

SCHOOL OF CIVIL ENGINEERING

M. Tech. Structural Engineering

(M. Tech - MST)

Curriculum (2022-2023 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- **World class Education**: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.
- **Impactful People**: Happy, accountable, caring and effective workforce and students.
- **Rewarding Co-creations**: Active collaboration with national & international industries & universities for productivity and economic development.
- Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF CIVIL ENGINEERING

• To be internationally recognized for ground-breaking contributions, exceptional leadership, strong commitment to creative problem-solving and professional integrity.

MISSION STATEMENT OF THE SCHOOL OF CIVIL ENGINEERING

- The School of Civil Engineering inspires and nurtures innovative leaders.
- Preparedness to address the complex societal-scale challenges in areas of resilient infrastructure, smart and sustainable cities, water and energy security, climate change, mobility of goods and people, and environmental protection.
- Pioneering the emerging skills in Civil Engineering.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

PROGRAMME OUTCOMES (POs)

- PO_01: Having an ability to apply mathematics and science in engineering Applications
- PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment
- PO_03:Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information
- PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice
- PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems
- PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development
- PO_07: Having a clear understanding of professional and ethical responsibility
- PO_08: Having a good cognitive load management skills related to project management and finance

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Structural Engineering) programme, graduates will be able to

- PSO_01: Analyse and design reinforced concrete structures and steel structures as per the standard design of codes.
- PSO_02: Address the societal needs by interdisciplinary approach through advanced courses and get exposed to the latest technologies to be industry ready or to pursue advanced research.
- PSO_03: Independently carry out research / investigation to solve practical problems and write / present a substantial technical report / document.

CREDIT STRUCTURE

Programme Credit Structure	Credits
Discipline Core Courses	24
Skill Enhancement Courses	05
Discipline Elective Courses	12
Open Elective Courses	03
Project/ Internship	26
Total Graded Credit Requirement	70

DETAILED CURRICULUM

Discipline core courses

24

S. No.	Course Code	Course Title		Т	Р	C
1.	MMAT502L	Advanced Mathematical Methods	3	0	0	3
2.	MSTE501L	Theory of Elasticity and Plasticity	3	0	0	3
3.	MSTE502L	Design of Concrete Structural Systems	3	1	0	4
4.	MSTE503L	Structural Dynamics		1	0	4
5.	MSTE504L	Advanced Design of Steel Structures	2	1	0	3
6.	MSTE505L	Finite Element Analysis	2	1	0	3
7.	MSTE505P	Finite Element Analysis Lab		0	2	1
8.	MSTE506L	Prestressed Concrete Structures	2	1	0	3

Skill Enchantment Courses

05

S. No.	Course Code	Course Title	L	Т	Р	С
1.	MENG501P	Technical Report Writing	0	0	4	2
2.	MSTS501P	Qualitative Skills Practice	0	0	3	1.5
3.	MSTS502P	Quantitative Skills practice	0	0	3	1.5

Discipline Elective Courses

Sl. No.	Course Code	Course Title	L	Т	Р	С
1.	MSTE601L	Matrix Methods of Structural Analysis	2	1	0	3
2.	MSTE602L	Design of Bridges	2	1	0	3
3.	MSTE603L	Prefabricated Structures	2	1	0	3
4.	MSTE604L	Stability of Structures	2	1	0	3
5.	MSTE605L	Advanced Concrete Materials and Technology	2	1	0	3
6.	MSTE606L	Advanced Foundation Design	3	0	0	3
7.	MSTE607L	Earthquake Resistant Design	2	1	0	3
8.	MSTE608L	Analysis and Design of Tall Structures	2	1	0	3
9.	MSTE609L	Offshore Structures	2	1	0	3
10.	MSTE610L	Repair and Rehabilitation of Structures	3	0	0	3
11.	MSTE611L	Energy Efficient Buildings	3	0	0	3

Open Elective Courses

Engineering Disciplines / Social Sciences

Project and Internship

Course Т Р S. No. **Course Title** \mathbf{L} С Code 1. Study Oriented Project MSTE696J 2 2. **Design Project** 2 MSTE697J 3. Internship I / Dissertation I MSTE698J 10 4. 12 MSTE698J Internship II / Dissertation II

12

03

26

Discipline core courses

MMAT502L	ADVANCED MATHEMATICAL METHODS -				С	
		3	0	0	3	
Pre-requisite	Nil -	Syll	llabus version			
Course Objectiv	/es:					
1. Provide 1	he students with sufficient exposure to advanced mat	hema	ntical	met	hods	
and tools	s that are relevant to engineering research.					
2. Improvin	g the computational skills of students by giving suffic	cient	knov	vledg	e of	
analytica	al and numerical techniques useful for solving pre-	obler	ns a	rising	g in	
Mechani	cal Engineering.					
3. Imparting	g the knowledge of real time applications of Autonom	ious a	syste	ms, 1	Non-	
linear sy	stems of ordinary differential equations and partial differential	rentia	ıl equ	uation	ıs.	
Expected Cours	e Outcomes:					
At the end of the	course students are able to					
1. Disting	uish and analyse a variety of tools for solving linear sys	tems	and	findir	ng	
eigenv	alues of these systems.					
2. Derive	and use the numerical techniques needed for the solution	n of a	a give	en		
U	ering problems					
	tand and correlate the analytical and numerical methods					
4. Demor	strate their ability to write coherent mathematical proofs					
argume		diffe	renti	al		
*	on models.					
	strate the understanding of how physical phenomena are	e moo	lelle	d by		
=	differential equations					
	genvalue Problems			hour		
e	value problems-Eigenvalues and Eigenvectors-G	ersch	gorir	n Ci	rcles	
	user method, Power method, Inverse Power method.					
	ration Methods			hour		
Sturm sequence, method.	Jacobi method, Given's method, Householder method, I	Defla	tion,	Lanc	zo's	
Module: 3 Ca	lculus of Variations			9 h	ours	
Euler-Lagrange's	equation –Isoperimetric problems, Rayleigh–Ritz method - G	alerki	n me	thod.		
Module: 4 Sy	stem of First Order Ordinary Differential Equations		6	hour	'S	
Linear Systems	- Homogeneous linear systems with constant coefficient	ents -	- Au	tonon	nous	
systems - Phase Plane Phenomena - Critical Points - Stability for linear systems.						
			(1		
Module: 5 No	onlinear systems		0	hour	*S	
	onlinear systems pints of nonlinear systems-Stability by Liapunov's metho	od –	6	hour	S	

(Deemed to be University under section 3 of UGC Act, 1956)	,						
Module: 6Partial Differential Equations	5 hours						
Classification of Second-Order Partial Differential Equations, Significance of							
characteristic curves, Canonical Form, Sturm-Liouville problems and Eigen function							
expansions.							
Module: 7 Wave equation	6 hours						
Displacements in a long string – a long string under its weight – a bar with p	prescribed force						
on one end - free vibrations of a string. Method of Separation of variable	es, Solution by						
method of Laplace transforms							
Module: 8 Contemporary Issues	2 hours						
Industry Expert Lecture							
Total Lecture hours	45 hours						
Text Book(s)							
1 Differential Equations: Theory, Technique and Practice, G.F. Simmons	s, S. G. Krantz,						
Tata Mc GrawHill Publishing, 2007. (Topics from Chapters 10, 11)							
2 Elements of Partial differential equations, Ian N. Sneddon, Dover Pub	olications, New						
York, 2006. (Topics from Chapters 3, 5)							
3 Numerical Methods for Scientific and Engineering Computation, M. K							
Iyengar, R. K. Jain, New Age International publishers, 7th edition, Ne	w Delhi, 2019.						
(Topics from Chapter 3, 7)							
4 Introductory Methods of Numerical Analysis, S. S. Sastry, PHI Pvt. Lt	td., 5th Edition,						
New Delhi, 2015. (Topics from Chapter 11)							
5 The Calculus of Variations, Bruce van Brunt, Springer, 2004. (Topics fr	rom Chapters 2,						
4, 5)							
Reference Books							
1 Differential Equations and Dynamical Systems, Lawrence Perko, 3rd	l ed., Springer-						
Verlag, 2001.	0 1 1						
2 An introduction to Ordinary Differential Equations, James C. Robins	on, Cambridge						
University Press, New York, 2008 (4th print).	D (* 11.11						
3 Elementary Applied Partial Differential Equations, Richard Haberman	h, Prentice Hall						
International, 1998.	an Langeline						
4 Numerical Analysis, R. L. Burden and J. D. Faires, 10 th Edition, Cenga	ige Learning,						
India edition, 2015.	D: :- 1						
Mode of Evaluation: Continuous Assessment Tests, Final Assessment Test, Digital							
Assignments, Quizzes.							
Recommended by Board of Studies 05.07.2022							
Approved by Academic Council Date							

	(Deemed to be University under section 3 of UGC Act, 1956)	L	Т	Р	C
MSTE501L	THEORY OF ELASTICITY AND PLASTICITY	L	1 0	<u>г</u> 0	<u> </u>
Pre-requisite	Nil	Syll	abus	ver	sion
Course Objectives:					
•	stresses and strains for two dimensional and three dimension	al elen	nents		
	e equilibrium and compatibility condition				
3.To Understand the	e compatibility conditions in polar coordinates				
4. To Solve the prob	lems on Torsion for different shaped bars				
5.To Understand the	e concept of plasticity				
Expected Course C					
At the end of the cour	se, the student will be able to				
1. Analyse the stres	sses and strains for elasticity approach.				
2. Solve two dimen	nsional elements problems in Cartesian coordinates				
3. Understand the	bending of cantilever beams and circular arc beams				
4. Know the 3D pr	oblems in Cartesian coordinates				
5. Understand the	compatibility conditions in polar coordinates				
6. Solve the proble	ms on Torsion for different shaped bars.				
7. Understand the	concept of plastic analysis and yield criteria.				
Module: 1 Elast	icity		6 ha	ours	
Analysis of Stress a	nd Strain - Elasticity approach - Definition and notation of s	tress –	Con	ipon	ents
of stress and strain -	- Generalized Hooke's law				
Module: 2 Elast	icity Solutions		5 ho	ours	
Plane stress and pl	ain strain problems with practical examples - Equations	of equ	iilibr	ium	and
compatibility condi	tions in Cartesian coordinates - Two dimensional Prob	olems	in (Carte	sian
Coordinates					
Module: 3 Carte	esian Coordinates		6 ha	ours	
Airy's stress function	on - Bending of cantilever beams- Axi-symmetrical probler	ns - T	hick	cyli	nder
under uniform press	ure - Circular arc beams subjected to pure bending.				
Module: 4 Elast	icity 3D Solution		8 ho	ours	
Principal stresses a	and strains for three dimensional element - Equations of	of equ	ilibr	ium	and
compatibility condit	ions for 3D problems in Cartesian co-ordinates - Transforma	ation o	f stre	sses	and
strains.					
Module: 5 Polar	Co-ordinates		6 ha	ours	
Equations of equilib	rium and compatibility conditions in Polar coordinates- Ax	i-symi	netri	cal	
problems-bending o		-			
Module: 6 Torsi	on-Non-Circular Sections		6 ho	ours	
Torsion - Torsion o	f various shaped bars - Pure torsion of prismatic bars - Pra	indtle'			rane
	f thin walled tubes and hollow shafts				
	city and Theory of Failure		6 ha	ours	
	sticity – Stress – Strain diagram – Plastic analysis – Y	lield (criter	ia –	St.
Venant'stheory - Ve	on mises criterion – Plastic work – Strain hardening				

M	odule: 8	Contemporary issues:				2 hours				
	Total Lecture hours45 hours									
Tey	Text Book(s)									
1.	1. Timoshenko and Goodier, (2000), Theory of Elasticity, McGraw Hill Company, New York.									
Ref	ference B	ooks								
1.	Mendels	on, A., (2002), Plasticity: T	heory and Application	ations, Ma	c Millanand (Co., New York.				
2.	Sadhu Si	ngh, (2004), Theory of Plas	sticity, Dhanpat R	ai sons Pri	vate Limited,	New Delhi.				
3.	Ansel. C	. Ugural and Saul. K. Fenst	er, (2003), Advan	ced Streng	th and Applie	ed Elasticity,				
	Fourth E	dition, Prentice Hall Profes	sional technical R	eference, 1	New Jersey					
4.	Chakrab	arty. J, (2006), Theory of P	lasticity, Third Ed	ition, Else	vier Butterwo	orth - Heinmann –				
	UK.									
Mo	de of Ass	essment: Continuous Asses	ssment Test, Quizz	zes, Assigr	nments, Final	Assessment Test				
Rec	commend	ed by Board of Studies	05.07.2022							
Ap	Approved by Academic Council Date									

