SCHOOL OF ELECTRONICS ENGINEERING

M. Tech Embedded Systems

Curriculum

(2018-2019 admitted students)
VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.
Impactful People: Happy, accountable, caring and effective workforce and students.
Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.
Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

To be a leader by imparting in-depth knowledge in Electronics Engineering, nurturing engineers, technologists and researchers of highest competence, who would engage in sustainable development to cater the global needs of industry and society.

MISSION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

• Create and maintain an environment to excel in teaching, learning and applied research in the fields of electronics, communication engineering and allied disciplines which pioneer for sustainable growth.
• Equip our students with necessary knowledge and skills which enable them to be lifelong learners to solve practical problems and to improve the quality of human life.
M. Tech Embedded Systems

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

1. Graduates will be engineering practitioners and leaders, who would help solve industry’s technological problems

2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry

3. Graduates will function in their profession with social awareness and responsibility

4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country

5. Graduates will be successful in pursuing higher studies in engineering or management

6. Graduates will pursue career paths in teaching or research
M. Tech Embedded Systems

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_03: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_04: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO_05: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO_06: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_07: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_08: Having a clear understanding of professional and ethical responsibility

PO_11: Having a good cognitive load management skills related to project management and finance
M. Tech Embedded Systems

ADDITIONAL PROGRAMME OUTCOMES (APOs)

APO_02: Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)

APO_03: Having design thinking capability

APO_04: Having computational thinking (Ability to translate vast data in to abstract concepts and to understand database reasoning)

APO_07: Having critical thinking and innovative skills

APO_08: Having a good digital footprint
M. Tech Embedded Systems

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M.Tech. Embedded Systems, graduates will be able to

PSO1. Apply the advanced concepts of Embedded System Design with real-time constraints using advanced Microcontrollers and FPGA based systems.

PSO2. Use the cutting-edge technologies in both hardware and software, to solve real-world multi-disciplinary problems and arrive at a viable solution.

PSO3. Independently carry out research on diverse Embedded System strategies to address practical problems and present a substantial technical report.
M. Tech Embedded Systems

CREDIT STRUCTURE

Category-wise Credit distribution

<table>
<thead>
<tr>
<th>Category</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>University core (UC)</td>
<td>27</td>
</tr>
<tr>
<td>Programme core (PC)</td>
<td>19</td>
</tr>
<tr>
<td>Programme elective (PE)</td>
<td>18</td>
</tr>
<tr>
<td>University elective (UE)</td>
<td>06</td>
</tr>
<tr>
<td>Bridge course (BC)</td>
<td>-</td>
</tr>
<tr>
<td>Total credits</td>
<td>70</td>
</tr>
</tbody>
</table>
M. Tech Embedded Systems

DETAILED CURRICULUM

University Core

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MAT6001</td>
<td>Advanced statistical methods</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>ENG5001 and</td>
<td>Fundamentals of communication Skills and</td>
<td>{0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ENG5002</td>
<td>Professional and communication Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or FRE5001/</td>
<td>(or) Foreign Languages</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>GER5001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>STS5001 &</td>
<td>Soft Skills</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>STS5002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>SET 5001</td>
<td>SET Project – I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>SET 5002</td>
<td>SET Project – II</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>ECE6099</td>
<td>Master’s Thesis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
</tbody>
</table>

University Elective

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>University Elective</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>
M. Tech Embedded Systems

Programme Core

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ECE5041</td>
<td>Embedded System Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>ECE5042</td>
<td>Microcontroller Architecture and Organization</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>ECE5053</td>
<td>Electronic Hardware System Design</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>ECE5043</td>
<td>Embedded Programming</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>ECE5054</td>
<td>Real Time Operating System</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
M. Tech Embedded Systems

Programme Elective

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ECE6041</td>
<td>Automotive Electrical Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ECE6036</td>
<td>In Vehicle Networking</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ECE6042</td>
<td>Wireless and Mobile Communication</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ECE6043</td>
<td>Advanced Processors and its applications</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ECE6044</td>
<td>Electromagnetic Interference and Compatibility in ESD</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ECE5045</td>
<td>Advanced Digital Image Processing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>ECE6045</td>
<td>Neural networks and Fuzzy Systems</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>ECE6037</td>
<td>Fault Tolerance and Dependable Systems</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>ECE6046</td>
<td>Advanced Embedded Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>ECE6047</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>ECE6038</td>
<td>Virtual Instrumentation Systems</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>ECE6048</td>
<td>Embedded System design using FPGA</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>ECE5044</td>
<td>Hardware Software Co-design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>ECE6049</td>
<td>Modern automotive electronics systems</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>CSE6052</td>
<td>Parallel Processing and Computing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
University Core
Course Objectives

1. To provide students with a framework that will help them choose the appropriate descriptive statistics in various data analysis situations.
2. To analyse distributions and relationships of real-time data.
3. To apply estimation and testing methods to make inference and modelling techniques for decision making using various techniques including multivariate analysis.

Expected Course Outcome

At the end of the course the students are expected to

[1] understand the concept of correlation and regression model and able to interpret the effect of variables, regression coefficients, coefficient of determination.
[2] make appropriate decisions using inferential statistical tools that are central to experimental research.
[3] understand the statistical forecasting methods and model fitting by graphical interpretation of time series data.
[4] construct standard experimental designs and describe what statistical models can be estimated using the data.
[5] demonstrate R programming for statistical data

Student Learning Outcomes (SLO0) 7, 9, 18

[7] Having computational thinking (Ability to translate vast data in to abstract concepts and to understand database reasoning)
[9] Having problem solving ability- solving social issues and engineering problems
[18] Having critical thinking and innovative skills

Module:1 Basic Statistical Tools for Analysis: 4 hours
Summary Statistics, Correlation and Regression, Concept of R^2 and Adjusted R^2 and Partial and Multiple Correlation, Fitting of simple and Multiple Linear regression, Explanation and Assumptions of Regression Diagnostics

Module:2 Statistical inference: 9 hours

Module:3 Modelling and Forecasting Methods: 9 hours
Introduction: Concept of Linear and Non Liner Forecasting model, Concepts of Trend, Exponential Smoothing, Linear and Compound Growth model, Fitting of Logistic curve and their Applications, Moving Averages, Forecasting accuracy tests.
Probability models for time series: Concepts of AR, ARMA and ARIMA models.

Module:4 Design of Experiments: 6 hours
Analysis of variance – one and two way classifications – Principle of design of experiments, CRD – RBD – LSD, Concepts of 2^2 and 2^3 factorial experiments.
Module:5
Contemporary Issues:
Industry Expert Lecture

<table>
<thead>
<tr>
<th>Total Lecture hours:</th>
<th>30 hours</th>
</tr>
</thead>
</table>

Text Book(s)

Reference Books

Mode of Evaluation

- Digital Assignments, Quiz, Continuous Assessments, Final Assessment Test

List of Challenging Experiments (Indicative)

<p>| 1. | Computing Summary Statistics using real time data | 3 hours |
| 2 | Plotting and visualizing data using Tabulation and Graphical Representations. | 3 hours |
| 3 | Applying simple linear and multiple linear regression models to real dataset; computing and interpreting the coefficient of determination for scale data. | 3 hours |
| 4 | Testing of hypothesis for Large sample tests for real-time problems. | 2 hours |
| 5 | Testing of hypothesis for Small sample tests for One and Two Sample mean and paired comparison (Pre-test and Post-test) | 2 hours |
| 6 | Testing of hypothesis for Small Sample tests for T-test | 2 hours |
| 7 | Testing of hypothesis for Small Sample tests for Chi-square test | 2 hours |
| 8 | Applying Time series analysis-Trends. Growth ,Logistic, Exponential models | 2 hours |
| 9 | Applying Time series model AR , ARMA and ARIMA and testing Forecasting accuracy tests. | 3 hours |
| 10 | Performing ANOVA (one-way and two-way), CRD, RBD and LSD for real dataset. | 3 hours |
| 11 | Performing 2^2 factorial experiments with real time Applications | 2 hours |</p>
<table>
<thead>
<tr>
<th>12</th>
<th>Performing 2^3 factorial experiments with real time Applications</th>
<th>3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Laboratory Hours</td>
<td>30 hours</td>
</tr>
</tbody>
</table>

Mode of Evaluation

- Weekly Assessments, Final Assessment Test
- Recommended by Board of Studies: 25-02-2017
- Approved by Academic Council: No. 46 Date 24-08-2017
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG5001</td>
<td>Fundamentals of Communication Skills</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pre-requisite</td>
<td>Not cleared EPT (English Proficiency Test)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syllabus version</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Objectives:
1. To enable learners learn basic communication skills - Listening, Speaking, Reading and Writing
2. To help learners apply effective communication in social and academic context
3. To make students comprehend complex English language through listening and reading

Expected Course Outcome:
1. Enhance the listening and comprehension skills of the learners
2. Acquire speaking skills to express their thoughts freely and fluently
3. Learn strategies for effective reading
4. Write grammatically correct sentences in general and academic writing
5. Develop technical writing skills like writing instructions, transcoding etc.,

Student Learning Outcomes (SLO):

18. Having critical thinking and innovative skills
20. Having a good digital footprint

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module:1</td>
<td>Listening</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Understanding Conversation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Listening to Speeches</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Listening for Specific Information</td>
<td></td>
</tr>
<tr>
<td>Module:2</td>
<td>Speaking</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Exchanging Information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Describing Activities, Events and Quantity</td>
<td></td>
</tr>
<tr>
<td>Module:3</td>
<td>Reading</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Identifying Information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inferring Meaning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interpreting text</td>
<td></td>
</tr>
<tr>
<td>Module:4</td>
<td>Writing: Sentence</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Basic Sentence Structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connectives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transformation of Sentences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synthesis of Sentences</td>
<td></td>
</tr>
<tr>
<td>Module:5</td>
<td>Writing: Discourse</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Instructions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paragraph</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transcoding</td>
<td></td>
</tr>
</tbody>
</table>

Total Lecture hours: 30 hours

Text Book(s)

Reference Books

| Authors, book title, year of publication, edition number, press, place |
|--------------------|-------------------|

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

List of Challenging Experiments (Indicative)

<table>
<thead>
<tr>
<th>Experiment Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familiarizing students to adjectives through brainstorming adjectives with all letters of the English alphabet and asking them to add an adjective that starts with the first letter of their name as a prefix.</td>
<td>2 hours</td>
</tr>
<tr>
<td>Making students identify their peer who lack Pace, Clarity and Volume during presentation and respond using Symbols.</td>
<td>4 hours</td>
</tr>
<tr>
<td>Using Picture as a tool to enhance learners speaking and writing skills</td>
<td>2 hours</td>
</tr>
<tr>
<td>Using Music and Songs as tools to enhance pronunciation in the target language / Activities through VIT Community Radio</td>
<td>2 hours</td>
</tr>
<tr>
<td>Making students upload their Self-introduction videos in Vimeo.com</td>
<td>4 hours</td>
</tr>
<tr>
<td>Brainstorming idiomatic expressions and making them use those in to their writings and day to day conversation</td>
<td>4 hours</td>
</tr>
<tr>
<td>Making students Narrate events by adding more descriptive adjectives and add flavor to their language / Activities through VIT Community Radio</td>
<td>4 hours</td>
</tr>
<tr>
<td>Identifying the root cause of stage fear in learners and providing remedies to make their presentation better</td>
<td>4 hours</td>
</tr>
<tr>
<td>Identifying common Spelling & Sentence errors in Letter Writing and other day to day conversations</td>
<td>2 hours</td>
</tr>
<tr>
<td>Discussing FAQ’s in interviews with answers so that the learner gets a better insight in to interviews / Activities through VIT Community Radio</td>
<td>2 hours</td>
</tr>
</tbody>
</table>

Total Laboratory Hours: 30 hours

Mode of evaluation: Online Quizzes, Presentation, Role play, Group Discussions, Assignments, Mini Project

Recommended by Board of Studies: 22-07-2017

Approved by Academic Council: No. 46 | Date 24-8-2017
<table>
<thead>
<tr>
<th>ENG5002</th>
<th>Professional and Communication Skills</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pre-requisite</td>
<td>ENG5001</td>
<td>Syllabus version</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Objectives:
1. To enable students to develop effective Language and Communication Skills
2. To enhance students' Personal and Professional skills
3. To equip the students to create an active digital footprint

Expected Course Outcome:
1. Improve inter-personal communication skills
2. Develop problem solving and negotiation skills
3. Learn the styles and mechanics of writing research reports
4. Cultivate better public speaking and presentation skills
5. Apply the acquired skills and excel in a professional environment

