

School of Computer Science and Engineering

CURRICULUM AND SYLLABI

(2021-2022)

B. Tech. Computer Science and Engineering with Specialization in Data Science

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

To be a world-renowned centre of education, research and service in computing and allied domains.

MISSION STATEMENT OF THE SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

- To offer computing education programs with the goal that the students become technically competent and develop lifelong learning skill.
- To undertake path-breaking research that creates new computing technologies and solutions for industry and society at large.
- To foster vibrant outreach programs for industry, research organizations, academia and society.

B.Tech-CSE (Spl. in Data Science)

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.

2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.

3. Graduates will function in their profession with social awareness and responsibility.

4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.

5. Graduates will be successful in pursuing higher studies in engineering or management.

6. Graduates will pursue career paths in teaching or research.

B.Tech-CSE (Spl. in Data Science)

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having a clear understanding of the subject related concepts and of contemporary issues and apply them to identify, formulate and analyse complex engineering problems.

PO_03: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_04: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO_05: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO_06: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_07: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_08: Having a clear understanding of professional and ethical responsibility

PO_09: Having cross cultural competency exhibited by working as a member or in teams

PO_10: Having a good working knowledge of communicating in English – communication with engineering community and society

PO_11: Having a good cognitive load management skills related to project management and finance

PO_12: Having interest and recognise the need for independent and lifelong learning

B.Tech-CSE (Spl. in Data Science)

PROGRAMME SPECIFIC OUTCOMES (PSOs)

1. Apply computing theory, languages and algorithms, as well as mathematical and statistical models, and the principles of optimization to appropriately formulate and use data analysis.

2. Apply the principles and techniques of database design, administration, and implementation to enhance data collection capabilities and decision-support systems. Ability to critique the role of information and analytics in supporting business processes and functions.

3. Invent and use appropriate models of data analysis, assess the quality of input, derive insight from results, and investigate potential issues. Also to organize big data sets into meaningful structures, incorporating data profiling and quality standards.

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING B.Tech – CSE with specialization in Data Science Curriculum for 2021-2022 Batch

	CREDIT INFO							
S.no	Catagory	Credits						
1	Foundation Core	55						
2	Discipline-linked Engineering Sciences	12						
3	Discipline Core	44						
4	Specialization Elective	21						
5	Projects and Internship	9						
6	Open Elective	9						
7	Bridge Course	0						
8	Non-graded Core Requirement	11						
	Total Credits	161						

Foundation Core												
sl.no	Course Code	Course Title	Course Type	Ver sio	L	Т	P	J	Credits			
1	BCHY101L	Engineering Chemistry	Theory Only	1.0	3	0	0	0	3.0			
2	BCHY101P	Engineering Chemistry Lab	Lab Only	1.0	0	0	2	0	1.0			
3	BCSE101E	Computer Programming: Python	Embedded Theory and Lab	1.0	1	0	4	0	3.0			
4	BCSE102L	Structured and Object-Oriented Programming	Theory Only	1.0	2	0	0	0	2.0			
5	BCSE102P	Structured and Object-Oriented Programming Lab	Lab Only	1.0	0	0	4	0	2.0			
6	BCSE103E	Computer Programming: Java	Embedded Theory and Lab	1.0	1	0	4	0	3.0			
7	BECE101L	Basic Electronics	Theory Only	1.0	2	0	0	0	2.0			
8	BECE101P	Basic Electronics Lab	Lab Only	1.0	0	0	2	0	1.0			
9	BEEE101L	Basic Electrical Engineering	Theory Only	1.0	2	0	0	0	2.0			
10	BEEE101P	Basic Electrical Engineering Lab	Lab Only	1.0	0	0	2	0	1.0			
11	BENG101L	Technical English Communication	Theory Only	1.0	2	0	0	0	2.0			
12	BENG101P	Technical English Communication Lab	Lab Only	1.0	0	0	2	0	1.0			
13	BENG102P	Technical Report Writing	Lab Only	1.0	0	0	2	0	1.0			
14	BFLE200L	B.Tech. Foreign Language - 2021	Basket	1.0	0	0	0	0	2.0			
15	BHSM200L	B.Tech. HSM Elective - 2021	Basket	1.0	0	0	0	0	3.0			
16	BMAT101L	Calculus	Theory Only	1.0	3	0	0	0	3.0			
17	BMAT101P	Calculus Lab	Lab Only	1.0	0	0	2	0	1.0			
18	BMAT102L	Differential Equations and Transforms	Theory Only	1.0	3	1	0	0	4.0			
19	BMAT201L	Complex Variables and Linear Algebra	Theory Only	1.0	3	1	0	0	4.0			
20	BMAT202L	Probability and Statistics	Theory Only	1.0	3	0	0	0	3.0			
21	BMAT202P	Probability and Statistics Lab	Lab Only	1.0	0	0	2	0	1.0			

22	BPHY101L	Engineering Physics	Theory Only	1.0	3	0	0	0	3.0
23	BPHY101P	Engineering Physics Lab	Lab Only	1.0	0	0	2	0	1.0
24	BSTS101P	Quantitative Skills Practice I	Soft Skill	1.0	0	0	3	0	1.5
25	BSTS102P	Quantitative Skills Practice II	Soft Skill	1.0	0	0	3	0	1.5
26	BSTS201P	Qualitative Skills Practice I	Soft Skill	1.0	0	0	3	0	1.5
27	BSTS202P	Qualitative Skills Practice II	Soft Skill	1.0	0	0	3	0	1.5

		Discipline-linked Engi	neering Sciences						
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	Т	Р	J	Credits
1	BECE102L	Digital Systems Design	Theory Only	1.0	3	0	0	0	3.0
2	BECE102P	Digital Systems Design Lab	Lab Only	1.0	0	0	2	0	1.0
3	BECE204L	Microprocessors and Microcontrollers	Theory Only	1.0	3	0	0	0	3.0
4	BECE204P	Microprocessors and Microcontrollers Lab	Lab Only	1.0	0	0	2	0	1.0
5	BMAT205L	Discrete Mathematics and Graph Theory	Theory Only	1.0	3	1	0	0	4.0
		Discipline	Core						
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	Т	Р	J	Credits
1	BCSE202L	Data Structures and Algorithms	Theory Only	1.0	3	0	0	0	3.0
2	BCSE202P	Data Structures and Algorithms Lab	Lab Only	1.0	0	0	2	0	1.0
3	BCSE204L	Design and Analysis of Algorithms	Theory Only	1.0	3	0	0	0	3.0
4	BCSE204P	Design and Analysis of Algorithms Lab	Lab Only	1.0	0	0	2	0	1.0
5	BCSE205L	Computer Architecture and Organization	Theory Only	1.0	3	0	0	0	3.0
6	BCSE301L	Software Engineering	Theory Only	1.0	3	0	0	0	3.0
7	BCSE301P	Software Engineering Lab	Lab Only	1.0	0	0	2	0	1.0
8	BCSE302L	Database Systems	Theory Only	1.0	3	0	0	0	3.0
9	BCSE302P	Database Systems Lab	Lab Only	1.0	0	0	2	0	1.0
10	BCSE303L	Operating Systems	Theory Only	1.0	3	0	0	0	3.0
11	BCSE303P	Operating Systems Lab	Lab Only	1.0	0	0	2	0	1.0
12	BCSE304L	Theory of Computation	Theory Only	1.0	3	0	0	0	3.0
13	BCSE305L	Embedded Systems	Theory Only	1.0	3	0	0	0	3.0
14	BCSE306L	Artificial Intelligence	Theory Only	1.0	3	0	0	0	3.0
15	BCSE307L	Compiler Design	Theory Only	1.0	3	0	0	0	3.0
16	BCSE307P	Compiler Design Lab	Lab Only	1.0	0	0	2	0	1.0
17	BCSE308L	Computer Networks	Theory Only	1.0	3	0	0	0	3.0
18	BCSE308P	Computer Networks Lab	Lab Only	1.0	0	0	2	0	1.0
19	BCSE309L	Cryptography and Network Security	Theory Only	1.0	3	0	0	0	3.0
20	BCSE309P	Cryptography and Network Security Lab	Lab Only	1.0	0	0	2	0	1.0

