SCHOOL OF ELECTRONICS ENGINEERING

M. Tech Automotive Electronics

Curriculum
(2019-2020 admitted students)
VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- **World class Education**: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- **Cutting edge Research**: An innovation ecosystem to extend knowledge and solve critical problems.
- **Impactful People**: Happy, accountable, caring and effective workforce and students.
- **Rewarding Co-creations**: Active collaboration with national & international industries & universities for productivity and economic development.
- **Service to Society**: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

To be a leader by imparting in-depth knowledge in Electronics Engineering, nurturing engineers, technologists and researchers of highest competence, who would engage in sustainable development to cater the global needs of industry and society.

MISSION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

- Create and maintain an environment to excel in teaching, learning and applied research in the fields of electronics, communication engineering and allied disciplines which pioneer for sustainable growth.
- Equip our students with necessary knowledge and skills which enable them to be lifelong learners to solve practical problems and to improve the quality of human life.
M. Tech Automotive Electronics

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

1. Graduates will be engineering practitioners and leaders, who would help solve industry’s technological problems

2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry

3. Graduates will function in their profession with social awareness and responsibility

4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country

5. Graduates will be successful in pursuing higher studies in engineering or management

6. Graduates will pursue career paths in teaching or research
M. Tech Automotive Electronics

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_03: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_04: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO_05: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO_06: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_07: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_08: Having a clear understanding of professional and ethical responsibility

PO_11: Having a good cognitive load management skills related to project management and finance
M. Tech Automotive Electronics

ADDITIONAL PROGRAMME OUTCOMES (APOs)

APO_02: Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)

APO_03: Having design thinking capability

APO_04: Having computational thinking (Ability to translate vast data in to abstract concepts and to understand database reasoning

APO_07: Having critical thinking and innovative skills

APO_08: Having a good digital footprint
M. Tech Automotive Electronics

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M.Tech. Automotive Electronics, graduates will be able to:

PSO1. Apply advanced concepts of Automotive Electronics to design and develop components and systems for applications in automotive systems.

PSO2. Use state-of-art hardware and software tools to experiment the automotive electronics systems to solve industry and real-world problems.

PSO3. Independently carry out research on diverse Automotive Electronics strategies to address practical problems and present a substantial technical report.
M. Tech Automotive Electronics

CREDIT STRUCTURE

Category-wise Credit distribution

<table>
<thead>
<tr>
<th>Category</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>University core (UC)</td>
<td>27</td>
</tr>
<tr>
<td>Programme core (PC)</td>
<td>19</td>
</tr>
<tr>
<td>Programme elective (PE)</td>
<td>18</td>
</tr>
<tr>
<td>University elective (UE)</td>
<td>06</td>
</tr>
<tr>
<td>Bridge course (BC)</td>
<td>-</td>
</tr>
<tr>
<td>Total credits</td>
<td>70</td>
</tr>
</tbody>
</table>
M. Tech Automotive Electronics

DETAILED CURRICULUM

University Core

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MAT6001</td>
<td>Advanced statistical methods</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>ENG5001 and ENG5002 or FRE5001/GER5001</td>
<td>Fundamentals of communication Skills and Professional and communication Skills (or) Foreign Languages</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>STS5001 & STS5002</td>
<td>Soft Skills</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>SET 5001</td>
<td>SET Project – I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>SET 5002</td>
<td>SET Project – II</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>ECE6099</td>
<td>Master’s Thesis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
</tbody>
</table>

University Elective

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>University Elective</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>
M. Tech Automotive Electronics

Programme Core

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ECE 5071</td>
<td>Sensors and Engine Management Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>ECE 5072</td>
<td>Microcontrollers for Vehicular systems</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ECE 5073</td>
<td>Vehicle Control Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ECE 5074</td>
<td>Automotive networking and protocols</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>ECE 5075</td>
<td>Electric and Electronic Power Systems for Vehicles</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Programme Elective

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ECE 6071</td>
<td>Data Acquisition and Signal Conditioning</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>ECE 6072</td>
<td>Automotive Power Electronics and motor drives</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ECE 6073</td>
<td>AUTOSAR and ISO Standards for Automotive Systems</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>ECE 6074</td>
<td>Alternative Drives, Traction and controls</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>ECE 6075</td>
<td>Soft Computing Techniques for Automotive Applications</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>ECE 6076</td>
<td>Automotive EMI and EMC standards</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>ECE 6077</td>
<td>Vehicular information and communication systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>ECE 6078</td>
<td>Parallel Programming using Multicores and Graphical Programming Units</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>ECE 6069</td>
<td>Digital Signal Processing and its Applications</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>ECE 6079</td>
<td>Open source hardware and software system design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>ECE 6080</td>
<td>Machine Vision System for Automotive</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>ECE 6081</td>
<td>Automotive Fault diagnostics</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>ECE 6082</td>
<td>Emission control and diagnosis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>ECE 6083</td>
<td>Vehicle safety systems</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>ECE 6084</td>
<td>Vehicle bodies</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>ECE 6085</td>
<td>Engine peripherals</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>ECE 6086</td>
<td>Vehicle security and comfort systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
University Core
MAT6001 ADVANCED STATISTICAL METHODS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-requisite: None

Syllabus Version: 2.0

Course Objectives

1. To provide students with a framework that will help them choose the appropriate descriptive statistics in various data analysis situations.
2. To analyse distributions and relationships of real-time data.
3. To apply estimation and testing methods to make inference and modelling techniques for decision making using various techniques including multivariate analysis.

Expected Course Outcome

At the end of the course the students are expected to

1. Understand the concept of correlation and regression model and able to interpret the effect of variables, regression coefficients, coefficient of determination.
2. Make appropriate decisions using inferential statistical tools that are central to experimental research.
3. Understand the statistical forecasting methods and model fitting by graphical interpretation of time series data.
4. Construct standard experimental designs and describe what statistical models can be estimated using the data.
5. Demonstrate R programming for statistical data

Student Learning Outcomes (SLO)

7, 9, 18

- [7] Having computational thinking (Ability to translate vast data in to abstract concepts and to understand database reasoning)
- [9] Having problem solving ability- solving social issues and engineering problems
- [18] Having critical thinking and innovative skills

Module: 1 Basic Statistical Tools for Analysis: 4 hours

Summary Statistics, Correlation and Regression, Concept of R² and Adjusted R² and Partial and Multiple Correlation, Fitting of simple and Multiple Linear regression, Explanation and Assumptions of Regression Diagnostics

Module: 2 Statistical Inference: 9 hours

Module: 3 Modelling and Forecasting Methods: 9 hours

Introduction: Concept of Linear and Non Liner Forecasting model, Concepts of Trend, Exponential Smoothing, Linear and Compound Growth model, Fitting of Logistic curve and their Applications, Moving Averages, Forecasting accuracy tests.

Probability models for time series: Concepts of AR, ARMA and ARIMA models.

Module: 4 Design of Experiments: 6 hours

Analysis of variance – one and two way classifications – Principle of design of experiments, CRD – RBD – LSD, Concepts of 2^2 and 2^3 factorial experiments.
Module: 5
Contemporary Issues:
Industry Expert Lecture

<table>
<thead>
<tr>
<th>Total Lecture hours:</th>
<th>30 hours</th>
</tr>
</thead>
</table>

Text Book(s)

Reference Books

Mode of Evaluation
- Digital Assignments, Quiz, Continuous Assessments, Final Assessment Test

List of Challenging Experiments (Indicative)

<table>
<thead>
<tr>
<th>No.</th>
<th>Experiment Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Computing Summary Statistics using real time data</td>
<td>3 hours</td>
</tr>
<tr>
<td>2.</td>
<td>Plotting and visualizing data using Tabulation and Graphical Representations.</td>
<td>3 hours</td>
</tr>
<tr>
<td>3.</td>
<td>Applying simple linear and multiple linear regression models to real dataset; computing and interpreting the coefficient of determination for scale data.</td>
<td>3 hours</td>
</tr>
<tr>
<td>4.</td>
<td>Testing of hypothesis for Large sample tests for real-time problems.</td>
<td>2 hours</td>
</tr>
<tr>
<td>5.</td>
<td>Testing of hypothesis for Small sample tests for One and Two Sample mean and paired comparison (Pre-test and Post-test)</td>
<td>2 hours</td>
</tr>
<tr>
<td>6.</td>
<td>Testing of hypothesis for Small Sample tests for T-test</td>
<td>2 hours</td>
</tr>
<tr>
<td>7.</td>
<td>Testing of hypothesis for Small Sample tests for Chi-square test</td>
<td>2 hours</td>
</tr>
<tr>
<td>8.</td>
<td>Applying Time series analysis-Trends. Growth ,Logistic, Exponential models</td>
<td>2 hours</td>
</tr>
<tr>
<td>9.</td>
<td>Applying Time series model AR , ARMA and ARIMA and testing Forecasting accuracy tests.</td>
<td>3 hours</td>
</tr>
<tr>
<td>10.</td>
<td>Performing ANOVA (one-way and two-way), CRD, RBD and LSD for real dataset.</td>
<td>3 hours</td>
</tr>
<tr>
<td>11.</td>
<td>Performing 2^2 factorial experiments with real time Applications</td>
<td>2 hours</td>
</tr>
<tr>
<td></td>
<td>Performing 2^3 factorial experiments with real time Applications</td>
<td>3 hours</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Total Laboratory Hours</td>
<td>30 hours</td>
</tr>
</tbody>
</table>

Mode of Evaluation

- Weekly Assessments, Final Assessment Test
- Recommended by Board of Studies 25-02-2017
- Approved by Academic Council No. 46 Date 24-08-2017
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Fundamentals of Communication Skills</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG5001</td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pre-requisite</td>
<td>Not cleared EPT (English Proficiency Test)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Objectives:
1. To enable learners learn basic communication skills - Listening, Speaking, Reading and Writing
2. To help learners apply effective communication in social and academic context
3. To make students comprehend complex English language through listening and reading

Expected Course Outcome:
1. Enhance the listening and comprehension skills of the learners
2. Acquire speaking skills to express their thoughts freely and fluently
3. Learn strategies for effective reading
4. Write grammatically correct sentences in general and academic writing
5. Develop technical writing skills like writing instructions, transcoding etc.,

Student Learning Outcomes (SLO):
- **18.** Having critical thinking and innovative skills
- **20.** Having a good digital footprint

Module:

- **Module: 1 Listening**
 - Understanding Conversation
 - Listening to Speeches
 - Listening for Specific Information
 - **8 hours**

- **Module: 2 Speaking**
 - Exchanging Information
 - Describing Activities, Events and Quantity
 - **4 hours**

- **Module: 3 Reading**
 - Identifying Information
 - Inferring Meaning
 - Interpreting text
 - **6 hours**

- **Module: 4 Writing: Sentence**
 - Basic Sentence Structure
 - Connectives
 - Transformation of Sentences
 - Synthesis of Sentences
 - **8 hours**

- **Module: 5 Writing: Discourse**
 - Instructions
 - Paragraph
 - Transcoding
 - **4 hours**

Total Lecture hours: **30 hours**

Text Book(s):