Student Learning Outcomes (SLO):
18. Critical thinking and innovative skills.
20. Having a good digital footprint

Module:

<table>
<thead>
<tr>
<th>Module</th>
<th>Personal Interaction</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introducing Oneself- one’s career goals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity: SWOT Analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Interpersonal Interaction</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpersonal Communication with the team leader and colleagues at the workplace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity: Role Plays/Mime/Skit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Social Interaction</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of Social Media, Social Networking, gender challenges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity: Creating LinkedIn profile, blogs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Résumé Writing</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifying job requirement and key skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity: Prepare an Electronic Résumé</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Interview Skills</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placement/Job Interview, Group Discussions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity: Mock Interview and mock group discussion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Report Writing</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language and Mechanics of Writing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity: Writing a Report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Study Skills: Note making</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summarizing the report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity: Abstract, Executive Summary, Synopsis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Interpreting skills</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpret data in tables and graphs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity: Transcoding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Presentation Skills</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral Presentation using Digital Tools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity: Oral presentation on the given topic using appropriate non-verbal cues</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Problem Solving Skills</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Solving & Conflict Resolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity: Case Analysis of a Challenging Scenario</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Lecture hours: 30 hours
1. **Bhatnagar Nitin and Mamta Bhatnagar, Communicative English For Engineers And Professionals, 2010, Dorling Kindersley (India) Pvt. Ltd.**

Reference Books

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Diana Bairaktarova and Michele Eodice, Creative Ways of Knowing in Engineering, 2017, Springer International Publishing</td>
</tr>
<tr>
<td>4</td>
<td>ArunPatil, Henk Eijkmans & Ena Bhattacharya,New Media Communication Skills for Engineers and IT Professionals, 2012, IGI Global, Hershey PA.</td>
</tr>
</tbody>
</table>

List of Challenging Experiments (Indicative)

- **1. SWOT Analysis** – Focus specially on describing two strengths and two weaknesses
 2 hours

- **2. Role Plays/Mime/Skit** – Workplace Situations
 4 hours

- **3. Use of Social Media** – Create a LinkedIn Profile and also write a page or two on areas of interest
 2 hours

- **4. Prepare an Electronic Résumé and upload the same in vimeo**
 2 hours

- **5. Group discussion on latest topics**
 4 hours

- **6. Report Writing** – Real-time reports
 2 hours

- **7. Writing an Abstract, Executive Summary on short scientific or research articles**
 4 hours

- **8. Transcoding** – Interpret the given graph, chart or diagram
 2 hours

- **9. Oral presentation on the given topic using appropriate non-verbal cues**
 4 hours

- **10. Problem Solving** – Case Analysis of a Challenging Scenario
 4 hours

Total Laboratory Hours **30 hours**

Mode of evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Recommended by Board of Studies **22-07-2017**

Approved by Academic Council **No. 47 Date 05-10-2017**
Course Objectives:

The course gives students the necessary background to:

1. Demonstrate competence in reading, writing, and speaking basic French, including knowledge of vocabulary (related to profession, emotions, food, workplace, sports/hobbies, classroom and family).
2. Achieve proficiency in French culture oriented view point.

Expected Course Outcome:

The students will be able to:

1. Remember the daily life communicative situations via personal pronouns, emphatic pronouns, salutations, negations, interrogations etc.
2. Create communicative skill effectively in French language via regular / irregular verbs.
3. Demonstrate comprehension of the spoken / written language in translating simple sentences.
4. Understand and demonstrate the comprehension of some particular new range of unseen written materials.
5. Demonstrate a clear understanding of the French culture through the language studied.

Student Learning Outcomes (SLO):

- 9 Having problem solving ability- solving social issues and engineering problems
- 10 Having a clear understanding of professional and ethical responsibility

<table>
<thead>
<tr>
<th>Module:1</th>
<th>Saluer, Se présenter, Etablir des contacts</th>
<th>3 hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Module:2</th>
<th>Présenter quelqu’un, Chercher un(e) correspondant(e), Demander des nouvelles d’une personne.</th>
<th>3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>La conjugaison des verbes Pronominaux, La Négation, L’interrogation avec ‘Est-ce que ou sans Est-ce que’.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:3</th>
<th>Situer un objet ou un lieu, Poser des questions</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>L’article (défini/ indéfini), Les prépositions (à/en/aux/sur/dans/avec etc.), L’article contracté, Les heures en français, La Nationalité du Pays, L’adjectif (La Couleur, l’adjectif possessif, l’adjectif démonstratif / l’adjectif interrogatif (quel/quelles/que/que/uelles), L’accord des adjectifs avec le nom, L’interrogation avec Comment/ Combien / Où etc.,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:4</th>
<th>Faire des achats, Comprendre un texte court, Demander et indiquer le chemin.</th>
<th>6 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>La traduction simple :(français-anglais / anglais –français)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:5</th>
<th>Trouver les questions, Répondre aux</th>
<th>5 hours</th>
</tr>
</thead>
</table>
questions générales en français.

L’article Partitif, Mettez les phrases aux pluriels, Faites une phrase avec les mots donnés, Exprimez les phrases données au Masculin ou Féminin, Associez les phrases.

<table>
<thead>
<tr>
<th>Module:6</th>
<th>Comment écrire un passage</th>
<th>3 hours</th>
</tr>
</thead>
</table>

Décritez :
La Famille /La Maison, /L’université /Les Loisirs/ La Vie quotidienne etc.

<table>
<thead>
<tr>
<th>Module:7</th>
<th>Comment écrire un dialogue</th>
<th>4 hours</th>
</tr>
</thead>
</table>

Dialogue:
- a) Réserver un billet de train
- b) Entre deux amis qui se rencontrent au café
- c) Parmi les membres de la famille
- d) Entre le client et le médecin

<table>
<thead>
<tr>
<th>Module:8</th>
<th>Invited Talk: Native speakers</th>
<th>2 hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Total Lecture hours:</th>
<th>30 hours</th>
</tr>
</thead>
</table>

Text Book(s)

Reference Books
3. ALTER EGO 1, Méthode de français, Annie Berthet, Catherine Hugo, Véronique M. Kizirian, Béatrix Sampsonis, Monique Waendendries, Hachette livre 2006.

Mode of Evaluation: CAT / Assignment / Quiz / FAT

<table>
<thead>
<tr>
<th>Recommended by Board of Studies</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Approved by Academic Council</th>
<th>No 41</th>
</tr>
</thead>
</table>

<p>| Date | 17-06-2016 |</p>
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>GER5001</td>
<td>Deutsch für Anfänger</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Pre-requisite</td>
<td>NIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syllabus version</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Objectives:
The course gives students the necessary background to:
1. Enable students to read and communicate in German in their day to day life
2. Become industry-ready
3. Make them understand the usage of grammar in the German Language.

Expected Course Outcome:
The students will be able to
1. Create the basics of German language in their day to day life.
2. Understand the conjugation of different forms of regular/irregular verbs.
3. Understand the rule to identify the gender of the Nouns and apply articles appropriately.
4. Apply the German language skill in writing corresponding letters, E-Mails etc.
5. Create the talent of translating passages from English-German and vice versa and To frame simple dialogues based on given situations.

Student Learning Outcomes (SLO):

9. Having problem solving ability- solving social issues and engineering problems
10. Having a clear understanding of professional and ethical responsibility

Module:1

<table>
<thead>
<tr>
<th>3 hours</th>
</tr>
</thead>
</table>
Einleitung, Begrüßungsformen, Landeskunde, Alphabet, Personalpronomen, Verb Konjugation, Zahlen (1-100), W-fragen, Aussagesätze, Nomen – Singular und Plural

Lernziel:
Elementares Verständnis von Deutsch, Genus- Artikelwörter

Module:2

<table>
<thead>
<tr>
<th>3 hours</th>
</tr>
</thead>
</table>
Konjugation der Verben (regelmässig/unregelmässig) die Monate, die Wochentage, Hobbys, Berufe, Jahreszeiten, Artikel, Zahlen (Hundert bis eine Million), Ja/-Nein- Frage, Imperativ mit Sie

Lernziel:
Sätze schreiben, über Hobbys erzählen, über Berufe sprechen usw.

Module:3

<table>
<thead>
<tr>
<th>4 hours</th>
</tr>
</thead>
</table>
Possessivpronomen, Negation, Kasus- Akkusativund Dativ (bestimmter, unbestimmter Artikel), trennbare verben, Modalverben, Adjektive, Uhrzeit, Präpositionen, Mahlzeiten, Lebensmittel, Getränke

Lernziel:
Sätze mit Modalverben, Verwendung von Artikel, über Länder und Sprachen sprechen, über eine Wohnung beschreiben.

Module:4

<table>
<thead>
<tr>
<th>6 hours</th>
</tr>
</thead>
</table>
Übersetzungen : (Deutsch – Englisch / Englisch – Deutsch)

Lernziel:
Grammatik – Wortschatz – Übung
<table>
<thead>
<tr>
<th>Module:5</th>
<th>5 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leseverständnis, Mindmap machen, Korrespondenz- Briefe, Postkarten, E-Mail</td>
<td></td>
</tr>
<tr>
<td>Lernziel:</td>
<td></td>
</tr>
<tr>
<td>Wortschatzbildung und aktiver Sprachgebrauch</td>
<td></td>
</tr>
<tr>
<td>Module:6</td>
<td>3 hours</td>
</tr>
<tr>
<td>Aufsätze:</td>
<td></td>
</tr>
<tr>
<td>Meine Universität, Das Essen, mein Freund oder meine Freundin, meine Familie, ein Fest in Deutschland usw</td>
<td></td>
</tr>
<tr>
<td>Module:7</td>
<td>4 hours</td>
</tr>
<tr>
<td>Dialoge:</td>
<td></td>
</tr>
<tr>
<td>e) Gespräche mit Familienmitgliedern, Am Bahnhof,</td>
<td></td>
</tr>
<tr>
<td>f) Gespräche beim Einkaufen; in einem Supermarkt; in einer Buchhandlung;</td>
<td></td>
</tr>
<tr>
<td>g) in einem Hotel - an der Rezeption; ein Termin beim Arzt.</td>
<td></td>
</tr>
<tr>
<td>Treffen im Café</td>
<td></td>
</tr>
<tr>
<td>Module:8</td>
<td>2 hours</td>
</tr>
<tr>
<td>Guest Lectures/Native Speakers / Feinheiten der deutschen Sprache, Basisinformation über die deutschsprachigen Länder</td>
<td></td>
</tr>
<tr>
<td>Total Lecture hours:</td>
<td>30 hours</td>
</tr>
</tbody>
</table>

Text Book(s)

Reference Books

1. Netzwerk Deutsch als Fremdsprache A1, Stefanie Dengler, Paul Rusch, Helen Schmitz, Tanja Sieber, 2013
3. Deutsche Sprachlehre für Austräger, Heinz Griesbach, Dora Schulz, 2011
4. ThemenAktuell 1, Hartmut Aufderstrasse, Heiko Bock, Mechthild Gerdes, Jutta Müller und Helmut Müller, 2010

 - www.goethe.de
 - wirtschaftsdeutsch.de
 - hueber.de, klett-sprachen.de
 - www.deutschtraining.org

Mode of Evaluation: CAT / Assignment / Quiz / FAT

Recommended by Board of Studies

Approved by Academic Council

<p>| No. 41 | Date | 17-06-2016 |</p>
<table>
<thead>
<tr>
<th>STS5001</th>
<th>Essentials of Business Etiquettes</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pre-requisite</td>
<td>Syllabus version</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Objectives:
1. To develop the students’ logical thinking skills
2. To learn the strategies of solving quantitative ability problems
3. To enrich the verbal ability of the students
4. To enhance critical thinking and innovative skills

Expected Course Outcome:
- Enabling students to use relevant aptitude and appropriate language to express themselves
- To communicate the message to the target audience clearly

Student Learning Outcomes (SLO): 7, 9

7. Having Computational thinking (Ability to translate vast data into abstract concepts and to understand database reasoning)

9. Having problem solving ability - solving social issues and engineering problems

<table>
<thead>
<tr>
<th>Module:1</th>
<th>Business Etiquette: Social and Cultural Etiquette and Writing Company Blogs and Internal Communications and Planning and Writing press release and meeting notes</th>
<th>9 hours</th>
</tr>
</thead>
</table>

Value, Manners, Customs, Language, Tradition, Building a blog, Developing brand message, FAQs', Assessing Competition, Open and objective Communication, Two way dialogue, Understanding the audience, Identifying, Gathering Information, Analysis, Determining, Selecting plan, Progress check, Types of planning, Write a short, catchy headline, Get to the Point – summarize your subject in the first paragraph., Body – Make it relevant to your audience,