Specialization Elective											
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Р	J	Credits		
1	BCSE206L	Foundations of Data Science	Theory Only	1.0	3	0	0	0	3.0		

Specialization Elective											
2	BCSE207L	Programming for Data Science	Theory Only	1.0	2	0	0	0	2.0		
3	BCSE207P	Programming for Data Science Lab	Lab Only	1.0	0	0	2	0	1.0		
4	BCSE208L	Data Mining	Theory Only	1.0	2	0	0	0	2.0		
5	BCSE208P	Data Mining Lab	Lab Only	1.0	0	0	2	0	1.0		
6	BCSE209L	Machine Learning	Theory Only	1.0	3	0	0	0	3.0		
7	BCSE209P	Machine Learning Lab	Lab Only	1.0	0	0	2	0	1.0		
8	BCSE331L	Exploratory Data Analysis	Theory Only	1.0	2	0	0	0	2.0		
9	BCSE331P	Exploratory Data Analysis Lab	Lab Only	1.0	0	0	2	0	1.0		
10	BCSE332L	Deep Learning	Theory Only	1.0	3	0	0	0	3.0		
11	BCSE332P	Deep Learning Lab	Lab Only	1.0	0	0	2	0	1.0		
12	BCSE333L	Statistical Inference	Theory Only	1.0	2	0	0	0	2.0		
13	BCSE333P	Statistical Inference Lab	Lab Only	1.0	0	0	2	0	1.0		
14	BCSE334L	Predictive Analytics	Theory Only	1.0	3	0	0	0	3.0		
15	BCSE335L	Healthcare Data Analytics	Theory Only	1.0	3	0	0	0	3.0		
16	BCSE336L	Financial Data Analytics	Theory Only	1.0	2	0	0	0	2.0		
17	BCSE336P	Financial Data Analytics Lab	Lab Only	1.0	0	0	2	0	1.0		

Projects and Internship											
sl.no	Course Code	Course Title	Course Type	Ver	L	т	Р	J	Credits		
				sio n							
1	BCSE399J	Summer Industrial Internship	Project	1.0	0	0	0	0	1.0		
2	BCSE497J	Project - I	Project	1.0	0	0	0	0	3.0		
3	BCSE498J	Project - II / Internship	Project	1.0	0	0	0	0	5.0		
4	BCSE499J	One Semester Internship	Project	1.0	0	0	0	0	14.0		

		Open Elective							
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Ρ	J	Credits
1	BCSE351E	Foundation of Data Analytics	Embedded Theory and Lab	1.0	1	0	2	0	2.0
2	BCSE352E	Essentials of Data Analytics	Embedded Theory and Lab	1.0	1	0	2	0	2.0
3	BSTS301P	Advanced Competitive Coding - I	Soft Skill	1.0	0	0	3	0	1.5
4	BSTS302P	Advanced Competitive Coding - II	Soft Skill	1.0	0	0	3	0	1.5
5	CFOC102M	Introduction to Cognitive Psychology	Online Course	1.0	0	0	0	0	3.0
6	CFOC103M	Introduction to Political Theory	Online Course	1.0	0	0	0	0	3.0
7	CFOC104M	Six Sigma	Online Course	1.0	0	0	0	0	3.0
8	CFOC105M	Emotional Intelligence	Online Course	1.0	0	0	0	0	2.0
9	CFOC109M	Design Thinking - A Primer	Online Course	1.0	0	0	0	0	1.0
10	CFOC112M	Sociology of Science	Online Course	1.0	0	0	0	0	1.0
11	CFOC118M	Practical Machine Learning with Tensorflow	Online Course	1.0	0	0	0	0	2.0

Open Elective											
12	CFOC133M	E-Business	Online Course	1.0	0	0	0	0	3.0		
13	CFOC152M	Pattern Recognition and Application	Online Course	1.0	0	0	0	0	3.0		
14	CFOC165M	Software testing	Online Course	1.0	0	0	0	0	3.0		
15	CFOC188M	Ethical Hacking	Online Course	1.0	0	0	0	0	3.0		
16	CFOC190M	Positive Psychology	Online Course	1.0	0	0	0	0	2.0		
17	CFOC191M	Forests and their Management	Online Course	1.0	0	0	0	0	3.0		
18	CFOC193M	Bioengineering: An Interface with Biology and Medicine	Online Course	1.0	0	0	0	0	2.0		
19	CFOC197M	Bio-Informatics: Algorithms and Applications	Online Course	1.0	0	0	0	0	3.0		
20	CFOC203M	Natural Hazards	Online Course	1.0	0	0	0	0	2.0		
21	CFOC207M	Electronic Waste Management - Issues And Challenges	Online Course	1.0	0	0	0	0	1.0		
22	CFOC227M	GPU Architectures and Programming	Online Course	1.0	0	0	0	0	3.0		
23	CFOC232M	Consumer Behaviour	Online Course	1.0	0	0	0	0	2.0		
24	CFOC235M	Rocket Propulsion	Online Course	1.0	0	0	0	0	3.0		
25	CFOC236M	Aircraft Maintenance	Online Course	1.0	0	0	0	0	1.0		
26	CFOC253M	Plastic Waste Management	Online Course	1.0	0	0	0	0	2.0		
27	CFOC257M	Earthquake Geology: A tool for Seismic Hazard Assessment	Online Course	1.0	0	0	0	0	3.0		
28	CFOC258M	Introduction to Geographic Information Systems	Online Course	1.0	0	0	0	0	1.0		
29	CFOC282M	Waste to Energy Conversion	Online Course	1.0	0	0	0	0	2.0		
30	CFOC329M	Design, Technology and Innovation	Online Course	1.0	0	0	0	0	2.0		
31	CFOC332M	Fundamentals of Automotive Systems	Online Course	1.0	0	0	0	0	3.0		
32	CFOC356M	Analog Circuits	Online Course	1.0	0	0	0	0	3.0		
33	CFOC365M	Evolution of Air Interface towards 5G	Online Course	1.0	0	0	0	0	2.0		
34	CFOC384M	Entrepreneurship Essentials	Online Course	1.0	0	0	0	0	3.0		
35	CFOC388M	Energy Resources, Economics and Environment	Online Course	1.0	0	0	0	0	3.0		
36	CFOC391M	Effective Writing	Online Course	1.0	0	0	0	0	1.0		
37	CFOC395M	Speaking Effectively	Online Course	1.0	0	0	0	0	2.0		
38	CFOC397M	Intellectual Property	Online Course	1.0	0	0	0	0	3.0		
39	CFOC400M	Language and Mind	Online Course	1.0	0	0	0	0	2.0		
40	CFOC401M	The Nineteenth - Century English Novel	Online Course	1.0	0	0	0	0	3.0		
41	CFOC402M	Introduction to World Literature	Online Course	1.0	0	0	0	0	3.0		
42	CFOC405M	Economic Growth & Development	Online Course	1.0	0	0	0	0	2.0		
43	CFOC406M	Human Behaviour	Online Course	1.0	0	0	0	0	2.0		
44	CFOC407M	Introduction to Modern Indian Political Thought	Online Course	1.0	0	0	0	0	3.0		
45	CFOC408M	English Literature of the Romantic Period, 1798 - 1832	Online Course	1.0	0	0	0	0	2.0		
46	CFOC416M	Feminism : Concepts and Theories	Online Course	1.0	0	0	0	0	3.0		
47	CFOC419M	Basic Real Analysis	Online Course	1.0	0	0	0	0	3.0		
48	CFOC442M	Robotics and Control : Theory and Practice	Online Course	1.0	0	0	0	0	2.0		
49	CFOC475M	IC Engines and Gas Turbines	Online Course	1.0	0	0	0	0	3.0		
50	CFOC488M	Business Analytics For Management Decision	Online Course	1.0	0	0	0	0	3.0		
51	CFOC490M	Sales and Distribution Management	Online Course	1.0	0	0	0	0	2.0		