MSTE502L	DESIGN OF CONCRETE STRUCTURAL	L	Т	Р	C
NIS I E502L	SYSTEMS	3	1	0	4
Pre-requisite	Nil	Syll	abus	ver	sion
Course Object	ives:				
	e elastic and inelastic behaviour of beam.				
2. To analyze	the frame for various loading conditions.				
3. To give an shear wall.	exposure to the various structural systems like flat slab, Deep b	eam,	corb	els a	nd
Expected Cou	rse Outcome:				
-	beam for deflection and estimation of crack width.				
	multistorey frame for various loading condition.				
3. Evaluate the	e plastic moment capacity of continuous beam.				
4. Design the	deep beam and corbels.				
5. Design the	flat slab, spandrel beam.				
6. Design the	slender column using SP16.				
7. Analyse the	shear wall structure.				
Module: 1	Basic Design Concepts		6 h	ours	
Limit state met	hod - Design of beams- Short-term and long-term deflection of	reinf	orce	d	
concrete beams	and slab-Estimation of crack width in reinforced concrete me	mber	5		
Module: 2	Frame Analysis and Design		6 h	ours	
Static and dyna	mic loading of structures	I			
Module: 3	Inelastic Behaviour of Concrete Beams		6 h	ours	
Moment curvat beams	ure relationship – plastic hinge formation-moment redistributio	on in o	conti	nuou	IS
Module: 4	Deep Beams and Corbels		6 h	ours	
Strut and tie me	ethod of analysis for corbels and deep beams, Design of corbels	s, Des	sign (of de	ер
beams					
Module: 5	Flat Slab		7 h	ours	
Design of flat s	labs and flat plates according to IS method - Check for shear -	Desi	gn of	f	
spandrel beams	-Yield line theory and Hillerborg's strip method of design of s	labs -	Gri	d flo	or
Module: 6	Slender Columns		6 h	ours	
Design of slend	ler columns subjected to combined bending moment and axial t	force	usin	g IS	
456-2000 and S	SP 16				
Module: 7	Shear Wall		6 h	ours	
Analysis and de	esign of shear wall framed buildings				
Module: 8	Contemporary issues:		2 h	ours	
	Total Lecture hours		45 h	ours	5
	Tutorial Hours	1		ours	

псле	Book(s)									
1.	Subramanian. N., (2013), Design	Of Reinfo	orced Cor	ncrete	Structures,	Oxford				
	University Press, New Delhi.									
Refer	Reference Books									
1.	Gambhir. M. L., (2012), Design of Re	inforced Co	ncrete Stru	ctures	, Prentice Ha	all of India,				
	New Delhi.									
2.	Varghese. P.C., (2011), Advanced Rei	inforced Cor	crete Desi	gn, PI	II Learning	Pvt. Ltd.,				
	New Delhi.									
3.	IS 456 Plain and Reinforced Concrete	- Code of P	ractice							
4.	IS 13920 Ductile Detailing of Reinford	ced Concret	e Structure	s Subj	ected to Seis	mic Forces				
4.	-Code of Practice									
5.	IS 1893 Criteria for earthquake resista	nt design of	structures	-Code	of Practice					
6.	SP 16- Design Aids for Reinforced Co	oncrete								
Mode	e of Assessment: Continuous Assessme	ent Test, Qu	izzes, Ass	ignme	nts, Final As	sessment				
Test	Test									
Reco	ommended by Board of Studies (05.07.2022								
Appr	Approved by Academic Council Date									

MSTE5031	STRUCTURAL DYNAMICS	L	Т	Р	C	
N151 E3031	STRUCTURAL DTNAMICS	3	1	0	4	
Pre-requisi	te Nil	Syllabus version				
-						
Course Objec						
	rious dynamic forces acting on a building and their response.					
	nowledge on modes of failure and remedial solutions.					
•	e analysis procedure for calculating the response of structures.					
	nd the linear and no-linear behaviour of structures.					
Expected Cou						
	ion of this course, the student will be able to					
	te static and dynamic behavior of structures and their physical pr d model a single degree of freedom system subjected to dynamic	-				
-	the response of single storied building subjected to dynamic load.	10au.				
	d model a multi degree of freedom system subjected to dynamic	load				
	ne response of multi-storied building subjected to dynamic load.	IUau.				
	ne dynamic behavior of beams.					
	ne nonlinearity of a system by various techniques.					
	Introduction		6 ha	nire		
	ation - Dynamic analysis and their importance to structural engir	peerin			18 -	
	edom - D'Alembert's principle - Lagrange's equation - Simple ha					
-	Single Degree of Freedom		6 hc			
	model for SDOF systems - Free vibration - Undamped - Damped	1 - Cr			ping	
	t of damping - Vibration measuring instruments.				1 0	
	Response of SDOF Systems		6 ha	ours		
	SDOF system to Harmonic Loading, Periodic loading and	Impul	se L	oadi	ng -	
-	ty - Fourier series - Duhamel's integral - Numerical integration.	•			C	
	Multi Degree of Freedom System		7 ho	ours		
Equation of m	notion - Free vibration - Undamped - Damped - Evaluation of	struc	tural	prop	berty	
matrices - Mo	de shape - Orthogonality relationship.					
Module: 5	Response of MDOF Systems		6 ha	ours		
Rayleigh's me	thod - Rayleigh-Ritz method - Stodola's method - Stiffness meth	od - N	Лode			
superposition	nethod.					
Module: 6	Continuous Systems		6 ha	ours		
Differential eq	uation of motion - Transverse vibration - Axial vibration - Natur	al free	quenc	cy an	d	
mode shape of	simple beams with different end conditions - Variable cross sec	tion b	eams	5 -		
Orthogonality	relationship.					
Module: 7	Non-linear Numerical Techniques		6 ha	ours		
Wilson Theta	method - Newmark Beta method –Runge-Kutta method.					
l l						

Mo	dule:8	Contemporary issues:				2 hours				
		ure hours	45 hours							
	Tutorial Hours 15 hours									
Mir	Minimum of three problems to be worked out by students in every tutorial class.									
Tex	xt Book(s)									
1.	Mario P	az and William Leigh (2	010), Structural Dy	ynamics	- Theory ar	nd Computation,				
	Springer									
Ref	ference B	ooks								
1.	Clough a	and Penzien (2015), Dyna	mics of Structures,	CBS Pu	blishers and	l Distributors, New				
1.	Delhi.									
2.	-	A. K. (2011), Dynamics		heory an	nd Applicati	ons to Earthquake				
2.	Engineer	ring, 4 th edition, Prentice H	Iall, London.							
3.	Roy R.C	Craig, Jr. Andrew J. Kur	dila (2011), Funda	mentals	of Structura	al Dynamics, John				
5.	Wiley ar	nd Sons, London.								
Mo	de of asso	essment: Continuous Asse	essment Test, Quizze	es, Assig	nments, Fin	al Assessment Test				
Ree	commend	ed by Board of Studies	05.07.2022							
Ap	proved by	y Academic Council	I	Date						

MSTE504L	ADVANCED DESIGN OF STEEL STRUCTURES		Т	Р	С	
		2	1	0 abus	3	
Pre-requisite	Pre-requisite Nil					
Course Objective	s:					
1. To classify the	structures and analyse the frame for wind loads.					
2. To design the v	velded connections and to give exposure to fatigue.					
3. To design light	z gauge steel members, steel - concrete composite and hollow s	sectio	ons.			
Expected Course	Outcome:					
Upon completion of	of this course, the student will be able to					
1. Classify the str	uctures and wind load analysis for frames.					
2. Design the well	ded connections.					
3. Understand the	fatigue and the factors that influence fatigue.					
4. Analyse and de	esign the beams and frames using plastic method.					
5. Design the Lig	ht gauge structures.					
6. Design the Ste	el- Concrete Composite sections.					
7. Design the Hol	low sections.					
Module: 1 Stab	ility and Plate Buckling		4 I	nours	5	
Classification of st	ructures-wind load analysis					
Module: 2 Bear	n- column Connections/Semi Rigid Connections		41	nours	5	
Throat and Root S	Stresses in Fillet Welds - Seated Connections Unstiffened and	d Sti	ffene	ed sea	ated	
Connections – Mo	ment Resistant Connections – Clip angle Connections – Split b	beam	Cor	nnect		
- Framed Connect					lons	
1	lons				ions	
Module: 3 Fati			4 1	nours		
		n- V:				
Types of fatigue l	gue		ariou	ıs fai		
Types of fatigue l relations- Factors	gue eading and failure- Fatigue test, endurance limit- S-N diagrar		ariou igue	ıs fai	s lure	
Types of fatiguerelations- FactorsModule: 4Plase	gue eading and failure- Fatigue test, endurance limit- S-N diagrar nfluencing fatigue strength- Influence of stress concentration c	on fat	ariou igue 4 I	us fai test nours	lure	
Types of fatigue Irelations- Factors iModule: 4PlasIntroduction - Sha	gue eading and failure- Fatigue test, endurance limit- S-N diagrar nfluencing fatigue strength- Influence of stress concentration o tic Analysis and Design of Structures	on fat	ariou igue 4 I	us fai test nours	lure	
Types of fatigue Irelations- Factors iModule: 4PlasIntroduction - ShaDesign of fixed an	gue eading and failure- Fatigue test, endurance limit- S-N diagrar nfluencing fatigue strength- Influence of stress concentration of tic Analysis and Design of Structures pe factors - Mechanisms - Plastic hinge - Analysis of beams a	on fat	ariou igue 4 l ortal	us fai test nours	lure	
Types of fatigue Irelations- Factors iModule: 4PlasIntroduction - ShaDesign of fixed anModule: 5Desi	gue eading and failure- Fatigue test, endurance limit- S-N diagram nfluencing fatigue strength- Influence of stress concentration of tic Analysis and Design of Structures pe factors - Mechanisms - Plastic hinge - Analysis of beams a d continuous beams.	on fat	ariou igue 4 I ortal 4 I	us fai test hours fram	s lure s les -	
Types of fatigue Irelations- Factors iModule: 4PlasIntroduction - ShaDesign of fixed anModule: 5DesiTypes of cross sec	gue eading and failure- Fatigue test, endurance limit- S-N diagrar nfluencing fatigue strength- Influence of stress concentration of tic Analysis and Design of Structures pe factors - Mechanisms - Plastic hinge - Analysis of beams a d continuous beams. gn of Light Gauge Steel Structures	on fat	ariou igue 4 I ortal 4 I and	us fai test hours fram hours tensi	s lure s les -	
Types of fatigue Irelations- Factors iModule: 4PlasIntroduction - ShaDesign of fixed anModule: 5DesiTypes of cross sec	gue eading and failure- Fatigue test, endurance limit- S-N diagrar nfluencing fatigue strength- Influence of stress concentration of tic Analysis and Design of Structures pe factors - Mechanisms - Plastic hinge - Analysis of beams a d continuous beams. gn of Light Gauge Steel Structures tions - Local buckling and lateral buckling - Design of comprese - Deflection of beams- Cold formed steel structures-Pre-engine	on fat	ariou igue 4 I ortal 4 I and	us fai test hours fram hours tensi	s lure s les -	
Types of fatigue Irelations- Factors iModule: 4PlasIntroduction - ShaDesign of fixed anModule: 5DesiTypes of cross secmembers - Beamsbuildings- long space	gue eading and failure- Fatigue test, endurance limit- S-N diagrar nfluencing fatigue strength- Influence of stress concentration of tic Analysis and Design of Structures pe factors - Mechanisms - Plastic hinge - Analysis of beams a d continuous beams. gn of Light Gauge Steel Structures tions - Local buckling and lateral buckling - Design of comprese - Deflection of beams- Cold formed steel structures-Pre-engine	on fat	ariou igue 4 I ortal 4 I and met	us fai test hours fram hours tensi	lure s les - s on	
Types of fatigue Irelations- Factors iModule: 4PlasIntroduction - ShaDesign of fixed anModule: 5DesiTypes of cross secmembers - Secmembers - Beamsbuildings- low gradModule: 6Desi	gue eading and failure- Fatigue test, endurance limit- S-N diagram nfluencing fatigue strength- Influence of stress concentration of tic Analysis and Design of Structures pe factors - Mechanisms - Plastic hinge - Analysis of beams a d continuous beams. gn of Light Gauge Steel Structures tions - Local buckling and lateral buckling - Design of compres - Deflection of beams- Cold formed steel structures-Pre-engine an structures.	on fat	ariou igue 4 I ortal 4 I and met	us fai test hours fram hours tensi al	lure s les - s on	
Types of fatigue Irelations- Factors iModule: 4PlasIntroduction - ShaDesign of fixed anModule: 5DesiTypes of cross secmembers - Beamsbuildings- lors spaceModule: 6DesiDesign of beam - fille	gue eading and failure- Fatigue test, endurance limit- S-N diagrar influencing fatigue strength- Influence of stress concentration of tic Analysis and Design of Structures pe factors - Mechanisms - Plastic hinge - Analysis of beams a d continuous beams. gn of Light Gauge Steel Structures tions - Local buckling and lateral buckling - Design of compres - Deflection of beams- Cold formed steel structures-Pre-engine an structures. gn of Steel -concrete Composite Sections	on fat	ariou igue 4 l ortal 4 l and met 4 l	us fai test hours fram hours tensi al	ilure ilure ees - i on	
Types of fatigue Irelations- Factors iModule: 4PlassIntroduction - ShaDesign of fixed andModule: 5DesiTypes of cross secmembers - Beamsbuildings- losssecModule: 6DesiDesign of beam-Module: 7Desi	gue eading and failure- Fatigue test, endurance limit- S-N diagrar nfluencing fatigue strength- Influence of stress concentration of tic Analysis and Design of Structures pe factors - Mechanisms - Plastic hinge - Analysis of beams a d continuous beams. gn of Light Gauge Steel Structures tions - Local buckling and lateral buckling - Design of compres - Deflection of beams- Cold formed steel structures-Pre-engine an structures. gn of Steel -concrete Composite Sections columns- composite slabs	on fat	ariou igue 4 l ortal 4 l and met 4 l	us fai test hours fram hours tensi al	ilure ilure ees - i on	
Types of fatigue Irelations- Factors iModule: 4PlasIntroduction - ShaDesign of fixed anModule: 5DesiTypes of cross secmembers - Beamsbuildings- lors spaModule: 6DesiDesign of beam - iModule: 7Design of structural	gue eading and failure- Fatigue test, endurance limit- S-N diagrar influencing fatigue strength- Influence of stress concentration of tic Analysis and Design of Structures pe factors - Mechanisms - Plastic hinge - Analysis of beams a d continuous beams. gn of Light Gauge Steel Structures tions - Local buckling and lateral buckling - Design of comprese - Deflection of beams- Cold formed steel structures-Pre-engine an structures. gn of Steel -concrete Composite Sections columns- composite slabs gn of Steel Members with Hollow Sections	on fat	ariou igue 4 I ortal and met 4 I	us fai test hours fram hours tensi al	a lure a es - a on a	
Types of fatigue Irelations- Factors iModule: 4PlasIntroduction - ShaDesign of fixed anModule: 5DesiTypes of cross secmembers - Beamsbuildings- lors spaModule: 6DesiDesign of beam - iModule: 7Design of structural	gue eading and failure- Fatigue test, endurance limit- S-N diagrar nfluencing fatigue strength- Influence of stress concentration of tic Analysis and Design of Structures pe factors - Mechanisms - Plastic hinge - Analysis of beams a d continuous beams. gn of Light Gauge Steel Structures tions - Local buckling and lateral buckling - Design of compres - Deflection of beams- Cold formed steel structures-Pre-engine an structures. gn of Steel -concrete Composite Sections columns- composite slabs gn of Steel Members with Hollow Sections al steel hollow sections	on fat	ariou igue 4 I ortal and met 4 I 4 I 2 I	us fai test fram hours tensi al hours	s lure s es - s on s s	
Types of fatigue Irelations- Factors iModule: 4PlasIntroduction - ShaDesign of fixed anModule: 5DesiTypes of cross secmembers - Beamsbuildings- lors spaModule: 6DesiDesign of beam - IModule: 7Design of structural	gue eading and failure- Fatigue test, endurance limit- S-N diagrar influencing fatigue strength- Influence of stress concentration of tic Analysis and Design of Structures pe factors - Mechanisms - Plastic hinge - Analysis of beams a d continuous beams. gn of Light Gauge Steel Structures tions - Local buckling and lateral buckling - Design of compres - Deflection of beams- Cold formed steel structures-Pre-engine an structures. gn of Steel -concrete Composite Sections columns- composite slabs gn of Steel Members with Hollow Sections al steel hollow sections itemporary issues:	on fat	ariou igue 4 I ortal and met 4 I 4 I 2 I 30	us fai test hours fram hours tensi al hours	ilure ilure ies - i on i i s cs	