Reference Books:

| Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar |
|---|---|
| **List of Challenging Experiments (Indicative)** |
1. Familiarizing students to adjectives through brainstorming adjectives with all letters of the English alphabet and asking them to add an adjective that starts with the first letter of their name as a prefix.	2 hours
2. Making students identify their peer who lack Pace, Clarity and Volume during presentation and respond using Symbols.	4 hours
3. Using Picture as a tool to enhance learners speaking and writing skills	2 hours
4. Using Music and Songs as tools to enhance pronunciation in the target language / Activities through VIT Community Radio	2 hours
5. Making students upload their Self-introduction videos in Vimeo.com	4 hours
6. Brainstorming idiomatic expressions and making them use those in to their writings and day to day conversation	4 hours
7. Making students Narrate events by adding more descriptive adjectives and add flavor to their language / Activities through VIT Community Radio	4 hours
8. Identifying the root cause of stage fear in learners and providing remedies to make their presentation better	4 hours
9. Identifying common Spelling & Sentence errors in Letter Writing and other day to day conversations	2 hours
10. Discussing FAQ’s in interviews with answers so that the learner gets a better insight in to interviews / Activities through VIT Community Radio	2 hours

| Total Laboratory Hours | 30 hours |

<p>	Mode of evaluation: Online Quizzes, Presentation, Role play, Group Discussions, Assignments, Mini Project
Recommended by Board of Studies	22-07-2017
Approved by Academic Council	No. 46 Date 24-8-2017
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG5002</td>
<td>Professional and Communication Skills</td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Pre-requisite: ENG5001
Syllabus version: 1.1

Course Objectives:
1. To enable students to develop effective Language and Communication Skills
2. To enhance students’ Personal and Professional skills
3. To equip the students to create an active digital footprint

Expected Course Outcome:
1. Improve inter-personal communication skills
2. Develop problem solving and negotiation skills
3. Learn the styles and mechanics of writing research reports
4. Cultivate better public speaking and presentation skills
5. Apply the acquired skills and excel in a professional environment

Student Learning Outcomes (SLO):
18. Critical thinking and innovative skills.
20. Having a good digital footprint

Module:1 Personal Interaction
2 hours
- Introducing Oneself- one’s career goals
- Activity: SWOT Analysis

Module:2 Interpersonal Interaction
2 hours
- Interpersonal Communication with the team leader and colleagues at the workplace
- Activity: Role Plays/Mime/Skit

Module:3 Social Interaction
2 hours
- Use of Social Media, Social Networking, gender challenges
- Activity: Creating LinkedIn profile, blogs

Module:4 Résumé Writing
4 hours
- Identifying job requirement and key skills
- Activity: Prepare an Electronic Résumé

Module:5 Interview Skills
4 hours
- Placement/Job Interview, Group Discussions
- Activity: Mock Interview and mock group discussion

Module:6 Report Writing
4 hours
- Language and Mechanics of Writing
- Activity: Writing a Report

Module:7 Study Skills: Note making
2 hours
- Summarizing the report
- Activity: Abstract, Executive Summary, Synopsis

Module:8 Interpreting skills
2 hours
- Interpret data in tables and graphs
- Activity: Transcoding

Module:9 Presentation Skills
4 hours
- Oral Presentation using Digital Tools
- Activity: Oral presentation on the given topic using appropriate non-verbal cues

Module:10 Problem Solving Skills
4 hours
- Problem Solving & Conflict Resolution
- Activity: Case Analysis of a Challenging Scenario

Total Lecture hours: 30 hours

Text Book(s):
<table>
<thead>
<tr>
<th>Reference Books</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Jon Kirkman and Christopher Turk, *Effective Writing: Improving Scientific,</td>
</tr>
<tr>
<td>Technical and Business Communication*, 2015, Routledge</td>
</tr>
<tr>
<td>2 Diana Bairaktarova and Michele Eodice, *Creative Ways of Knowing in</td>
</tr>
<tr>
<td>Engineering*, 2017, Springer International Publishing</td>
</tr>
<tr>
<td>3 Clifford A Whitcomb & Leslie E Whitcomb, *Effective Interpersonal and Team</td>
</tr>
<tr>
<td>Communication Skills for Engineers*, 2013, John Wiley & Sons, Inc., Hoboken:</td>
</tr>
<tr>
<td>New Jersey.</td>
</tr>
<tr>
<td>4 ArunPatil, Henk Eijkmann & Ena Bhattacharya, *New Media Communication Skills</td>
</tr>
<tr>
<td>for Engineers and IT Professionals*, 2012, IGI Global, Hershey PA.</td>
</tr>
</tbody>
</table>

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

<table>
<thead>
<tr>
<th>List of Challenging Experiments (Indicative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SWOT Analysis – Focus specially on describing two strengths and two weaknesses</td>
</tr>
<tr>
<td>2 hours</td>
</tr>
<tr>
<td>2. Role Plays/Mime/Skit – Workplace Situations</td>
</tr>
<tr>
<td>4 hours</td>
</tr>
<tr>
<td>3. Use of Social Media – Create a LinkedIn Profile and also write a page or two</td>
</tr>
<tr>
<td>on areas of interest</td>
</tr>
<tr>
<td>2 hours</td>
</tr>
<tr>
<td>4. Prepare an Electronic Résumé and upload the same in vimeo</td>
</tr>
<tr>
<td>2 hours</td>
</tr>
<tr>
<td>5. Group discussion on latest topics</td>
</tr>
<tr>
<td>4 hours</td>
</tr>
<tr>
<td>6. Report Writing – Real-time reports</td>
</tr>
<tr>
<td>2 hours</td>
</tr>
<tr>
<td>7. Writing an Abstract, Executive Summary on short scientific or research articles</td>
</tr>
<tr>
<td>4 hours</td>
</tr>
<tr>
<td>8. Transcoding – Interpret the given graph, chart or diagram</td>
</tr>
<tr>
<td>2 hours</td>
</tr>
<tr>
<td>9. Oral presentation on the given topic using appropriate non-verbal cues</td>
</tr>
<tr>
<td>4 hours</td>
</tr>
<tr>
<td>10. Problem Solving – Case Analysis of a Challenging Scenario</td>
</tr>
<tr>
<td>4 hours</td>
</tr>
</tbody>
</table>

Total Laboratory Hours 30 hours

Mode of evaluation: Online Quizzes, Presentation, Role play, Group Discussions, Assignments, Mini Project

Recommended by Board of Studies 22-07-2017

Approved by Academic Council No. 47 Date 05-10-2017
FRE5001 FRANCAIS FONCTIONNEL L T P J C
 2 0 0 0 2
Pre-requisite Syllabus version
Nil 1.0

Course Objectives:
The course gives students the necessary background to:
1. Demonstrate competence in reading, writing, and speaking basic French, including knowledge of vocabulary (related to profession, emotions, food, workplace, sports/hobbies, classroom and family).
2. Achieve proficiency in French culture oriented view point.

Expected Course Outcome:
The students will be able to
1. Remember the daily life communicative situations via personal pronouns, emphatic pronouns, salutations, negations, interrogations etc.
2. Create communicative skill effectively in French language via regular / irregular verbs.
3. Demonstrate comprehension of the spoken / written language in translating simple sentences.
4. Understand and demonstrate the comprehension of some particular new range of unseen written materials.
5. Demonstrate a clear understanding of the French culture through the language studied.

Student Learning Outcomes (SLO): 9, 10
9 Having problem solving ability- solving social issues and engineering problems
10 Having a clear understanding of professional and ethical responsibility

Module:1 Saluer, Se présenter, Etablir des contacts 3 hours

Module:2 Présenter quelqu’un, Chercher un(e) correspondant(e), Demander des nouvelles d’une personne. 3 hours
La conjugaison des verbes Pronominaux, La Négation, L’interrogation avec ‘Est-ce que ou sans Est-ce que’.

Module:3 Situer un objet ou un lieu, Poser des questions 4 hours
L’article (défini/ indéfini), Les prépositions (à/en/au/aux/sur/dans/avec etc.), L’article contracté, Les heures en français, La Nationalité du Pays, L’adjectif (La Couleur, l’adjectif possessif, l’adjectif démonstratif/ l’adjectif interrogatif (quel/quelles/quelle/quelles), L’accord des adjectifs avec le nom, L’interrogation avec Comment/ Combien / Où etc..

Module:4 Faire des achat, Comprendre un texte court, Demander et indiquer le chemin. 6 hours
La traduction simple :(français-anglais / anglais –français)

Module:5 Trouver les questions, Répondre aux 5 hours
questions générales en français.

L’article Partitif, Mettez les phrases aux pluriels, Faites une phrase avec les mots donnés, Exprimez les phrases données au Masculin ou Féminin, Associez les phrases.

<table>
<thead>
<tr>
<th>Module: 6</th>
<th>Comment écrire un passage</th>
<th>3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Décrivez :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Famille /La Maison, /L’université /Les Loisirs/ La Vie quotidienne etc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module: 7</th>
<th>Comment écrire un dialogue</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialogue:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Réserver un billet de train</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Entre deux amis qui se rencontrent au café</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Parmi les membres de la famille</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Entre le client et le médecin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module: 8</th>
<th>Invited Talk: Native speakers</th>
<th>2 hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Total Lecture hours:</th>
<th>30 hours</th>
</tr>
</thead>
</table>

Text Book(s)

2. Echo-1, Cahier d'exercices, J. Girardet, J. Pécheur, Publisher CLE International, Paris 2010.

Reference Books

3. **ALTER EGO 1, Méthode de français, Annie Berthet, Catherine Hugo, Véronique M. Kizirian, Béatrix Sampsonis, Monique Waendendries ,** Hachette livre 2006.

Mode of Evaluation: CAT / Assignment / Quiz / FAT

Recommended by Board of Studies

Approved by Academic Council No 41 Date 17-06-2016
Course Objectives:
The course gives students the necessary background to:
1. Enable students to read and communicate in German in their day to day life
2. Become industry-ready
3. Make them understand the usage of grammar in the German Language.

Expected Course Outcome:
The students will be able to
1. Create the basics of German language in their day to day life.
2. Understand the conjugation of different forms of regular/irregular verbs.
3. Understand the rule to identify the gender of the Nouns and apply articles appropriately.
4. Apply the German language skill in writing corresponding letters, E-Mails etc.
5. Create the talent of translating passages from English-German and vice versa and To frame simple dialogues based on given situations.

Student Learning Outcomes (SLO):

<table>
<thead>
<tr>
<th>SLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Having problem solving ability- solving social issues and engineering problems</td>
</tr>
<tr>
<td>10. Having a clear understanding of professional and ethical responsibility</td>
</tr>
</tbody>
</table>

Module 1

Einleitung, Begrüßungsformen, Landeskunde, Alphabet, Personalpronomen, Verb Konjugation, Zahlen (1-100), W-fragen, Aussagesätze, Nomen – Singular und Plural

Lernziel:
Elementares Verständnis von Deutsch, Genus- Artikelwörter

3 hours

Module 2

Konjugation der Verben (regelmässig/unregelmässig) die Monate, die Wochentage, Hobbys, Berufe, Jahreszeiten, Artikel, Zahlen (Hundert bis eine Million), Ja-/Nein- Frage, Imperativ mit Sie

Lernziel:
Sätze schreiben, über Hobbys erzählen, über Berufe sprechen usw.

3 hours

Module 3

Possessivpronomen, Negation, Kasus- AkkusativvundDatativ (bestimmter, unbestimmterArtikel), trennbare verben, Modalverben, Adjektive, Uhrzeit, Präpositionen, Mahlzeiten, Lebensmittel, Getränke

Lernziel:
Sätze mit Modalverben, Verwendung von Artikel, über Länder und Sprachen sprechen, über eine Wohnung beschreiben.