		Open Elective							
52	CFOC493M	Management of Inventory Systems	Online Course	1.0	0	0	0	0	3.0
53	CFOC494M	Quality Design And Control	Online Course	1.0	0	0	0	0	3.0
54	CFOC495M	Foundation Course in Managerial Economics	Online Course	1.0	0	0	0	0	2.0
55	CFOC496M	Engineering Econometrics	Online Course	1.0	0	0	0	0	3.0
56	CFOC497M	Financial Statement Analysis and Reporting	Online Course	1.0	0	0	0	0	3.0
57	CFOC498M	Business Statistics	Online Course	1.0	0	0	0	0	3.0
58	CFOC499M	Global Marketing Management	Online Course	1.0	0	0	0	0	2.0
59	CFOC500M	Marketing Research and Analysis - II	Online Course	1.0	0	0	0	0	3.0
60	CFOC503M	Marketing Analytics	Online Course	1.0	0	0	0	0	3.0
61	CFOC505M	Management of Commercial Banking	Online Course	1.0	0	0	0	0	3.0
62	CFOC508M	Entrepreneurship	Online Course	1.0	0	0	0	0	3.0
63	CFOC543M	International Business	Online Course	1.0	0	0	0	0	3.0
64	CFOC550M	Numerical Analysis	Online Course	1.0	0	0	0	0	4.0
65	CFOC570M	Public Speaking	Online Course	1.0	0	0	0	0	3.0
66	CFOC575M	Wildlife Ecology	Online Course	1.0	0	0	0	0	3.0
67	CFOC578M	Wastewater Treatment And Recycling	Online Course	1.0	0	0	0	0	3.0
68	CFOC591M	Principles Of Management	Online Course	1.0	0	0	0	0	3.0
69	CFOC593M	Corporate Finance	Online Course	2.0	0	0	0	0	2.0
70	CFOC594M	Customer Relationship Management	Online Course	1.0	0	0	0	0	2.0
71	CFOC595M	Urbanization and Environment	Online Course	1.0	0	0	0	0	2.0

Bridge Course											
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Ρ	J	Credits		
1	BENG101N	Effective English Communication	Lab Only	1.0	0	0	4	0	2.0		

	Non-graded Core Requirement											
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Р	J	Credits			
1	BCHY102N	Environmental Sciences	Online Course	1.0	0	0	0	0	2.0			
2	BCSE101N	Introduction to Engineering	Project	1.0	0	0	0	0	1.0			
3	BEXC100N	Extracurricular Activities / Co-Curricular Activities - B.Tech. Programmes	Basket	1.0	0	0	0	0	2.0			
4	BHUM101N	Ethics and Values	Online Course	1.0	0	0	0	0	2.0			
5	BSSC101N	Essence of Traditional Knowledge	Online Course	1.0	0	0	0	0	2.0			
6	BSSC102N	Indian Constitution	Online Course	1.0	0	0	0	0	20			

BCSE101E Computer Programming: Python			L	Τ	Ρ	С		
D					4	3		
Pre-requisite	NIL	Syll	abu	S VO	ersi	on		
Course Objectiv	· · · · · · · · · · · · · · · · · · ·			1.0				
1 To provide ov	ves	ore						
2 To inculcate th	be art of logical thinking abilities and propose povel solution	une fo	or re	alw	orld	4		
problems through	uch programming language constructs	113 10				•		
Course Outcom	e							
1. Classify vario	bus algorithmic approaches, categorize the appropriate da	ata r	epre	eser	ntatio	on,		
and demonst	rate various control constructs.		•			,		
2. Choose app	ropriate programming paradigms, interpret and handle of	data	usi	ng t	files	to		
propose solu	ition through reusable modules; idealize the importance	e of	mc	dule	es a	ind		
packages.								
Module:1 Intro	oduction to Problem Solving			<u> </u>	<u>1 hc</u>	our		
Problem Solving	i: Definition and Steps, Problem Analysis Chart, Develop	ping	an	Alg	orith	m,		
Flowchart and P	seudocode.				hai			
Introduction to n	ton Programming Fundamentals	mon			rich			
Reserved Wor	ython – Interactive and Script Mode – Internation – Com	men	115 - 006	-va B	nap Tilt i	ies in		
Eunctions – Imp	orting from Packages	6331	0115	- 0	unt-			
Module:3 Con	trol Structures			2	hoi	irs		
Decision Making	and Branching: if if-else nested if multi-way if-elif state	emer	nte		not	na.		
while loop for	loop – else clauses in loops nested loops – break o	ontir	าเอ	and	d na	ng. ass		
statements		Jonth	iuc	and	i pc	100		
Module:4 Coll	ections			3	hou	ırs		
Lists: Create, Ac	cess, Slicing, Negative indices, List methods, List compre	hens	sion	s –				
Tuples: Create, I	ndexing and slicing. Operations on tuples – Dictionary: Cr	eate	. ad	ld. a	nd			
replace values, C	Operations on dictionaries – Sets: Creation and operations	S.						
Module:5 Strir	ngs and Regular Expressions			2	hou	ırs		
Strings: Compa	rison, Formatting, Slicing, Splitting, Stripping – Reg	jular	Êx	pres	ssio	ns:		
Matching,				-				
Search and repla	ace, Patterns.							
Module:6 Fun	ctions and Files			3	hοι	ırs		
Functions – Pa	arameters and Arguments: Positional arguments, Key	ywor	d a	argu	mer	ıts,		
Parameters				_				
with default val	ues – Local and Global scope of variables – Function	ons	with	וא ו	bitra	ary		
arguments – Re	cursive Functions – Lambda Function. Files: Create, O	pen,	Re	ead,	Wr	ite,		
Append and Clos	se – tell and seek methods.				I			
	lules and Packages			2	nou	ırs		
Built-In modules	Built-in modules – User-Defined modules – Overview of Numpy and Pandas packages.							
	Total Lacture by	oure	•	15	hor	ire		
Toxt Book(a)		ours	•	13	not	115		
1 Frie Matthe	s Puthon Crash Course: A Hands On Project Posed	Intre	odu	ction	n to			
Programming 2nd Edition No starch Press 2010								
Reference Books								
1. Martic C Bro	wn, Python: The Complete Reference, 4th Edition, McGra	aw H	ill P	ublis	sher	s,		
2018.								
2. John V. Gu	uttag, Introduction to computation and programming u	ising	ру	thor	n: w	/ith		
applications	to understanding data. 2nd Edition, MIT Press, 2016.							