<table>
<thead>
<tr>
<th>Module:2</th>
<th>Study skills – Time management skills</th>
<th>3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prioritization, Procrastination, Scheduling, Multitasking, Monitoring, Working under pressure and adhering to deadlines</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:3</th>
<th>Presentation skills – Preparing presentation and Organizing materials and Maintaining and preparing visual aids and Dealing with questions</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Tips to prepare PowerPoint presentation, Outlining the content, Passing the Elevator Test, Blue sky thinking, Introduction, body and conclusion, Use of Font, Use of Color, Strategic presentation, Importance and types of visual aids, Animation to captivate your audience, Design of posters, Setting out the ground rules, Dealing with interruptions, Staying in control of the questions, Handling difficult questions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:4</th>
<th>Quantitative Ability -L1 – Number properties and Averages and Progressions and</th>
<th>11 hours</th>
</tr>
</thead>
</table>
Percentages and Ratios

Number of factors, Factorials, Remainder Theorem, Unit digit position, Tens digit position, Averages, Weighted Average, Arithmetic Progression, Geometric Progression, Harmonic Progression, Increase & Decrease or successive increase, Types of ratios and proportions

<table>
<thead>
<tr>
<th>Module:5</th>
<th>Reasoning Ability-L1 – Analytical Reasoning</th>
<th>8 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Arrangement(Linear and circular & Cross Variable Relationship), Blood Relations, Ordering/ranking/grouping, Puzzle test, Selection Decision table</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:6</th>
<th>Verbal Ability-L1 – Vocabulary Building</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Synonyms & Antonyms, One word substitutes, Word Pairs, Spellings, Idioms, Sentence completion, Analogies</td>
<td></td>
</tr>
</tbody>
</table>

| Total Lecture hours: | 45 hours |

Reference Books

Websites:

1. www.chalkstreet.com
2. www.skillsyouneed.com
3. www.mindtools.com
4. www.thebalance.com
5. www.cguru.ooo

Mode of Evaluation: **FAT, Assignments, Projects, Case studies, Role plays, 3 Assessments with Term End FAT (Computer Based Test)**

Recommended by Board of Studies | 09/06/2017
Approved by Academic Council | No. 45th AC | Date | 15/06/2017
<table>
<thead>
<tr>
<th>Course Code: STS5002</th>
<th>Preparing for Industry</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pre-requisite</td>
<td>Syllabus version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>

Course Objectives:
1. To develop the students’ logical thinking skills
2. To learn the strategies of solving quantitative ability problems
3. To enrich the verbal ability of the students
4. To enhance critical thinking and innovative skills

Expected Course Outcome:
- Enabling students to simplify, evaluate, analyze and use functions and expressions to simulate real situations to be industry ready.

Student Learning Outcomes (SLO):
- 9. Having problem solving ability - solving social issues and engineering problems
- 10. Having a clear understanding of professional and ethical responsibility

Module: 1
- **Interview skills – Types of interview and Techniques to face remote interviews and Mock Interview**
- 3 hours

Structured and unstructured interview orientation, Closed questions and hypothetical questions, Interviewers’ perspective, Questions to ask/not ask during an interview, Video interview, Recorded feedback, Phone interview preparation, Tips to customize preparation for personal interview, Practice rounds

Module: 2
- **Resume skills – Resume Template and Use of power verbs and Types of resume and Customizing resume**
- 2 hours

Structure of a standard resume, Content, color, font, Introduction to Power verbs and Write up, Quiz on types of resume, Frequent mistakes in customizing resume, Layout - Understanding different company's requirement, Digitizing career portfolio

Module: 3
- **Emotional Intelligence - L1 – Transactional Analysis and Brain storming and Psychometric Analysis and Rebus Puzzles/Problem Solving**
- 12 hours

Introduction, Contracting, ego states, Life positions, Individual Brainstorming, Group Brainstorming, Stepladder Technique, Brain writing, Crawford's Slip writing approach, Reverse brainstorming, Star bursting, Charlotte procedure, Round robin brainstorming, Skill Test, Personality Test, More than one answer, Unique ways

Module: 4
- **Quantitative Ability-L3 – Permutation-Combinations and Probability and Geometry and mensuration and Trigonometry and Logarithms and Functions and Quadratic Equations and Set Theory**
- 14 hours

Counting, Grouping, Linear Arrangement, Circular Arrangements, Conditional Probability,
Independent and Dependent Events, Properties of Polygon, 2D & 3D Figures, Area & Volumes, Heights and distances, Simple trigonometric functions, Introduction to logarithms, Basic rules of logarithms, Introduction to functions, Basic rules of functions, Understanding Quadratic Equations, Rules & probabilities of Quadratic Equations, Basic concepts of Venn Diagram

<table>
<thead>
<tr>
<th>Module:5</th>
<th>Reasoning ability-L3 – Logical reasoning and Data Analysis and Interpretation</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Syllogisms, Binary logic, Sequential output tracing, Crypto arithmetic, Data Sufficiency, Data interpretation-Advanced, Interpretation tables, pie charts & bar chats</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:6</th>
<th>Verbal Ability-L3 – Comprehension and Logic</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reading comprehension, Para Jumbles, Critical Reasoning (a) Premise and Conclusion, (b) Assumption & Inference, (c) Strengthening & Weakening an Argument</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Lecture hours:</th>
<th>45 hours</th>
</tr>
</thead>
</table>

Reference Books

Websites:

1. www.chalkstreet.com
2. www.skillsyounneed.com
3. www.mindtools.com
4. www.thebalance.com
5. www.eguru.ooo

Mode of Evaluation: FAT, Assignments, Projects, Case studies, Role plays, 3 Assessments with Term End FAT (Computer Based Test)

Recommended by Board of Studies	09/06/2017
Approved by Academic Council | No. 45th AC
Date | 15/06/2017
Programme Core
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE5041</td>
<td>EMBEDDED SYSTEM DESIGN</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisite: None

Course Objectives:

- To course is aimed at
- [1] Introducing students to Embedded system processor and its software.
- [2] Enabling students to design an Embedded system using various methodologies.
- [3] Preparing students to build process for an Embedded system.

Expected Course Outcome:

- At the end the course the students will be able to
- [1] Comprehend Embedded Processor and its software
- [2] Design an Embedded system with different modeling techniques.
- [3] Build a process for an Embedded system.
- [5] Incorporate operating system in an Embedded system.
- [6] Comprehend the operation of multitasking in an Embedded System and implementation

Student Learning Outcomes (SLO):

- [4] Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
- [5] Having design thinking capability
- [6] Having an ability to design a component or a product applying all the relevant standards and with realistic constraints

Module 1: Introduction to Embedded System

- Embedded system processor, hardware unit, software embedded into a system, Example of an embedded system, Embedded Design life cycle, Layers of Embedded Systems.

Module 2: Embedded System Design Methodologies

- Embedded System modeling [flow graphs, FSM, Petri nets], UML as Design tool, UML notation, Requirement Analysis and Use case Modeling, Design Examples

Module 3: Building Process For Embedded Systems

- Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Map Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System.

Module 4: System design using general purpose processor

- Microcontroller architectures (RISC, CISC), Embedded Memory, Strategic selection of processor and memory, Memory Devices and their Characteristics, Cache Memory and Various mapping techniques, DMA.

Module 5: I/O Devices & Networks

Module 6: Operating Systems

- Introduction to Operating Systems, Basic Features & Functions of an Operating System, Kernel & its Features [polled loop system, interrupt driven system, multi rate system], Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispatcher.

Module 7: Multi Tasking

- 6 hours
Context Switching, Scheduling and various Scheduling algorithms, Inter-process Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchronization (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Priority Ceiling Protocol & Priority Inheritance Protocol

<table>
<thead>
<tr>
<th>Module</th>
<th>Contemporary Topics</th>
<th>2 hours</th>
<th>Total Lecture: 45 hours</th>
</tr>
</thead>
</table>

Text Books:

Reference Books:

Mode of Evaluation: Continuous Assessment Test –I (CAT-I), Continuous Assessment Test –II (CAT-II), Seminar / Challenging Assignments / Completion of MOOC / Innovative ideas leading to solutions for industrial problems, Final Assessment Test (FAT).

Recommended by Board of Studies 27-02-2016
Approved by Academic Council No. 40 Date 18/03/2016
Course code	ECE5042
Course Title | Microcontroller Architecture and Organization
Pre-requisite | Nil
Syllabus version: | 1

Course Objectives:
The course is aimed at
[1] Describing the architecture of 8051 microcontroller and ARM processor
[2] Teaching the instruction set of 8051 and ARM microcontroller to efficient programs
[3] Designing system in block level using microcontroller, memory devices, buses and other peripheral devices

Expected Course Outcome:
At the end of the course, the students will be able to
[1] Describe the architectures of processors
[2] Develop Assembly program applying Digital logic and mathematics using 8051
[3] Develop Assembly Language Program ALP for ARM and ARM peripherals
[5] Analyze and evaluate the given program in terms of code size and computational time
[6] Design Microcontroller based system within realistic constraint like user specification, availability of components etc
[7] Solve real life problem and construct a complete system as a solution
[8] Integrate and build a working model using the laboratory components and IDE tools.

Student Learning Outcomes (SLO):
1, 4, 14

[1] Having an ability to apply mathematics and science in engineering applications
[4] Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
[14] Having an ability to design and conduct experiments, as well as to analyze and interpret data

Module:1 Introduction to Microcontrollers
2 hours
- Microprocessors Vs Microcontrollers; Classification – bits, memory architecture, ISA; Little Endian Vs Big Endian.

Module:2 8051 Microcontroller
2 hours
- Architecture – Timers, Interrupts, Register Architecture (banks), PSW register, Memory architecture; Instruction set.

Module:3 8051 Programming and Interfaces
5 hours

Module:4 ARM Architecture
3 hours
- ARM Design Philosophy; Overview of ARM architecture; States [ARM, Thumb, Jazelle]; Registers, Modes; Conditional Execution; Pipelining; Vector Tables; Exception handling.

Module:5 ARM Instruction Set
6 hours
- ARM Instruction- data processing instructions, branch instructions, load store instructions, SWI instruction, Loading instructions, conditional Execution, Assembly Programming.

Module:6 Thumb Instruction Set
4 hours
- Thumb Instruction-Thumb Registers, ARM Thumb interworking, branch instruction, data processing instruction, single/multiple load store instruction, Stack instruction, SWI instruction, Assembly Programming.

Module:7 ARM Core based Microcontroller
6 hours

<table>
<thead>
<tr>
<th>Module:8</th>
<th>Contemporary Issues</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Lecture Hours:</td>
<td>30 hours</td>
</tr>
</tbody>
</table>

Text Book(s)

Reference Books

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

List of Challenging Experiments (Indicative)

1. **Task-1: Calculator Application**
 - Sub task 1: Make the LCD interfaced to 8051
 - Sub task 2: Get input from switch which is interfaced to 8051 and display it on LCD
 - Sub task 3: Based on switch input, perform basic operation of a calculator
 - 7 hours

2. **Task-2: Speed control of motor**
 - Sub task-1: Use timer and generate an exact time delay for T_{ON} and T_{OFF}
 - Sub task-2: Use timer interrupt in generating the waveform
 - Sub task-3: Controlling speed of a DC motor using Timer
 - 7 hours

3. **Task-3: Microcontroller based application**
 - Sub task-1: Interface Zigbee with 8051
 - Sub Task-2: Interface keypad with 8051
 - Sub Task-3: Interface GSM with 8051
 - Sub task-4: Based on KEY pressed in keypad, transmit the key info via Zigbee and make a motor to rotate, which is interfaced with 8051. Using GSM module send the status of motor[run/stop] to the user.
 - 8 hours

4. **Task-4: Sensor interfacing with ARM LPC2148**
 - Sub Task-1: Interface IR with LPC2148
 - Sub Task-2: Interface temperature sensor with LPC2148
 - Sub Task-3: Interface Bluetooth with LPC2148
 - Sub Task-4: Transmit the IR detail and sensor data to another LPC2148 via Bluetooth.
 - Total Laboratory Hours 30 hours

Typical Projects

1. Develop an ARM based waste management system. In this, the sensors are placed in the common garbage bins placed at the public places.
When the garbage reaches the level of the sensor, then that indication will be given to ARM Micro controller. The controller will give indication to the driver of garbage collection truck as to which garbage bin is completely filled and needs urgent attention. ARM 7 will give indication by sending SMS using GSM technology.