4 hours

Module 4

Übersetzungen : (Deutsch – Englisch / Englisch – Deutsch)

Lernziel:
Grammatik – Wortschatz – Übung

6 hours
<table>
<thead>
<tr>
<th>Module: 5</th>
<th>5 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leseverständnis, Mindmap machen, Korrespondenz- Briefe, Postkarten, E-Mail</td>
<td></td>
</tr>
<tr>
<td>Lernziel: Wortschatzbildung und aktiver Sprachgebrauch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module: 6</th>
<th>3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufsätze: Meine Universität, Das Essen, mein Freund oder meine Freundin, meine Familie, ein Fest in Deutschland usw</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module: 7</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialoge:</td>
<td></td>
</tr>
<tr>
<td>e) Gespräche mit Familienmitgliedern, Am Bahnhof,</td>
<td></td>
</tr>
<tr>
<td>f) Gespräche beim Einkaufen; in einem Supermarkt; in einer Buchhandlung;</td>
<td></td>
</tr>
<tr>
<td>g) in einem Hotel - an der Rezeption; ein Termin beim Arzt.</td>
<td></td>
</tr>
<tr>
<td>Treffen im Cafe</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module: 8</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guest Lectures/Native Speakers / Feinheiten der deutschen Sprache, Basisinformation über die deutschsprachigen Länder</td>
<td></td>
</tr>
</tbody>
</table>

Total Lecture hours: 30 hours

<table>
<thead>
<tr>
<th>Text Book(s)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Netzwerk Deutsch als Fremdsprache A1, Stefanie Dengler, Paul Rusch, Helen Schmitz, Tanja Sieber, 2013</td>
</tr>
<tr>
<td>3. Deutsche Sprachlehre für Ausländer, Heinz Griesbach, Dora Schulz, 2011</td>
</tr>
<tr>
<td>4. Themen Aktuell 1, Hartmurt Außerstrasse, Heiko Bock, Mechthild Gerdes, Jutta Müller und Helmut Müller, 2010</td>
</tr>
</tbody>
</table>

www.goethe.de
wirtschaftsdeutsch.de
hueber.de, klett-sprachen.de
www.deutschtraining.org

Mode of Evaluation: CAT / Assignment / Quiz / FAT
Recommended by Board of Studies
Approved by Academic Council No. 41 Date 17-06-2016
<table>
<thead>
<tr>
<th>STS5001</th>
<th>Essentials of Business Etiquettes</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pre-requisite</td>
<td>Syllabus version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>

Course Objectives:
1. To develop the students’ logical thinking skills
2. To learn the strategies of solving quantitative ability problems
3. To enrich the verbal ability of the students
4. To enhance critical thinking and innovative skills

Expected Course Outcome:
- Enabling students to use relevant aptitude and appropriate language to express themselves
- To communicate the message to the target audience clearly

Student Learning Outcomes (SLO): 7, 9

7. Having Computational thinking (Ability to translate vast data into abstract concepts and to understand database reasoning)

9. Having problem solving ability- solving social issues and engineering problems

<table>
<thead>
<tr>
<th>Module:1</th>
<th>Business Etiquette: Social and Cultural Etiquette and Writing Company Blogs and Internal Communications and Planning and Writing press release and meeting notes</th>
<th>9 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value, Manners, Customs, Language, Tradition, Building a blog, Developing brand message, FAQs, Assessing Competition, Open and objective Communication, Two way dialogue, Understanding the audience, Identifying, Gathering Information, Analysis, Determining, Selecting plan, Progress check, Types of planning, Write a short, catchy headline, Get to the Point – summarize your subject in the first paragraph, Body – Make it relevant to your audience,</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:2</th>
<th>Study skills – Time management skills</th>
<th>3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prioritization, Procrastination, Scheduling, Multitasking, Monitoring, Working under pressure and adhering to deadlines</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:3</th>
<th>Presentation skills – Preparing presentation and Organizing materials and Maintaining and preparing visual aids and Dealing with questions</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Tips to prepare PowerPoint presentation, Outlining the content, Passing the Elevator Test, Blue sky thinking, Introduction, body and conclusion, Use of Font, Use of Color, Strategic presentation, Importance and types of visual aids, Animation to captivate your audience, Design of posters, Setting out the ground rules, Dealing with interruptions, Staying in control of the questions, Handling difficult questions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:4</th>
<th>Quantitative Ability -L1 – Number properties and Averages and Progressions and</th>
<th>11 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentages and Ratios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of factors, Factorials, Remainder Theorem, Unit digit position, Tens digit position, Averages, Weighted Average, Arithmetic Progression, Geometric Progression, Harmonic Progression, Increase & Decrease or successive increase, Types of ratios and proportions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:5</th>
<th>Reasoning Ability-L1 – Analytical Reasoning</th>
<th>8 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Arrangement(Linear and circular & Cross Variable Relationship), Blood Relations, Ordering/ranking/grouping, Puzzle test, Selection Decision table</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:6</th>
<th>Verbal Ability-L1 – Vocabulary Building</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms & Antonyms, One word substitutes, Word Pairs, Spellings, Idioms, Sentence completion, Analogies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total Lecture hours: | 45 hours |

Reference Books

Websites:

1. www.chalkstreet.com
2. www.skillsyounedd.com
3. www.mindtools.com
4. www.thebalance.com
5. www.cguru.000

Mode of Evaluation: FAT, Assignments, Projects, Case studies, Role plays, 3 Assessments with Term End FAT (Computer Based Test)

Recommended by Board of Studies

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/06/2017</td>
</tr>
</tbody>
</table>

Approved by Academic Council

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 45th AC 15/06/2017</td>
</tr>
</tbody>
</table>
Course Objectives:

5. To develop the students’ logical thinking skills
6. To learn the strategies of solving quantitative ability problems
7. To enrich the verbal ability of the students
8. To enhance critical thinking and innovative skills

Expected Course Outcome:

- Enabling students to simplify, evaluate, analyze and use functions and expressions to simulate real situations to be industry ready.

Student Learning Outcomes (SLO): 9, 10

9. Having problem solving ability- solving social issues and engineering problems
10. Having a clear understanding of professional and ethical responsibility

<table>
<thead>
<tr>
<th>Module:1</th>
<th>Interview skills – Types of interview and Techniques to face remote interviews and Mock Interview</th>
<th>3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Structured and unstructured interview orientation, Closed questions and hypothetical questions, Interviewers’ perspective, Questions to ask/not ask during an interview, Video interview, Recorded feedback, Phone interview preparation, Tips to customize preparation for personal interview, Practice rounds</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:2</th>
<th>Resume skills – Resume Template and Use of power verbs and Types of resume and Customizing resume</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Structure of a standard resume, Content, color, font, Introduction to Power verbs and Write up, Quiz on types of resume, Frequent mistakes in customizing resume, Layout - Understanding different company's requirement, Digitizing career portfolio</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:3</th>
<th>Emotional Intelligence - L1 – Transactional Analysis and Brainstorming and Psychometric Analysis and Rebus Puzzles/Problem Solving</th>
<th>12 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction, Contracting, ego states, Life positions, Individual Brainstorming, Group Brainstorming, Stepladder Technique, Brain writing, Crawford's Slip writing approach, Reverse brainstorming, Star bursting, Charlotte procedure, Round robin brainstorming, Skill Test, Personality Test, More than one answer, Unique ways</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:4</th>
<th>Quantitative Ability-L3 – Permutation-Combinations and Probability and Geometry and mensuration and Trigonometry and Logarithms and Functions and Quadratic Equations and Set Theory</th>
<th>14 hours</th>
</tr>
</thead>
</table>
| | Counting, Grouping, Linear Arrangement, Circular Arrangements, Conditional Probability,
Independent and Dependent Events, Properties of Polygon, 2D & 3D Figures, Area & Volumes, Heights and distances, Simple trigonometric functions, Introduction to logarithms, Basic rules of logarithms, Introduction to functions, Basic rules of functions, Understanding Quadratic Equations, Rules & probabilities of Quadratic Equations, Basic concepts of Venn Diagram

<table>
<thead>
<tr>
<th>Module:5</th>
<th>Reasoning ability-L3 – Logical reasoning and Data Analysis and Interpretation</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Syllogisms, Binary logic, Sequential output tracing, Crypto arithmetic, Data Sufficiency, Data interpretation-Advanced, Interpretation tables, pie charts & bar chats</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:6</th>
<th>Verbal Ability-L3 – Comprehension and Logic</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reading comprehension, Para Jumbles, Critical Reasoning (a) Premise and Conclusion, (b) Assumption & Inference, (c) Strengthening & Weakening an Argument</td>
<td></td>
</tr>
</tbody>
</table>

Total Lecture hours: 45 hours

Reference Books

Websites:

1. www.chalkstreet.com
2. www.skillsyouneed.com
3. www.mindtools.com
4. www.thebalance.com
5. www.eguru.ooo

Mode of Evaluation: FAT, Assignments, Projects, Case studies, Role plays, 3 Assessments with Term End FAT (Computer Based Test)

Recommended by Board of Studies | 09/06/2017
Approved by Academic Council | No. 45th AC | Date | 15/06/2017
Programme Core
<table>
<thead>
<tr>
<th>Course code</th>
<th>Sensors and Engine Management Systems</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE5071</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Course Objectives:

The course is aimed at
1. Giving details of the Engine sensor waveforms and methods to analyze the same.
2. Providing an overview of petrol and diesel engines using Engine Control Unit (ECU).
3. Giving insights into the operation of ECU with the suitable mapping of sensors.

Expected Course Outcome:

At the end of the course, the student will be able to
1. Comprehend the concepts of ECU design for automotive applications.
2. Analyze response of Transducers and sensors for automotive applications
3. Understand the various after treatment and alternative fuel-based systems.
4. Comprehend the operation of petrol engine management systems.
5. Understand the operation of automotive sensors and fuel injection systems.
6. Comprehend the Electronic control unit pertaining to chassis and body
7. Illustrate the various Automotive subsystems
8. Design and implement sensor and ECU related projects.

Student Learning Outcomes (SLO): 1, 4, 5

1. Having an ability to apply mathematics and science in engineering applications
4. Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
5. Having design thinking capability

Module:1 Electronic Control Unit (ECU) design: 6 hours

The concepts of ECU design for automotive applications, Need for ECUs, advances in ECUs for automotive, design complexities of ECUs, V-Model for Automotive ECUs Architecture, analog and digital interfaces

Module:2 Basics of Engine Control systems 6 hours

IC engines operation – Petrol and Diesel; IC engine as a propulsion source for Automobiles; the need for engine controls and management; Control objectives linked to fuel efficiency, emission limits and vehicle performance; advantages of using Electronic engine controls

Module:3 Petrol Engine Management Systems 7 hours

Evolution of Petrol engine controls, Electronic ignition, multi-point fuel injection, direct injection; Basics of ignition system and fuel injection system; Architecture of a EMS with multi point fuel injection

Module:4 Diesel Engine Management Systems: 6 hours

Basics of Diesel engine Controls; Evolution of diesel engine controls; in-line fuel pump; rotary fuel pump; EGR control; Electric motor driven fuel pump; electronic fuel injection control and timing.

Module:5 After treatment and alternate fuel 6 hours

Automobile emission – source, control, tests, standards (Indian), Exhaust Gas Recirculation (EGR), Catalytic converter, Alternative fuels – hydrogen – CNG, LPG, Biodiesel

Module:6 Transducer Principles 6 hours

Transducers classification and basic principles, General Input-output configuration, static characteristics and dynamic characteristics of instruments, Variable resistance transducers, Metal and semiconductor strain gages and their signal conditioning, Inductive transducers, Electromagnetic sensors, Hall effect sensors, Capacitive transducers, Piezo electric transducers
and their signal conditioning, Ultrasonic sensors

<table>
<thead>
<tr>
<th>Module:7</th>
<th>Sensors for Transportation</th>
<th>6 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vehicle Body: Torque sensors/ Force sensors, Sensors Flap air flow sensors, Temperature sensor, Ultrasonic sensors, Ranging radar (ACC) Power Train: Fuel level sensors, Speed and RPM sensors, Lambda Oxygen sensor, Hotwire air mass meter Chassis: Steering wheel angle sensor, Vibration and acceleration sensors, Pressure sensors, Speed and RPM sensors</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:8</th>
<th>Contemporary Topics</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Lecture Hours: 45 hours</td>
<td></td>
</tr>
</tbody>
</table>

Text Book(s)

3. Automotive Sensors (Sensors Technology) –2009 by John Turner & Joe Watson (Author)

Reference Books

1. Automotive Sensors, BOSCH. 2002

Typical Projects

1. **Develop regenerative braking system** – To develop the hydraulic SIMULINK model which can describe the process of braking pressure increase and decrease precisely. Meanwhile the motor cooperates with the hydraulic braking system well throughout the whole braking procedure. The maximum jerk exerted on the vehicle to decrease during the exiting of regenerative braking.