Мо	Mode of Evaluation: No separate evaluation for theory component.						
Ind	icative Experiments						
1.	Problem Analysis Chart, Flowchart and Pseudocode Practices.						
2.	Sequential Constructs using Pyth	on Operato	rs, Expressions.				
3.	Branching (if, if-else, nested if, m	ulti-way if-e	lif statements) a	nd Loopir	ng (for, while,		
	nested						
	looping, break, continue, else in le	oops).					
4.	List, Tuples, Dictionaries & Sets.						
5.	Strings, Regular Expressions.						
6.	Functions, Lambda, Recursive Fu	inctions and	d Files.				
7.	Modules and Packages (NumPy	and Pandas	5)				
	Total Labora	tory Hours			60 hours		
Tex	(t Book(s)						
1.	Mariano Anaya, Clean Code in F	ython: Dev	elop maintainab	le and ef	ficient code, 2 nd		
	Edition, Packt Publishing Limited,	2021.					
Reference Books							
1.	1. Harsh Bhasin, Python for beginners, 1 st Edition, New Age International (P) Ltd., 2019,						
	Mode of assessment: Continuous assessments and FAT						
Re	commended by Board of Studies	03.07.202	1				
Δ	proved by Academic Council	No 63	Date	23 09 2	021		
' ADI			Balo				

BCSE102L	BCSE102L Structured and Object-Oriented Programming L T P C						
Pre-requisite	Syl	labus	versi	ion			
			1.)			
Course Objective	es						
1. To impart	the basic constructs in structured progr	ramming and o	object	orien	ted		
programm	ing paradigms.	C	-				
2. To inculo	ate the insights and benefits in acces	ssing memory	locat	ions	by		
implement	ing real world problems.						
3. To help so	lving real world problems through appropriate	e programming	paradi	gms.			
Course Outcome							
At the end of the	zourse, students should be able to:						
1 Understan	d different programming language cons	structe and de	acision	_mak	ina		
statement	s: manipulate data as a group		5013101	-man	ing		
2 Recognize	the application of modular programming a	annroach: create		defir	hed		
data types	and idealize the role of pointers		5 4001	uom	lou		
3 Comprehe	and various elements of object-oriented pr	ograming parag	diam:	prop	ose		
solutions	through inheritance and polymorphism; id	dentify the app	oropria	ate d	ata		
structure	for the given problem and devise solution	using generic	proa	ramm	ina		
techniques	6.	genere	p. • 3				
	ogramming Fundamentals			2 ho	Ire		
Variables - Res	erved words - Data Types - Operators	s – Operator	Proco	dence			
Expressions - Tyr	\sim Conversions - $1/O$ statements - Branching	and Looping. if	if_olea	nae	tod		
if if-else ladder	witch statement goto statement - Loops: for	while and do	while	, 1103 — hre	ak		
and continue state	ements	, while and do					
Module:2 Array	vs and Functions			4 ho	urs		
Arrays: One Dim	ensional array - Two-Dimensional Array – St	trings and its op	peratio	ns. U	ser		
Defined Function	s: Declaration – Definition – call by value an	d call by refere	nce -	Types	s of		
Functions Rec	ursive functions - Storage Classes - Sco	pe, Visibility ar	nd Lif	etime	of		
Variables.							
Module:3 Poin	ters			4 ho	urs		
Declaration and A	ccess of Pointer Variables, Pointer arithmetic	c – Dynamic me	mory				
allocation – Pointe	ers and arrays - Pointers and functions.						
Module:4 Stru	cture and Union			2 ho	urs		
Declaration, Initialization, Access of Structure Variables - Arrays of Structure - Arrays within							
Structure - Structure within Structures - Structures and Functions – Pointers to Structure -							
Module:5 Over	view of Object-Oriented			5 ho	urs		
Prog	ramming			0 110	113		
Features of OOF	P - Classes and Objects - "this" pointer - C	onstructors and		ructor	· -		
Static Data Mem	hers Static Member Functions and Objects	s - Inline Functi	ions -	Call	bv		
reference - Functi	ons with default Arguments - Functions with (Objects as Arou	ments	- Frie	end l		
Functions and Fri	end Classes.						
Modulo:6 Inha	ritanaa			5 hai			
	nance	ultiple Inharitan	00 M				
inneniance - Ty	pes of inneritance: Single inneritance, Mi	auple inneritan	ce, №	uiii-le	ver		

Inheritance, Hierarchical Inheritance - Multipath Inheritance - Inheritance and constructors.								
Мо	dule:7	Polymorphism			4 hours			
Fur	nction O	verloading - Operator Overlo	ading – Dynai	mic Polyn	orphism - Virtual Functions -			
Pur	re virtua	Functions - Abstract Classe	S.					
Мо	dule:8	Generic Programming			4 hours			
Fur	nction te	mplates and class templates	<u>, Standard Te</u>	mplate Li	brary.			
		Tot	al Lecture ho	ours:	30 hours			
Tex	kt Book	(s)						
1.	Herber	t Schildt, C: The Complete	Reference, 4	4 th Editio	n, McGraw Hill Education,			
	2017							
2.	Herber	t Schildt, C++: The Complet	te Reference,	4 th Editio	on, McGraw Hill Education,			
	2017.							
Re	ference	Books						
1.	Yasha	/ant Kanetkar, Let Us C: 17 [™]	Edition, BPB	Publicaite	ons, 2020.			
2.	2. Stanley Lippman and Josee Lajoie, C++ Primer, 5 th Edition, Addison-Wesley publishers,							
	2012.							
Mode of Evaluation: CAT / Written Assignment / Quiz / FAT / Project.								
Re	Recommended by Board of Studies 03.07.2021							
Ap	proved b	y Academic Council	No. 63	Date	23.09.2021			