2. Design an ARM based automated patient monitoring system which continuously measures the patient parameters such as heart rate and rhythm, respiratory rate, blood pressure and many other parameters has become a common feature of the care of critically ill patients. When accurate and immediate decision-making is crucial for effective patient care, electronic monitors frequently are used to collect and display physiological data.

3. Implement a Digital Clock and Alarm using ARM microcontroller that needs a keypad to be interfaced with the following requirement. Key 1 to turn on alarm, Key 2 to enable alarm settings, Key 3 to enable time settings, Key 4 to change hour’s settings, Key 5 to change minute settings, Key 6 to increment the time, Key 7 to decrement the time. The normal time and alarm time should be displayed using 2 X 16 LCD and a buzzer should be triggered once the normal time equal to alarm time.

4. Develop an ARM Micro controller-based precision agriculture which includes accessing real-time data about the conditions of the crops, soil and ambient air. Sensors in fields measure the moisture content and temperature of the soil and surrounding air.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE5053</td>
<td>ELECTRONICS HARDWARE SYSTEM DESIGN</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Course Objectives:
The course is aimed at

1. Emphasizing students the significant role of FPGA in System design and development.
2. Teaching the students to develop program using Hardware Descriptive Language and model digital logic combinational and sequential circuits.
3. Enabling the students acquire knowledge in Interfacing peripherals, Board Design, Packaging, PCB Design and Analysis
4. Motivating students to solve real life problem using FPGA based systems.

Course Outcomes (CO):
At the end of the course the student will be able to

1. Comprehend the architecture of FPGA and design flow
2. Understand Hardware Description Language/
3. Design and develop combinational logic circuits using Verilog and VHDL program.
4. Design and develop sequential logic circuits using Verilog and VHDL program.
5. Interface peripherals with FPGA.
6. Design the PCB
7. Design FPGA based system
8. Comprehend upcoming trends in FPGA.

Student Learning Outcomes (SLO): 4,6,14

Student Learning Outcomes involved:

4. Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
6. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints
14. Having an ability to design and conduct experiments, as well as to analyze and interpret data

Module:1 **Programmable Logic Devices & FPGAs** 3 hours

Introduction to FPGAs, FPGA technologies, FPGA Architectures [Xilinx, Altera, ACTEL, LATTICE], FPGA Design Flow Prototyping with Xilinx FPGAs, FPGA based Testing.

Module:2 **Hardware Descriptive Language (Verilog/VHDL)** 3 hours

Introduction, HDI. Design flow, Language constructs -operators –Data types, Different architectures (Structural, Behavioural, Dataflow)-Design examples

Module:3 **Modeling of Combinational logic circuits** 4 hours

Half adder, Full adder, 4-bit/8-bit binary adder, ALU design, Multiplexer and De-multiplexer, Encoder, Decoder, Comparator, Ripple Carry Adder, Carry Look ahead adder.

Module:4 **Modeling of Sequential logic circuits** 4 hours

Flip Flops-Realization of Shift Register -Realization of a Counter-Synchronous and Asynchronous – BCD counter, Mealy and Moore State Machines, Sequence detector, FIFO, Memory Design, Serial Data Receiver, Serial to parallel data converter.

Module:5 **Interfacing peripherals and Board Design** 5 hours

Interfacing to 7 segment display, Stepper Motor, ADC and Sensors, FPGA System Architecture, Constraints –Logical –Electrical -Physical, Power distribution for FPGAs, Clock design, I/O buses.
<table>
<thead>
<tr>
<th>Module:6</th>
<th>Introduction to Packaging & PCB Design</th>
<th>4 hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Module:7</th>
<th>High Speed PCB design and Analysis</th>
<th>5 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>High speed PCB design - EMI/EMC analysis - Thermal management of electronic devices and systems - Thermal interface material, Cooling mechanisms - System level design of electronic hardware for automotive applications - System level testing and validation of automotive electronics systems for reliability. Layout constraints for FPGAs, FPGA-based PCB schematics.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:8</th>
<th>Contemporary issues:</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total Lecture hours: 30 hrs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text Book(s)</th>
</tr>
</thead>
</table>

Reference Books

2. Ian Grout, Digital Systems, Design with FPGAs and CPLDs, 2012, Re-Print, Newness, UK.

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

List of Challenging Experiments (Indicative)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Task 1: Combination Logic:- Design a 16-bit microprocessor that is capable of performing both logical and arithmetic operation.</td>
<td>8 hours</td>
</tr>
<tr>
<td>2.</td>
<td>Task 2: Sequential Logic:- Design a controller for vending machine which sells candy bars for Rs 5, 10 and 20.</td>
<td>8 hours</td>
</tr>
<tr>
<td>3.</td>
<td>Task 3: Peripheral Interfacing:- Design a car speed monitor using the following components (a) 7 segment display (b) LEDs (c) Switches for speed selection and (d) Buzzer. The cars electronic speedometer provides a clock signal whose frequency is proportional to the speed. To check the functioning of the design use function generator to provide the speedometer clock.</td>
<td>8 hours</td>
</tr>
<tr>
<td>4.</td>
<td>Task 4: PCB Design:- Design a PCB for a circuit with a mixture of analog and digital parts, multiple power planes, and a single Ground plane split into analog and digital sections that have a common reference point using open source tool.</td>
<td>6 hours</td>
</tr>
</tbody>
</table>

Total Laboratory Hours: 30 Hours

Mode of Evaluation: Continuous Assessment Test, Final Assessment Test

Typical Projects:

1. Design face recognition based Authenticated Door Opening System using FPGA. Database consisting of authorised persons faces should be created and the same should
be compared with the real time camera input faces such that, if face matching happens then the door actuator needs to be triggered to open the door.

2. FPGA Implementation of Digital Clock and Alarm needs a keypad to be interfaced with the following requirement. Key 1 to turn on alarm, Key 2 to enable alarm settings, Key 3 to enable time settings, Key 4 to change hour’s settings, Key 5 to change minute settings, Key 6 to increment the time and Key 7 to decrement the time. The normal time and alarm time should be displayed using 2 X 16 LCD and a buzzer should be triggered once the normal time equal to alarm time.

3. Design a GCD (Greatest Common divider) processor in FPGA. Use finite state machine approach of modelling the processor and generate the structure of Controller and Data path. The input should be given through the keypad which is to be interfaced with FPGA and the results should be serially transmitted to the Personal Computer through UART (Universal Asynchronous Receiver Transmitter) communication protocol.

4. Design a PCB of 3.3V/5V Power Supply and GSM Module. Individual switches need to be included to ON/OFF the individual Power Supply. The power supply and GSM schematic, top layer, bottom layer, top silk, top mask, top preview, bottom preview, bottom mask, drill file should be generated and captured during the design phase.

<p>| Mode of Evaluation: Project Reviews I, II, III |
| Approved by Academic Council : No. 40 | Date : 18/03/2016 |</p>
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE5043</td>
<td>EMBEDDED PROGRAMMING</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Course Objectives:

The course is aimed at

1. Acquainting students with fundamentals of C
2. Acquainting the students with data structures
3. Introducing the students with SHELL programming and Linux
4. Implementing the Device drivers in LINUX environment

Expected Course Outcome:

At the end of the course, the student will be able to

1. Comprehend the fundamentals of C
2. Comprehend the Data structures
3. Comprehend the basics of Linux
4. Showcase the skill, knowledge and ability of SHELL programming.
5. Exhibit the working knowledge of basic Embedded Linux
6. Comprehend the concepts of Kernel module Programming
7. Write Device driver programs
8. Have hands on experience in using state-of-art hardware and software tools

Student Learning Outcomes (SLO): 4, 5, 17

4. Having Sense-Making Skills of creating unique insights in what is being seen or observed
(Higher level thinking skills which cannot be codified)
5. Having design thinking capability
17. Having an ability to use techniques, skills and modern engineering tools necessary for engineering Practice

<table>
<thead>
<tr>
<th>Module</th>
<th>Fundamentals of C</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic concepts of C, Embedded C Vs C, Embedded programming aspects with respect to firmware and OS Functions, Arrays, pointers, structures and Inputs/Outputs.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Data structures of kernel programming</th>
<th>6 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Linked list, Single linked list, Double linked list and Queues.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Basics of Linux</th>
<th>6 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Command prompt, X windows basics, Navigating file system, finding files, working with folders, reading files text editing in Linux, Compression and archiving tools, Basic shell commands, File Management, I/O Handling, File Locking.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Shell Programming</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Processes, giving more than one command at a time, prioritizing and killing processes, Scheduling Commands, pipes and redirection, regular expression, pattern matching, Scripting using for while, if and other commands.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Basics of Embedded Linux</th>
<th>6 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Linux Basics, Booting process, make files, using SD card and reader to transfer programs, Introduction to LINUX system calls, API’s, device drivers, compiling and installing a device driver.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Kernel Module Programming</th>
<th>6 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compiling kernel, Configuring Kernel and compilation, Kernel code browsers.-Static linking, dynamic linking of modules, User space, kernel space concepts, Writing simple modules – Writing Make-files for modules.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Device Driver Basics</th>
<th>5 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Driver concepts, Block & character driver distinction, Low level drivers, OS drivers etc, Writing character drivers, Device major, minor number.

<table>
<thead>
<tr>
<th>Module:8</th>
<th>Contemporary issues:</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Lecture hours:</td>
<td></td>
<td>45 hours</td>
</tr>
</tbody>
</table>

Text Book(s)

Reference Book(s)

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test

<table>
<thead>
<tr>
<th>List of Challenging Experiments (Indicative)</th>
</tr>
</thead>
</table>
| **Task 1:** C programming
Create a child process by calling fork system call and display the current process ID and parent process ID for the following conditions.
(i) Process ID and parent process ID for process and child process
(ii) Process ID and parent process ID for process and child process while sleep in the parent.
(iii) Process ID and parent process ID for process and child process while sleep in the child.
Create a pipe system call to communicate between the parent process and child process. |
| 5 hours |
| **Task 2:** C programming, Write an implementation of Message queue, shared memory and semaphore inter process communications |
| 5 hours |
| **Task 3:** Implementation of data structure for an application, Write a SortedMerge() function that takes two lists, each of which is sorted in increasing order, and merges the two together into one list which is in increasing order. SortedMerge() should return the new list. The new list should be made by splicing together the nodes of the first two lists. |
| 6 hours |
| **Task 4:** Shell Programming
Development of inventory management system using Shell scripting with the following features.
User may add/update/delete inventory.
User may add/update inventory details.
Details include cost, quantity and description.
Includes forms for inventory inwards and outwards.
User may create sub-inventories.
An interactive user interface.
A flexible inventory management system. |
| 7 hours |
| **Task 5:** Build process for an embedded board
Build a kernel for a Beagle Bone Black (BBB) board and board bring up. |
| 7 hours |

Total Laboratory Hours
30 hours
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE5054</td>
<td>REAL TIME OPERATING SYSTEMS</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil
Syllabus Version: 1.1

Course Objectives:
The course is aimed at:
1. Introducing the students about Operating Systems and acquainting students to Real Time Operating Systems
2. Teaching the students about Task Management and Enabling students to understand RTOS Scheduling
3. Introducing the students about interprocess communication and Memory Management

Course Outcomes (CO):
At the end of the course the will should be able to:
1. Comprehend the basic components of an operating system
2. Learn about the basics of real-time concepts
3. Acquire knowledge about task management
4. Acquaint with RTOS scheduling
5. Learn about IPC synchronization
6. Learn about IPC data exchange
7. Perform memory management in RTOS
8. Apply the knowledge for developing practical applications of modern real-time systems.

Student Learning Outcomes (SLO):
4,5,7

Student Learning Outcomes involved:
4. Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
5. Having design thinking capability
6. Having computational thinking (Ability to translate vast data into abstract concepts and to understand database reasoning)

Module:1 Introduction to Operating Systems
Layers of Operating Systems, Operating systems functions, System Boot up - BIOS & Boot Process, Kernel – Monolithic and Microkernel
6 hours

Module:2 Real Time Operating Systems
Tradeoffs for RTOS, POSIX
7 hours

Module:3 Task Management
Process and Threads, Process Control Block, Process Attributes, POSIX Threads.
7 hours

Module:4 RTOS Scheduling
Priority based scheduling, Rate-Monotonic scheduling, Earliest Deadline first scheduling, Linux RT scheduler.
7 hours

Module:5 IPC - Synchronization
IPC, Race conditions and critical sections, Signals, Atomic operations, Semaphore, Mutex, Spinlock, Priority Inversion and Priority ceiling.
7 hours

Module:6 IPC – Data Exchange
Shared memory, FIFO, Messages and Mailbox, Circular and swinging buffers, RPC
7 hours

Module:7 Memory Management
Memory Management, shared memory
2 hours

Module:8 Contemporary issues:
Memory Management, shared memory
2 hours

Total Lecture hours: 45 hrs

Text Book(s):

Reference Books

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Challenging Experiments, Final Assessment Test.