2. **Coolant Monitoring System** – To develop cooling system monitor and, more particularly, to the use of differential pressure to determine whether a sufficient flow of coolant is passing through the cooling system of an internal combustion engine.

3. **Automatic Control of Power Windows on Carbon Monoxide Level in Vehicle** – To develop microcontroller based power window control used as a control system for moving a power window panel. The purpose of power window control system is to raise and lower door glass with the help of a switch and its operation is controlled based on gas sensors

4. **Lubrication oil monitoring using ultrasonic sensor** – To develop simple warning system to predict the contamination level of lubrication oil at low cost using sensors connected with engine management systems

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Recommended by Board of Studies 09-03-2016

Approved by Academic Council No. 40 Date 18-03-2016
Course code: ECE5072
Course Title: Micro controllers for Vehicular Systems
L T P J C: 3 0 2 0 4

Pre-requisite: Nil
Syllabus version: 1.1

Course Objectives:
The course is aimed at:
1. Introducing the students to various automotive grade microcontroller for vehicles.
2. Teaching Embedded C programming with 8051 controller and ARM processor.
3. Explaining the architecture and features of ARM processor.

Expected Course Outcome:
At the end of the course, the students will able to
1. Understand the architecture of 8051 Microcontroller.
2. Write programs for solving problems using 8051 Microcontroller.
3. Comprehend ARM architecture & its features
4. Describe the architecture of Cortex-M.
5. Perform ARM processor based experiments using Embedded C programming tool.
6. Have an overview of the types of ARM cores in the market and to make a suitable choice for an application.
7. Comprehend various Microcontroller for powertrain and body electronics

Student Learning Outcomes (SLO):
1, 6, 14, 17

1. Having an ability to apply mathematics and science in engineering applications
6. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints
14. Having an ability to design and conduct experiments, as well as to analyze and interpret data
17. Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice

Module: 1
Introduction to 8 bit microcontrollers
5 hours

RISC / CISC and Harvard / Princeton, 8bit Architecture [8051,PIC18], External memory interface, Ports, Timers/counters, SerialCommunication, Interrupts

Module: 2
8 bit microcontrollers programming for Body, Safety and Temperature
7 hours

Programming in Embedded C [8051, PIC18], Applications on Body, safety and Temperature

Module: 3
ARM Architecture
7 hours

ARM Design Philosophy, Overview of ARM architecture, States[ARM, Thumb, Jazelle]. Registers, modes, Conditional Execution, Pipelining, Vector Tables, Exception handling

Module: 4
ARM Core
6 hours

Module: 5
ARM core programming
6 hours

Embedded C programming for IO ports, Timers, PWM, ADC and External interfaces

Module: 6
Automotive 32-bit MCU
6 hours

Choosing MCU’s for Automotive Applications, Atmel – SMART ARM based MCU, ST- SPC5 32-bit Automotive MCU, NXPAutomotive MCU
<table>
<thead>
<tr>
<th>Module:7</th>
<th>Automotive MCU by Applications</th>
<th>6 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Automotive microcontrollers for Powertrain Control, Hybrid and Electric Auxiliaries, Transmission and Body Electronics</td>
<td></td>
</tr>
<tr>
<td>Module:8</td>
<td>Contemporary Topics</td>
<td>2 hours</td>
</tr>
<tr>
<td></td>
<td>Total Lecture Hours:</td>
<td>45 hours</td>
</tr>
</tbody>
</table>

Text Book(s)

Reference Books
1. 8051 Microcontrollers - David Calcutt, Fred Cowan, Hassan Parchizadeh – Newness – 2011

Mode of Evaluation:
CAT / Assignment / Quiz / FAT / Project / Seminar

Recommended by Board of Studies: 09/03/2016

Approved by Academic Council: No. 40 Date 18/03/2016
Course Code	Course Title	L	T	P	J	C
ECE5073 | Vehicle Control Systems | 3 | 0 | 0 | 0 | 3

Pre-requisite | NIL | Syllabus Version : 1.1

Course objectives (CoB):

The course is aimed at:

[2] Providing a comprehensive coverage of controller design, state space design methods and digital control system.

[3] Acquiring the skills for carrying out typical projects involving vehicle controls using MATLAB and Simulink

Course Outcomes (CO):

At the end of the course, the student will be able to

[1] Understand the modelling aspects involved in the design of the physical system for vehicle applications

[2] Identify the steady state and transient response of the different order of the system, analyse its performance and compute error coefficients.

[3] Evaluate the stability of the system in frequency domain

[4] Design a controller for automotive application using MATLAB/SIMULINK

[5] Comprehend the Classical controller design

[6] Identify the state space design methods like SISO, etc.

[7] Explain the stability test procedure and get introduced to digital controller design.

Student Learning Outcomes (SLO):

<table>
<thead>
<tr>
<th>SLO</th>
<th>1,6,17</th>
</tr>
</thead>
</table>

[1] Having an ability to apply mathematics and science in engineering applications

[6] Having an ability to design a component or a product applying all the relevant standards and with realistic constraints

[17] Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice

Module:1 | System Modelling using Transfer function | 4 hours

Fundamentals of modelling -transfer function approach. Introduction to block diagrams & signal flow graphs. Introduction to Simulink
Module:2 Performance of Feedback Control System 4 hours

First order, Second order control system response for step, ramp and impulse inputs. Error Analysis - Type number -characteristic equation -Poles and Zeroes concept -Error Analysis and performance indices

Module:3 Stability analysis of feedback control system 4 hours

Frequency response plots -frequency domain specifications -stability analysis- Routh Hurwitz stability criteria –Root Locus – stability in the frequency domain –gain and phase margins – Nyquist stability criterion

Module:4 Controller Design 4 hours

Module:5 Classical controller design 3 hours

Classical design in the frequency domain- lead, lag compensator design.

Module:6 Modern control theory 5 hours

State space design methods: SISO,MIMO systems, Various forms of representation of the system (Bush form, etc), controllability and observability, state observer

Module:7 Introduction to Digital Control System 4 hours

Discrete Time systems, Sampling and aliasing considerations, System time response, characteristics -Jury’s stability test -mapping s to z plane -Digital controller design: from analog to digital design.

Module:8 Contemporary Topics 2 hours

| Total Lecture: 30 hours |

Mode: Flipped Class Room, [Lecture to be videotaped], lectures by industry / subject experts

Text Book(s)

Reference Books:

Indicative Project Titles

| 1. Mathematical modeling of linear and nonlinear SISO process |
| 2. Transfer function and state-space modeling of SISO process |
| 3. Designing of P, PI, PID controllers using performance criteria |
| 4. Processor in loop testing |
| 5. Designing of lag-lead compensators |
| 6. Designing of digital controller |
| 7. Closed loop control of a DC motor |
| 8. Cruise control system |
| 9. Lambda control for engines |
| 10. Simulink model development for automotive applications |

Recommended by Board of Studies: 09/03/2016
Approved by Academic Council: No. 40 Date: 18/03/2016
Course Code	Course Title	L	T	P	J	C
ECE5074 | Automotive networking and protocols | 3 | 0 | 2 | 0 | 4

Pre-requisite: NIL

Syllabus Version: 1.1

Course objectives (CoB):

The course is aimed at:

1. Providing an overview of automotive network systems
2. Exposing students to the aspects of design, development, application and performance issues associated with automotive network systems.

Course Outcomes (CO):

At the end of the course, the student will be able to

1. Illustrate the basics of automotive networking and protocols
2. Comprehend the general protocols and their usage in automotive sector
3. Understand the LIN protocol and implement inconvenience feature applications
4. Design and implement CAN protocol for chassis and power train applications
5. Understand the concepts of time triggered protocols and it’s usage in automotive field
6. Design and implement in media-oriented system transport protocol applications
7. Understand flex ray protocol and their usage in safety critical applications
8. Design node to node communication using LIN, CAN protocol and also implement the ECU communication using CAN analyzer

Student Learning Outcomes (SLO):

5, 6, 18

Student Learning Outcomes involved:

5. Having design thinking capability
6. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints
18. Having critical thinking and innovative skills

Module: 1

Introduction to automotive networking

3 hours

Overview of Data communication and networking – need for In-Vehicle networking – layers of OSI reference model – multiplexing and de-multiplexing concepts – vehicle buses

Module: 2

General purpose protocols

3 hours

Overview of general purpose networks and protocols – Ethernet, TCP, UDP, IP
<table>
<thead>
<tr>
<th>Module:3</th>
<th>Protocol for low data rate applications</th>
<th>5 hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Module:4</th>
<th>Protocol for medium data rate applications</th>
<th>5 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of CAN – fundamentals – Message transfer – frame types – Error handling – fault confinement – Bit time requirements</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:5</th>
<th>Time triggered protocol</th>
<th>3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to CAN open – TTCAN – Device net – SAE J1939</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:6</th>
<th>Protocol for infotainment</th>
<th>4 hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Module:7</th>
<th>Protocols for safety critical applications</th>
<th>5 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexray-Introduction – network topology – ECUs and bus interfaces – controller host interface and protocol operation controls – media access control and frame and symbol processing – coding/decoding unit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:8</th>
<th>Contemporary Topics</th>
<th>2 hours</th>
</tr>
</thead>
</table>

| **Total Lecture:** 30 hours |

Mode: Flipped Class Room, [Lecture to be videotaped], lectures by industry / subject experts

Text Book(s):

Reference Books:

2. Society of automotive engineers,” In-vehicle networks”, 2002

Lab experiments using microcontroller

- Data will be sent and received from master and slave node using LIN protocol
- CAN node to node communication using HCS512 microcontroller
 - Data will be sent and received from master and slave node using CAN protocol
<table>
<thead>
<tr>
<th>Flexray communication using EVB9S12XF512E board</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Multiple Data bytes sent using flexray protocol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TCP/IP communication using LabView</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Sending data to particular port address using TCP/IP protocol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TCP/UDP communication using LabView</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Sending data to particular port address using TCP/UDP protocol</td>
</tr>
</tbody>
</table>

Recommended by Board of Studies : 09/03/2016

Approved by Academic Council : No.40 Date : 18/03/2016
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE5075</td>
<td>ELECTRIC AND ELECTRONIC POWER SYSTEMS FOR VEHICLES</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Course Objectives:

- Developing the skills to understand the circuit and electrical wiring diagram and interpret the same.
- Providing students with a good understanding of automotive electrical systems with particular emphasize on batteries, charging, ignition, starters and lighting systems.
- Imparting students the knowledge about the new developments and advancements of automotive electrical technologies.