1.	dandGalyord (2012), Design of Steel Structures, Tata McGraw Hill, Education								
Ref	Reference Books								
1.	Duggal.S.K., (2014), Limit State Design of Steel Structures, Tata McGraw-Hill Education,								
1.	New Delhi.								
2.	Subramanian. N., (2011), Design of Steel Structures, Oxford University Press, New Delhi.								
3.	Bhavikatti. S.S., (2012), Design of Steel Structures, I.K. International Publishing House Pvt.								
5.	Ltd. New Delhi.								
4.	IS 800 General Construction in Steel — Codeof Practice								
5.	IS 801Code of Practice for use of Cold-Formed Light Gauge Steel Structural Members in								
5.	General Building Construction								
6.	IS 811Specification for Cold formed light gauge structural Steel sections								
7.	IS 11384 Code of practice for composite construction in structural steel and concrete								
Mo	de of Assessment: Continuous Assessment Test, Quizzes, Assignments, Final As								
Ree	ommended by Board of Studies 05.07.2022								
Ap	Approved by Academic Council Date								

	(Deemed to be University under section 3 of UGC Act, 1956)	L	T	P	С				
MSTE505L	FINITE ELEMENT ANALYSIS	2	1	1 0	<u> </u>				
Pre-requisite	Pre-requisite MSTE501L Theory of Elasticity and Plasticity								
Course Objectives	S:								
, v	led knowledge and understanding of the fundamental concep	ots of t	finite	eler	nent				
methods									
polynomial inte	asic aspects of finite element technology, including domain d erpolation, application of boundary conditions, assembly of g resulting algebraic systems.				ıd				
	ficiency in the application of the finite element methods (mo on of results) to realistic engineering problems	deling	g, ana	alysis	3,				
Expected Course									
-	his course, the students will be able to:								
	e fundamental theory of finite element methods								
-	ility to generate the governing FE equations for systems governing	erned	by p	artia	l				
differential equ									
	e role and significance of shape functions in finite element for	ormula	ation	s and	1				
· •	lratic, and cubic shape functions for interpolation	1.		c					
-	edge in direct and formal (basic energy and weighted residua element equations	I) met	hods	for					
	nto the use of the basic finite elements for structural application	ions 11	sing	truss					
-	nd plane elements	ions a	51115		,				
	ppriate space (planar (plane stress or strain), axisymmetric, or	spati	al),						
idealization (ty	pe of element), and modeling techniques	-							
7. Understand the	professional level finite element software to solve the	engine	eerin	g					
problems									
Module: 1 Intr	oduction		4	hour	S				
Background – Gen	eral description of the method – Analysis procedure - Princip	oles of	elas	ticity	/				
Stress and strain ve	ectors – Strain displacement equations – Linear constitutive e	quatio	ons –	Ove	rall				
stiffness matrix – C	Overall load matrix								
Module: 2 The	ory of Finite Element		4	hour	·s				
Concept of an elem	nent – Various element shapes – Displacement models – App	roxim	ation	1					
	olynomials - Convergence requirements - Shape functions -	- Elen	nent s	strair	ıs				
and stresses – Anal	•								
	ural Coordinates			hour					
	oordinates- Discretisation of a body or structure – Minimizat								
	tiffness matrix and loads for the assemblage – Boundary con	dition	s - N	/lesh					
e	generation.								
	o and Three Dimensional Problems		51	hour	S				
Analysis of plane t	russ, space truss, plane frame and grid-Axisymmetric element	nts							

M	odule: 5	Plane Stress and Pla	ne Strain Conditions	5 hours			
CST, LST & QST elements - solutions of problems							
Module: 6Isoparametric Formulation4 hours							
Iso	parametric	e Bar element - Plane bilir	near isoparametric element - Plane stress ele	ment -			
Qu	adratic pla	ne elements - Application	of Gauss Quadrature formulation -Lagrang	e's and			
ser	endipity el	ements					
Μ	odule: 7	Introduction to 3-D Ele	ements	2 hours			
Th	ree dimens	ional elasticity-Governing	g differential equations- Higher order Isopar	ametric solid			
ele	ments						
Μ	odule: 8	Contemporary issues:		2 hours			
			Total Lecture hours	30 hours			
			Tutorial Hours	15 hours			
Te	xt Book(s)						
1.	Krishnan	noorthy, C.S, "Finite Ele	ement Analysis ; Theory and programming	', Tata McGraw			
	Hill Publ	ishing Co. Ltd., (2017)					
Re	ference Bo	ooks					
1.	Cook R.	D., Malkas D.S. &Ples	ha M.E, "Concepts and applications of	Finite Element			
	Analysis	', John Wiley &Sons., (20	007)				
2.	-		e Element Methods", McGraw Hill Co., (20	,			
3.	Zeinkeiw	vich O.C.,R.L.Tayler "	The Finite Element Method for Solid	and Structural			
5.	Mechanie	cs", Butterworth-Heinema	unn,(2013).				
Mo	de of Eva	luation: Continuous Asse	essment Test, Quizzes, Assignments, Final A	Assessment Test			
Mo	de of Asso	essment: Continuous Ass	essment Test, Quizzes, Assignments, Final	Assessment			
Tes	st						
Re	commende	ed by Board of Studies	05.07.2022				
Ар	proved by	Academic Council	Date				
T.							

Ν	ISTE505P	FINITE ELEMENT ANALYSIS LABORATORY	L	Τ	Р	С
			0	0	2	1
Pr	re-requisite	Syli	labus	sver	sion	
Cou	rse Objectives	:				
1. 7	Γo have a detai	led knowledge and understanding of the fundamental concep	pts of	finite	e eler	nent
	nethods					
		sic aspects of finite element technology, including domain of				
		erpolation, application of boundary conditions, assembly of g	global	arra	ys, ai	ıd
		resulting algebraic systems.				_
		ficiency in the application of the finite element methods (mo	odellin	ng, ar	alys	is,
	<u>^</u>	on of results) to realistic engineering problems				
-	ected Course					
-		his course, the students will be able to:				
		e fundamental theory of finite element methods		1		1
	-	ility to generate the governing FE equations for systems gov	ernea	ву р	artia	l
	differential equ			otion		4
		e role and significance of shape functions in finite element f c, and cubic shape functions for interpolation	ormui	ation	is and	1 use
	-	edge in direct and formal (basic energy and weighted residuation	1) me	thad	for	
	-	element equations	ii) iiic	mou	5 101	
	-	nto the use of the basic finite elements for structural applicat	ionsu	isino	truss	2
	-	nd plane elements	.10115 0	.51115	u abi	',
		priate space (planar (plane stress or strain), axisymmetric, o	r spati	ial).		
	• • • •	pe of element), and modelling techniques	1	,,		
		professional level finite element software to solve the	engin	eerin	g	
	problems		C		C	
List	of Experimen	ts (Indicative)			hou	
1	Discretisation	n of geometry		3	hou	rs
2	Meshing a re-	ctangular plate using 4 node elements		3	hou	rs
3	Meshing a cir	cular plate using 3 node and 4 node elements		3	hou	rs
4	Analysis of a	spring assembly using 1D elements		3	hou	rs
5	Analysis of a	n assembly of bar elements		3	hou	rs
6	Analysis of a	stepped bar		3	hou	rs
7	Analysis of a	plane truss		2	hou	rs
8	Analysis of a	space truss		2	hou	rs
9	Analysis of a	fixed-fixed beam		2	hou	rs