List of Challenging Experiments (Indicative)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Description</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Write a C code for a simple calculator (+, -, *, /) using functional pointer as argument in a function int add (int x, int y) int sub (int x, int y) int mul (int x, int y) int div (int x, int y) int (*mathop)(int, int) int domath(int (*mathop)(int, int), int x, int y)</td>
<td>6 hours</td>
</tr>
<tr>
<td>2.</td>
<td>Write a program to create multiple threads carrying out different functions. Thread 1: Accepting a string from the user. Thread 2: Display the string in upper case. Thread 3: Count the number of vowels in the string. Thread 4: Count the number of special characters in the string.</td>
<td>6 hours</td>
</tr>
<tr>
<td>3.</td>
<td>Write a program to create three threads, which are implemented using function pointers. First thread is for getting a list of numbers from the keyboard, second thread is helpful to extract the ODD and EVEN list from the given list, and the third one is used to arrange the ODD and EVEN list of numbers in an order. Use Mutex semaphore. Note: First Thread for getting input data from keyboard, Second Thread to identify the ODD and EVEN list Third Thread to get descending ordered ODD list Fourth Thread to get ascending ordered EVEN list Input data: 56, 23, 12, 64, 87, 02, 45, 88, 35, 67</td>
<td>6 hours</td>
</tr>
<tr>
<td>4.</td>
<td>Write a Vx Works code for the given scenario. Also identify the proper mechanism to avoid this problem.</td>
<td>6 hours</td>
</tr>
</tbody>
</table>
5. Write a VxWorks code for the given scenario. Also identify the proper mechanism to avoid this problem.

Total Laboratory Hours | 30 hours

Mode of Evaluation: Continuous Assessment Test, Final Assessment Test
Recommended by Board of Study : 27/02/2016
Approved by Academic Council : No:40 Date : 18/03/2016
Programme Elective
Course Objectives:
The course is aimed at
[1] Providing students with a good understanding of automotive electrical systems with particular emphasize on batteries, charging, ignition, and starters.

Course Outcome:
At the end of the course, the student will be able to
[1] Comprehend basic automotive electrical system.
[3] Perceive the role of automotive charging system.
[4] Understand the automotive starting system.
[6] Learn about the lighting system of automotive system.
[7] Understand and design automotive monitoring and control system.

Student Learning Outcomes (SLO):

[4] Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)

[9] Having problem solving ability- solving social issues and engineering problems

Module: 1 Electrical Systems and Circuits 6 hours
System approach–electrical wiring, terminals and switching–multiplexed wiring systems – CAN – circuit diagrams and symbols

Module: 2 Batteries 6 hours
Vehicle Batteries – Lead – Acid batteries – maintenance and charging –diagnosing Lead acid battery faults – advanced battery technology

Module: 3 Charging systems 6 hours
Requirements of charging systems — generation of electrical energy in motor vehicle—physical principles– alternators–characteristic curves–charging circuits–diagnosing charging system faults

Module: 4 Starting System 6 hours
Requirements – starter motors and circuits – types of starter motors – diagnosing starting system faults

Module: 5 Ignition system 6 hours

Module: 6 Lighting system 6 hours
Insulated and earth return systems, positive and negative earth systems, details of head light and side light, head light dazzling, and preventive methods.

Module: 7 Accessories: 7 hours
Electrical fuel pump, speedometer, oil and temperature gauges, horn, wiper system.

Module: 8 Contemporary issues: 2 hours

Text Book(s)
Reference Book(s)

<table>
<thead>
<tr>
<th>Mode of Evaluation:</th>
<th>Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended by Board of Studies</td>
<td>27/02/2016</td>
</tr>
<tr>
<td>Approved by Academic Council:</td>
<td>No: 40 Date: 18/03/2016</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>ECE6036</td>
<td>IN-VEHICLE NETWORKING</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Course Objectives:
The course aimed at
1. Providing students a working knowledge of in-vehicle network systems
2. Giving an exposure to aspects of design, development, application and performance issues associated with in vehicle networking systems.
3. Illustrating concepts of sensor data capture, storage and exchange of data to access remote services

Expected Course Outcome:
The students will be able to
1. Know the need for In Vehicle Networking and the basics of data communication and networking concepts.
2. Comprehend protocols like CAN used in automotive applications.
3. Have an overview of the CAN higher layer protocols like CAN open, Device Net, TTCAN and SAE J1939
4. Understand the working mechanical LIN protocol
5. Get an overview of MOST protocol used in automotive for multimedia applications.
6. Comprehend protocols like FlexRay used in automotive for fault tolerant applications.
7. Develop communications and navigation/routing, in automotive telematics

Student Learning Outcomes (SLO):
1, 4, 9

Module: 1 Basics of In-vehicle networking
- Overview of Data communication and networking–need for In-Vehicle networking–layers of OSI reference model–multiplexing and de-multiplexing concepts–vehicle buses
- 6 hours

Module: 2 Networks and protocols
- CAN protocol: principles of data exchange–real time data transmission–message frame formats, bit encoding–bit-timing and synchronization–data rate and bus length–network topology–bus access–physical layer standards
- 8 hours

Module: 3 CAN higher layer protocol
- 6 hours

Module: 4 LIN protocol
- LIN standard overview – applications – LIN communication concept message frame–development flow.
- 5 hours

Module: 5 MOST
- MOST overview–data rates–data types–topology –application areas.
- 5 hours

Module: 6 Flex Ray
- Flex Ray introduction–network topology–ECU sand bus interfaces–controller host interface and protocol operation controls–media access control and frame and symbol processing–coding/decoding unit–Flex Ray scheduling–message processing– wake up/startup–applications
- 6 hours

Module: 7 RF Communication and Wireless
- Introduction to wireless systems –RF communication Internal – RF Communication External – GSM- WiFi – Bluetooth and NFC Implementation- GPS
- 7 hours
<table>
<thead>
<tr>
<th>Module:8</th>
<th>Contemporary issues: 2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Lecture hours: 45 hours</td>
</tr>
</tbody>
</table>

Text Book(s)

Reference Books

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

Recommended by Board of Studies: 27/02/2016

Approved by Academic Council: No: 40 Date: 18/03/2016
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE6042</td>
<td>WIRELESS AND MOBILE COMMUNICATION</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Syllabus Version: 1

Course Objectives:
The course is aimed at

[1] Introducing the students to cellular concepts and teaching students the concept of multi-access techniques, equalization and diversity techniques

[2] Enabling students to understand the modulation schemes and mobile radio propagation schemes

[3] Emphasising to the students the significant role of wireless mobile communication in the development of embedded systems and motivate students to solve real life problem using wireless mobile communication techniques

Course Outcomes (CO):
At the end of the course the student will be able to

[1] Gain insights into the fundamentals of wireless mobile communication systems.

[2] Have a clear understanding about cellular concepts.

[4] Acquaint with both large scale and small scale prorogation models.

[5] Learn about different modulation schemes.

[6] Understand the concept of multi-access modulation techniques.

Student Learning Outcomes (SLO): 1, 4, 17

Student Learning Outcomes involved:

[1] Having an ability to apply mathematics and science in engineering applications

[4] Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)

[17] Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice

Module:1

<table>
<thead>
<tr>
<th>Introduction to Wireless Mobile Communications</th>
<th>5 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>History and evolution of mobile radio systems - Types of mobile wireless services/systems - Paging, Cordless and Cellular</td>
<td></td>
</tr>
</tbody>
</table>

Module:2

<table>
<thead>
<tr>
<th>Cellular Concept</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular concept – Frequency reuse – Channel assignment strategies – Handoff strategies – Interference and system capacity – Trunking and Grade of service – Improving coverage and capacity in cellular system</td>
<td></td>
</tr>
</tbody>
</table>

Module:3

<table>
<thead>
<tr>
<th>Mobile Radio Propagation</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Space Propagation Model – Basic propagation mechanism – Two Ray Ground Reflection (Two Ray) model</td>
<td></td>
</tr>
</tbody>
</table>

Module:4

<table>
<thead>
<tr>
<th>Large Scale and Small Scale Propagation models</th>
<th>7 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor and Indoor propagation models – Small scale multipath propagation – Parameters of mobile multipath channels – Types of small scale fading – Fading effects due to Multipath time delay spread and Doppler spread</td>
<td></td>
</tr>
</tbody>
</table>

Module:5

<table>
<thead>
<tr>
<th>Modulation Schemes</th>
<th>6 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview analog and digital modulation techniques, Performance of various modulation techniques – Spectral efficiency, Error-rate, Power Amplification.</td>
<td></td>
</tr>
</tbody>
</table>

Module:6

<table>
<thead>
<tr>
<th>Multiaccess Techniques</th>
<th>8 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDMA – TDMA – CDMA – WCDMA - OFDM/OFDMA - MC CDMA and SC FDMA</td>
<td></td>
</tr>
<tr>
<td>Module:7</td>
<td>Equalization and Diversity Techniques</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Equalization, Rake receiver concepts, Diversity and space-time processing, Speech coding and channel coding</td>
</tr>
<tr>
<td>Module:8</td>
<td>Contemporary issues:</td>
</tr>
<tr>
<td></td>
<td>Total Lecture hours: 45 hrs</td>
</tr>
</tbody>
</table>

Text Book(s)

Reference Books

1. Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

Recommended by Board of Studies : 27/02/2016

Approved by Academic Council : No. 40 Date : 18/03/2016
Course code	Course title	L	T	P	J	C
ECE6043 | ADVANCED PROCESSORS AND IT'S APPLICATIONS | 2 | 0 | 0 | 4 | 3

Pre-requisite: Nil

Syllabus Version : 1

Course Objectives:
The course is aimed at
[1] Providing a complete understanding of the ARM Cortex architecture
[2] Imparting the knowledge of programming ARM Cortex architecture

Course Outcome:
The student will be able to
[1] Understand the essentials of a processor for embedded application.
[5] Understand and program the various communication modules of ARM Cortex M4.
[7] Comprehend programing of ARM 64 bit architecture.
[8] Design application for various social relevant and real time issues.

Student Learning Outcomes (SLO):
1,4,17

[1] Having an ability to apply mathematics and science in engineering applications.
[4] Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified).
[17] Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice.

Module:1	Introduction to Embedded systems	2 hours
Embedded system overview and applications, features and architecture considerations-ROM, RAM, timers, data and address bus, Memory and I/O interfacing concepts, memory mapped I/O. CISC Vs RISC design philosophy, Von-Neumann Vs Harvard architecture, instruction set, instruction formats, and various addressing modes of 32-bit. Fixed point and floating point arithmetic operations.

Module:2	Introduction ARM architecture and Cortex - M series	6 hours
Introduction to the ARM Cortex M4 and its targeted applications, AM Cortex M4 architecture address space, on- chip peripherals (analog and digital) Register sets, Addressing modes and instruction set basics.

Module:3	Microcontroller Fundamentals for Basic Programming	4 hours
ARM Cortex M4: I/O pin multiplexing, pull up/down registers, GPIO control, Memory Mapped Peripherals, programming System registers, Watchdog Timer, need of low power for embedded systems, System Clocks and control, Hibernation Module, Active vs Standby current consumption. Introduction to Interrupts, Interrupt vector table, interrupt programming.

Module:4	Timers, PWM and Mixed Signals Processing	4 hours
Timer, Basic Timer, Real Time Clock (RTC), Timing generation and measurements, Analog interfacing and data acquisition: ADC, Analog Comparators, DMA, Motion Control Peripherals: PWM Module & Quadrature Encoder Interface (QEI).