Expected Course Outcome:

At the end of the course, the students will be able to

1. Interpret the electrical wiring, circuit diagram for automotive applications
2. Understand the role of batteries in vehicles
3. Develop a charging system for vehicles
4. Understand the starter and ignition systems in vehicles
5. Demonstrate knowledge on lighting systems for vehicles.
6. Comprehend the passive restraint systems and electrical accessories in vehicles
7. Design and implement various electrical outlet systems for vehicles

Student Learning Outcomes (SLO): 1, 6, 17

1. Having an ability to apply mathematics and science in engineering applications
6. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints.
17. Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice

Module: 1 Electrical Systems and Circuits 6 hours

- System approach – electrical wiring, terminals and switching – multiplexed wiring systems – CAN – circuit diagrams and symbols, Requirements for two wheeler, three wheeler vehicles, Requirements for heavy vehicles- trucks and trailers

Module: 2 Batteries 6 hours

- Vehicle Batteries – Lead-Acid batteries – maintenance and charging – diagnosing Lead acid battery faults – advanced battery technology

Module: 3 Charging systems 6 hours

- Requirements of charging systems — generation of electrical energy in motor vehicle — physical principles — alternators — characteristic curves — charging circuits — diagnosing charging system faults

Module: 4 Starting system 6 hours

- Requirements — starter motors and circuits — types of starter motors — diagnosing starting system faults

Module: 5 Ignition system 6 hours

- Fundamentals — electronic ignition — programmed ignition — distributor less ignition — direct ignition spark plug ignition — diagnosing faults

Module: 6 Lighting system 6 hours

- Insulated and earth return systems, positive and negative earth systems, Concealed headlights
- Lighting circuit types, glare and preventive methods

Module: 7 Gauges, Accessories and Passive restraint 6 hours
<table>
<thead>
<tr>
<th>systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical fuel pump, speedometer, oil and temperature gauges, Horns, Wipers, washers, Blower motors, Defoggers, Power windows, seats, door locks, Air bag systems, Seat belt pretensioners</td>
</tr>
</tbody>
</table>

| Module:8 | Contemporary Topics | 3 hours | Total Lecture hours: | 45 hours |

Reference Books

5. Jurgen, R., Automotive Electronics Hand Book

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Challenging Experiments, Final Assessment Test

Typical Projects

1. Design a battery management system
2. Testing of starting motors and Alternators.
3. Electronic motor control system for door and car roof sun visor.
4. Battery circuit topology for lighting and accessories.
5. Battery powered Electric Vehicle Technology
6. Automatic lighting System
7. Automatic wiper system
8. Automatic lighting System
9. Optimizing the Performance of Electric Cooling Fans
10. Upgrading the Alternator

| Recommended by Board of Studies | 09/03/2016 |
| Approved by Academic Council | No. 40 | Date | 18/03/2016 |
Programme Elective
Course Code: ECE6071
Course Title: Data Acquisition and Signal Conditioning

| Pre-requisite | Basics of Electronics and Electrical circuits | Syllabus version: 1.1 |

Course Objectives:
The course is aimed at:
1. Imparting an in-depth knowledge in sensor signal conditioning, signal conversion, data acquisition, signal processing, transmission and analysis.
2. Providing a comprehensive coverage of data acquisition methods for sensor systems and hardware interface cards available commercially.
3. Enabling the students to do acquire the necessary skills to undertake project work using Multisim and LabView

Expected Course Outcome:
At the end of the course, the student will be able to:
1. Understand the basics of amplifier for designing circuits
2. Design the circuits using amplifiers for automotive applications
3. Estimate drift in resistors over a period of time and also to learn non-linear signal processing techniques
4. Design different converter like ADC, DAC and voltage to frequency converter
5. Gain knowledge about interference, grounding and its effects the circuitry
6. Understand the data operation of loggers, data acquisition boards and software for acquiring the samples
7. Describe different standards like RS232, GPIB which will be used for interfacing with the DAQ boards

Student Learning Outcomes (SLO):
5, 6, 18

5. Having design thinking capability
6. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints
18. Having critical thinking and innovative skills

Module: 1 Introduction to Linear Integrated Circuits
3 hours
Introduction to amplifier–amplifier parameters – operational amplifiers - Differential amplifiers-instrumentation amplifiers

Module: 2 Amplifiers
5 hours

Module: 3 Non-linear Signal Processing Techniques
3 hours
Limiting, clipping, logarithmic amplification, multiplication and division – analog linearization – special purpose signal conditioners – Noise in amplifiers – noise and drift in resistors

Module: 4 Signal Conversion
5 hours
Voltage to frequency converter – capacitance to period converter – frequency to code conversion - sampling concepts – pre filtering – Sample and Hold amplifier – Analog-to-Digital converters - multiplexers and De-multiplexers – Digital-to Analog converters

Module: 5 Data Transmission
4 hours

Module: 6 Data Acquisition System
3 hours CO: 6
DAS boards – interfacing issues with DAS boards, software drivers – data logger – Data acquisition method with time-division channeling and main errors of multi-channel data-acquisition systems,
<table>
<thead>
<tr>
<th>Module:7</th>
<th>Interfacing</th>
<th>5 hours</th>
<th>CO: 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus standard for communication between instruments - GPIB (IEEE-488bus) - RS-232C- USB - 4- to-20mA current loop - serial communication systems</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:8</th>
<th>Contemporary Topics</th>
<th>2 hours</th>
</tr>
</thead>
</table>

Total Lecture Hours: 30 hours

Text Book(s)

Reference Books

Mode of Evaluation: CAT / Assignment / Quiz / FAT /

Mode of evaluation:

Recommended by Board of Studies 09/03/2016

Approved by Academic Council No. 40 Date 18/03/2016
Course Objectives:
The course is aimed at:
1. Imparting an in-depth knowledge about power electronics devices using MATLAB
2. Acquiring the design capability of converters and inverters for the electric and hybrid vehicles
3. Gaining knowledge on the different motors and their application in electric vehicles

Expected Course Outcome:
At the end of the course, the student will be able to
1. Understand the operation of power semiconductor devices
2. Understand the operation of AC-DC converters at different loads
3. Understand the operation of three phase inverters
4. Design different converters: buck, boost and buck-boost converters
5. Understand the concepts of ultracapacitor and its usage in automotive field
6. Describe the different speed control methods of induction motors
7. Give details about the operation and characteristics of different motors
8. Design and implement power electronics circuits for automotive applications

Student Learning Outcomes (SLO):
5, 6, 18

5. Having design thinking capability
6. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints
18. Having critical thinking and innovative skills

Module: 1 Introduction 4 hours
Introduction to power electronics- Structure , operation and characteristics of automotive semiconductor devices -SCR, Power Transistor, Power MOSFET and IGBT- turn on and off circuits – series and parallel operation of SCR – protection Circuits – design of snubber circuits

Module: 2 Converters 4 hours

Module: 3 Inverters 4 hours
Voltage source inverter with 120 degree and 180 degree conduction mode-current source inverters – PWM techniques

Module: 4 Choppers 3 hours
Step up and step down choppers – Different types of choppers – use of choppers

Module: 5 Ultracapacitors 4 hours
Theory of electronic double layer capacitance-model and cell balancing-sizing criteria-converter interface-ultracapacitors in combination with batteries

Module: 6 Automotive motor Control 4 hours
Methods of controlling speed – Induction and DC Motor controls

Module: 7 Automotive drive system 5 hours
BLDC - Motor construction, characteristics and operation - Open loop and close loop control through speed and current sensors-Switched Reluctance Motor - Motor construction, operation and its application.

Module: 8 Contemporary Topics 2 hours
<table>
<thead>
<tr>
<th>Text Book(s)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Books</td>
<td></td>
</tr>
</tbody>
</table>

Mode of Evaluation: CAT / Assignment / Quiz / FAT /

Mode of evaluation:

<p>| Recommended by Board of Studies | 09/03/2016 |
| Approved by Academic Council | No. 40 | Date | 18/03/2016 |</p>
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE6073</td>
<td>AUTOSAR AND ISO STANDARDS FOR AUTOMOTIVE SYSTEMS</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Course Objectives: The course is aimed at:

1. Enabling the students to understand Autosar standards
2. Introducing to the students the basic knowledge of Communication Stack in Autosar
3. Preparing the students to understand the implementation and integration in Autosar

Expected Course Outcome:

At the end of the course, the student will be able to

1. Apply the knowledge of various autosar standards
2. Analyze autosar codes
3. Apply the AutoSAR – Implementation Integration
4. Analyze the AutoSAR – System Services
5. Implement CAN programming concepts through Autosar
6. Analyze the ISO/TS 16949 standards
7. Know the implementation aspects of ISO/TS 16949 standards

Student Learning Outcomes (SLO):

1. Having an ability to apply mathematics and science in engineering applications
4. Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
9. Having problem solving ability- solving social issues and engineering problems

Module: 1 | AutoSAR Standards | 3 hours

General requirement on basic software modules – Functional, Fault operation and error detection.

Module: 2 | AutoSAR Standards – Communication Stack | 5 hours

Network Management, TTCAN Interface standards, TTCAN Drivers

Module: 3 | AutoSAR – Implementation Integration | 3 hours

Platform Types, Memory Mapping

Module: 4 | AutoSAR – System Services | 3 hours

Watchdog Manager, Synchronized Time Base Manager

Module: 5 | ISO/TS 16949 | 5 hours

Module: 6 | Introduction to ISO26262 Standard: Basic Concepts | 3 hours

Structure of ISO26262 standard and its parts-Vocabulary-Management of functional Safety-Concept Phase

Module: 7 | Introduction to ISO26262 Standard: Implementation Aspects | 6 hours

Module: 8 | Contemporary Topics | 2 hours

Total Lecture Hours: 30 hours

Reference Books
1. Automotive Quality systems – David Hoyle, Butterworth Heinemann limited, 2000
2. www.autosar.org

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

<table>
<thead>
<tr>
<th>Mode of evaluation:</th>
<th></th>
</tr>
</thead>
</table>

Recommended by Board of Studies | 09/03/2016 |
Approved by Academic Council | No. 40 | Date | 18/03/2016 |
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE6074</td>
<td>ALTERNATIVE DRIVES, TRACTION AND CONTROLS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Pre-requisite

Electric and Electronic Power systems for vehicles

Syllabus version: 1

Course Objectives:

The course is aimed at:

1. Acquainting students with the basics of propulsion using IC engines and electric motors
2. Knowing about different energy storage and conversion schemes for Hybrid vehicles
3. Giving details about the different architectures for Hybrid electric vehicles

Expected Course Outcome:

At the end of the course, the students will able to

1. Understand automotive electrical systems
2. Suggest an alternate vehicle technology
3. Understand the difference in electric motors and IC engines for propulsion in automobiles
4. Describe the charging systems for different storages devices
5. Understand the types of motors used and control mechanism involved for these types of motors in vehicles
6. Explain the various architectures for Hybrid electric vehicles
7. Understand the need of fuel cells and use them for hybrid vehicles

Student Learning Outcomes (SLO): 1, 6, 17

1. Having an ability to apply mathematics and science in engineering applications
6. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints
17. Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice

Module:1

Introduction to Automotive Electrical Systems 6 hours

Electrical Systems and Circuits - Starting systems - Ignition Systems - Lighting & accessories - Electromagnetic Interference and Compatibility

Module:2

Introduction to Hybrid vehicle Technology 6 hours

Background on need for alternate vehicle technologies for propulsion - Emissions from IC engine based transportation and regulating standards - Projections on availability of non-renewable energy sources - Alternate technologies for vehicles for reducing urban pollution and for extending availability of resources - Importance of Hybrid Electric Vehicles technology

Module:3

Basics of vehicle propulsion 7 hours

Components comprising traction torque - Vehicle performance Parameters – Speed and Acceleration - Fuel economy in IC engine vehicles - Torque – Speed characteristics of IC engines - Comparison of Electric motors and IC engines as vehicle propulsion power sources - Basics of Electric vehicles - Types of Motors and the speed – Torque characteristics

Module:4

Energy Storage / Energy Conversion 6 hours

Module:5

Motors and controllers 6 hours

DC motors - Principle and control - Induction motor drives - Methods of speed control of Induction motor - Constant V / f control - Vector control method - Inverter for Vector control -
Module:6 Architectures for Hybrid Electric vehicles 6 hours
Series, parallel and series – parallel hybrids - Different architectures for Hybrid Electric vehicles - Series Hybrid Electric vehicle basics - Sizing of major components - Peak power sourcing - Parallel Hybrid electric vehicle basics - Engine on / off control strategy - Peak power sourcing - Drive train rating - Parallel Mild hybrid Electric drive system - Series-parallel mild hybrid electric vehicle system.

Module:7 Industry examples of Hybrid Electric vehicle 6 hours
Fuel cell: Basic principles of fuel cells

Module:8 Contemporary Topics 2 hours

Total Lecture hours: 45 hours

Text Book(s)
1. Modern Electric, Hybrid Electric and Fuel cell vehicles - by MehrdadEhsani, Yimin Gao, Sebatien Gay and Ali Emadi; Published by CRC press.