10	Analysis of a 2D frame				2 hours				
11	Analysis of a 3D frame				2 hours				
12	Analysis of a grid	nalysis of a grid							
			Total Laborator	ry Hours	30 hours				
Tey	xt Book(s)			·					
1.	Krishnamoorthy, C.S, "Finite E	lement Analys	sis; Theory and prog	ramming",	Tata McGraw				
	Hill Publishing Co. Ltd., (2017)								
Ref	ference Books								
1.	Cook R.D., Malkas D.S. &Ple	sha M.E, "C	oncepts and applica	tions of F	Finite Element				
	Analysis", John Wiley &Sons., (2	2007)							
2.	Reddy, J, "An Introduction to Fini	te Element M	ethods", McGraw Hil	l Co., (2013	3).				
3.	Zeinkeiwich O.C.,R.L.Tayler "	The Finite	Element Method for	or Solid a	and Structural				
5.	Mechanics", Butterworth-Heinem	ann,(2013).							
Mo	de of Evaluation: Continuous Ass	essment Test	& Final Assessment	ſest					
Ree	commended by Board of	05.07.2022							
Stu	dies	05.07.2022							
Ap	proved by Academic Council		Approved by Academic Council Date						

MSTE506L	PRESTRESSED CONCRETE STRUCTURES		Τ	P	C
MSTESUE		2	1	0	3
Pre-requisite	MSTE502L Design of Concrete Structural systems	Sy	llabu	s vers	ion
Course Objectiv	es:				
1. To learn the	ne principles, materials, methods and systems of prestressing				
2. To know t	he different types of losses and deflection of prestressed mem	bers			
3. To learn the	he design of prestressed concrete beams for flexural members				
Expected Course	e Outcome:				
Upon completion	of this course, the student will be able to				
1. Understan	d the concepts of pre-tensioning and post-tensioning members	5			
2. Design a p	prestressed concrete beam accounting for losses				
3. Evaluate t	he deflection and crack width of prestressed members				
-	e member subjected to flexure and shear.				
e e	e member subjected to torsion.				
6. Design the	e anchorage zone reinforcement				
7. Analyse a	nd design the indeterminate structures.				
Module: 1 Int	roduction		3 h	ours	
strain characterist		e and			ss,
	sses in Pre-stress		3 h	ours	
Significance of lo	ss of Pre-stress, Immediate losses and time dependent losses				
Module: 3 De	flections		7 h	ours	
Deflections- calcu	lation for short term/immediate and long term deflection				
Module: 4 De	sign for Flexure and Shear		4 h	ours	
Design For Flexu	re and shear-Flexural analysis of beams for limit state of ser	vicea	bility	, desig	gn
for simply suppor	ted beams for limit state of collapse – Shear and Diagonal tens	sion i	n Un-	cracke	ed
beams, Diagonal	cracking in shear, shear design for Limit state of collapse				
Module: 5 De	sign for Torsion		4 h	ours	
Torsion in concre	te structures – Torsional design for pre-stressed concrete struc	tures	– Lin	nit Sta	te of
Collapse		1			
Module: 6 De	sign of End Anchorages		3 h	ours	
Stress distribution	in end block – design of anchorage zone reinforcement				
Module: 7 Ind	eterminate Structures		4 h	ours	
Concept of conco	rdant cable and profile – sketching of pressure lines for contin	uous	beam	s.	

Mo	dule: 8	Contemporary issues				2 hours
		30 hours				
				Tuto	orial hours	15 hours
Tex	kt Book(s)				
1.		Raju. N., (2014), Pre-stres tors, Pvt. Ltd., New Delhi.		olems and	d Solutions, C	CBS Publishers and
Ref	ference B	ooks				
1.	Praveen	Nagarajan, Advanced Cor	ncrete Design, Perso	on, 2013		
2.	N. Rajag Delhi	gopalan., (2013), Prestresso	ed Concrete – Secon	nd Editio	n, Narosa P	ublishers, New
3.	IS: 1343	: Indian Standard code of	practice for Prestres	ssed conc	erete, BIS, Ne	ew Delhi.
4.	IS: 3370 New De	-Indian Standard code of <u>p</u> lhi.	practice for concrete	e structur	es for storage	e of liquids, BIS,
Mo	de of Eva	aluation: Continuous Asse	essment Test, Quizz	es, Assig	nments, Fina	ll Assessment Test
Ree	commend	ed by Board of Studies	05.07.2022			
Ap	proved by	y Academic Council]	Date		

Discipline Elective Courses

MSTE601L	MATRIX METHODS OF STRUCTURAL	L	T	P	C
	ANALYSIS	2	1	0	3
Pre-requisite	Nil	Sylla	abus	vers	sion
Course Objecti	ves:	1			
	rstand the significance of degrees of freedom and the conce \cdot .	pt of	princ	iple	of
superpos	gnize the concept of strain energy and principle of virtual w	ork			
-	the transformation of system matrices and element matrice		he		
	ate and indeterminate structures.	5 101 1			
•	rse the forces in structures like continuous beam, truss and t and flexibility method.	frame	s usir	ıg	
	prehend the behaviour of structures due to thermal expansio	n and	lack	of fi	t.
Expected Cour	se Outcome:				
On completion of	of the course, the students will be able to				
-	e basic concepts of matrix methods in structural analysis				
2. Develop	stiffness and flexibility matrices				
3. Analyse	the structures using flexibility and stiffness method				
4. Analyse	space truss and frame				
5. Analyse	grid structures				
6. Compute	e the forces in various members due to lack of fit and therm	al exp	oansi	on	
Module: 1 E	nergy Concepts		4 ho	ours	
Transformation	of Coordinates - Basic assumptions - Types of loads - Com	patibi	lity		
conditions - Star	tic and kinematic indeterminacy - Principles of superposition	on - St	rain	energ	gy ·
Stiffness for bea	m element from strain energy				
Module: 2 M	latrix Methods		4 ho	urs	
Properties of sti	ffness and flexibility matrices- solution of simple problems				
Module: 3 F	lexibility Method		4 ho	urs	
	nod applied to statically indeterminate structures - Analysis and plane frame	ysis c	of co	ntinu	lou
Module: 4 St	tiffness Method		4 ho	urs	
	d applied to kinematically indeterminate structures - Analys ss and plane frame	sis of	conti	nuou	IS
-	pace Truss		4 ho	urs	
-	te truss and space frame by stiffness matrix method	1			

M	odule: 6	Grid Structures				4 hours			
	Analysis of grid by matrix methods- Special analysis procedures - static condensation and sub-structuring - initial and thermal stresses								
sub	sub structuring - initial and thermal stresses.								
Mo	odule: 7	Special Conditions				4 hours			
Eff	Effects of temperature change and lack of fit. Related numerical problems by flexibility an								
stif	fness met	hod							
M	odule: 8	Contemporary issues				2 hours			
			Т	otal Lect	ure hours	30 hours			
				Tuto	rial hours	15 hours			
Te	xt Book(s)							
1.	Bhavika	tti S S, (2011), Matrix M	lethods of Structu	ıral Analy	vsis, IK Pub	lishing, India			
Re	ference B	ooks							
1.	Nataraja	n C, Revathi P., (2014),	Matrix Methods	of Structu	ral Analysis	s: Theory and			
1.	Problem	s, PHI, Prentice Hall of I	ndia, New Delhi.						
2.	Godbole	P. N., Sonparote R. S.,	Dhote S. U., (201	4), Matriz	x Methods o	of Structural			
2.	Analysis	s, PHI Learning Pvt. Ltd.	, New Delhi.						
Mo	ode of Ev	aluation: Continuous As	ssessment Test, Q	uizzes, A	ssignments	, Final			
As	sessment	Test							
Reco	ommende	d by Board of Studies	05.07.2022						
App	roved by	Academic Council		Date					

MSTE602L	DESIGN OF BRIDGES		Т	Р	C	
WISTEOU2L			1	0	3	
Pre-requisite	Pre-requisite Nil					
Course Objecti	ves:					
1. To understar	nd the basic concept of design of bridges					
2. To analyse b	pox culvert					
3. To design T	and I girders					
4. To analyse a	nd design cable stayed and suspension bridges					
5. To design pi	ers and abutments					
6. To design pi	le foundation and bearings					
Expected Cours	se Outcome:					
Upon completion	n of this course, the student will be able to					
1. Classify the	different types of bridges.					
2. Analyse box	culvert and girder bridges by using different method.					
3. Design T gir	ders, I girders and Box girder bridges by IRC method.					
4. Analyse and	design cable stayed and suspension bridges					
5. Design piers	and abutments					
6. Design pile f	foundation					
7. Design beari	ings and expansion joints.					
Module: 1 Ge	eneral		3 ho	urs		
Definition, Histo	ory, Different types (Permanent/Temporary), Classification base	d on n	nateria	ıl, spa	n,	
	etc., Field Surveys and selection of site					
	ridge Deck Analysis		4 ho	urs		
IRC loadings as	nd introduction to bridge loading worldwide- Analysis of bo	x culv	/erts,	solid	slab	
bridges by IRC	Z/Effective width method- Pigeaud's method etc.,- Analysis	of gin	der b	oridges	s by	
	nod and Grillage method Introduction to other methods of	-		-	-	
element, Finite s	strip method etc.,.					
	esign of Small Bridges & Culverts		5 ho	urs		
	ulverts, short span slab decks in square & skew - Design of T &	I girde	r and			
-	Box girder bridges by IRC method.	•				
Module: 4 Lo	ong span & Special type bridges		4 ho	urs		
Analysis & des	sign principles of continuous bridges, arch bridges, integral	bridge	s, cal	ole sta	ayed	
bridges and susp	bension bridges.					
Module: 5 De	esign of Substructure		4 ho	urs		
Design of piers	& abutments -Introduction to wing walls & returns and Reinfor	ced Ea	arth in	flyov	rer	
approaches.				-		
Module: 6 De	esign Foundations		4 ho	urs		
	6					
	nd well foundation					
Pile, Pile cap a			4 ho	ours		
Pile, Pile cap anModule: 7Br	nd well foundation •idge Appurtenances ngs, Expansion joints, Deck drainage, Crash barriers & handrails	5.	4 ho	ours		

		Total 1	Lecture hours	30 hours
		Т	utorial Hours	15 hours
Tex	xt Book(s)		1	
1.	Johnson Victor. D., (2012), Essentia	ls of Bridge Engineerin	g, Oxford Publis	shing Company, New
	Delhi			
Ref	ference Books			
1.	Jain and Jai Krishna.,(2007), Plain	and reinforced concret	e, Vol.2.,Nem	Chand Brothers, New
	Delhi.			
2.	Krishna Raju. N., (2014), Design of	Bridges, Oxford and IB	H Publishing Co	o., New Delhi
3.	Rakshit. K. S., (2010), Design and C	Construction of Highway	y Bridges, New	central Book Agency,
	New Delhi.			
3	Standard specifications and code of	practice for road bridg	es, (2005) – IRO	C section I, II, III and
	IV.			
4	Ponnuswamy (2008), Bridge Engine	ering, McGraw-Hill Ed	ucation (India) I	Pvt Limited
Mo	de of Evaluation: Continuous Assess	sment Test, Quizzes, As	signments, Fina	l Assessment Test
Ree	commended by Board of Studies	05.07.2022		
Ap	proved by Academic Council	Dat	e	
		<u> </u>		