Module:5	Communication protocols and Interfacing with external devices	6 hours
Synchronous/Asynchronous interfaces (like UART, SPI, I2C, USB), serial communication basics,
baud rate concepts, Interfacing digital and analog external device, I2C protocol, SPI protocol & UART protocol. Implementing and programming I2C, SPI & UART interface CAN & USB interface, JTAG Interface and debugging

<table>
<thead>
<tr>
<th>Module:6</th>
<th>Introduction to ARM Cortex A Architecture</th>
<th>3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction to ARMv8-A, ARMv8-A Memory Management, ARMv8-A Memory Model, Caches and Branch Prediction, Synchronization and Cache coherency</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:7</th>
<th>Software Engineers guide to ARM Cortex 64 bit architecture</th>
<th>3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Booting, Power Management, Virtualization, Security, Debugging</td>
<td></td>
</tr>
<tr>
<td>Module:8</td>
<td>Contemporary issues:</td>
<td>2 hours</td>
</tr>
</tbody>
</table>

Total Lecture hours: 30 hrs

Text Book(s):

1. ARM Cortex-A Series Programmer’s Guide for ARMv8-A Version: 1.0, 2015, ARM, United States

Reference Book(s):

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

Typical Projects

1. Smart Garbage Management system
2. Smart Email notifier with environment monitoring
3. IoT postbox
4. Cloud connected Sub – 1 GHz sensor network
5. Smart Home and Smart city systems

Recommended by Board of Studies : 27/02/2016

Approved by Academic Council : No: 40 Date : 18/03/2016
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE6044</td>
<td>ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY IN ESD</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Syllabus Version: 1

Course Objectives:
The course is aimed at

[1] Imparting knowledge about EMI environment
[2] Teaching EMI coupling principles, EMI control techniques and design of PCBs for EMC
[4] Teaching Computer Based Modeling and Simulation techniques for EMI

Expected Course Outcome:
At the end of the course, the students will be able to

[1] Understand terminologies of EMI and EMC
[2] Design hardware to achieve the necessary isolation between not only stages
[3] Understand and reduce crosstalk coupling mechanisms
[4] Perceive of the different EMC regulations worldwide
[5] Design a digital power bus to achieve the required noise budget
[6] Analyze, understand, explain and quantify an EMC problem
[7] Comprehend the practical aspects of noise and interference to suppress and control in electronic circuits.

Student Learning Outcomes (SLO): 1, 4, 6

[1] Having an ability to apply mathematics and science in engineering applications.
[4] Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
[6] Having an ability to design a component or a product applying all the relevant standards and with realistic constraints

Module:1
EMI Environment
6 hours

Sources of EMI, conducted and radiated EMI, Transient EMI, EM-EMC Definitions and units of parameters

Module:2
EMI Coupling Principles
6 hours

Conducted, Radiated and Transient Coupling, Common Impedance Ground Coupling, Radiated Common Mode and Ground Loop Coupling, Radiated Differential Mode Coupling, Near Field Cable to Cable Coupling, Power Mains and Power Supply Coupling.

Module:3
EMI Standards and Measurements
7 hours

Module:4
EMI Control Techniques
6 hours

Shielding, Filtering, Grounding, Bonding, Isolation Transformer, Transient Suppressors, Cable Routing, Signal Control, Component Selection and Mounting, Electrostatic discharge protection schemes

Module:5
EMC Standard and Regulations
7 hours

Module:6
EMC Design of PCB
6 hours

PCB Traces Cross Talk, Impedance Control, Power Distribution Decoupling, Zoning,
<table>
<thead>
<tr>
<th>Module:7</th>
<th>Computer Based Modeling and Simulation</th>
<th>5 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Computer Based Modeling and Simulation of EMI Models and Signal Integrity.</td>
<td></td>
</tr>
<tr>
<td>Module:8</td>
<td>Contemporary issues:</td>
<td>2 hours</td>
</tr>
</tbody>
</table>

| Total Lecture hours: | 45 hours |

Text Book(s)

Reference Books

Recommended by Board of Studies : 27/02/2016

Approved by Academic Council : No: 40 Date: 18/03/2016
Course Code: ECE5045
Course Title: ADVANCED DIGITAL IMAGE PROCESSING
Pre-requisite: Nil
Syllabus Version: 1.1

Course Objectives:
The course is aimed at
[1] Revising the basics of digital image processing namely; image acquisition, digitizing, enhancing in spatial domain, image transforms and enhancing images in frequency domain.
[2] Enabling the students to acquire knowledge in image restoration, image compression, image segmentation and object recognition.
[3] Motivating the students to apply image processing algorithms for solving real life problems and introducing students to upcoming trends in digital image processing.

Course Outcomes (CO):
At the end of the course the student will be able to
[1] Comprehend the image acquisition, digitizing, processing in spatial domain.
[2] Develop algorithms and programs for processing an image in the transform domain.
[3] Acquaint with the image enhancement techniques in frequency domain.
[5] Implement different compression techniques to compress an image.

Student Learning Outcomes (SLO): 1, 4, 9

Student Learning Outcomes involved:
[1] Having an ability to apply knowledge of mathematics, science and engineering.
[4] Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified).

Module: 1 Basics of Digital Image Processing 6 hours

Module: 2 Image Representation in Transforms Domain 7 hours
Fast Fourier Transform – Inverse FFT- Discrete Fourier Transform, Discrete cosine transform, Fourier-Mellin Transform, Karhunen-Loeve transform. and SVD Multi-resolution analysis, Scaling functions, MRA refinement equation, Wavelet series expansion, Discrete Wavelet Transform, 2D wavelet Transforms

Module: 3 Image Enhancement in Frequency domain 6 hours
Smoothing frequency domain filters- sharpening frequency domain filters- Homomorphic filtering

Module: 4 Image Restoration 6 hours

Module: 5 Image Compression 6 hours
Overview of Image Compression Techniques-Wave based image compression- Lossy and Lossless compression- Quantization- Entropy Encoding-JPEG and MPEG standards

Module: 6 Image Segmentation 6 hours
Local feature extraction techniques - Detection of discontinuities – edge linking and boundary detection - thresholding - edge based segmentation-region based segmentation- matching-morphological segmentation- watershed algorithm

<table>
<thead>
<tr>
<th>Module: 7</th>
<th>Representation and Description</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boundary descriptions-Region descriptors- Use of Principal Components and Description, Texture description. Shape descriptor , Statistical descriptors</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module: 8</th>
<th>Contemporary issues:</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Lecture hours: 45 hrs

Text Book(s)

Reference Books

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

Recommended by Board of Studies: 27/2/2016

Approved by Academic Council: No. 40 Date: 18/03/2016
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE6045</td>
<td>NEURAL NETWORKS AND FUZZY SYSTEMS</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Syllabus Version: 1

Course Objectives:
The course is aimed at
1. Introducing students the basics of artificial neural network.
2. Enabling students to acquire knowledge in Pattern Association, Neural Networks Based on Competition, Adaptive Resonance and Back propagation Neural Networks, Fuzzy Sets and membership functions
3. Enabling students to design algorithms using neural network and fuzzy logic for decision making and pattern Recognition and motivating students to solve real life problem applying neural network and fuzzy logic in the field of Artificial Intelligence and Machine vision.

Course Outcomes (CO):
At the end of the course the student will be able to
1. Comprehend and analyse basic leaning laws of neural networks and activation functions used.
2. Interpret associative memories for storing and recalling the input patterns
3. Interpret Neural Networks Based on Competition
4. Acquaint with Adaptive Resonance and Back propagation Neural Networks
5. Acquire knowledge about Fuzzy Sets and membership functions
6. Learn and implement unsupervised learning law for various applications.
7. Decide on Fuzzification and De-fuzzification methods for Fuzzy inference systems
8. Apply and integrate various neuro-fuzzy techniques for designing intelligent systems using ANFIS.

Student Learning Outcomes (SLO):
1, 4, 5

Student Learning Outcomes involved:
1. Having an ability to apply mathematics and science in engineering applications
4. Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
5. Having design thinking capability

Module:1 Introduction to Neural Networks: 5 hours
- Differences between Biological and Artificial Neural Networks - Typical Architecture, Common Activation Functions, McCulloch - Pitts Neuron, Simple Neural Nets for Pattern Classification, Linear Separability, - Hebb Net, Perceptron, Adaline, Madaline.

Module:2 Pattern Association: 4 hours
- Training Algorithms for Pattern Association - Hebb rule and Delta rule, Hetero associative, Auto associative and Iterative Auto associative Net, Bidirectional Associative Memory

Module:3 Neural Networks Based on Competition: 4 hours
- Kohonen Self Organising Maps, Examples of Feature Maps, Learning Vector Quantization, Counter Propagation

Module:4 Adaptive Resonance and Back propagation Neural Networks: 4 hours

Module:5 Classical and Fuzzy Sets and Relations: 4 hours
- Introduction –Fuzziness vs. Randomness, Properties and Operations on Classical and Fuzzy Sets, Crisp and Fuzzy Relations - Cardinality, Properties and Operations, Composition, Tolerance and Equivalence Relations

Module:6 Membership Functions: 3 hours
Features of membership function, Standard forms and Boundaries, fuzzification, membership value assignments, Fuzzy to Crisp Conversions, Lambda Cuts for fuzzy sets and relations, Defuzzification methods

<table>
<thead>
<tr>
<th>Module:7</th>
<th>Fuzzy Inference System:</th>
<th>4 hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Module:8</th>
<th>Contemporary issues:</th>
<th>2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Lecture hours: 30 hrs</td>
<td></td>
</tr>
</tbody>
</table>

Text Book(s)

Reference Books
3. Simon Haykin, Neural Networks and Learning Machines, 2016, 3rd edition, Pearson Education Inc., India

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

Typical Projects
1. Detection of disorders from Medical images using Neural Networks/Fuzzy
2. Electrical load forecasting using Neural Networks/Fuzzy
3. Electronic Music System using Neural Networks/Fuzzy
4. Face Identification System using Neural Networks
5. Image Decryption using Neural Networks
6. Signature Forgery and Handwriting Detection System using Neural Networks/Fuzzy
7. Speaker Recognition using Soft Computing
8. Speech Separation Using ICA Based Neural Networks

Recommended by Board of Studies : 27/02/2016
Approved by Academic Council : No. 40 18/03/2016
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE6037</td>
<td>FAULT TOLERANCE AND DEPENDABLE SYSTEMS</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Course Objectives:
The course is aimed at
1. Providing students with a working knowledge of the potential faults and errors occurring in an embedded system.
2. Providing knowledge in concepts of fault detection and fault tolerance.
3. Teaching students dependability concepts
4. Exposing the fault tolerance strategies and design techniques.

Course Outcomes (CO):
At the end of the course the student will be able to
1. Gain knowledge in concepts involving fault detection
2. Comprehend dependability concepts
3. Understand tolerance and correction mechanisms in real world scenarios.
4. Design and develop dependable systems for mission critical applications.
5. Understand Fault tolerance in interconnected systems.
6. Understand Fault tolerance in distributed systems.
7. Apply Dependability evaluation techniques and tools

Student Learning Outcomes (SLO):
4, 17, 18

Student Learning Outcomes involved:
4. Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
17. Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice
18. Having critical thinking and innovative skills

Module:1 Faults and Failures 3 hours
- Fault - error, failure - faults and their manifestation - classification of faults and failures

Module:2 Dependability Concepts 3 hours
- Dependable system - techniques for achieving dependability - dependability measures

Module:3 Fault Tolerance Strategies 4 hours

Module:4 Fault tolerant design techniques 5 hours
- Hardware redundancy - software redundancy - time redundancy - information redundancy

Module:5 Fault tolerance in Interconnects 4 hours
- Hypercube - star graphs - fault tolerant ATM switches

Module:6 Fault Tolerance in Distributed Systems 5 hours
- Byzantine General problem - consensus protocols - check pointing and recovery - stable storage and RAID architectures - data replication and resiliency

Module:7 Dependability evaluation techniques and tools 4 hours
- Fault trees - Markov chains - HIMAP tool

Module:8 Contemporary issues: 2 hours

Total Lecture hours: 30 hrs
Text Book(s)

Reference Books

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

Recommended by Board of Studies: 27/02/2016

Approved by Academic Council: No. 40 18/03/2016
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE6046</td>
<td>ADVANCED EMBEDDED PROGRAMMING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Course Objectives:
- The course is aimed at making the students
- [1] To learn advanced programming skills of the Embedded C and Linux and the range of embedded applications.
- [2] To develop skills and understand the embedded Linux device drivers.

Expected Course Outcome:
- At the end of the course, the student will be able to
 - [1] Develop character driver.
 - [3] Comprehend Linux device model
 - [4] Comprehend interrupt handlers in device drivers
 - [5] Debug a device driver code
 - [6] Develop I/O management
 - [7] Develop USB in device driver

Student Learning Outcomes (SLO): 1, 4, 14
- [1] Having an ability to apply mathematics and science in engineering applications
- [4] Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
- [14] Having an ability to design and conduct experiments, as well as to analyze and interpret data

Module: 1 Basic Device driver review
- 6 hours
- Boot loader, Driver concepts -Block & character driver distinction -Low level drivers, OS drivers etc -Writing character drivers - Device major, minor number.

