

- 1. Name : Sreetama Ghosh
- 2. Highest Qualification(s) : Ph.D.
- 3. Post-Doctoral Experience(s)

Chalmers University of Technology, Sweden

:

- ii) Dutch Institute for Fundamental Energy Research, the Netherlands
- 4. Google Scholar : <u>https://scholar.google.com/citations?user=ve2XgCIAAAAJ&hl=en</u>
- 5. Group Webpage : to be updated
- 6. Research fields : heterogeneous catalysis, CO₂ capture, electrochemical CO₂ reduction, thermocatalytic CO₂ hydrogenation, water splitting

7. Collaboration

i)

National	i)	Prof. Sundara Ramaprabhu, IIT Madras, India
International	i)	Prof. Louise Olsson, Chalmers University of Technology
		Sweden
	ii)	Prof. Derek Creaser, Chalmers University of Technology
	-	Sweden
	iii)	Prof. Mihalis Tsampas, DIFFER, Netherlands
	iv)	Prof. William Schneider, University of Notre Dame USA

8. Prize/Fellowships/Awards

: Details

Prize	i)	
Fellowships	i)	
Awards	i)	Institute Research Award 2019, IIT Madras

9. Membership

: List out the membership in professional bodies.

i)	
ii)	

10. Invited Talk : Total number.

11. Funded Projects/Consultancy : Ongoing: Details Completed: Details.

Ongoing	i)
Completed	i)

12. Ph.D. students13. Graduate projectsCongoing: Total number Completed: Total number.

14. Selected publications : Top 10. In the form of **Title, Journal name complete form, DOI, Year. (In the order of Recent to old)**

:)	
i)	Methanol mediated direct CO_2 hydrogenation to hydrocarbons: Experimental and
	kinetic modeling study, Chemical Engineering Journal, 435 (2022) 135090.
	https://doi.org/10.1016/j.cej.2022.135090
ii)	Experimental and kinetic modeling studies of methanol synthesis from CO
	hydrogenation using In ₂ O ₃ catalyst, Chemical Engineering Journal, 416 (2021)
	129120. https://doi.org/10.1016/j.cej.2021.129120
iii)	Recent advances in direct hydrogenation of CO ₂ into hydrocarbons via methano
	intermediate over heterogeneous catalysts, Catalysis Science and Technology, 1
	(2021), 1665-1697. https://doi.org/10.1039/D0CY01913E
iv)	Boron and nitrogen co-doped carbon nanosheets encapsulating nano iron as an
	efficient catalyst for electrochemical CO_2 reduction utilizing a Proton Exchange
	Membrane CO ₂ conversion cell, Journal of Colloid and Interface Science 55
	(2020) 169-177. https://doi.org/10.1016/j.jcis.2019.10.030
V)	Magnesium oxide modified nitrogen-doped porous carbon composite as an efficient
	candidate for high pressure carbon dioxide capture and methane storage, Journa
	of Colloid and Interface Science 539 (2019) 245-256
	https://doi.org/10.1016/j.jcis.2018.12.063
vi)	Green synthesis of transition metal nanocrystals encapsulated into nitrogen-doped
.,	carbon nanotubes for efficient carbon dioxide capture, Carbon 141 (2019) 692
	703. https://doi.org/10.1016/j.carbon.2018.09.083
vii)	Green synthesis of nitrogen-doped self-assembled porous carbon-metal oxid
	composite towards energy and environmental applications, Scientific Reports
	(2019) 5187. https://doi.org/10.1038/s41598-019-41700-5
viii)	Nonprecious catalyst for three-phase contact in a Proton Exchange Membrane CO
,	Conversion Full Cell for efficient electrochemical reduction of Carbon Dioxide
	ACS Applied Materials and Interfaces 11 (2019) 40432-40442
	https://doi.org/10.1021/acsami.9b11213
ix)	High-pressure investigation of ionic functionalized graphitic carbon nitrid
	nanostructures for CO ₂ capture, Journal of CO ₂ Utilization 21 (2017) 89-99.
	http://dx.doi.org/10.1016/j.jcou.2017.06.022
x)	Synthesis of titanium carbide nanoparticles by wire explosion process and it
	application in carbon dioxide adsorption, Journal of Alloys and Compounds 79-
	(2019) 645 - 653. (Impact factor: 6.375)
	https://doi.org/10.1016/j.jallcom.2019.04.299
5 Otho	r activities : Not exceedingly more than 5.
i)	
ii)	
··/	