MSTE60.	3L	PREFABRICATED STRUCTURES	L	T	P	<u>C</u>
			2		0	3
Pre-requis	site	Nil	Syl	labus	vers	10 n
Course Obj	ectives	:				
	•	he design principles related to prefabrication.				
2. Tou	underst	tand the concepts of precast floors, beams etc.,				
Expected Co	ourse (Outcome:				
Upon comple	etion o	f this course, the student will be able to				
		the principles behind prefabricated structure				
-		precast concrete floor				
		the composite and non- composite precast beam				
		precast column and walls				
		the principles of joint mechanism				
		the various connection between the precast structural eleme	ents			
Module: 1	-	machinery and equipment for precast manufacturing gn Principles		2	hou	
viaanie [,] i		un Principies			non	rs
General Civ	vil En	gineering requirements, specific requirements for planr	-	and	layou	t o
General Civ prefabricatio	vil En n plar	gineering requirements, specific requirements for plann nt. IS Code specifications. Types of foundation - Modu	ular o	and	layou linatio	t o on -
General Civ prefabricatio Components	vil En n plar - Pref	gineering requirements, specific requirements for plann at. IS Code specifications. Types of foundation - Modu abrication systems and structural schemes - Design consider	ular o	and	layou linatio	t o
General Civ prefabricatio Components prefabricatio	vil En n plar - Prefa n- asse	gineering requirements, specific requirements for plann at. IS Code specifications. Types of foundation - Modu abrication systems and structural schemes - Design consider assment of handling and erection spaces	ular o	and co-orc s - Ec	layou linatio	nt o on - ny o
General Civ prefabricatio Components prefabricatio Module: 2	vil En n plar - Prefa n- asse Prec	gineering requirements, specific requirements for plann at. IS Code specifications. Types of foundation - Modu abrication systems and structural schemes - Design consider essment of handling and erection spaces ast Concrete Floors	ular or ration	and co-ord s - Ec	layou linatio conon hou	it o: on - ny o: rs
General Civ prefabricatio Components prefabricatio Module: 2 Precast floo	vil En n plar - Prefa n- asse Prec ring o	gineering requirements, specific requirements for plann at. IS Code specifications. Types of foundation - Modu abrication systems and structural schemes - Design consider essment of handling and erection spaces ast Concrete Floors ptions-flooring arrangements-design of individual units-d	ular or ration	and co-ord s - Ec	layou linatio conon hou	it o on - ny o rs
General Civ prefabricatio Components prefabricatio Module: 2 Precast floo	vil En n plar - Prefa n- asse Prec ring o	gineering requirements, specific requirements for plann at. IS Code specifications. Types of foundation - Modu abrication systems and structural schemes - Design consider essment of handling and erection spaces ast Concrete Floors	ular or ration	and co-orc s - Ec 3	layou linatio conon hou	nt of on – ny of rs osite
General Civ prefabricatio Components prefabricatio Module: 2 Precast floo floors- Beam Module: 3	ril En n plar - Prefa n- asse Prec ring o s and p Prec	gineering requirements, specific requirements for plann at. IS Code specifications. Types of foundation - Modu abrication systems and structural schemes - Design consider assment of handling and erection spaces ast Concrete Floors ptions-flooring arrangements-design of individual units-d roof elements	ular or ration	and co-orc s - Ec 3	layou linatio conon hou comp	nt o n - ny o rs osite
General Civ prefabricatio Components prefabricatio Module: 2 Precast floo floors- Beam Module: 3	ril En n plar - Prefa n- assec Prec ring o s and p Prec nposite	gineering requirements, specific requirements for plann at. IS Code specifications. Types of foundation - Modu abrication systems and structural schemes - Design consider assment of handling and erection spaces ast Concrete Floors ptions-flooring arrangements-design of individual units-d roof elements ast Concrete Beams	ular or ration	and co-ord s - Ec 3 of 4	layou linatio conon hou comp	it of on – ny of rs osite
General Civ prefabricatio Components prefabricatio Module: 2 Precast floo floors- Beam Module: 3 Types of com Module: 4 Precast colu	ril En n plar - Prefi n- assec Prec ring o is and n Prec nposite Colu	gineering requirements, specific requirements for plann at. IS Code specifications. Types of foundation - Modu abrication systems and structural schemes - Design consider assment of handling and erection spaces ast Concrete Floors ptions-flooring arrangements-design of individual units-d roof elements ast Concrete Beams es -non composite-reinforced beam -pre stressed beam	ular cration	and co-orc s - Ec 3 of 4	layou linatio onon hou comp hou	t o on - ny o rs osita rs
General Civ prefabricatio Components prefabricatio Module: 2 Precast floo floors- Beam Module: 3 Types of com Module: 4 Precast colu	ril En n plar - Prefi n- assec Prec ring o is and n Prec nposite Colu	gineering requirements, specific requirements for plann at. IS Code specifications. Types of foundation - Modu abrication systems and structural schemes - Design consider essment of handling and erection spaces ast Concrete Floors ptions-flooring arrangements-design of individual units-d roof elements ast Concrete Beams es -non composite-reinforced beam -pre stressed beam mns and Shear Wall sign -precast shear walls- infill walls-cantilever walls -distri-	ular cration	and co-ord s - Ed 3 of 4 4 0 of 6	layou linatio onon hou comp hou	rs rs rs rs osite
General Civ prefabricatio Components prefabricatio Module: 2 Precast floo floors- Beam Module: 3 Types of com Module: 4 Precast colum forces Module: 5	ril En n plar - Prefa n- asse Prec ring o s and n Prec nposite Colu nn des Joint	gineering requirements, specific requirements for plann at. IS Code specifications. Types of foundation - Modu abrication systems and structural schemes - Design consider essment of handling and erection spaces ast Concrete Floors ptions-flooring arrangements-design of individual units-d roof elements ast Concrete Beams es -non composite-reinforced beam -pre stressed beam mns and Shear Wall sign -precast shear walls- infill walls-cantilever walls -distri-	ular cration	and co-ord s - Ed 3 of 4 4 0 of 6	hour hour hour hour	rs rs rs rs osite
General Civ prefabricatio Components prefabricatio Module: 2 Precast floo floors- Beam Module: 3 Types of com Module: 4 Precast colum forces Module: 5 Basic mech Module: 6	ril En n plar - Prefa n- assee Prec ring o as and n Prec Colu mn des Joint anism-	gineering requirements, specific requirements for plan it. IS Code specifications. Types of foundation - Modu abrication systems and structural schemes - Design consider essment of handling and erection spaces ast Concrete Floors ptions-flooring arrangements-design of individual units-d roof elements ast Concrete Beams es -non composite-reinforced beam -pre stressed beam mns and Shear Wall sign -precast shear walls- infill walls-cantilever walls -distri- ts compression joint-shear joint - tension joint mections	ibutic	and co-ord s - Ec 3 of 0 4 6 m of 5	horiz	rs rs rs rs rs rs rs
General Civ prefabricatio Components prefabricatio Module: 2 Precast floo floors- Beam Module: 3 Types of com Module: 4 Precast colum forces Module: 5 Basic mech Module: 6	ril En n plar - Prefa n- assee Prec ring o s and t Prec nposite Colu mn des Joint anism- Connec	gineering requirements, specific requirements for plant at. IS Code specifications. Types of foundation - Modu abrication systems and structural schemes - Design consider assment of handling and erection spaces ast Concrete Floors ptions-flooring arrangements-design of individual units-d roof elements ast Concrete Beams es -non composite-reinforced beam -pre stressed beam mns and Shear Wall sign -precast shear walls- infill walls-cantilever walls -distri- ts compression joint-shear joint - tension joint	ibutic	and co-ord s - Ec 3 of 0 4 6 m of 5	horiz	rs rs rs rs rs rs rs
General Civ prefabricatio Components prefabricatio Module: 2 Precast floo floors- Beam Module: 3 Types of com Module: 4 Precast colum forces Module: 5 Basic mech Module: 6 Pin jointed	ril En n plar - Prefi n- assec ring o is and r Prec nposite Colu mn des Joint anism- connec	gineering requirements, specific requirements for plan it. IS Code specifications. Types of foundation - Modu abrication systems and structural schemes - Design consider essment of handling and erection spaces ast Concrete Floors ptions-flooring arrangements-design of individual units-d roof elements ast Concrete Beams es -non composite-reinforced beam -pre stressed beam mns and Shear Wall sign -precast shear walls- infill walls-cantilever walls -distri- ts compression joint-shear joint - tension joint mections	ibutic	and co-ord s - Ed of of 4 0 0 0 0 0 0 0 0 5 5 0 0 0	horiz	rs rs rs rs rs rs rs rs rs

Mo	dule: 8	Contemporary issues				2 hours
				Tota	l Lecture hours	30 hours
					Tutorial Hours	15 hours
Te	kt Book(s)					
1.	Kims S.	Elliot (2017), Precast Cor	crete Structures, CRG	C Press,	Taylor & Francis	
Ref	ference B	ooks				
1.	Handboo	ok of Precast Concrete Bu	ildings (2016) ICI pul	blication	ns	
2.	•	Smith, (2010), Prefab Arc		o Modul	ar Design and Con	struction,
2.	John Wi	ley and Sons. Inc. London				
3.	Hubert E	Bachmann, Alfred Steinle,	(2011), Precast Conc	rete Str	uctures, Ernst &So	hn, Wiley
5.	Publicati	ion				
Mo	de of Eva	luation: Continuous Asse	essment Test, Quizzes	s, Assig	nments, Final Asse	ssment Test
Ree	commend	ed by Board of Studies	05.07.2022			
Ap	proved by	y Academic Council	D	ate		

		L	Т	Р	С
MSTE604L	STABILITY OF STRUCTURES	2	1	0	3
				s versi	-
Pre-requisite	Nil	Jy	nabu	5 70151	UI
Course Object	ives:				
	rstand the difference between stability and instability.				
	ate the structural stability of columns				
-	yse the stability of beam column				
•	vse stability of frames				
	rstand deformation characteristics of torsional buckling				
6. To ident	ify the differential equation of buckling of plates and shell	S			
Expected Cour	rse Outcome:				
Upon completion	on of this course, the student will be able to				
1. Underst	and the difference between stability and instability.				
2. Evaluate	e the structural stability of columns				
3. Analyse	the stability of beam column				
•	stability of frames				
5. Understa	and deformation characteristics of torsional buckling				
6. Identify	the differential equation of buckling of plates and shells				
Module: 1 I	ntroduction		3	6 hour	S
Static equilibriu	m – Governing equation for columns – Analysis for variou	ıs boı	ındary	1	
conditions.					
Module: 2	Analysis of Column		4	hour	S
Eccentrically lo	aded column and Initial Imperfect column -Numerical Prol	blems	5		
Module:3 H	Seam column		5	5 hour	S
Theory of Bear	n column - Stability analysis of beam column with diffe	erent	types	of loa	nds –
Failure of beam	columns.				
Module: 4	Analysis and Stability of Frames		5	5 hour	S
Various Bounda	ary Conditions – Differential equations – Slope Deflection	meth	od		
Module: 5	Forsional Buckling		5	5 hour	S
Torsional load	-Deformation characteristics of structural members- strain	energ	y of t	orsion	_
Torsional and	flexural torsional buckling of columns				
Module: 6	Buckling of Plates		3	6 hour	S
Differential Ec	uation of plate buckling –linear theory – critical load of a	plate	unifor	mly	
compressed in	one direction.				
Module: 7	Buckling of Shells		3	6 hour	S
Differential equ	ation – Analysis – Application				
Module: 8	Contemporary issues		2	2 hour	S
	Total Lecture ho	ours	3	0 hou	ſS

Tutorial Hours15 hoursTutorial Hours15 hoursIIvengar. N.G.R., (2007), Elastic Structural Structural Elements, McMillawReterece BooksGalambos. T.V., Surovek A. E(2007), Structural Stability of Structural Stability of Structural Engineers, Wiley, LondonApplications for Structural Engineers, Wiley, LondonReterended by Board of Studies05.07.2022Apple Structural EngineersStructural Engineers, Wiley, LondonTestVerd by Board of Studies05.07.2022Date

MSTE605L	ADVANCED CONCRETE MATERIALS AND	L	Т	Р	C
MIST LOUSL	TECHNOLOGY	2	1	0	3
Pre-requisite	Nil	Sy	llabu	is ver	sion
Course Objective	2:	I			
1. To study t	he roles of concrete constituent materials, the requirements ar	ıd pr	opert	ies of	the
materials a	and their effects on concrete.				
2. To underst	and the behaviour of fresh and hardened of concrete with and	l wit	hout		
admixture					
•	he concrete mix design using different methods.				
•	he mechanical properties and durability of concrete.				
•	he testing procedure of different non-destructive testing meth-				
	he different types of special concrete and concreting methods	•			
Expected Course					
* *	of this course, the student will be able to				
•	nd explain the role of ingredients of concrete and their effect of	on co	oncret	e	
properties					
-	e behaviour of fresh and hardened properties of concrete.				
-	concrete mix using different methods.				
	destructive and non-destructive testing methods to assess the	harc	lened	prop	erties
of concret					
	esting procedures for durability properties of concrete.				
	e different types of special concretes				
	crete Materials and Admixtures	<u> </u>		ours	
Cement, Fine and applications.	Coarse aggregates –Mineral and Chemical Admixtures – Pro	perti	es an	d	
	aviour of Fresh Concrete and Hardened Concrete		4 h	ours	
	crete with and without admixtures - Modern trends in concr	ete n			e and
	ques - Ready mix concrete - Rheological behaviour of				
hardened concrete					
	crete Mix Design		4 h	ours	
	esign-Design of concrete mixes by using IS code method and	A			
	hanical Properties of Concrete			ours	
Compressive stre	ngth test- Split tensile strength test-Flexural test- Modu	lus	of el	asticit	y of
	nodulus -Stress-strain characteristics- Dynamic modulus				
strength of concre	•				-
Module: 5 Non	-destructive Testing of Concrete		3 h	ours	
		ull c	out tes	st.	
Rebound hammer	test - UPV test - Half cell Potential test - Thermography - F				
	ability Properties of Concrete			ours	
Module: 6 Dur			4 h		

