 ho	ours
Limit and continu	ty, Partial Differentiation-Euler's Theorem,	Chain rule, T	otal di	ffere	entiat	ion,
Differentiation of i	mplicit functions, Taylor's series expansior	n, Jacobians-Ch	ange o	of v	ariab	oles,
Maxima and minim	a, Lagrange multiplier method					
Module:3 Integ	ral calculus				<u>6 ho</u>	ours
Integration-Definite	e integral, Average value, Length of a pla	ne curve, Areas	s, Volu	mes	-was	sher
method, disk meth	od, Area of a surface of revolution, Fundar	nental theorem	of Calo	ะนโนร	s and	d its
consequences, Im	proper integral, Differentiation under Integral	sign- Leibnitz ru	le			
Module:4 Multi	ble integrals and their applications				5 ho	ours
Double and triple	integrals, Change of order of integration,	Change of vai	riables,	Ar	eas	and
volumes, Masses,	moments, Force, Work and energy					
Module:5 Analy	tical solid geometry			<u> </u>	<u>7 ho</u>	urs
Coordinate system	s and their interrelation, Direction cosines a	nd direction rati	os, Pro	ject	ion c	on a
straight line, Angle	between straight lines, Equation of plane, Si	nortest distance	betwee	en tr	ne sk	.ew-
lines, length of per	pendicular from a given point to a given plan	e, Bisectors of t	ne ang	ies i	betw	een
two planes, Onnog	onal projection on a plane, Sphere.				<u> </u>	
	de and level Surfaces. Differentiation Ora-	liont Tongont	nlona	<u></u>	0 00	
Scalar, vector liei	us and level Surfaces, Differentiation-Grad	alent, Tangent	plane a	ana	non	nai,
Modulo:7 Vocto	r integration				6 ho	
Vector Integration	l ine integrale. Surface integrale. Creen's th	orem in plane	Stoken	'c ++		m
vector integration,	Line integrals, ourlace integrals, Green's (f)	eorem in plane,	Slokes	່ວແ	EOLE	<i>;</i> 111,
Module & Cont					2 ha	lire
Guest Lecture from	industry and R&D organisations				2 110	-ui 3

			Total Lecture ho	ours:	45 hours		
-							
Ie>	(t Book	S)					
1.	George	B. Thomas, Joel Hass, Christ	opher Heil, Maurice	D. Weir, TI	nomas' Calculus, 2018, 14 th		
	edition,	Pearson, India					
2.	2. Shanti Narayan, P. K. Mittal, Analytical Solid Geometry, 2007, 17 th edition, S. Chand & Co., India						
Ref	ference	Books					
1.	Karl J. S	Smith, Monty J. Strauss, Mago	lalena D. Toda, Cal	culus, 2017	, 7 th edition, Kendall Hunt		
	Publish	ing Company, USA					
2.	Saturni	no L. Salas, Garret J. Etgen, E	inar Hille, Calculus	One and Se	everal Variables, 2021, 10 th		
	edition,	Wiley, India	·				
Mo	Mode of Evaluation: CAT, Written assignment, Quiz, FAT						
Red	commen	ded by Board of Studies	DD-MM-YYYY				
Ар	proved	by Academic Council	No. xx	Date	DD-MM-YYYY		

Course code	Course code Calculus and Analytical Geometry Laboratory					Т	Ρ	С	
XXXX		•			0	0	2	1	
Pre-requisite	Nil				Syllab	us v	/ers	ion	
								1.0	
Course Objective	es								
1. To familiarize w	1. To familiarize with the basic syntax, semantics and library functions of MATLAB which serves								
as a tool not only	in calculus but also n	nany courses in er	ngineering	and science	es				
2. To visualize ma	athematical functions	and its related pro	perties.						
3. To evaluate sin	gle and multiple integ	grals and understa	ind it graph	nically.					
Course Outcome	}								
At the end of the c	course the student sh	nould be able to:							
1. Demonstrate M	ATLAB code for cha	llenging problems	in enginee	ering					
2. Using plots/disp	plays, interpret and ill	lustrate elementar	y mathema	atical functio	ons and				
procedures.									
Indiactiva Expari	mante (Apy 10 avec	rimonto to ho norf	ormod)						
	ments (Any TO expe				tationa		~		
	visualize curves and	surfaces in MATL	AB – Sym	bolic compu	lations	usinę	J		
2 To ovaluato	limite and Darivativa	s of functions							
2. To evaluate	to applications of diff	s of functions		a and mini	ma of a	func	tion	of	
single variat	ble		uuy maxin		na or a	Tunc	lion	01	
4. To analyze	maxima and minima	of a function of two	o variables	5					
5. To write Tay	/lor's and Maclaurin's	s series up to finite	terms						
6. To evaluate	integrals and find are	ea, volume of solic	d of revolut	ion					
7. To calculate	double and triple int	egrals							
8. To find equa	ation of line and angle	e between two pla	nes						
9. To study div	ergence, curl and gra	adient and visualiz	e vector fi	elds					
10. To evaluate	line integral and wor	k done							
			Total Lab	oratory Hou	ırs 30	houi	`S		
Text Book(s)									
1. Cesar Lopez,	, MATLAB Differential a	and Integral Calculus	s, 2014, 1 st	Edition, Apre	SS				
2. Ronald L. Lip	sman, Jonathan M. Ro	senberg, Multivariat	ole Calculus	s with MATLA	B: With	Appl	icatio	ons	
to Geometry	and Physics, 2018, 1st	edition Springer	_						
Mode of assessm	ent: Continuous asse	essments, Oral, FA	AT						
Recommended by	/ Board of Studies	DD-MM-YYYY							
Approved by Acad	Jemic Council	No. xx	Date	DD-MM-Y	YYY				