Item 63/8 - Annexure - 5

BCSE102P	Structured and	Object-Oriente	d Progra	mming Lab	L	Т	Ρ	С
					0	0	4	2
Pre-requisite	NIL				Syllab	us v	vers	sion
						1.0		
Course Objectives								
1. To imp	art the basic constru	ucts in structu	ed progi	ramming ar	nd obj	ect-o	orier	nted
program	iming paradigms.							
2. 10 inc	ulcate the insights	and benefits	in acces	ssing mem	ory lo	catio	ons	by
impiem 2 To ooly	nung real world proble	ens.	oto progr	omming por	odiam	~		
3. 10 5010	real world problems t	nrougn appropri	ate progr	amming par	adigm	5.		
Course Outco	me							
At the end of the	e course, students sho	ould be able to:						
1. Unders	and different progra	amming langua	qe cons	structs and	decis	sion-	-mal	king
stateme	nts; manipulate data a	is a group.	0					0
2. Recogr	ize the application of	modular progra	imming a	pproach; cr	eate u	ser	defi	ned
data typ	es and idealize the rol	e of pointers.						
3. Compre	hend various elemen	nts of object-ori	ented pr	ograming p	aradig	m; p	orop	ose
solution	s through inheritance	e and polymor	phism; i	dentify the	appro	priat	te c	data
structur	e for the given probl	em and devise	solution	using gen	eric pi	rogra	amn	ning
techniq	Jes.							
	Ind	icativo Exporin	onte					
1. Programs	using basic control stru	ictures, branchir	ng and log	opina				
2. Experimen	t the use of 1-D. 2-D a	rravs and string	s and Fur	octions				
3. Demonstra	te the application of po	pinters						
4. Experimen	t structures and unions	6						
5. Programs	on basic Object-Orient	ed Programming	construc	cts.				
6. Demonstra	te various categories o	of inheritance						
7. Program to	apply kinds of polymc	orphism.						
8. Develop ge	eneric templates and S	tandard Templa	te Librarie	es.				
Total Laboratory Hours 60 hours								
Text Book(s)								
1. Robert C.	1. Robert C. Seacord, Effective C: An Introduction to Professional C Programming,							
1 st Edition, No Starch Press, 2020.								
Reference Bo	ok(s)							
1. Vardan Gri	goryan and Shunguan	g Wu, Expert C-	+: Becon	ne a proficie	ent prog	gram	nmei	r by
learning co	learning coding best practices with C++17 and C++20's latest features, 1st Edition,							
Packt Publishing Limited, 2020.								
Mode of asses	ment: Continuous ass	essments and F	AI.					
Recommended	by Board of Studies	03.07.202	<u>1</u>	00.00.000	4			
Approved by A	cademic Council	NO. 63	Date	23.09.202	1			

BCSE103E	Computer Programming : Java		L	Т	Ρ	С		
			1	0	4	3		
Pre-requisite	NIL	Sy	llab	us v	ersi	on		
				1.0				
	S:	11 <i>C</i> .			- 4 - 1 -	- 6		
1. To introduc	ented programming in Jova	the fi	unda	amer	ntais	; of		
2 To dovelop	the ability of using Java to solve real world problems.							
	the ability of using Java to solve real world problems.							
Course Outcome								
At the end of this c	ourse, students should be able to:							
1. Understand	d basic programming constructs; realize the funda	amen	tals	of	Obj	ect		
Orientated	Programming in Java; apply inheritance and inte	erface) cc	nce	ots	for		
enhancing	code reusability.							
2. Realize the	e exception handling mechanism; process data withi	n file	s a	nd ı	ise i	the		
data structi	ures in the collection framework for solving real world p	roble	ms.					
Module:1 Java	a Basics			2	hou	ırs		
OOP Paradigm - I	Features of Java Language - JVM - Bytecode - Java	progr	am	stru	cture	э —		
Basic programmir	ng constructs - data types - variables – Java nar	ning	con	vent	ions	; —		
operators.								
Module:2 Loc	oping Constructs and Arrays			2	hou	ırs		
Control and loop	ing constructs - Arrays – one dimensional and r	nulti-	dime	ensio	onal	-		
enhanced for loop	– Strings - Wrapper classes.							
Module:3 Clas	ses and Objects			2	hou	ırs		
Class Fundamenta	als – Access and non-access specifiers - Declaring ob	jects	and	lass	signi	ng		
object reference va	ariables – array of objects – constructors and destructor	ors –	usa	ge o	t "th	IS″		
And static keywo	rus.			2	hai			
Inhoritanco type	entance and Polymorphism	0	orlo	ر مانه		ans be		
Overriding - abstra	s use of super - final keyword - Polymorphism	- 00	eno	aum	y ai	u		
Module:5 Pac	kages and Excention Handling			2	hoi	irs		
Packages: Creati	ng and Accessing - Sub packages					110		
Exception Handlin	ng - Types of Exception - Control Flow in Exceptions -	Use d	of tr	/. ca	tch.			
finally, throw, thro	ws in Exception Handling - User defined exceptions.		•	, ,	,			
Module:6 IO St	reams and Files			2	hou	urs		
Java I/O streams	s – FileInputStream & FileOutputStream – FileRe	ader	&	File	Writ	er-		
DataInputStream	& DataOutputStream – BufferedInputStream & Buffe	eredC	utp	utStr	ean	– ו		
PrintOutputStream	- Serialization and Deserialization.							
Module:7 Colle	Module:7 Collection Framework 2 hours							
Generic classes and methods - Collection framework: List and Map.								
	Total Lecture hours:			15	hou	urs		
Text Book(s)								
1 V Depiel Liene "Introduction to Jove pregramming" comprehensive version 44 th								
Edition Pearson publisher 2017								
Reference Books								
1. Herbert Schild	t . The Complete Reference -Java. Tata McGraw-Hill	oublis	sher	. 10 ^t	h			
Edition. 2017				,				
2 Cay Horstma	nn,"Big Java", 4th edition, John Wilev & Sons publishe	, 5 th	edit	ion.	201	5		
3 E.Balagurusa	my, "Programming with Java", Tata McGraw-Hill publis	hers	, 6 th	edit	ion,			
2019	· ·			<u> </u>				

Mode of Evaluation: No separate evaluation for theory component.

Indicative Experiments

- Programs using sequential and branching structures. 1.
- Experiment the use of looping, arrays and strings. 2.
- 3. Demonstrate basic Object-Oriented programming elements.
- 4. Experiment the use of inheritance, polymorphism and abstract classes.
- 5. Designing packages and demonstrate exception handling.
- 6. Demonstrate the use of IO streams, file handling and serialization.
- 7. Program to discover application of collections. Total Laboratory Hours | 60 hours

Text Book(s)

1.	Marc Loy, Patrick Niemeyer and Daniel Leuck, Learning Java, O'Reilly Media, Inc., 5 th Edition, 2020.

Reference Books

1.	Dhruti Shah, 100+ Solutions in Java: A Hands-On Introduction to Programming in
	Java, BPB Publications, 1 st Edition, 2020.