Mo	dule: 7	Special Concrete and Con	creting M	ethods		5 hours
Hig	sh perfor	mance concrete- Lightweight co	oncrete – H	igh densit	y concrete -	Polymer concrete -
Fib	re reinfo	rced concrete - Self compactin	ig concrete	- Cold w	eather concre	eting - Hot weather
con	creting -	Pre-packed concrete - Vacuum c	oncrete			
Mo	dule: 8	Contemporary issues				2 hours
				Total Leo	ture hours	30 hours
				Tuto	orial Hours	15 hours
Tex	kt Book(5)				
1.	Metha.I	P.K, (2005), Concrete: Microstru	cture, Prope	erties and	Materials, M	cGraw-Hill, New
1.	Delhi.					
Ref	ference H	Books				
1.	Neville.	A.M.,Brooks.J.J., (2008), Concr	ete Technol	ogy, Pears	on Education	n, New Delhi.
2.	Gambir	.M.L., (2009), Concrete Technol	ogy, Tata M	lc-Graw H	lill-Education	n, New Delhi.
3.	Shetty.	A.S.,(2017), Concrete Technolog	gy, S. Chand	and Com	pany Ltd, Ne	ew Delhi.
4.	IS : 122	69, Specification for 53 grade or	dinary Portl	and Ceme	ent, BIS, New	/ Delhi
5.	IS : 383	, Specification for Coarse and fin	ne natural sc	ources for	Concrete, BI	S, New Delhi
6.	IS:1026	2, Concrete Mix Proportioning -	Guidelines			
7.	ACI 21	1.1-91 Reapproved 2009, Standa	rd Practice f	for selectin	ng Proportior	ns for Normal,
/.	Heavyw	eight, and Mass Concrete.				
Mo	de of Ev	aluation: Continuous Assessme	nt Test, Qui	zzes, Assi	gnments, Fin	al Assessment Test
Rec	commen	ded by Board of Studies	05.07.2022	2		
Ap	proved b	y Academic Council		Date		

	(Deemed to be University under section 3 of UGC Act, 1956)	L	Т	Р	С
MSTE606	ADVANCED FOUNDATION DESIGN	<u> </u>	0	0	<u> </u>
		-	_	s vers	-
Pre-requisi	te Nil	. Sy		5 VCI 3	01011
Course Obje	ctives:				
To im	part the knowledge in the area of analysis and design of foundation	ons a	nd ea	rth	
retain	ing structures.				
Expected Co	urse Outcome:				
Upon comple	tion of this course, the student will be able to:				
1. Estim	ate bearing capacity of raft foundation				
2. Deter	mine safe load carrying capacity of pile for a given site condition				
3. Desig	n a reinforced earth wall and analyse its stability				
4. Analy	se sheet pile and find embedment depth				
5. Distin	guish f piled-raft and load sharing between raft and pile				
	ate stability of well foundation				
7. Identi	fy suitable type of cofferdam for a given construction problem				
Module: 1	Raft Foundations		(5 hou	rs
Bearing capa	city of rafts; Rafts on clays and sands; Compensated raft; Flexib	le an	d rigi	d rafts	s (IS:
2950); Settler	nent analysis of rafts (under embankment loading).				
Module: 2	Pile Foundations			7 hou	rs
Load capacit	y of piles in sands and clays; α - method; Brom's analysis; La	ateral	ly loa	ided p	oiles;
Uplift capacit	y of piles; Pile group capacity; Pile load test. Analysis of stress v	vaves	in pi	le driv	ving.
Module: 3	Piled Rafts			7 hou	
-	a piled raft - Examples, definitions and terminology; Piled			-	
	Advantages of piled rafts; Performance and design of a piled ra	ift; S	eps i	nvolv	ed in
piled raft des	gn.				
Module: 4	Well Foundations		(5 hou	rs
Well Founda	tions - Types of wells or caissons - Drilled shafts and cai	ssons	s - D	esign	and
construction					
Module: 5	Deep Excavation Protection Systems		(6 hou	rs
-	bracing systems in shallow and deep open cuts in different so				lever
sheet piles, A	nchored sheet piles; Stability and design of braced supports. Diap	phrag	m wa	lls	
Module: 6	Coffer Dams		4	5 hou	rs
• •	fer dams, merits and demerits; Design of single wall coffer dam	s; Sta	ability	/ aspe	cts,
TVA method	and Cumming's method.		1		
Module: 7	Reinforced Earth Walls		4	5 hou	rs
Advantages	of RE walls, Behaviour of RE walls, Soil-reinforcement inter	ractio	n: In	ternal	and
Auvaillages	itel wans, benaviour of itel wans, son remoteement inter		,	cernar	

Mo	dule: 8	Contemporary issues				3 hours
				r	Fotal Lecture hours	45 hours
Tex	kt Book(s)				
1.	Bowles, Co., Nev	J. E., (2011), Foundation Ana v York.	lysis and]	Design, 7	th Edition, McGraw H	ill Book
2.	Das. B.	M., (2010), Principles of Foun	dation En	gineering	, CL Engineering.	
Ref	ference B	ooks				
1.	Fang. H.	Y.,(2012), Foundation Engine	ering Har	ndbook, S	pringer Science and B	usiness Media.
2.	Varghes New De	e. P. C., (2009), Design of Rei lhi.	inforced C	Concrete I	Foundations, Prentice F	Iall of India,
3.	Murthy. Delhi.	V. N. S., (2009), Soil Mechar	nics and Fo	oundation	n Engineering - CBS Pu	ublications,
4.	Swami S Pvt Ltd.	Saran ., (2010), Reinforced So	il and Its H	Engineeri	ng Applications., I. K.	International
5.		Saran., (2006), Analysis and D lishing Company Pvt. Limited	•	ubstructu	res: Limit State Design	n, Oxford &
6.		on M and Woodward J. (2008 nd Francis.). Pile Des	sign and (Construction Practice"	5 th Edition.
7.	-	K, Weltman A, Randolph M and Francis.	and Elson	K (2009)	. Piling Engineering. 3	rd Edition.
8.	K. R. Ar	ora., (2011) Soil Mechanics a	nd Founda	ation Eng	ineering, Standard pub	lishers
Mo	de of Eva	aluation: Continuous Assessm	nent Test,	Final A	ssessment Test, Quiz, A	Assignments
Ree	commend	ed by Board of Studies	05.07.20	22		
Ap	proved by	y Academic Council		Date		

		(Deemed to be University under section 3 of UGC Act, 1956)	T	т	р	C
MSTE607	'L	EARTHQUAKE RESISTANT DESIGN	L 2		P 0	C 3
Pre-requis	ite	MSTE503L Structural Dynamics		yllabu		-
Course Obje		······································	1 4	1 4 .		
		basic concepts of engineering seismology and ground I the strength and capacity design principles of earth				
		behavior of various types of buildings under static ar				
4. To stu	idy the	elastic and inelastic deformations and significance of				umn
joints.		niancia habarrian of management and a subset of a subset with	arratama			
		eismic behavior of masonry and concrete shear wall ignificance of energy dissipating devices in seismic		lesign.		
Expected Co	-					
Upon comple	tion of t	his course, the student will be able to				
	•	naracteristics of seismic waves and its measures.				
		e principles of earthquake resistant design and respo				
		design the various types of structures under st	atic and	dynami	c loa	ding
condi		- 1				
		s beam-column joints as per ductility requirements. lesign unreinforced and reinforced masonry and con	arata chan	r woll o	truotu	rac
		ypes of dampers and base isolation systems and				
*	ant desig		ns impor		II SCI	siiiic
Module: 1		logy and Earthquake		6 h	ours	
		he earth, continental drift and plate tectonics, Faults,				
seismic wave India, Seismi		aracteristics, earthquake size, strong ground motion	, seismic z	oning 1	nap o	f
Module: 2		ples of Earthquake Resistant Design		3 h	ours	
Seismic desig	n philo	sophy - Principles of earthquake resistant design - F	Response s	pectru	n theo	ory -
Application	of resp	onse spectrum theory to seismic design of structure stru				
Module: 3		c Analysis of Moment Resisting Frames		5 h	ours	
		ign lateral forces as per IS: 1893-2016 – equivaler ffect of infill stiffness on analysis of frames – Equiv			•	amic
Module: 4	Model	ling, Analysis and Design of Structures		3 h	ours	
		design of RC structures using software - static and ponse spectrum and time history methods.	dynamic 1	nethod	8 —	
Module: 5	Design	of Beam Column Junctions		5 h	ours	
Elastic and I and flexural per IS: 1392	member	deformations of structures – ductility of the composers – beam column junction detailing – strong column	ite system 1 - weal	- desig t beam	gn of a effect	ıxial s as
Module: 6	Design	of Shear Walls		3 h	ours	
Unreinforce shear walls.	d and re	inforced masonry shear walls – analysis and design	of reinforc	ed con	crete	

Mo	odule: 7	Vibration Control Tec	chniques			3 hours
		ntrol – energy dissipating rious systems - case studi		les and a	pplication, bas	sic concept of base
Mo	odule: 8	Contemporary issues				2 hours
				Total Le	cture hours	30 hours
				Tut	orial Hours	15 hours
Tex	kt Book(s)				
1.	-	Agarwal and Manish Shrik -Hall India Pvt. Ltd., New	, ,	rthquake	resistant desig	n of structures,
Ref	ference B	ooks				
1.	-	nd Priestly. (1992), Seism nd Sons, London.	nic design of reinfo	rced conc	prete and mason	nry buildings, John
2.		ehle (2015), Seismic Desi on, New Delhi.	gn of Reinforced C	Concrete l	Buildings, McO	Graw-Hill
3.	IS: 1893	:2016 (Part 1), Criteria for	r earthquake resista	ant design	of structures.	
4.	IS: 1392	0: 2016, Ductile detailing	of reinforced conc	rete struc	tures subjected	l to seismic forces.
Mo	de of Eva	luation: Continuous Asso	essment Test, Quiz	zes, Assi	gnments, Final	Assessment Test
		ed by Board of Studies	05.07.2022		-	
Ap	proved by	y Academic Council		Date		

MSTE608L	ANALYSIS AND DESIGN OF TALL STRUCTURES	L	Т	Р	С
NIST EUVOL	ANALISIS AND DESIGN OF TALL STRUCTURES	2	1	0	3
Pre-requisite	MSTE504L Advanced Design of Steel Structures	Syl	labus	vers	ion
Course Objectiv	/es:				
1. To under	stand the behaviour of tall structures subjected to dynamic loads				
2. To study	the behaviour of different types of tall structural systems				
Expected Cours	e Outcome:				
· ·	n of this course, the student will be able to				
	he tall structure for gravity and lateral loads				
	the structural systems in tall buildings				
	nd the behaviour of various structural systems under gravity and la	teral	loadir	ıg	
	different types of outrigger system				
	and shear wall systems				
	he importance of infilled frames				
	three dimensional analysis of floors	1			
-	pes of Buildings and Loads Calculations	L	5 ho		
	buildings according to NBC – Wind load – Seismic load – Quasi	static	e appr	oach-	
combination of l			41		
	gid frame	. 1	4 ho		1:
-	aviour- analysis of gravity loading-Substitute frame method for				
-	of horizontal loading- Portal - Cantilever and factor methods method-Diaphragm openings	5 – K	ani s	meu	100-
_	raced Frame		4 ho	ure	
	- behaviour of bracing- methods of analysis- member force analysis	is- dri			s
	ore and Outrigger System		4 ho		
	num location of single outrigger- optimum location of two out	trigge			tube
		66			
_	num rocation of single outrigger optimum rocation of two out				
systems	ear Wall System		5 ha	ours	
systems Module:5 Sh			5 ho	ours	
systems Module:5 Sh Behaviour and an	ear Wall System		5 ho 3 ho		
systems Module:5 Sh Behaviour and an Module:6 In	ear Wall System nalysis of shear wall- coupled shear wall	isplac	3 ho	ours	
systems Module:5 Sh Behaviour and an Module:6 In Importance – M	hear Wall System halysis of shear wall- coupled shear wall -filled Frame Systems	isplac	3 ho	ours	
systems Module:5 Sh Behaviour and an Module:6 In Importance – M method – Effect	ear Wall System nalysis of shear wall- coupled shear wall -filled Frame Systems fethods of analysis – Equivalent truss and frame method – Force-di	isplac	3 ho	ours t	
systems Module:5 Sh Behaviour and an Module:6 In Importance – M method – Effect Module:7 Th	<pre>near Wall System nalysis of shear wall- coupled shear wall -filled Frame Systems fethods of analysis – Equivalent truss and frame method – Force-di of perforation in the in-filled frame.</pre>	isplac	3 ho emen	ours t	
systems Module:5 Sh Behaviour and an Module:6 In Importance – M method – Effect Module:7 Th Basic principles	ear Wall System halysis of shear wall- coupled shear wall -filled Frame Systems fethods of analysis – Equivalent truss and frame method – Force-di t of perforation in the in-filled frame. hree Dimensional Analysis	isplac	3 ho emen	t burs	
systems Module:5 Sh Behaviour and an Module:6 In Importance – M method – Effect Module:7 Th Basic principles	tear Wall System The alysis of shear wall- coupled shear wall Filled Frame Systems The thods of analysis – Equivalent truss and frame method – Force-dist of perforation in the in-filled frame. The Dimensional Analysis – Centre of rotation of a rigid floor, Force displacement method	isplac	3 ho emen 3 ho	ours t ours ours	