Reference Books
1. Iqbal Husain, Electric & Hybrid Vehicles, CRC Press

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

Typical Projects
- Convert two wheeler into hybrid vehicle
- Convert three wheeler in hybrid vehicle
- SOH monitoring
- Disconnecting battery from vehicle during idle
- SOC monitoring
- Comparative Torque analysis for various motors
- Starter system electrical wiring
- Ignition system electrical wiring
- Mild hybrid systems

Mode of Evaluation: Review I, II and III

Recommended by Board of Studies 09/03/2016
Approved by Academic Council No. 40 Date 18/03/2016
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE6075</td>
<td>Soft Computing Techniques for Automotive Applications</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Pre-requisite: NIL
Syllabus version: 1

Course objectives (CoB): The course is aimed at:

1. Explaining various architectures of Neural Networks and algorithms used in Fuzzy Logic.
2. Imparting knowledge about concepts of neurons, crisp set, fuzzy sets, rough sets and fuzzy inference systems.

Course Outcomes (CO):

At the end of the course, the student will be able to

1. Identify the essentials components of Soft Computing in automotive applications.
2. Explain working mechanism of Feed forward neural networks.
3. Describe the importance of Radial basis neural network and its applications to solve real life problems.
5. Explore recent trends in Convolution Neural Network for Automotive applications.
6. Understand the fundamentals of fuzzy sets and operations associated.
7. Understand the ability to apply Fuzzy rules for decision making in real-time scenarios, at a basic level.
8. design and implement various neural, fuzzy and genetic algorithms for automotive related applications.

Student Learning Outcomes (SLO):

1, 5, 14

1. Having an ability to apply mathematics and science in engineering applications
5. Having design thinking capability.
14. Having an ability to project, as well as to analyze and interpret data.

Module:1 Introduction

6 hours

<table>
<thead>
<tr>
<th>Module:2</th>
<th>Simple neural networks for Pattern classification</th>
<th>6 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module:3</td>
<td>Pattern Association</td>
<td>7 hours</td>
</tr>
<tr>
<td>Module:4</td>
<td>Neural network based on Competition</td>
<td>6 hours</td>
</tr>
<tr>
<td>Module:5</td>
<td>Adaptive Resonance theory and backpropagation neural net</td>
<td>6 hours</td>
</tr>
<tr>
<td></td>
<td>ART1 – ART2 – Standard back propagation – Alternative weight update procedures – alternative activation functions-application-pedestrian detection</td>
<td></td>
</tr>
<tr>
<td>Module:6</td>
<td>Fuzzy logic – Introduction</td>
<td>6 hours</td>
</tr>
<tr>
<td>Module:7</td>
<td>Properties of Membership functions, Fuzzification and Defuzzification</td>
<td>6 hours</td>
</tr>
<tr>
<td>Module:8</td>
<td>Contemporary Topics</td>
<td>2 hours</td>
</tr>
<tr>
<td></td>
<td>Total Lecture: 45 hours</td>
<td></td>
</tr>
</tbody>
</table>

Mode: Flipped Class Room, [Lecture to be videotaped], lectures by industry / subject experts

Text Book(s)

Reference Books:

Mode of Evaluation: Continues Assessment Test, Quiz, Digital Assignment, Challenging Experiments, Final Assessment Test

Indicative Project Titles

1. Neural network implementation in FPGA
2. Fuzzy based real time intelligent traffic assistant system
3. Fuzzy logic implementation for parking systems
4. Implementation of neuro fuzzy, fuzzy neuro algorithms for automotive applications
5. Identification of optimal air-fuel mixture ratio

<table>
<thead>
<tr>
<th>Recommended by Board of Studies</th>
<th>09/03/2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved by Academic Council</td>
<td>No. 40</td>
</tr>
</tbody>
</table>
Course Title: Automotive EMC and EMC Standards

Course Objectives:

- Teaching the students about the concepts of noise, filter and shield related to EMI and EMC
- Acquainting the students with skills used to build systems compliant with EMC standards
- Providing the students with the knowledge of testing the products for emissions and ESD

Expected Course Outcome:

At the end of the course, the student will be able to

1. Comprehend the concepts of power, signal and ground
2. Develop and understand the concepts of antennas and transmission lines in EMC
3. Understand the concepts of electric, magnetic and electromagnetic fields
4. Reproduce the testing methods adopted for conducted and radiated emissions
5. Understand the effects of cable and harnessing in EMI and EMC
6. Explain about the vehicle generated noise
7. Understand the issues of EMC in vehicles and various test methods for ESD

Student Learning Outcomes (SLO):

1, 6

- Having an ability to apply mathematics and science in engineering applications
- Having an ability to design a component or a product applying all the relevant standards and with realisitic constraints

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1</td>
<td>Introduction to EMC</td>
<td>7</td>
</tr>
<tr>
<td>Module 2</td>
<td>Basic concepts used in EMC</td>
<td>7</td>
</tr>
<tr>
<td>Module 3</td>
<td>Electromagnetic Fields</td>
<td>7</td>
</tr>
<tr>
<td>Module 4</td>
<td>EMC testing</td>
<td>6</td>
</tr>
<tr>
<td>Module 5</td>
<td>Effects of cable and harnessing</td>
<td>6</td>
</tr>
<tr>
<td>Module 6</td>
<td>Automobile Electrical and Electronics Systems</td>
<td>5</td>
</tr>
<tr>
<td>Module 7</td>
<td>EMC issues</td>
<td>5</td>
</tr>
<tr>
<td>Module 8</td>
<td>Contemporary topics</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Lecture hours: 45 hours

Reference Books

1. Balcells- J.; González- D.; Gago- J. Curso "EMC design in industrial systems". 2003

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

<table>
<thead>
<tr>
<th>Recommended by Board of Studies</th>
<th>09/03/2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved by Academic Council</td>
<td>No. 40</td>
</tr>
<tr>
<td>Date</td>
<td>18/03/2016</td>
</tr>
<tr>
<td>Course code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>ECE6077</td>
<td>Vehicular Information and Communication Systems</td>
</tr>
</tbody>
</table>

Pre-requisite: Syllabus version: 1.1

Course Objectives: The course is aimed at:

1. Teaching the students concepts of data processing, instrumentation and ECU recording equipment.
2. Providing students, a good understanding about automotive sound system and navigation for vehicular systems.
3. Providing details about the positioning and guidance systems.

Expected Course Outcome:

At the end of the course, the student will be able to

1. Understand the data processing in motor vehicles.
2. Comprehend the networking in automotive.
3. Gain knowledge about the information & communication
4. Understand the ECU recording equipment and Parking systems
5. Explore the sound system for automotive
6. Understand the Positioning and Map Matching for vehicles
7. Understand the Route Planning and Route Guidance techniques for automotives
8. Design and implement vehicular information and communication system.

Student Learning Outcomes (SLO):

1. Having an ability to apply mathematics and science in engineering applications
6. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints

Module:1

Data processing in motor vehicles

Requirements, Electronic control unit(ECU), Architecture, CARTRONIC.

Module:2

Automotive networking

Cross-system functions, Requirements for bus systems, Classification of bus systems, Applications in the vehicle, Coupling of networks, Example.

Module:3

Instrumentation

Information and communication areas, Driver information systems, Instrument clusters, Display types

Module:4

ECU recording equipment and Parking systems

Legal requirements, Design variations, parking aid with ultrasonic sensors, Further development

Module:5

Automotive sound systems

Radio tuners, Conventional tuners, Digital receivers, Reception quality, Reception improvement, Auxiliary equipment, Vehicle antennas.

Module:6

Positioning and Map Matching

Dead Reckoning, Global Positioning System, Sensor fusion. Conventional map matching, Fuzzy logic Based Map matching, Map aided Sensor calibration.

Module:7

Route Planning and Route Guidance

Shortest Path, Heuristic Search, Bidirectional Search, Hierarchical search, Guidance while En Route, Guidance while off Route, Guidance with dynamic information

Module:8

Contemporary Topics

Total Lecture Hours: 45 hours

Text Book(s)

Reference Books

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Recommended by Board of Studies | 09/03/2016
Approved by Academic Council | No. 40 | Date | 18/03/2016
<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE6078</td>
<td>PARALLEL PROGRAMMING USING MULTICORES AND GRAPHICAL PROGRAMMING UNITS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Course Objectives: The course is aimed at:

1. Imparting the knowledge about implementation of multi-threading on single core versus multi-core platforms
2. Providing the basic concept of threads error diffusion and parallel error diffusion.
3. Elaborating the details of Deadlock and Semaphores and implementation of dependent threading features.

Expected Course Outcome:

At the end of the course, the student will be able to

1. Understand the basic concepts of multi-core architecture
2. Demonstrate knowledge of the core architectural aspects of Parallel Computing (CAT1, FAT)
3. Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications.(CAT, FAT)
4. Apply the concept of threading for large scale systems (CAT2, FAT)
5. Apply methods to support and manage virtualization.(CAT2,FAT)
6. Develop and implement the various Parallel Programming Concepts in Linux Platform.(FAT)
7. Analyze the gblockIdx and threadIdx(FAT)
8. Use Parallel programming techniques using multicores and graphical programming units

Student Learning Outcomes (SLO): 1, 6, 14

1. Having a clear understanding of the subject related concepts and of contemporary issues
6. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints
14. Having an ability to design and conduct experiments, as well as to analyze and interpret data

Module: 1 Introduction to Multi-core Architecture 6 hours

Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – System virtualization

Module: 2 Overview of Threading 6 hours

Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – System virtualization

Module: 3 Fundamental concepts of parallel programming 7 hours

Module: 4 Parallel programming constructs 6 hours

Module: 5 OpenMP : Portable solution for threading 6 hours

Module: 6 CUDA Programming 6 hours

<table>
<thead>
<tr>
<th>Module:7</th>
<th>CUDA threads and Memories</th>
<th>6 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module:8</td>
<td>Contemporary Topics</td>
<td>2 hours</td>
</tr>
<tr>
<td></td>
<td>Total Lecture Hours:</td>
<td>45 hours</td>
</tr>
</tbody>
</table>

Text Book(s)

Reference Books
1. Programming Massively Parallel Processors, A hands-on approach, David B. Kirk and Wen-mei W. Hwu, Elesevier, New Delhi, 2010

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Mode of evaluation:
Recommended by Board of Studies 09/03/2016
Approved by Academic Council No. 40 Date 18/03/2016

Typical Projects (Indicative) CO 08
1. Real time classification of vehicles and traffic assessment using multicore programming.
2. Connecting multiple cameras to a vehicle and providing real time driver assistance using multicore framework
3. Driver assistance system using GPU processing that can filter the bad weather environment and provide alerts
4. Real time number plate recognition at toll gates using GPU programming and automatically collecting toll fee
5. Identification of overspeeding vehicles using road side video cameras and detection of law violators using GPU programming / Multi-core systems

Mode of Evaluation: Review I, II and III
Course Code	Course title	L	T	P	J	C
ECE6069 | DIGITAL SIGNAL PROCESSING AND ITS APPLICATIONS | 3 | 0 | 2 | 0 | 4

Pre-requisite: Advanced Mathematics
Syllabus Version: 1

Course Objectives:
The course is aimed at:
1. Introducing the concepts of sampling, digital filter, adaptive digital system
2. Providing the concepts of information theory and source coding different applications
3. Teaching methods and algorithms which would enable communication to happen as close to the maximum information transfer rate as possible

Expected Course Outcome:
At the end of the course, the student will be able to
1. Gain insight into digital models and algorithms to process the signals, after due conversion of signals from analog to digital
2. Determine the techniques to perform analog to digital and digital to analog conversion process
3. Design adaptive filters based on the signal processing and communication concepts
4. Analyse the signal spectrum from the received signal and modulation scheme suitable for information transmission
5. Determine the statistical properties of the signal
6. Find different ways of minimizing the number of bits, needed to represent a given amount of information
7. Find methods to minimize the probability of communication errors, without affecting the rate of communication process