Mode of assessment: Continuou	us assessments and FAT
-------------------------------	------------------------

Mode of assessment: Continuous assessments and FAT					
Recommended by Board of Studie	es	03.07.2021			
Approved by Academic Council No. 63		Date	23.09.2021		

BCSE202L		L	T	Ρ	C	
Dre requisite	NII		3 Ilah		<u> </u>	3
Pre-requisite		<u> </u>			/ers	ION
Course Objective				1.0		
1 To impart basi	c concents of data structures and algorithms					
2 To differentiate	linear non-linear data structures and their operations					
3 To comprehen	d the necessity of time complexity in algorithms					
Course Outcome	lS					
On completion of	this course, students should be able to:					
1. Understand the	e fundamental analysis and time complexity for a given	prob	lem			
2. Articulate linea	r, non-linear data structures and legal operations perm	itted	on t	hem	۱.	
3. Identify and ap	ply suitable algorithms for searching and sorting.					
4. Discover vario	us tree and graph traversals.					
5. Explicate hash	ing, heaps and AVL trees and realize their applications					
•						
Module:1 Algor	ithm Analysis			8	3 ho	urs
Importance of alg	orithms and data structures - Fundamentals of algorit	ihm a	anal	ysis:	: Sp	ace
and time complex	tity of an algorithm, Types of asymptotic notations and	d ord	lers	of g	jrow	∕th –
Algorithm efficien	cy – best case, worst case, average case - Analysis c	of noi	n-re	curs	ive	and
recursive algorith	nms - Asymptotic analysis for recurrence relation	: Ite	ratio	n I	Veth	۱od,
Substitution Meth	od, Master Method and Recursive Tree Method.					
Module:2 Linea	r Data Structures			7	<u>/ ho</u>	urs
Arrays: 1D and 2	D array- Stack - Applications of stack: Expression Evalu	atior	1, Co	onve	ersio	'n
of Infix to postfix	and prefix expression, Tower of Hanoi – Queue -	Type	es o	it Q	ueue	ə:
Circular Queue, L	Pouble Ended Queue (deQueue) - Applications – List:	Singl	ly lir	iked	list	s,
Doubly linked lists	, Circular linked lists- Applications: Polynomial Manipu	lation	<u>า.</u>		7 1	
Nodule:3 Searc	Ching and Sorting				/ no	urs
Searching, Linear	search and binary search – Applications.	cort	Ма	rao	cord	ł
Analysis of sorting	algorithms	SOIL	, we	ige	SOL	. –
					a ho	lire
Introduction - Bin	any Tree: Definition and Properties - Tree Traversals-	Evn	roes	sion		08:-
Binary Search Tr	es - Operations in BST: insertion deletion finding m	uin ai	nd n	nav	find	dina
the k th minimum e	lement	ini ai		ιαλ,	TH IC	Jing
Module:5 Grap	hs			(a ha	urs
Terminology – R	epresentation of Graph – Graph Traversal: Breadth	First	Sea	arch	(BF	
Depth First Sear	ch (DFS) - Minimum Spanning Tree: Prim's, Kruska	al's -	Sin	ale	Soi	urce.
Shortest Path: Diikstra's Algorithm.						
Module:6 Hash	ing			4	1 ho	urs
Hash functions -	Separate chaining - Open hashing: Linear probing,	Qua	adra	tic r	orob	ing,
Double hashing -	Closed hashing - Random probing - Rehashing - Exter	ndible	e ha	shin	g.	0,
Module:7 Heap	s and AVL Trees			ļ	5 ho	urs
Heaps - Heap sor	t- Applications -Priority Queue using Heaps. AVL trees	: Ter	min	olog	y, ba	asic
operations (rotation	on, insertion and deletion).					
Module:8 Conte	emporary Issues			2	<u>2 ho</u>	urs
	— / •• / •					
	Total Lecture hours:			4) ho	urs
Text Book						
1. Mark A. Wei	ss, Data Structures & Algorithm Analysis in C++,	1 th Eo	ditio	n, 2	013	,
Pearson Edu	cation					

Ret	Reference Books							
1.	Alfred V. Aho, Jeffrey D. Ullman and John E. Hopcroft, Data Structures and Algorithms,							
	1983, Pearson Education.							
2.	Horowitz, Sahni and S. Anderso 2 nd Edition, Universities Press.	on-Freed, Funda	mentals of	f Data Structures in C, 2008,				
3.	Thomas H. Cormen, C.E. Le Algorithms, 2009, 3 rd Edition, MI	iserson, R L. F T Press.	Rivest an	d C. Stein, Introduction to				
Мо	Mode of Evaluation: CAT, Assignment, Quiz and FAT							
Re	Recommended by Board of Studies 04-03-2022							
Ар	proved by Academic Council	No. 65	Date	17-03-2022				

BCS	BCSE202P Data Structures and Algorithms Lab L T P 0						С			
				<u> </u>			0	0	2	1
Pre-	-requisite	NIL				Syll	abu	s v	ersi	on
								1.0		
Cou	rse Objectiv	es								
1.	 To impart basic concepts of data structures and algorithms. 									
2	To differentiat	te linear, non-linear da	ata structures	and their	operations					
3	To comprehe	nd the necessity of tim	ne complexity	in algorith	ims.					
Cou	rse Outcom	es								
On o	completion of	this course, students	should be abl	e to:						
1. A	pply appropria	ate data structures to	find solutions	to practic	al problem	s.				
2. Id	lentify suitable	e algorithms for solvin	g the given pr	oblems.						
L										
Indi	cative Exper	iments								
1.	Implementa	tion of stack data struc	cture and its a	pplication	IS					
<u>Z.</u>	Implementa	tion of queue data struc	cture and its ap	oplications	S					
3.	Implementa	tion linked list and its	application							
4.	Implementa	tion of searching algo	ritnms							
<u>р</u> .	Implementa	tion of sorting algorith	ms							
0.	Binary Tree	haversal implementa								
1. 0	Croph Trow	ch free implementatio	orch and Proc	dth Eirot	Soorob ala	orithr				
0.	Minimum Sr	ersal – Deptit First Se	and Kruckol's		Search alg	onum	1			
9.	Single Sour	co Shortest Dath Algo	rithm - Diiketr	a's algorit	hm					
10.		ce Shorlest Fath Aigo		a s aigunt Total I ai	oratory H	oure	30	ho	ure	
Τογ	t Book				Jonatory II	ours	1 30	110	uis	
1	Mark A We	iss. Data Structures &	Algorithm An	alvsis in (2++ 2013	4 th Ec	litior	n		
'.	Pearson		, agonann , an		5, 2010,			۰,		
Reference Books										
1.	Alfred V. Ah	o, Jeffrey D. Ullman a	and John E. F	lopcroft, D	Data Struct	ures a	and			
	Algorithms, 1983, Pearson Education.									
2.	Horowitz, Sahni and S. Anderson-Freed, Fundamentals of Data Structures in C. 2008.									
	2 nd Edition,	Universities Press.								
3.	3. Thomas H. Cormen, C.E. Leiserson, R L. Rivest and C. Stein, Introduction to									
Algorithms, 2009, 3 rd Edition, MIT Press.										
Moc	le of assessi	ment: Continuous ass	essments and	d FAT.						
Rec	ommended b	y Board of Studies	04-03-2022							
Approved by Academic Council No. 65 Date 17-03-2022										