Tey	xt Book(s)	
1.	B.S. Taranath (2011), Structural ana	alysis and design of tall building, CRC Press
Ref	ference Books	
1.	Ghali.A., Neville.A.M and Brown.T Matrix Approach (Fifth Edition), Sp	Γ.G, (2003), Structural Analysis – A unified classical and pan press
2.	IS 13920 Ductile detailing of reinfor	orced concrete structures, BIS, India
3.	IS 1893 Criteria for earthquake resis	istant design BIS, India
4.	IS 875 Code of practice for design l	loadsBIS, India
Mo	de of Evaluation: Continuous Asses	ssment Test, Quizzes, Assignments, Final Assessment Test
Ree	commended by Board of Studies	05.07.2022
Ap	proved by Academic Council	Date

MSTE609	OFFSHORE STRUCTURES	L	T	P	C
		2	1	0	3
Pre-requis	ite Nil	Syll	labus	vers	ion
Course Obje	ectives:				
1. To lea	arn the types and functions of offshore structure.				
	idy the behavior of structures subjected to hydrodynamic loads				
3. To st	udy different analysis procedures for different offshore structure	es and	also	study	y th
wave	structure interaction.				
Expected Co	ourse Outcome:				
Upon comple	tion of this course, the student will be able to				
1. Unde	rstand the types and functions of offshore structure				
2. Evalu	ate the loads experienced by offshore structure				
	rstand the concept of fixed offshore structures				
	rstand the wave hydrodynamics				
	ate the wave forces on offshore structures				
	n the framed structure in offshore.				
	rse the offshore structures subjected to dynamic loads.				
Module: 1	Introduction		4 ho		
• •	shore Structures-Types of Offshore Platforms -Functions of offs	hore st	ructur	es-	
	of a Typical Offshore Structure				
Module: 2	Loads on Offshore Structures		4 ho	urs	
Gravity Load	s-Wind Load- Offshore Loads- Fatigue Load-Seismic Loads.				
Module:3	Concepts of Fixed Platform Jacket and Deck		4 ho		
	epts-redundant framing arrangement-Launch and Lift j				
-	s for Lift and float- Over installations- In-service and Pre-servic	e Load			ysis
Module: 4	Wave Theories		4 ho		
	tion and Propagation - Small and finite amplitude wave theorie	es - Wa	ive er	nergy	an
pressure dist					
Module: 5	Wave force on Offshore Structures		4 ho		
	tical Cylindrical Members-Linearization of Nonlinear Wave Dra rbitrarily Oriented Cylindrical Members - Wave Forces on Larg			ve	
Module: 6	Fundamental Considerations for Framed Offshore Structural Analysis		4 ho	urs	
	eristics and Modelling Procedures for Analysis-Hydrostatic Pres		nd		
	inite Element Applications for Framed Offshore Structural Ana	ysis			
Module: 7	Considerations for Dynamic Analysis		4 ho		
Characterizat MDOF Syste	ion of Offshore Structure as an SDOF System-SDOF Models in ms	Offsho	ore St	ructu	res-
	Contemporary issues		2 ho	urs	
Module: 8					
Module: 8	Total Lecture hours		30 ho	ours	

Text Book(s)								
1.	D.V. Reddy, A. S. J. Swamidas(2014), Essentials of Offshore Structures, CRC Press, Taylor & Francis Group							
Ref	Reference Books							
1.	Mohamed A. El-Reedy (2012), Offshore Structure, Design, Construction and Maintenance, Gulf Professional Publishing,							
2.	API (2014), Recommended Practice for Planning, designing and Construction, Fixed offshore platform, American Petroleum Institute publication, RP2A, Dallas, Texas.							
3.	Günther Clauss, Eike Lehmann, Carsten Östergaard, M.J. Shields (2012), Offshore Structures: Volume I: Conceptual Design and Hydromechanics: 1, Springer- Verlag.							
4.	Eugenio Fortaleza (2012), Active Control of Offshore Structures, Lambert Academic Publication.							
Mo	Mode of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test							
Rec	Recommended by Board of Studies 05.07.2022							
Арј	Approved by Academic Council Date							

MSTE610L	REPAIR AND REHABILITATION OF STRUCTURES	L	T	P	<u>C</u>		
		3	0	0	3		
Pre-requisite	Nil				Syllabus version		
Course Objec	tives:	I					
1. To imp	art broad knowledge in the area of repair and rehabilitation of str	ucture	es				
2. To und	erstand about various causes of deterioration of structures						
3. To obta	in the knowledge about corrosion of structures						
4. To und	erstand the properties of repair materials						
5. To know	w various repair techniques and strengthening methods						
Expected Cou	rse Outcome:						
Upon completi	on of this course, the student will be able to						
1. Identify	the role of the maintenance engineer						
2. Unders	tand the causes of deterioration of structures						
3. Identify	the effect of corrosion on structures						
4. Apply t	he NDT techniques to assess the condition of the structures						
5. Evaluat	te various properties and applications of repair materials						
6. Assessi	ng the techniques for repairing						
7. Apply t	he strengthening techniques for distressed buildings						
Module: 1	Introduction			5 hou	irs		
Importance of	maintenance - Types of maintenance - Decay of structures- Rol	le of	the M	lainter	nanc		
-	lity Assurance for concrete construction - Design and construction						
Module: 2	Deterioration of Structures						
Causes of dete	erioration of concrete, steel, masonry and timber structures - s	urfac	e det	eriorat	ion		
	Causes and preventive measures.						
	Corrosion of Structures						
Corrosion mec	hanism - Effects of cover thickness and cracking - Methods of a	corros	sion p	rotect	ion		
	atings - Cathodic protection for reinforcements.						
	Inspection and Assessment of Distressed structures			6 hou	rs		
	ion – Non-destructive tests –Ultrasonic pulse velocity method	l – R	ebour				
-	lout tests – Core test.						
Module: 5	Materials for Repair			6 hou	rs		
Special concre	tes and mortar - Concrete chemicals - Special elements for acce	lerate	d stre	ngth g	gain		
Expansive cen	nent- Polymer concrete - Ferro cement, Fibre reinforced concre	ete -	Fibre	reinfo	orce		
plastics.							
Module: 6	Techniques for Repair						
Techniques for	repairing of spalling and disintegration of structures - Grouting	-Auto	ogeno	us hea	ling		
Pre-packed cor	ncrete- Protective surface coating.						

M	odule: 7	Strengthening of distre	ssed buildings			6 hours		
Rep	Repairs to overcome low member strength - Deflection - Chemical disruption - Weathering wear -							
Fire	Fire leakage - Marine exposure- Use of FRP- NDT tests							
Module: 8Contemporary issues4				4 hours				
				To	tal Lecture hours	45 hours		
Tex	xt Book(s)							
1.	Modi, P.I., Patel, C.N. (2016). Repair and Rehabilitation of Concrete Structures, PHI India, New Delhi.							
Ref	ference B	ooks						
1.	IABSE,	IABSE, (2010). Case Studies of Rehabilitation, Repair, Retrofitting, and Strengthening of						
1.	Structure	Structures, Volume 12, Structural Engineering Documents (SED), Switzerland.						
2.	Varghese, P.C. (2014), Maintenance, Repair & Rehabilitation and Minor Works of Buildings,							
2.	PHI India, New Delhi.							
	Bhattacharjee, J. (2017), Concrete Structures Repair Rehabilitation And Retrofitting, CBS							
3.	Publishers & Distributors, New Delhi.							
Mo	Mode of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test							
Re	Recommended by Board of Studies 05.07.2022							
Ap	Approved by Academic Council Date							