Student Learning Outcomes (SLO): 1,5,17
[1] Having an ability to apply mathematics and science in engineering applications
[5] Having design thinking capability
[17] Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice

Module:1 Introduction 5 hours
The history of digital signal processing: Measurements and analysis, Telecommunications, Audio and television, Household appliances and toys, Automotive, Digital signal processing basics: Continuous and discrete signals, Sampling and reconstruction, Quantization, Processing models for discrete-time series, Common filters may be added digital filters: Filter architectures, Filter synthesis, Digital control systems: Proportional-integral-derivate controllers, Advanced controllers

Module:2 Analog Digital interface 6 hours

Module:3 Adaptive digital systems 4 hours
<table>
<thead>
<tr>
<th>Module:4</th>
<th>Spectral analysis and modulation</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Fourier transform and fast Fourier transform: Spectral analysis, Discrete Fourier transform and fast Fourier, transform approaches, "Z" transforms Using the auto-correlation function, Periodogram averaging, Parametric spectrum analysis, Modulation: Amplitude shift keying (ASK), Frequency shift keying (FSK), Phase shift keying (PSK), Complex modulation, The Hilbert transformer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:5</th>
<th>Introduction to Kalman filters</th>
<th>4 hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Module:6</th>
<th>Data compression</th>
<th>7 hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Module:7</th>
<th>Error-correcting codes</th>
<th>9 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel coding: The channel model, The channel capacity, Error-correcting codes: Hamming distance and error correction, Linear block codes, Cyclic codes, Convolution codes, Viterbi decoding, Interleaving, Concatenated codes and turbo codes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:8</th>
<th>Contemporary Topics</th>
<th>3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Lecture hours:</td>
<td>45 hours</td>
<td></td>
</tr>
</tbody>
</table>

Text Book(s)

Reference Books

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.
<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE6079</td>
<td>Open source hardware and software system design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Syllabus version: 1

Course Objectives:

The course is aimed at:

1. Introducing to the students the foundation of open source programming.
2. Understand client-server architectural model for web applications.
3. Teaching the students the basis of Automation using Raspberry Pi.

Expected Course Outcome:

At the end of the course, the student will be able to:

1. Understand the importance of Open Source programming
2. Identify and apply appropriate server side programming for web based applications
3. Understand various database operations
4. Comprehend the operation of different type of Socket programming
5. Understand the details of Raspberry Pi fundamentals and exploring GPIO Interface
6. Develop and implement the various Raspberry Pi project
7. Explore GPIO Interface
8. Design and analyse system using open source resources

Student Learning Outcomes (SLO):

1. Having a clear understanding of the subject related concepts and of contemporary issues
2. Having design thinking capability
3. Having problem solving ability- solving social issues and engineering problems

Module:1 Introduction

- **5 hours**

Module:2 GUI and Web programming

- **6 hours**

Module:3 Data base access

- **6 hours**

Module:4 Network Programming

- Sockets – Server socket – Client Socket – General Socket methods – Sending an HTTP e-mail – Sending an attachment as an email

- **7 hours**

Module:5 Raspberry Pi fundamentals

- Architecture – setting up the Raspberry Pi – Interacting with Raspberry command line – Setting up I2C, serial port – Connect Pi to network

- **6 hours**

Module:6 Raspberry Basic Projects

- **7 hours**

Module:7 Advanced Raspberry projects

- **5 hours**

Module:8 Contemporary Topics

- **2 hours**
<table>
<thead>
<tr>
<th>Total Lecture Hours:</th>
<th>45 hours</th>
</tr>
</thead>
</table>

Text Book(s)

1. Python programming for Raspberry Pi in 24 hours, Richard Blum and Christine Bresnahan, Sams Teach Yourself, Indiana, 2014

Reference Books

1. Raspberry Pi Cookbook, Simon Monk, O’Reilly, California, 2014

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Mode of evaluation:

<table>
<thead>
<tr>
<th>Recommended by Board of Studies</th>
<th>09/03/2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved by Academic Council</td>
<td>No. 40</td>
</tr>
</tbody>
</table>
Course Objectives:

The course is aimed at:
1. Providing the basic concepts of Digital Image Processing & their algorithm implementation
2. Introducing the concepts of shape descriptors and their applications in automotive systems.
3. Elaborating on automation and automotive components testing.

Expected Course Outcome:

At the end of the course, the student will be able to:
1. Understand the principle, advantages, limitation and possible application of image processing in Automotive
2. Identify and apply the appropriate image processing techniques to image segmentation, shape analysis and decision making
3. Understand the various operational behavior of Components in Automation
4. Comprehend the operation of different type of Cylinder blocks, detecting missing balls and behaviours
5. Comprehend the concepts of shape description
6. Develop and implement vision / manipulator interface
7. Detail out automotive component testing techniques
8. Implement machine vision system for automotives

Student Learning Outcomes (SLO):

<table>
<thead>
<tr>
<th>SLO</th>
<th>1, 9</th>
</tr>
</thead>
</table>
| 1. Having a clear understanding of the subject related concepts and of contemporary issues
9. Having problem solving ability- solving social issues and engineering problems |

Module: 1 Introduction to Computer Vision 8 hours

Module: 2 Fundamentals of digital image processing 7 hours

Module: 3 Segmentation Problem 7 hours

- Region and boundary based approach – Global, local and dynamic thresholding – Gradient and difference based edge detectors – template matching – region growing - quadtree – boundary detection – graph theoretic techniques – contour following – dynamic programming

Module: 4 Image Analysis 5 hours

- Inspection, location and identification – local template matching – simple feature extraction – classification using Bayes’ rule – Hough transform – Generalized Hough transform – Histogram analysis

Module: 5 Shape description 5 hours

- Taxonomy of shape descriptors – external descriptors – features of the boundary – internal descriptors – features of the region – boundary chain code

Module: 6 Automation considerations 5 hours

- Design of conveyor belts – Choice of various light sources – Design of separators – Grippers – Control of motors – vision / manipulator interface
Module: 7 Automotive component testing applications 5 hours

<table>
<thead>
<tr>
<th>Module: 8</th>
<th>Contemporary Topics</th>
<th>2 hours</th>
</tr>
</thead>
</table>

Total Lecture Hours: 45 hours

Text Book(s)

Reference Books
- Raspberry Pi Cookbook, Simon Monk, O’Reilly, California, 2014

Mode of Evaluation:
- CAT / Assignment / Quiz / FAT / Project / Seminar
- Mode of evaluation:

Recommended by Board of Studies

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/03/2016</td>
</tr>
</tbody>
</table>

Approved by Academic Council

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/03/2016</td>
</tr>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>ECE6081</td>
</tr>
</tbody>
</table>

Pre-requisite

Course objectives (CoB):

The course is aimed at:

1. Familiarising students with the basic concepts of automotive fault diagnostics
2. Teaching students about the fault sensors output waveforms
3. Elaborating the operation of Automotive Oscilloscopes, OBD II and Fault code readers

Course Outcomes (CO):

At the end of the course the student will be able to

1. Understand the basic concepts of fault diagnosis in automotive field.
2. Comprehend MIL for various automotive faults.
3. Have a brief idea of various sensors and assess ECU failures with the help of oscilloscope
4. Comprehend the operation of fault-finding systems (OBD)
5. Identify and rectify the faults of automotive sensors and fuel injection systems.
6. Analyze the various failure modes in Electronic control unit of chassis and body units
7. Understand the concepts of Electrical systems fault diagnostics

Student Learning Outcomes (SLO):

1, 4, 5

1. Having an ability to apply mathematics and science in engineering applications
4. Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
5. Having design thinking capability

<table>
<thead>
<tr>
<th>Module</th>
<th>Introduction</th>
<th>6 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diagnostic Techniques - diagnostic process - diagnostics on paper - mechanical diagnostic techniques - electrical diagnostic techniques - fault codes - on and off-board diagnostics - Data sources</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Tools and Equipment</th>
<th>6 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic equipment - Oscilloscopes - Scanners - Fault code readers - Engine Analysers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Oscilloscope diagnostics</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensors - Actuators - Ignition System - Other components</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>On-board diagnostics</th>
<th>6 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A first perspective - Petrol / Gasoline on-board diagnostics monitors - a second perspective</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Engine Systems</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diagnostics of Engine operation - Fuel system - Ignition - Emission - Fuel Injection - Diesel injection - Engine management - Fault finding information - air supply and exhaust systems -</td>
<td></td>
</tr>
</tbody>
</table>
cooling - lubrication - batteries - starting system - charging system

<table>
<thead>
<tr>
<th>Module:6</th>
<th>Chassis System</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics of brakes - anti-lock brakes diagnostics - traction control diagnostics - steering and types diagnostics - suspension diagnostics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:7</th>
<th>Electrical System</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic components and circuits diagnosis - multiplexing - lighting - diagnosing auxiliary system faults - in car entertainment security and communication - body electrical system faults - diagnosing instruments system faults - HVAC diagnostics - Cruise control diagnostics - Air bags and belt tensions diagnostics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:8</th>
<th>Contemporary Topics</th>
<th>2 hours</th>
</tr>
</thead>
</table>

Total Lecture: 45 hours

Text Book(s)

Reference Books:

Recommended by Board of Studies: 09/03/2016

Approved by Academic Council: No. 40 Date: 18/03/2016
<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE6082</td>
<td>EMISSION CONTROL AND DIAGNOSTICS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Pre-requisite

Syllabus version:2

Course Objectives:

The course is aimed at:
1. Preparing the students to analyze automotive pollution control techniques
2. Introducing the concepts of formation and control techniques of pollutants like sulphur, CO, NOx and particulate matter
3. Preparing the students to analyze smoke for both SI and CI engines

Expected Course Outcome:

At the end of the course, the student will be able to
1. Get details of the emission from automobiles
2. Analyze emission from Spark Ignition Engine
3. Analyze emission from Compression Ignition Engine
4. Explain about the exhaust emissions
5. Comprehend the Emission Control Legislation - I
6. Comprehend the Emission Control Legislation - II
7. Understand about the Exhaust gas measuring techniques
8. Design and implement emission control and diagnostics

Student Learning Outcomes (SLO): 1,9,17

1. Having an ability to apply mathematics and science in engineering applications
9. Having problem solving ability- solving social issues and engineering problems
17. Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice

Module:1 Emission From Automobiles 6 hours

Module:2 Emission From Spark Ignition Engine And Its Control 7 hours
Emission formation in SI Engines- Carbon monoxide & Carbon di oxide - Unburned hydrocarbon, NOx, Smoke —Effects of design and operating variables on emission formation – controlling of pollutants - Catalytic converters, Charcoal Canister, CCS, Positive Crank case ventilation system, Secondary air injection, thermal reactor, Laser Assisted Combustion

Module:3 Emission From Compression Ignition Engine And Its Control 6 hours
-Formation of White, Blue, and Black Smokes, NOx, soot, sulphur particulate and Intermediate Compounds – Physical and Chemical delay — Significance Effect of Operating variables on Emission formation — Fumigation, Split injection, Catalytic Coating, EGR, HCCI, Particulate Traps, SCR, Fuel additives — Cetane number Effect.