BCSE204L	Design and Analysis of Algorithms		L	Т	Ρ	С	
			3	0	0	3	
Pre-requisite	NIL	S	ylla	bus	vers	ion	
	-			1.()		
Course Object							
1. To provide m	hathematical foundations for analyzing the complexity of the alg	orithm	IS rool	worl	Ч		
problems effect	2. To impart the knowledge on various design strategies that can help in solving the real world						
3. To synthesiz	ze efficient algorithms in various engineering design situations						
Course Outco	mes						
On completion	of this course, student should be able to:						
1. Apply the n	nathematical tools to analyze and derive the running time of the	algori	ithm	s			
2. Demonstra	te the major algorithm design paradigms.						
3. Explain ma	jor graph algorithms, string matching and geometric algorithms	along	with	the	ir		
analysis.							
4. Articulating	Randomized Algorithms.						
5. Explain the	hardness of real-world problems with respect to algorithmic eff	iciency	y an	d lea	arnin	g to	
cope with it	•						
Madulard	Assian Devediance Cready Divide and Congress				<u> </u>		
	esign Paradigms: Greedy, Divide and Conquer				6 N	ours	
	echniques						
Overview and	Importance of Algorithms - Stages of algorithm development: I	Descri	ibing	g the	prob	olem,	
Identifying a	suitable technique, Design of an algorithm, Derive Time	Com	ple>	city,	Proc	of of	
Correctness of	the algorithm, Illustration of Design Stages - Greedy technique	es: ⊢ra	actic	nal feet	Knap	sack	
multiplication a	acrithm	araisi	upa	last	er in	leger	
Module:2	Jesign Paradigms: Dynamic Programming, Backtracking				10 h	ours	
	nd Branch & Bound Techniques				10 11	ouro	
Dynamic prog	amming: Assembly Line Scheduling, Matrix Chain Multiplica	tion, l	Long	gest	Corr	imon	
Subsequence,	0-1 Knapsack, TSP- Backtracking: N-Queens problem, Subse	t Sum	ı, Gi	aph	Colo	oring-	
Branch & Boun	d: LIFO-BB and FIFO BB methods: Job Selection problem, 0-1	Knaps	sack	Pro	blem	1	
Madula:2	the Matching Algorithms				5 6		
Noïvo String m	atching Matching Algorithms	iv Troc	20		эn	ours	
Module:4 (aconing Algorithms, KMF algorithm, Kabin-Kaip Algorithm, Sum	IX TIEE	55.		6 h	ours	
All pair shorte	st path: Bellman Ford Algorithm Floyd-Warshall Algorithm	- Netv	vork	Flo	ws:	Flow	
Networks, Max	imum Flows: Ford-Fulkerson, Edmond-Karp, Push Re-label Al	gorithr	n –	App	licati	on of	
Max Flow to ma	aximum matching problem	0		•••			
Module:5 C	Geometric Algorithms				4 h	ours	
Line Segments	: Properties, Intersection, sweeping lines - Convex Hull findin	g algo	orith	ms:	Grah	am's	
Scan, Jarvis' M	Scan, Jarvis' March Algorithm.						
Nodule:6	andomized algorithms				5 N	ours	
Module:7	lick soft - The hinning problem - Finding the global Minimum Cut.				7 h	oure	
	laorithms				7 11	ours	
The Class P -	The Class NP - Reducibility and NP-completeness – SAT (Proble	em	Defir	nition	and	
statement), 3S	AT, Independent Set, Clique, Approximation Algorithm – Verte	x Cov	er, S	Set C	Cove	r and	
Travelling sales	sman						
Module:8 C	Contemporary Issues				2 h	ours	
 	Tabel 1 and and 1 and				45 1		
	lotal Lecture hours:				45 N	ours	
Text Book	I						
1. Thomas H	. Cormen, C.E. Leiserson, R L.Rivest and C. Stein, Introduction	to Alg	gorit	hms	, Thi	rd	
edition, MIT Press, 2009.							

Reference Books							
1.	Jon Kleinberg and ÉvaTardos, Algorithm Design, Pearson Education, 1 st Edition, 2014.						
2.	Rajeev Motwani, Prabhakar Raghavan; Randomized Algorithms, Cambridge University Press,						
	1995 (Online Print – 2013)						
3.	Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin, Network Flows: Theory,						
	Algorithms, and Applications, 1 st Edition, Pearson Education, 2014.						
Мо	Mode of Evaluation: CAT, Written assignments, Quiz, FAT.						
Recommended by Board of Studies 04-03-2022							
Approved by Academic Council No. 65 Da			Date	17-03-2022			

BCSE204	1P	Design and Analysis of Algorithms Lab		L	Т	Ρ	С
				0	0	2	1
Pre-requ	isite	Nil	Sy	llab	us v	/ersi	ion
-					1.0		
Course C	Course Objectives						
1. To pro	vide mat	hematical foundations for analyzing the complexity of the second	the alg	gorit	hms	;	
2. To imp	art the k	nowledge on various design strategies that can help ir	ı solvi	ng tł	ne re	eal	
world pro	blems ef	fectively					
3. Synthe	esize effi	cient algorithms in various engineering design situatio	ns				
Course C	Dutcome) 					
On comp	letion of	this course, student should be able to:					
1. Demor	istrate th	e major algorithm design paradigms.		-			
2. Explair	n major g	raph algorithms, string matching and geometric algori	thms	alon	g wi	th th	eir
analysis.							
les all'es a fins							
		ments					
1. Gre	edy Stra	tegy : Activity Selection & Huffman coding	+ C =				
2. Dyn	amic Pro	Degramming : ALS, Matrix Chain Multiplication, Longes	t Con	nmor	1		
	sequences and C	e, U-T Knapsack			n lin	-	
	ue and C	conquer : Maximum Subarray and Karalsuba laster int	egeri	nulu	plica	ation	1
	oritnin ktrookiov	N N guagoo					
4. Bac	ktrackinę	J: N-queens Bound: Job coloction					
Dial	ich and	bound, Job Selection					
	Ig match	ning algorithms . Naive, KiviP and Rabin Karp, sunix tre	es				
7 IVIO 9 Not		pair shortest path algorithms					
0 Into	reaction	of line segments & Finding Converbull Finding closes	tnair	ofno	vinte		
	nomial t	ime algorithm for verification of NPC problems	ιμαι	oi pe	лпе	>	
10 FOIS	rovimati	and Randomized algorithms					
	IUNITIALI	Total Laboratory H	ours	30	Hoi	ire	
			Juia	50		113	
Text Boo	k						
1 Tho	mas H (Cormen C.F. Leiserson R.I. Rivest and C. Stein Intro	ductio	on to			
	prithms	Third edition. MIT Press. 2009.	33011				
Reference Books							
1 Jon	Kleinbei	g and ÉvaTardos, Algorithm Design, Pearson Educati	on. 1 ^s	^{it} Edi	tion	, 20	14.
2. Raie	ev Motv	vani. Prabhakar Raghavan: Randomized Algorithms. (Cambi	idae	Un	ivers	sitv
Pres	ss, 1995	(Online Print – 2013)		3.			,
3. Rav	indra K	Ahuja, Thomas L. Magnanti, and James B. Orlin, Net	vork F	lows	s: Tl	heor	у,
Algo	Algorithms, and Applications, 1 st Edition, Pearson Education, 2014.						
Mode of	Mode of assessment: Continuous assessments, FAT.						
Recomm	ended by	/ Board of Studies 04-03-2022					
Approved	by Acad	demic Council No. 65 Date 17-03-	2022				