Module: 2 Advanced Device driver characteristics
- 6 hours
- Interfaces to driver read, write, ioctl etc-Blocking and non-blocking calls, Synchronisation -Semaphores, mutexes,spinlocks –Proc & Sysfs interfaces

Module: 3 The Linux Device Model
- 6 hours
- K objects, K sets, and Subsystems ,Low-Level Sysfs Operations, Hot plug Event Generation Buses, Devices, and Drivers, Classes, Putting It All Together, Hot plug, Dealing with Firmware

Module: 4 Interrupt Handling
- 6 hours
- Interrupts and bottom halves -Writing interrupt driven drivers, Implementing bottom halves-Kernel Threads & Work Queues

Module: 5 Time Delays and Debugging Techniques
- 6 hours
- Timers, Kernel timers, Jiffies , Timer interrupts- Debugging using printing, querying, watching and system defaults-Debugging tools

Module: 6 Communicating with Hardware
- 6 hours
- I/O Mapped I/O, Memory mapped I/O, Understanding DMA operations.

Module: 7 USB Driver Model
- 7 hours
- USB Device Basics, USB and Sysfs, USB Urbs, Writing a USB Driver, USB Transfers without Urbs.

Module: 8 Contemporary issues:
- 2 hours
- **Total Lecture hours:** 45 hours

Text Book(s)

Reference Books

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

<table>
<thead>
<tr>
<th>Recommended by Board of Studies</th>
<th>27/02/2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved by Academic Council</td>
<td>No. 40</td>
</tr>
<tr>
<td>Date</td>
<td>18/03/2016</td>
</tr>
<tr>
<td>Course code</td>
<td>Course title</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>ECE 6047</td>
<td>DESIGN AND ANALYSIS OF ALGORITHM</td>
</tr>
<tr>
<td></td>
<td>Syllabus version :1</td>
</tr>
</tbody>
</table>

Course Objectives:

This course is aimed at
1. Enabling the students to carry out analysis of various algorithms for mainly time and space complexity.
2. Teaching the students how to decide the appropriate data type and data structure for a given problem.
3. Teaching the students how to select the best algorithm to solve a problem by considering various problem characteristics, such as the data size, the type of operations, etc.

Expected Course Outcome:

At the end if this course, the student will be able to
1. Develop proficiency in problem solving and programming.
2. Comprehend Combinatorial Optimization
3. Analyse various algorithms for mainly time and space complexity.
4. Comprehend Cryptographic Algorithms
5. Learn Geometric Algorithms
6. Analyse Parallel Algorithms
7. Analyse and evaluate the given program in terms of code size and computational time.
8. Select the best algorithm to solve a problem by considering various problem characteristics, such as the data size, the type of operations, etc.

Student Learning Outcomes (SLO): 4, 5, 18

4. Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
5. Having design thinking capability
18. Having critical thinking and innovative skills

<table>
<thead>
<tr>
<th>Module:1</th>
<th>Introduction:</th>
<th>7 hours</th>
</tr>
</thead>
</table>

Module:2 Combinatorial Optimization: 5 hours

Backtracking; Dynamic programming; Greedy Technique ; Branch & Bound

Module:3 Advanced Algorithmic Analysis: 5 hours

Amortized analysis; Online and offline algorithms; Randomized algorithms, NP Completeness

Module:4 Cryptographic Algorithms: 9 hours

Historical overview of cryptography; Private-key cryptography and the key-exchange problem; Public-key cryptography; Digital signatures; Security protocols; Applications (zero-knowledge proofs, authentication etc..)

Module:5 Geometric Algorithms: 7 hours

Line segments: properties, intersections; convex hull finding algorithms, Voronoi Diagram, Delaunay Triangulation

Module:6 Parallel Algorithms: 5 hours

PRAM model; Exclusive versus concurrent reads and writes; Pointer jumping; Brent’s theorem and work efficiency

Module:7 Distributed Algorithms: 5 hours
Consensus and election; Termination detection; Fault tolerance; Stabilization;

<table>
<thead>
<tr>
<th>Module: Contemporary issues:</th>
<th>2 hours</th>
<th>45 hours</th>
</tr>
</thead>
</table>

Text Book(s)

Reference Books

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

List of Projects (Indicative)

I. Robot Motion Planning Based Projects to apply Computational Geometric Algorithm Principles
II. Explore Searching Algorithms: Get into the interiors of indexing, page ranking search algorithms
III. Design, analyze, implement and experiment new algorithms and software for solving optimization problems arising in the area of Robotics, Gaming, Telecommunication, Automotive, Genetics, Medical Applications etc.
IV. Implement the Algorithm to cater a requirement in Military Application. The chief-commander encrypts the command and communicates to soldiers by using DES. His command contains the data in encrypted form. Also decipher this encrypted command at the receiver.
V. Implement the RSA Based Digital Signature scheme
VI. Implement & Build Distributed Web Service Access (Ex: Currency Convertor)
VII. Implement the algorithm for scheduling independent parallel tasks.
VIII. Implement & Solve the following Algorithmic Puzzles using any Programming language
1. Place N chess queens on an N×N chessboard so that no two queens attack each other using BackTracking Approach
2. Implement an efficient Sudoku Solution: Given a partially filled 9×9 2D array ‘grid[9][9]’, the goal is to assign digits (from 1 to 9) to the empty cells so that every row, column, and subgrid of size 3×3 contains exactly one instance of the digits from 1 to 9.
3. Apply Recursive principles and implement Tower of Hanoi Puzzle.
 - Tower of Hanoi is a mathematical puzzle where we have three rods and n disks.
 - The objective of the puzzle is to move the entire stack to another rod, obeying the following simple rules:
 1) Only one disk can be moved at a time.
 2) Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack i.e. a disk can only be moved if it is the uppermost disk on a stack.
 3) No disk may be placed on top of a smaller disk
4. Implement an efficient program to solve the Egg Drop Puzzle involving n=2 eggs and a building with k=36 floors.

Suppose that we wish to know which stories in a 36-story building are safe to drop eggs from, and which will cause the eggs to break on landing. We make a few assumptions:

- An egg that survives a fall can be used again.
- A broken egg must be discarded.
- The effect of a fall is the same for all eggs.
- If an egg breaks when dropped, then it would break if dropped from a higher floor.
- If an egg survives a fall then it would survive a shorter fall.
- It is not ruled out that the first-floor windows break eggs, nor is it ruled out that the 36th-floor do not cause an egg to break.

If only one egg is available and we wish to be sure of obtaining the right result, the experiment can be carried out in only one way. Drop the egg from the first-floor window; if it survives, drop it from the second floor window. Continue upward until it breaks. In the worst case, this method may require 36 droppings. Suppose 2 eggs are available. What is the least number of egg-droppings that is guaranteed to work in all cases?

Implement an efficient algorithm to solve the puzzle: A man finds himself on a riverbank with a wolf, a goat, and a head of cabbage. He needs to transport all three to the other side of the river in his boat. However, the boat has room for only the man himself and one other item (either the wolf, the goat, or the cabbage). In his absence, the wolf would eat the goat, and the goat would eat the cabbage. Show how the man can get all these “passengers” to the other side.

Mode of evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test, Project Reviews I, II, III

<table>
<thead>
<tr>
<th>Recommended by Board of Studies</th>
<th>27/02/2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved by Academic Council</td>
<td>No. 40</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>ECE6038</td>
<td>VIRTUAL INSTRUMENTATION SYSTEMS</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Course Objectives:
The course is aimed at
1. Introducing students on Graphical programming concepts
2. Exposing students to system design using block level approach
3. Providing basic knowledge about Data Acquisition
4. Developing and solve real life problem using lab view NI based systems

Course Outcomes (CO):
At the end of the course the student should be able to
1. Acquire knowledge about Graphical Programming and able to differentiate from conventional programming
2. Learn about basics of Graphical Programming and its structure
3. Understand process of data acquisition using hardware
4. Provide a solution to engineering problem using virtual instrumentation system

| Student Learning Outcomes (SLO): |
|----------------------------------|----------------|
| | 6,14, 17 |

5. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints
6. Having an ability to design and conduct experiments, as well as to analyze and interpret data
7. Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice

Reference Books

Text Book(s)

List of Challenging Experiments (Indicative)

1. **Introduction**: General functional description of a digital instrument - Block diagram of a Virtual Instrument, Advantages of Virtual instruments over conventional instruments - Architecture of a Virtual instrument and its relation to the operating system, LabVIEW – Graphical user interface - Controls and Indicators, 'G' programming – Labels and Text-Shape, Size and Color – Owned and freе labels

Lab Exercise:
Examine the following image and develop a VI for the same

![Image of an input array and output array with values]
2. **Graphical Language:** Datatype, Format, Precision and representation - Datatypes - Dataflow programming, Graphical programming palettes and tools - Front panel objects - Functions and Libraries

Lab Exercises:
1) Use a while loop and a waveform chart to build a VI that demonstrates software timing
2) Develop a VI to generate a RAMP signal as shown below
 Input to the VI are Min, Max, Time span[initial value as 0 and end value only need to give] and the last input is the number of data points. VI takes the difference between Max and Min and divides that interval by the number of data points (# Points) that the user requires. For example this would mean that the user requires 5000 points to span the difference between 0 and 10[time span]. In other words, the value of the ramp function at the ith point is $((10-0)/5000)* i$. The For Loop allows traversing through the values of i from 0 to 5000.

3. **Programming Structure:** FORloops, WHILEloops, CASEstructure, formulanoises, Sequence structures - Arrays and Clusters - Array operations - Bundle-Bundle/ Unbundle by name, graphs and charts

Lab Exercises:
1) Using Error Clusters & Handling to find square root
2) To design an interface to measure temperature and check its range between
 - 0 to 30
 - 30 to 60
 - more than 60
 Record the highest and lowest temperature. Have a switch to record the selected temperature ranges.

4. **Handling Strings:** Stringandfile/O-HighlevelandLowlevelfile/O's- AttributemodesLocalandGlobal variables

Lab Exercises:
1) Design a case structured calculator using string as input cases.
2) Build a VI that creates an array of random numbers, scales the resulting array, and takes a subset of that final array. You create a For Loop that runs for 10 iterations. Each iteration generates a random number and stores it at the output tunnel. Random Array displays an array of 10 random numbers. The VI multiplies each value in Random Array by a Scaling Factor to create another array called Final Array. The VI then takes a subset of the Final Array starting at Start Subset for # of Elements and displays the subset in Subset Array

5. **Hardware Aspects:** Addressing the hardware in LabVIEW - Digital and Analog I/O function - Data Acquisition - Buffered I/O - Realtime Data Acquisition

8 hours
16 hours
12 hours
8 hours
Lab Exercises:
Build a Temperature Monitoring VI that continuously measures the temperature once per time unit [variable] and displays the temperature. If the temperature goes above or below the preset limits, the VI turns on a front panel LED. You should be able to set the limit from the front panel. Also modify the temperature monitoring VI so that it records both the highest and lowest recorded temperatures, and also displays the time elapsed (in seconds) since recording began. Add a save option to your temperature-monitoring VI as explained above. The user will have the option to save the acquired data into a spreadsheet file that will also include additional information like the user name. Below shown is the Front panel for your reference.

6. **Case Studies:**
 Lab Exercises:
 1) Interface a temperature sensor to microcontroller, acquire the sensor data and display it in labview
 2) Interface a motor to microcontroller and control the speed of it through labview.