Course code	Course title			Т	Ρ	С			
	Ordinary and partial differential equations		3	1	0	4			
Pre-requisite	e-requisite Calculus and analytical Geometry S				vers	ion			
						1.0			
Course Objectives									
1. To develop mathematical skills so that students can apply mathematical methods & principals									
in solving problems	arising in real life.								
2. To understand how real-life problems can give rise to differential equations									
3. To solve the pro	blems choosing the most suitable method.								
4. To utilise Laplac	e and Fourier transform techniques to solve	the differential e	equation	ns					
Course Outcomes									
1 Recognize the order and degree of differential equations and solve first order differential									
equations by d	ifferent methods.			uiii		itiai			
2 Understand the role of complementary functions and particular integrals in finding solution and									
should be able to apply variation of parameters and method of undetermined coefficients in									
solving differential equations.									
3. Apply Frobenius' method to obtain series solution of second order differential equations									
4. Utilize the method of characteristics in handling partial differential equations of first order and									
should be able	to solve partial differential equations of sec	ond and higher c	order.						
5. Apply Laplace	and Fourier Transform to solve differential e	equations.							
Modulo:1 Diffor	ontial aquations of first order		7 hour	<u> </u>	2 ho	ure			
Differential equation	n of first order-exact and linear differential e	auations First o		uatio	ons (of			
higher degree Clai	raut's form singular solutions. Orthogonal t	raiectories Appl	ications	in	5113 (וכ			
geometrical and m	echanical problems	rajootonoo, rappi	loadono	,					
Module:2 Differ	ential equations of higher order		6 hour	s + 2	2 ho	urs			
Linear equations, li	nearity, linear independence and Wronskian	, Reduction of or	der, Ho	mog	ene	ous			
linear equations w	ith constant coefficients, Nonhomogenous	equation-Cauc	hy-Eule	er Eo	quat	ion,			
Solution by method	l of Undetermined Coefficients and Variation	of Parameters							
Module:3 Series	solution		4 hour	<u>s + 2</u>	<u>2 ho</u>	urs			
Power Series repr	esentation of functions, Power Series met	hod, Method of	Frober	nius,	Se	ries			
Solution of Legendi	e and Bessel differential equations		0 hour	<u>.</u>) h a				
Formation of Partia	Differential differential equations	n DDE (Standar	<u>a nour</u>	$\frac{S+4}{2}$	2 no	loto			
integral General S	Solution Singular Solution Lagrange's Lin	ear Equation N	lonlines	r = Ec	unp teur	ion-			
Charnit's method									
Module:5 Highe	r order partial differential equations		6 hour	s + 2	2 ho	urs			
Homogeneous line	ar equation with constant co-efficient, Nonh	omogenous line	ar equa	tion	s of	any			
order, Non-linear equations of second order-Monge's method									
Module:6 Lapla	ce transform		6 hour	s + 2	2 ho	urs			
Laplace Transform	n, Sufficient conditions for existence, T	ranslation theo	rems,	Ope	ratio	onal			
properties, Periodic functions, Inverse Laplace Transform, Convolution, Application to the solution									
of Differential Equations, Heaviside Functions and Pulses, Impulses and Delta Function									
Module:7 Fourie	er transform		6 hour	<u>s + 2</u>	<u>2 ho</u>	urs			
Fourier Series, Convergence, Fourier Sine and Cosine series, Complex Fourier Series, Fourier									
I ransform and its p	properties, Fourier Cosine and Sine Transfo	rm, Parseval's th	eorem		. I				
Woaule:8 Conte	mporary issues			2	2 no	urs			

			Total Lecture ho	ours:	45 hours+			
					15 hours tutorial			
Text Book(s)								
1.	G. F. Simmons, Differential Equations with Applications and Historical Notes, 2017, 3 rd edition, CRC							
	Press, USA							
2.	B. S. Grewal, Higher Engineering Mathematics, 2018, 44 th edition, Khanna Publishers, India							
Reference Books								
1.	Shepley L. Ross, Differential Equations, 2007, 3rd edition, Wiley, India							
2.	lan N. Sneddon, Elements of Partial differential equations, 2006, 1 st edition, Dover, USA							
3.	3. Murray R. Spiegel, Schaum's outline of Theory and Problems of Laplace Transform, 1965, 1 st edition,							
	McGraw Hill, USA							
Mode of Evaluation: CAT , Written assignment , Quiz , FAT								
Red	Recommended by Board of Studies DD-MM-YYYY							
Approved by Academic Council		No. xx	Date	DD-MM-YYYY				