			L	-		~				
MSTE6111	, E	ENERGY EFFICIENT BUILDINGS		Т 0	P 0	C 3				
				-	us ver	-				
Pre-requisi	e	Nil	Зy	Habt		51011				
Course Objec	tives:									
		ept of reduction in energy consumption through l	ow e	nerg	y buil	ding				
design				0.		C				
2. To Une	erstand the source	ces of Renewable Energy								
		to integrate daylighting and low energy heating/c	coolii	ng in	build	ings				
4. To Mo	del air flow and	Ventilation		•		-				
5. To kno	w illumination	requirements artificial lighting and factors affect	cting	day	lightii	ıg				
	ign for climatic z		-	-	-	-				
Expected Cou	rse Outcome:									
On cor	pletion of this co	ourse, the students will be able to:								
1. Unders	tand the concept	of reduction in energy consumption through low	ener	rgy b	uildin	ıg				
design										
2. Unders	tand the sources	of renewable Energy								
3. Examin	e strategies to in	tegrate day lighting and low energy heating / coc	oling	in bu	uildin	gs				
4. Unders	tand model air f	flow and Ventilation								
5. Know	llumination req	uirements artificial lighting and factors affecting	ng da	y ligl	nting					
6. Desig	n for climatic zon	nes								
		s, Energy and Environment			hours	8				
	gs within the Indi	Green Buildings within the Indian Context, Types of Energy, Energy Efficiency and Rebound								
Effect, Pollution, Better Buildings, Reducing energy consumption, Low energy design.										
,	n, Better Buildin	ngs, Reducing energy consumption, Low energy		gn.						
Module: 2	Renewable Ener	rgy sources	desig	7 ł	ours					
Module: 2 Solar energy, 1	Renewable Ener Passive Solar Hea	rgy sources ating, Passive Solar collection, Wind and other re	desig enew	7 ł ables	. A pa					
Module: 2Solar energy, 1solar strategy:	Renewable Ener Passive Solar Hea Direct gain - Tre	rgy sources ating, Passive Solar collection, Wind and other re combe wall, convective air loop, Photovoltaics,	desig enew	7 ł ables	. A pa					
Module: 2 Solar energy, I solar strategy: Macro and Mi	Renewable Ener Passive Solar Hea Direct gain - Tro proclimate - India	rgy sources ating, Passive Solar collection, Wind and other re ombe wall, convective air loop, Photovoltaics, o an Examples.	desig enew	7 ł ables	. A pa					
Module: 2Solar energy, Isolar strategy:Macro and MiModule: 3	Renewable Ener Passive Solar Hea Direct gain - Tre proclimate - India Heating and Coo	rgy sources ating, Passive Solar collection, Wind and other re ombe wall, convective air loop, Photovoltaics, an Examples. oling	desig enew Clim	7 h ables ate a 8 h	. A pa nd Er nours	nergy,				
Module: 2 Solar energy, I solar strategy: Macro and Mi Module: 3 Building Form	Renewable Ener Passive Solar Hea Direct gain - Tre croclimate - India Heating and Coo Surface area a	rgy sources ating, Passive Solar collection, Wind and other recombe wall, convective air loop, Photovoltaics, of an Examples. oling and Fabric Heat Loss, utilizing natural energy	desig enew Clim 7, Int	7 h ables ate a 8 h terna	. A pand En nd En nours l Plan	nergy,				
Module: 2 Solar energy, J solar strategy: Macro and Mi Module: 3 Building Form Grouping of b	Renewable Ener Passive Solar Hea Direct gain - Tre croclimate - India Heating and Coo Surface area a uildings – Robir	rgy sources ating, Passive Solar collection, Wind and other re- ombe wall, convective air loop, Photovoltaics, of an Examples. oling and Fabric Heat Loss, utilizing natural energy n's Spatial Proportion – Orientation of building	desig enew Clim 7, Int 9 –He	7 h ables ate a 8 h terna eat tr	. A pa nd En nours l Plan ansm	nergy, nning, ission				
Module: 2 Solar energy, I solar strategy: Macro and Mi Module: 3 Building Form Grouping of b through buildi	Renewable Ener Passive Solar Hea Direct gain - Tre croclimate - India Heating and Coo Surface area a uildings – Robir ngs –Thermal pr	rgy sources ating, Passive Solar collection, Wind and other re- ombe wall, convective air loop, Photovoltaics, o an Examples. oling and Fabric Heat Loss, utilizing natural energy n's Spatial Proportion – Orientation of building roperties of building materials – Thermal Com-	desig enew Clim 7, Int g –He	7 h ables ate a 8 h terna eat tr –Psy	. A pa nd Er nours l Plan ansm rchror	nergy, nning, ission netric				
Module: 2 Solar energy, J solar strategy: Macro and Mi Module: 3 Building Form Grouping of the through building Chart –Heat	Renewable Ener Passive Solar Hea Direct gain - Tre croclimate - India Heating and Coo Surface area a uildings – Robin ngs –Thermal pr gransfer – Cosin	rgy sources ating, Passive Solar collection, Wind and other re- combe wall, convective air loop, Photovoltaics, of an Examples. oling and Fabric Heat Loss, utilizing natural energy n's Spatial Proportion – Orientation of building roperties of building materials – Thermal Com- ne Effect - Insulation - Cooling buildings, p	desig enew Clim 7, Int g –He	7 h ables ate a 8 h terna eat tr –Psy	. A pa nd Er nours l Plan ansm rchror	nergy, nning, ission netric				
Module: 2 Solar energy, I solar strategy: Macro and Mi Module: 3 Building Form Grouping of t through build Chart –Heat mechanical co	Renewable Ener Passive Solar Hea Direct gain - Tre croclimate - India Heating and Coo Surface area a uildings – Robin ngs –Thermal pr cransfer – Cosin pling – Measuren	rgy sources ating, Passive Solar collection, Wind and other re- ombe wall, convective air loop, Photovoltaics, of an Examples. oling and Fabric Heat Loss, utilizing natural energy n's Spatial Proportion – Orientation of building roperties of building materials – Thermal Com- ne Effect - Insulation - Cooling buildings, p ment of heating and cooling loads.	desig enew Clim 7, Int g –He	7 h ables ate a 8 h terna eat tr –Psy ze co	. A pa nd Er nours l Plan ansm chror poling	nergy, nning, ission netric , and				
Module: 2 Solar energy, J solar strategy: Macro and Mi Module: 3 Building Form Grouping of b through build Chart –Heat mechanical co Module: 4	Renewable Ener Passive Solar Hea Direct gain - Tre croclimate - India Heating and Coo Surface area a uildings – Robin ngs –Thermal pr ransfer – Cosin oling – Measuren Ventilation and	rgy sources ating, Passive Solar collection, Wind and other re- combe wall, convective air loop, Photovoltaics, of an Examples. oling and Fabric Heat Loss, utilizing natural energy n's Spatial Proportion – Orientation of building roperties of building materials – Thermal Com- ne Effect - Insulation - Cooling buildings, p ment of heating and cooling loads. Infiltration	desig enew Clim 7, Int g –Ho nfort wassiv	7 h ables ate a 8 h terna eat tr -Psy ze cc 8 h	. A pa nd Er nours l Plan ansm chror poling	nning, ission netric , and				
Module: 2 Solar energy, I solar strategy: Macro and Mi Module: 3 Building Form Grouping of t through build Chart –Heat mechanical co Module: 4 Natural ventility	Renewable Ener Passive Solar Hea Direct gain - Tre croclimate - India Heating and Coo a Surface area a uildings – Robin ngs –Thermal pr ransfer – Cosin oling – Measuren Ventilation and tion and forced	rgy sources ating, Passive Solar collection, Wind and other re- ombe wall, convective air loop, Photovoltaics, of an Examples. oling and Fabric Heat Loss, utilizing natural energy n's Spatial Proportion – Orientation of building roperties of building materials – Thermal Com- ne Effect - Insulation - Cooling buildings, p nent of heating and cooling loads. Infiltration ventilation in commercial buildings, passive co	desig enew Clim 7, Int g –Ho nfort wassiv	7 h ables ate a 8 h terna eat tr -Psy ze cc 8 h	. A pa nd Er nours l Plan ansm chror poling	nning, ission netric , and				
Module: 2 Solar energy, J solar strategy: Macro and Mi Module: 3 Building Form Grouping of b through build Chart –Heat mechanical co Module: 4 Natural ventile flow and ventile	Renewable Ener Passive Solar Hea Direct gain - Tre croclimate - India Heating and Coo a Surface area a uildings – Robin ngs –Thermal pr ransfer – Cosin oling – Measuren Ventilation and tion and forced ation – stack effe	rgy sources ating, Passive Solar collection, Wind and other re- combe wall, convective air loop, Photovoltaics, of an Examples. oling and Fabric Heat Loss, utilizing natural energy n's Spatial Proportion – Orientation of building roperties of building materials – Thermal Com- ne Effect - Insulation - Cooling buildings, p ment of heating and cooling loads. Infiltration ventilation in commercial buildings, passive co- ect - ventilation calculation – Mass effect	desig enew Clim 7, Int g –Ho nfort wassiv	7 h ables ate a 8 h terna eat tr -Psy ze cc 8 h g, mo	. A pa nd Er nours l Plan ansm chror poling nours odellin	nning, ission netric , and				
Module: 2 Solar energy, I solar strategy: Macro and Mi Module: 3 Building Form Grouping of t through build Chart –Heat mechanical co Module: 4 Natural ventile flow and ventil	Renewable Ener Passive Solar Hea Direct gain - Tre croclimate - India Heating and Coo a Surface area a uildings – Robin ngs –Thermal pr ransfer – Cosin bling – Measuren Ventilation and tion and forced ation – stack effe Day lighting and	rgy sources ating, Passive Solar collection, Wind and other re- ombe wall, convective air loop, Photovoltaics, of an Examples. oling and Fabric Heat Loss, utilizing natural energy n's Spatial Proportion – Orientation of building roperties of building materials – Thermal Com- ne Effect - Insulation - Cooling buildings, p nent of heating and cooling loads. Infiltration ventilation in commercial buildings, passive co- ect - ventilation calculation – Mass effect d Artificial Lighting	desig enew Clim 7, Int 9, -Ho nfort bassiv	7 h ables ate a 8 h terna eat tr -Psy 7e cc 8 h g, mo	. A pa nd Er ours l Plan ansm chror poling odellin	nergy, ming, ission netric , and ng air				
Module: 2 Solar energy, J solar strategy: Macro and Mi Module: 3 Building Form Grouping of E through build Chart –Heat mechanical co Module: 4 Natural ventile flow and venti Module: 5 Illumination	Renewable Ener Passive Solar Hea Direct gain - Tre croclimate - India Heating and Coo Surface area a uildings – Robin ngs –Thermal pr ransfer – Cosin oling – Measuren Ventilation and tion and forced lation – stack effe Day lighting and equirements - Co	rgy sources ating, Passive Solar collection, Wind and other re- combe wall, convective air loop, Photovoltaics, of an Examples. oling and Fabric Heat Loss, utilizing natural energy n's Spatial Proportion – Orientation of building roperties of building materials – Thermal Com- ne Effect - Insulation - Cooling buildings, p nent of heating and cooling loads. Infiltration ventilation in commercial buildings, passive co- ect - ventilation calculation – Mass effect d Artificial Lighting building tactors and day lighting, dayl	desig enew Clim 7, Int g –Ho nfort vassiv	7 h ables ate a 8 h terna eat tr -Psy 7e cc 8 h g, mo 8 h g, mo	. A pa nd Er nours l Plan ansm chror poling nours odellin nours	nergy, nning, ission netric , and ng air t, sky				
Module: 2 Solar energy, I solar strategy: Macro and Mi Module: 3 Building Form Grouping of t through build Chart –Heat mechanical co Module: 4 Natural ventile flow and ventile	Renewable Ener Passive Solar Hea Direct gain - Tre croclimate - India Heating and Coo a Surface area a uildings – Robin ngs –Thermal paransfer – Cosin Ding – Measuren Ventilation and tion and forced ation – stack effe Day lighting and equirements - Co	rgy sources ating, Passive Solar collection, Wind and other re- ombe wall, convective air loop, Photovoltaics, of an Examples. oling and Fabric Heat Loss, utilizing natural energy n's Spatial Proportion – Orientation of building roperties of building materials – Thermal Com- ne Effect - Insulation - Cooling buildings, p nent of heating and cooling loads. Infiltration ventilation in commercial buildings, passive co- ect - ventilation calculation – Mass effect d Artificial Lighting oncepts of daylight factors and day lighting, dayl exposure angle, sun protection, shading coefficie	desig enew Clim 7, Int 9, Int 9, Ho fort bassiv poling ight a	7 h ables ate a 8 h terna eat tr -Psy 7e cc 8 h g, mo 8 h asses isual	. A pa nd Er ours l Plan ansm chror poling odellin smen izing	nergy, ming, ission netric , and ng air t, sky day				
Module: 2 Solar energy, J solar strategy: Macro and Mi Module: 3 Building Form Grouping of t through build Chart –Heat mechanical co Module: 4 Natural ventile flow and ventile	Renewable Ener Passive Solar Hea Direct gain - Tre croclimate - India Heating and Coo a Surface area a uildings – Robin ngs –Thermal pr transfer – Cosin oling – Measuren Ventilation and ation and forced ation – stack effe Day lighting and equirements - Co th diagram, sky o ce-Path-Target a	rgy sources ating, Passive Solar collection, Wind and other re- combe wall, convective air loop, Photovoltaics, of an Examples. oling and Fabric Heat Loss, utilizing natural energy n's Spatial Proportion – Orientation of building roperties of building materials – Thermal Com- ne Effect - Insulation - Cooling buildings, p nent of heating and cooling loads. Infiltration ventilation in commercial buildings, passive co- ect - ventilation calculation – Mass effect d Artificial Lighting building tactors and day lighting, dayl	desig enew Clim 7, Int 7, Int 9 –Ho fort vassiv	7 h ables ate a 8 h terna eat tr -Psy 7 e cc 8 h g, mo 8 h asses isual and	A pand Er nd Er nours l Plan ansm rchror poling odellin smen izing sprea	nergy, ming, ission netric , and ng air t, sky day d of				

			Deemed to be University under section 3	51 UGC Act, 1956)			
shelves - Supplementary artificial lighting design - light distribution - electric lighting control							
Module: 6 Design for Climatic Zones						3 hours	
Energy efficient building strategies for various climatic zones - cold and cloudy - cold and sunny							
—	- composite - warm and humid - moderate - hot and dry - case studies.						
Μ	odule: 7	EnergyAssessment and	Compliances Pro	ocedures		3 hours	
		reness, monitoring ene			-		
env	vironmenta	al criteria – embodied ene	rgy of building m	aterials - a	assessment r	nethods - assessment	
		RIHA, LEED) - Ecohome	es - Sustainable ar	chitecture	and urban d	esign – principles of	
		al architecture.					
M	odule: 8	Contemporary issues				2 hours	
				Total Lec	ture hours	45 hours	
Te	xt Book(s)						
1.	Satyajit	Ghosh and Abhinav Dhak	a (2015), Green St	ructures: I	Energy Effic	ient Buildings, Ane	
	Books.						
Re	ference B	ooks					
1.	Charles]	Eley (2016), Design Profe	ssional's Guide to	Zero Net I	Energy Build	lings, Island Press.	
2.	Ian M. Shapiro (2016), Energy Audits and Improvements for Commercial Buildings, John						
۷.	Wiley & Sons.						
3.		Krarti (2016), Energy Aud	it of Building Syst	ems: An E	Engineering .	Approach, Second	
5.	Edition.						
4.	EngHwa Yap., (2017), Energy Efficient Building, Published by InTech., Crotia.						
5	Lal Jayamaha (2006), Energy-Efficient Building Systems: Green Strategies for Operation and						
5. Maintenance, McGraw Hill Professional.							
Mode of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test							
Recommended by Board of Studies 05.07.2022							
Ap	Approved by Academic Council Date						
			1				