Module:4 Exhaust emissions 6 hours
Combustion products, Properties of exhaust gas components

Module:5 Emission control legislation - I 6 hours
Overview, CARB legislation, EPA legislation, EU legislation, Japanese legislation

Module:6 Emission control legislation - II 6 hours
US test cycles for passenger cars and light duty trucks, European test cycles for passenger cars and light duty trucks, Japanese test cycles for passenger cars and light duty trucks, test cycles for...
heavy commercial vehicles

Module:7 Exhaust gas measuring techniques – I 6 hours
Exhaust gas test on chassis dynamometers, Exhaust gas measuring devices, Diesel smoke emission test, Evaporative emission test

Module:8 Contemporary Topics 2 hours

Total Lecture Hours: 45 hours

Text Book(s)

Reference Books

 1. Typical Project

 Effects of Fuel Modification and Emission Control Devices – To characterize the physical and chemical composition and the mutagenicity of emissions from a heavy-duty diesel engine equipped with a ceramic particle trap. This engine need to operate with low-sulfur fuel at a constant speed under two different load conditions and compare the results to those obtained in an different sulfur level

 1. Sulphur analyzer – Develop a system to collect and analyze the data on the effects of sulfur on various exhaust emission systems

 2. Endurance tests – To conduct various tests on the emission control technologies to measure and compare the effects of as many as 250 hours of aging on engines using diesel fuel containing varying levels of sulfur.

 3. IOT based vehicle emission monitoring system – To monitor the vehicle emission using the exhaust sensors and upload the emission data to cloud and diagnostic center will receive the data if emission is above the norms

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Mode of evaluation:
Recommended by Board of Studies 09/03/2016
Approved by Academic Council No. 40 Date 18/03/2016
<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE6083</td>
<td>Vehicle safety systems</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Pre-requisite</td>
<td>Basics of vehicle systems and its working</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Objectives:

The course is aimed at:
1. Have a better understanding of good design practices which will enable product improvement that manifests significantly less risk to humans, machines and the environment
2. Gain the ability to design and demonstrate the vehicle safety critical systems to reduce the system errors and faults
3. Introducing the students to do design safety systems using MATLAB simulation

Expected Course Outcome:

At the end of the course, the student will be able to
1. Understand the basic concept of vehicle safety
2. Understand the operation of braking system design and its operation
3. Understand the braking system for passenger vehicles
4. Know the working principle of ABS and traction control systems
5. Understand the concepts of braking systems for commercial vehicles
6. Understand the vehicle stabilization for commercial vehicles
7. Understand about the airbag system for passenger safety

Student Learning Outcomes (SLO):
- 5, 6, 18
- 5. Having design thinking capability
- 6. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints
- 18. Having critical thinking and innovative skills

Module 1: Basic concepts of vehicle safety
- 4 hours
- Underlying principles-cause and effect-safety factors-design for uncertainty-identifying component safety factor-Digital models and man testing-compliance

Module 2: Braking systems
- 4 hours
- Definitions-principles-design and components of braking system-brake-circuit configurations-braking system design

Module 3: Braking system for passenger cars and light utility vehicles
- 4 hours
- Brake booster-brake master cylinder-braking force limiters-disk brakes-drum brakes

Module 4: Vehicle stabilization systems for passenger cars
- 4 hours
- Anti Lock braking system(ABS)-traction control system(TCS)-Electronic stability program(ESP)-Electrohydraulic brakes

Module 5: Braking system for commercial vehicles
- 4 hours
- System and configuration-air supply and processing-Transmission device-wheel brakes-parking brake system-retarder braking system

Module 6: Vehicle stabilization system for commercial vehicles
- 4 hours
- Electronic stability program(ESP) for commercial vehicles-Electronically controlled braking(ELB)-function-system design-components-electro pneumatic braking

Module 7: Occupant injury prevention and distracted
- 4 hours
<table>
<thead>
<tr>
<th>driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction-proper use of head restraints-Airbags-distractors and risk reduction-information processing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module: 8</th>
<th>Contemporary Topics</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Lecture Hours:</td>
<td>30 hours</td>
</tr>
</tbody>
</table>

Text Book(s)

Reference Books

Mode of Evaluation: CAT / Assignment / Quiz / FAT /

Recommended by Board of Studies: 09/03/2016

Approved by Academic Council: No. 40 Date: 18/03/2016
<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE6084</td>
<td>VEHICLE BODIES</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Pre-requisite

Syllabus version :1

Course Objectives: The course is aimed at:

1. Giving insight into the vehicle construction
2. Design and construction of vehicular bodies for passenger car and commercial vehicles
3. Providing an overview of lighting in vehicles

Expected Course Outcome:

At the end of the course the student will be able to

1. Understand **Road-vehicle systematics**
2. Understand **Vehicle bodies for passenger cars**
3. Comprehend and analyze **commercial vehicles** bodies
4. Classify **External lighting technologies**
5. Classify **Internal lighting technologies**
6. Brief about **Automotive windshield and window glass**
7. Design the **Windshield and rear-window cleaning systems**

Student Learning Outcomes (SLO): 1,4,5

1. Having an ability to apply mathematics and science in engineering applications
4. Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
5. Having design thinking capability

Module:1 **Road-vehicle systematics**

Classification according to ECE, Classification according to USA

Module:2 **Vehicle bodies- passenger cars**

Main dimensions, Body design, Aerodynamics, Aeroacoustics, body structure, Body materials, Body surface, Body finishing components, Safety

Module:3 **Vehicle bodies-commercial vehicles**

Commercial vehicles, Light utility vans, Medium and heavy-duty trucks and tractor vehicles, Buses, Passive safety in commercial vehicles

Module:4 **Lighting technology-I**

Functions, Regulations and equipment, Definitions and terms, Main headlamps, European system, Main headlamps, European regulations, Head lamps, USA, Headlamps, US regulations, Headlamps levelling, Europe, Headlamp cleaning systems, Fog lamps, Auxiliary driving lamps

Module:5 **Lighting technology-II**

Lights and lamps, Hazard-warning and turn-signal flashers, Side-marker, clearance, and tail lamps, Parking lamps, License-plate lamps, Stop lamps, Rear fog warning lamps, Reversing lamps, Daytime running lamps, Reversing lamps, Daytime running lamps, other lighting devices, Motor-vehicle bulbs.

Module:6 **Automotive windshield and window glass**

The material properties of glass, Automotive glazing, Functional design glazing

Module:7 **Windshield and rear-window cleaning systems**

Windshield wiper systems, Rear-window wiper systems, Headlamp cleaning systems, Wiper motors, Washing systems

Module:8 **Contemporary Topics**

Total Lecture Hours: 28 hours

Text Book(s)

Reference Books

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Recommended by Board of Studies: 09/03/2016

Approved by Academic Council: No.40 Date: 18/03/2016
<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE6085</td>
<td>ENGINE PERIPHERALS</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-requisite

| Syllabus version : 1 |

Course Objectives: The course is aimed at:

1. Preparing the students to understand engine peripherals connections and operation theory
2. Introducing the basics of engine cooling and lubrication
3. Preparing to study and analyze emission reduction techniques

Expected Course Outcome:

At the end of the course, the student will be able to

1. Get an **Overview of Engine**
2. Comprehend the techniques for **Engine Cooling**
3. Understand about **Engine lubrication**
4. Demonstrate knowledge on **Air filtration**
5. Comprehend the concepts of **engine peripherals**
6. Understand **Turbochargers and superchargers for IC engines**
7. Understand **Emission reduction systems and exhaust gas systems**
8. Design and implement the **engine peripherals**

Student Learning Outcomes (SLO):

| 1,4,9 |

1. Having an ability to apply mathematics and science in engineering applications
2. Having Sense-Making Skills of creating unique insights in what is being seen or observed
3. Higher level thinking skills which cannot be codified
4. Having problem solving ability - solving social issues and engineering problems

Module:1 **Overview of Engine**

| 3 hours |

Engine operation, Engine components, Engine types

Module:2 **Engine Cooling**

| 4 hours |

Water cooling, Air cooling, Intercooling, Oil and fuel cooling, cooling module technology, Intelligent thermal management, Exhaust gas cooling

Module:3 **Engine lubrication**

| 3 hours |

Overview, Force feed lubrication system, lubrication components

Module:4 **Air filtration**

| 2 hours |

Air pollution, Air filters

Module:5 **Other engine peripherals**

| 5 hours |

HVAC, alternator, vacuum pump, steering pump, air intake system, exhaust system

Module:6 **Turbochargers and superchargers for IC engines**

| 5 hours |

Superchargers (mechanical driven), Pressure wave, Exhaust gas and multistage superchargers, Acceleration aids

Module:7 **Emission reduction systems and exhaust gas systems**

| 6 hours |

Exhaust gas recirculation systems, secondary air injection, Evaporative emission control system, crankcase ventilation, Manifold, Catalytic converters, particulate converters, mufflers connecting elements

Module:8 **Contemporary Topics**

| 2 hours |

Total Lecture Hours: 30 hours

Text Book(s):

Reference Books

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

<table>
<thead>
<tr>
<th>Mode of evaluation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended by Board of Studies</td>
</tr>
<tr>
<td>Approved by Academic Council</td>
</tr>
</tbody>
</table>
Course Code | Course Title | L | T | P | J | C
--- | --- | --- | --- | --- | --- | ---
ECE6086 | Vehicle Security and Comfort Systems | 3 | 0 | 0 | 4 | 4

Pre-requisite: NIL
Syllabus: 1.1

Course objectives (CoB):

The course is aimed at:

1. Teaching the students about locking systems and theft-deterrent systems
2. Providing the technical knowhow of acoustic signaling devices and occupant-protection systems
3. Discussing about the Power-window drives, comfort and safety functions in the passenger compartment

and driver assistance systems

Course Outcomes (CO):

At the end of the course, the student will be able to

1. Understand about locking systems
2. Understand the concept of theft-deterrent systems
3. Understand about the acoustic signaling devices
4. Demonstrate the knowledge about occupant-protection systems
5. Brief about power-window drives
6. Identify the technique for comfort and safety functions in the passenger compartment
7. Understand about driver-assistance systems
8. Design and implement vehicle security and comfort systems

Student Learning Outcomes (SLO): 1, 17

1. Having an ability to apply mathematics and science in engineering applications
17. Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice

Module:1
Locking systems
4 hours

Function, structure, operating principle, Open by wire, Electrical locking system, Central locking system, Electronic vehicle immobilizer, functional description Comfort Entry/Go system

Module:2
Theft-deterrent systems
4 hours

Regulations, Permissibles alarm signals. System design, alarm detectors, Alarm system control unit, Alarm siren, Tilt sensor, Interior monitoring

Module:3
Acoustic signaling devices
4 hours

Acoustic signaling devices applications, Horn, Fanfare horns

Module:4
Occupant-protection systems
4 hours

Seat belts and seat-belt pretensioners, Front airbag, Side airbag, Components, Rollover protection
<table>
<thead>
<tr>
<th>Module:5</th>
<th>Power-window drives</th>
<th>3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power-window motors, Power-window control, Power sunroof drives</td>
<td></td>
</tr>
<tr>
<td>Module:6</td>
<td>Comfort and safety functions in the passenger compartment</td>
<td>5 hours</td>
</tr>
<tr>
<td></td>
<td>Electrical seat adjustment, Electrical steering-column adjustment, Multi purpose actuator</td>
<td></td>
</tr>
<tr>
<td>Module:7</td>
<td>Driver-assistance systems</td>
<td>4 hours</td>
</tr>
<tr>
<td></td>
<td>Critical driving situations, Causes of accidents and possible action, Applications, Convenience and safety functions, Sensors for all round electronic visibility, Sensor-data fusion</td>
<td></td>
</tr>
<tr>
<td>Module:8</td>
<td>Contemporary Topics</td>
<td>2 hours</td>
</tr>
<tr>
<td></td>
<td>Total Lecture: 30 hours</td>
<td></td>
</tr>
</tbody>
</table>

Text Book

Reference Book

Indicative Project Titles

1. Electronic vehicle immobilizer
2. Theft-deterrent system
3. Acoustic signaling devices
4. Occupant-protection systems
5. Driver assistance systems
6. Adaptive cruise control
7. Night vision

Recommended by Board of Studies : 09/03/2016

Approved by Academic Council : No. 40 Date : 18/03/2016