<table>
<thead>
<tr>
<th>Total Laboratory Hours</th>
<th>64 hours</th>
</tr>
</thead>
</table>

Mode of Evaluation: Continuous Assessment Test and Final Assessment Test

Typical Projects:

1. Develop a labview based system that controls the speed of a Motor. The motor is interfaced to any Microcontroller which supports the USB communication. In Labview create a UI with slider. The slider in the UI must be used for controlling the speed of motor.
2. Develop an UI in labview that will generate a different pattern based on the random number generated by a random function in labview. The generated pattern must be send out via USB and the same will get displayed in LED’s interfaced with a microcontroller.
3. Develop an UI in Labview which depicts the signal generator functionality. A microcontroller is interfaced with labview and an oscilloscope must be interfaced to capture the signals which are given as an input in UI developed in Labview.
4. Develop an UI in labview which acquire the sensor data and store it in an Excel sheet of PC. The sensors are interfaced to microcontroller and the microcontroller is interfaced to labview system via USB

Mode of Evaluation: Continuous Assessment Test, Final Assessment Test

<table>
<thead>
<tr>
<th>Recommended by Board of Studies</th>
<th>27/02/2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved by Academic Council</td>
<td>No:40 18/03/2016</td>
</tr>
<tr>
<td>Course code</td>
<td>Course title</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>ECE6048</td>
<td>EMBEDDED SYSTEM DESIGN USING FPGA</td>
</tr>
<tr>
<td>Pre-requisite</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Course Objectives:

The course is aimed at

1. Provide in depth understanding of logic and system design.
2. Enabling the students to apply their knowledge for the design of advanced digital hardware systems with help of FPGA tools
3. Teaching the students scheduling and communication with respect to FPGA

Expected Course Outcome:

At the end of the course, the Students will be able to

1. Comprehend overview of Embedded System
2. Learn Hardware Description Languages
3. Acquire abilities to Design an embedded system using FPGA
4. Use Xilinx IP Cores
5. Comprehend Partitioning concepts
6. Comprehend Scheduling & Communication
7. Identify and exploitation of Parallelism concepts
8. Use state-of-art hardware and software to solve real life problems

Student Learning Outcomes (SLO): 4, 5, 6

4. Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
5. Having design thinking capability
6. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints

<table>
<thead>
<tr>
<th>Module:1</th>
<th>Embedded System Overview</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H/W-FPGA-Embedded SoC and use of VLSI circuit technology-platform FPGA’s- Altera Cyclone</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:2</th>
<th>Hardware Description Languages</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hardware Description Languages - VHDL , Verilog , Other High-Level HDLs, From IIDL to Configuration Bit-stream</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:3</th>
<th>System Design using FPGA</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Principles of system design-Design quality, Modules and interfaces, Abstraction and state, Cohesion and coupling, Designing and Reuse, Control flow graph, Design-Origins of platform FPGA designs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:4</th>
<th>FPGA Platform</th>
<th>4 hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Module:5</th>
<th>Partitioning</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overview of Partitioning Problem, Analytical Solution to Partitioning-Basic definitions, Expected performance gain, Resource considerations, Analytical Approach</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:6</th>
<th>Scheduling & Communication</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Communication-Invocation/Coordination, Transfer of State, Practical Issues- Profiling Issues, Data Structures Manipulate Feature Size.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module:7</th>
<th>Spatial Design</th>
<th>4 hours</th>
</tr>
</thead>
</table>

Principles of Parallelism-Identifying Parallelism - Spatial Parallelism with Platform FPGAs-Parallelism within FPGA Hardware Cores, Parallelism within FPGA Designs

<table>
<thead>
<tr>
<th>Module:8</th>
<th>Contemporary issues:</th>
<th>2hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Lecture hours:</td>
<td>30 hours</td>
</tr>
</tbody>
</table>

Text Book(s)

Reference Books

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test

Typical Projects

1. Bluetooth based home automation using FPGA. A Bluetooth mobile app need to be developed to transfer control information to the Bluetooth receiver which is to be interfaced with the FPGA board. Based upon the received data, the household devices like lamp, fan etc. should be turned ON/OFF.

2. Implement an Interrupt Controller (8259) using FPGA. The entire functional block should be sub divided into various modules like vector address module, command register module, mask register module and finally it need to be integrated into a single unit to accomplish specified tasks.

3. Implement a general purpose processor on FPGA. The purpose of the design is to build an FPGA with the following features: a CPU similar to the Atmel ATmega8, a serial port with a fixed baud rate, and an output for a single digit 7-segment display.

4. Real-time hardware implementation of a motion detection algorithm for vision based automated surveillance systems. The working prototype of a complete standalone automated video surveillance system, including input camera interface, designed motion detection VLSI architecture, and output display interface, with real-time relevant motion detection capabilities, need to be implemented on FPGA.

Mode of Evaluation: Project Reviews I, II, III

Recommended by Board of Studies 27/02/2016

Approved by Academic Council No. 40 Date 18/03/2016
<table>
<thead>
<tr>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE5044</td>
<td>HARDWARE SOFTWARE CODESIGN</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Syllabus version: 1.1

Course Objectives:

The course is aimed at

1. Providing adequate knowledge in the modeling of heterogeneous embedded systems based on design constraint and provide alternate solution exploring trade-off.
2. Introducing the importance of estimating the cost analysis in terms of hardware and software parameters.
3. Introducing various co-synthesis and co-simulation tools for the effective design of embedded systems with better communication between different modules.

Expected Course Outcome:

At the end of the course, the Students will be able to

1. Apply different MoCs based on system design specification.
2. Propose an alternate design solution based on constraint analysis.
3. Identify the partitioning solution based on the algorithms.
4. Understand various co-synthesis approaches.
5. Ability to pre-estimate and estimate the performance metrics for hardware and software based on cost analysis.
6. Approximate the pre estimate and estimate the performance metrics for software based cost analysis.
7. Decide on proper co-simulation method based on system specification

Student Learning Outcomes (SLO): 1, 4 and 6

1. Having an ability to apply mathematics and science in engineering applications
2. Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
3. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints

Module: 1

SPECIFICATION OF EMBEDDED SYSTEMS

7 hours

Introduction to Co-design - Comparison of co-design approaches–MoCs: State oriented, Activity oriented, Structure oriented, Data oriented and Heterogeneous –Software CFSMs–Processor Characterization

Module: 2

HW/SW PARTITIONING CONSTRAINTS & TRADEOFFS

6 hours

Cost modelling, Principle of hardware/software mapping-Realtime scheduling-design specification & constraints on Embedded systems-Tradeoffs

Module: 3

HW/SW Partitioning Methodologies

6 hours

Partitioning granularity-Kernigan-Lin Algorithm-Extended Partitioning – Binary Partitioning : GCLP Algorithm

Module: 4

Co-synthesis

6 hours

Software synthesis–Hardware Synthesis- Interface Synthesis–Co-synthesis Approaches: Vulcan, Cosyma, Cosmos, Polis and COOL.

Module: 5

Estimation: Hardware

6 hours

Hardware area, execution timing and power

Module: 6

Estimation: Software

6 hours
Software memory and execution time, Worst Case Execution Time

Module: 7 Co-simulation & Co-verification

Module: 8 Contemporary issues:

| Total Lecture hours: | 45 hours |

Text Book(s):

Reference Books

5. http://courses.cs.tamu.edu/rabi/cpsc489/resources.shtml

Mode of Evaluation: Continuous Assessment Test –I (CAT-I), Continuous Assessment Test –II (CAT-II), Digital Assignments/ Quiz / Completion of MOOC, Final Assessment Test (FAT).

Mode of evaluation:

Recommended by Board of Studies 27/02/2016

Approved by Academic Council No. 40 Date 18/03/2016
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE6049</td>
<td>MODERN AUTOMOTIVE ELECTRONICS SYSTEMS</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Syllabus Version: 1

Course Objectives:

The course is aimed at

1. Instilling fundamental understanding of various automatic control systems and basic instrumentation involved in automobiles.
2. Learning various automobile condition measurement and monitoring mechanisms.
3. Acquiring with advanced electronic elements and their functional aspects in automobiles.

Course Outcomes (CO):

At the end of the course the student will be able to

1. Comprehend engine management system.
2. Understand the various Ignition and Injection systems.
3. Explain the automotive control mechanisms.
4. Learn the different monitoring systems for automobiles.
5. Understand the typical sensors for transportation.
6. Acquire knowledge about upcoming trends in automotive electronics systems.
7. Use the knowledge attained and develop appropriate systems for societal issues.

Student Learning Outcomes (SLO):

1. Comprehend engine management system.
2. Understand the various Ignition and Injection systems.
3. Explain the automotive control mechanisms.
4. Learn the different monitoring systems for automobiles.
5. Understand the typical sensors for transportation.
6. Acquire knowledge about upcoming trends in automotive electronics systems.
7. Use the knowledge attained and develop appropriate systems for societal issues.

Module:1 Engine management systems

- Introduction - components for engine management system - Open loop and closed loop control system – Engine cranking and warm up control – Acceleration, deceleration and idle speed control.

Module:2 Injection and ignition systems

- Feedback carburetor system – Throttle body injection and multi point fuel injection system – Injection system controls – Advantage of electronic ignition systems – Types of solid state ignition systems and their principles of operation – Electronic spark timing control, Exhaust emission control engineering.

Module:3 Automotive control mechanism

- Electronic management of chassis systems, Vehicle motion control, Anti-lock braking system, Tyre pressure monitoring system, Collision avoidance system, Traction control system.

Module:4 Automotive Electronics systems

- Active suspension system Keyless entry system and Electronic power steering system, Electronic controls - lighting design - Horn – Warning systems – Brake actuation warning systems, Infotainment.

Module:5 Monitoring of Automotive systems

- Speed warning systems, oil pressure warning system, engine over heat warning system, air pressure warning system, safety devices-Wind shield wiper and washer, VANET.

Module:6 Sensors for transportation - I

- Basic sensor arrangement–Types of sensors, Oxygen Sensor – Cranking Sensor – Position Sensors

Module:7 Sensors for transportation - II

- 3 hours
Engine cooling water temperature Sensor—Engine oil pressure Sensor—Fuel metering –Vehicle speed sensor and detonation sensor.

<table>
<thead>
<tr>
<th>Module:8</th>
<th>Contemporary issues:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 hours</td>
</tr>
</tbody>
</table>

Total Lecture hours: 30 hrs

Text Book(s)

Reference Books

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

Typical Projects

1. Design of Real Time Ignition Control System. Implement an automotive throttle control system using fuzzy logic approach and perform the controller synthesis in real time environment.

2. Develop a sliding mode controller to generate appropriate torque for the driving motor of electric vehicles that ensures optimality of the slip ratio for efficient vehicle brake.

3. Design a variable structure controller to deal with the strong nonlinearity of wheel slip in the design of ABS controller. Consider the several situations such as braking in dry road, wet road and snow road.

4. Develop a safety feature in cars to avoid colliding with a vehicle or an obstacle in the way. The main objective of the system is to help driver to prevent car collisions due to blind spots and their carelessness while driving.

5. Design a speed warning system (in-vehicle subsystem) that will monitor the vehicle speed and activate an auditory warning as well as record the violation when the pre-set speed limit is exceeded.

Recommended by Board of Studies : 27/02/2016

Approved by Academic Council : No: 40 Date : 18/03/2016
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>J</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE6052</td>
<td>PARALLEL PROCESSING AND COMPUTING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-requisite: NIl
Syllabus Version: 1

Course Objectives:
The course is aimed at:
1. Teaching the students to understand the scope, design and model of parallelism and to know the parallel computing architecture.
2. Teaching students to do analytical modelling and performance of parallel programs.
3. Teaching students to solve a complex problem with message passing model.
4. Programming with CUDA and analyse complex problems with shared memory programming.

Course Outcomes (CO):
At the end of the course the student will be able to:
1. Understand the fundamentals of parallel processing.
2. Illustrate the scheduling loops and process execution.
3. Realize the parallel system architecture with CUDA.
4. Comprehend the kernel based parallel programming concepts.
5. Apply the performance consideration for parallel processing.
6. Analyse various parallel computation patterns.
7. Perform sparse matrix vector multiplications.

Student Learning Outcomes (SLO):
4, 5, 7

Student Learning Outcomes involved:
4. Having Sense-Making Skills of creating unique insights in what is being seen or observed
(Higher level thinking skills which cannot be codified)
5. Having design thinking capability
7. Having computational thinking (Ability to translate vast data in to abstract concepts and to understand database reasoning)

Module:1 Introduction to Parallel Processing 5 hours
Parallel processing – Concepts and Terminology- Parallel Computer Memory Architectures - Parallel Programming Models - Designing Parallel Programs- Performance Analysis

Module:2 Shared Memory Programming 6 hours

Module:3 Parallel Computing 6 hours
Portability and Scalability- Introduction to CUDA, Data Parallelism and Threads-Memory Allocation and Data Movement API- Kernel-Based SPMD Parallel Programming-Kernel based Parallel Programming, Multidimensional Kernel Configuration- Basic Matrix-Matrix Multiplication

Module:4 Kernel-Based Parallel Programming 6 hours

Module:5 Performance Considerations 6 hours
Warp and Thread execution - Global Memory Bandwidth - DRAM Bandwidth - Memory Coalescing - Dynamic partition of execution resources

Module:6 Parallel Computation Patterns 8 hours
Convolution- Tiled Convolution- 2D Tiled Convolution Kernel- Data Reuse in Tiled
<table>
<thead>
<tr>
<th>Module</th>
<th>Topic</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Sparse Matrix Vector Multiplication</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Parallel SpMV Using CSR-Padding and Transposition-Using Hybrid to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Padding-Sorting and Partitioning for Regularization</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Contemporary issues:</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Lecture hours: 45 hrs

Text Book(s)

Reference Books

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

Recommended by Board of Studies: 27/02/2016

Approved by Academic Council: No. 40 Date: 18/03/2016