BCSE205L	Computer Architecture and Organization		Т	Ρ	С		
		3	0	0	3		
Pre-requisite	NIL	Syllab	ous \	/ersi	on		
			1.0)			
Course Objectiv	Course Objectives						
 To acquaint students with the basic concepts of fundamental component, architecture, register organization and performance metrics of a computer and to impart the knowledge of data representation in binary and to understand the implementation of arithmetic algorithms in a typical computer. To teach students how to describe machine capabilities and design an effective data path design for instruction execution. To introduce students to syntax and semantics of machine level programming. To make students understand the importance of memory systems, IO interfacing techniques and external storage and their performance metrics for a typical computer. And explore various alternate techniques for improving the performance of a processor. 							
Course Outeer							
Course Outcom	es						
 On completion of this course, student should be able to: 1. Differentiate Von Neumann, Harvard, and CISC and RISC architectures. Analyze the performance of machine with different capabilities. Recognize different instruction formats and addressing modes. Validate efficient algorithm for fixed point and floating point arithmetic operations. 2. Explain the importance of hierarchical memory organization. Able to construct larger memories. Analyze and suggest efficient cache mapping technique and replacement algorithms for given design requirements. Demonstrate hamming code for error detection and correction. 3. Understand the need for an interface. Compare and contrast memory mapping and IO mapping techniques. Describe and Differentiate different modes of data transfer. Appraise the synchronous and asynchronous bus for performance and arbitration. 4. Assess the performance of IO and external storage systems. Classify parallel machine models. Analyze the pipeline hazards and solutions. 							
Module:1 Introduction To Computer Architecture and Organization 5 Hours							
Overview of Organization and Architecture –Functional components of a computer: Registers and register files - Interconnection of components - Overview of IAS computer function - Organization of the von Neumann machine - Harvard architecture - CISC & RISC Architectures.							
Module:2 Data Representation and Computer Arithmetic 5 Hours							
Algorithms for fixed point arithmetic operations: Multiplication (Booths, Modified Booths), Division (restoring and non-restoring) - Algorithms for floating point arithmetic operations - Representation of nonnumeric data (character codes).							

Module:3	Instruction Sets and Control Unit	9 Hours				
Computer Instructions: Instruction sets, Instruction Set Architecture, Instruction formats,						
Instruction set categories - Addressing modes - Phases of instruction cycle - ALU - Data-						
path and co	path and control unit: Hardwired control unit and Micro programmed control unit -					
Performance	metrics: Execution time calculation, MIPS, MFLOPS.					
Module:4	Memory System Organization and Architecture	7 Hours				
Memory syst	ems hierarchy: Characteristics, Byte Storage methods, Conc	eptual view of				
memory cell - Design of scalable memory using RAM's- ROM's chips - Construction of larger						
size memories - Memory Interleaving - Memory interface address map- Cache memory:						
principles, Ca	iche memory management techniques, Types of caches, caches	s misses, Mean				

memory access time evaluation of cache.

Module:5 Interfacing and Communication	5 Hours						
I/O fundamentals: handshaking, buffering, I/O Modules - I/O techniques: Pro	ogrammed I/O,						
Interrupt-driven I/O, Direct Memory Access, Direct Cache Access - Interr	rupt structures:						
Vectored and Prioritized-interrupt overhead - Buses: Synchronous and asynchronous -							
Arbitration.							
Module:6 Subsystems	5 Hours						
External storage systems: Solid state drivers - Organization and Structure	of disk drives:						
Electronic- magnetic and optical technologies - Reliability of memory sy	ystems - Error						
detecting and error correcting systems - RAID Levels - I/O Performance							
Module:7 High Performance Processors	7 Hours						
Classification of models - Flynn's taxonomy of parallel machine models (SISE	D, SIMD, MISD,						
MIMD) - Pipelining: Two stages, Multi stage pipelining, Basic performa	ance issues in						
pipelining, Hazards, Methods to prevent and resolve hazards and their	r drawbacks -						
Approaches to deal branches - Superscalar architecture: Limitations of so	calar pipelines,						
superscalar versus super pipeline architecture, superscalar techniques	, performance						
evaluation of superscalar architecture - performance evaluation of paral	lel processors:						
Amdani's law, speed-up and efficiency.							
Modulo:8 Contemporary Issues							
Module.o Contemporary issues	2 Hours						
	2 Hours						
Total Lecture Hours	2 Hours						
Total Lecture Hours	2 Hours 45 Hours						
Total Lecture Hours Text Book(s) 1 David A. Patterson and John L. Hennessy. Computer Organization and Definition and	2 Hours 45 Hours						
Total Lecture Hours Text Book(s) 1 David A. Patterson and John L. Hennessy, Computer Organization and Determination Hardware / Software Interface 6 th Edition, Morgan Kaufmann, 2020	2 Hours 45 Hours esign -The						
Total Lecture Hours Text Book(s) 1 David A. Patterson and John L. Hennessy, Computer Organization and De Hardware / Software Interface 6 th Edition, Morgan Kaufmann, 2020 Reference Book(s)	2 Hours 45 Hours esign -The						
Total Lecture Hours Text Book(s) 1 David A. Patterson and John L. Hennessy, Computer Organization and Dege Hardware / Software Interface 6 th Edition, Morgan Kaufmann, 2020 Reference Book(s) 1 Computer Architecture and Organization-Designing for Performance. Willia	2 Hours 45 Hours esign -The am Stallings.						
Total Lecture Hours Text Book(s) 1 David A. Patterson and John L. Hennessy, Computer Organization and De Hardware / Software Interface 6 th Edition, Morgan Kaufmann, 2020 Reference Book(s) 1 Computer Architecture and Organization-Designing for Performance, Willia Tenth edition, Pearson Education series, 2016	2 Hours 45 Hours esign -The am Stallings,						
Total Lecture Hours Text Book(s) 1 David A. Patterson and John L. Hennessy, Computer Organization and De Hardware / Software Interface 6 th Edition, Morgan Kaufmann, 2020 Reference Book(s) 1 Computer Architecture and Organization-Designing for Performance, Willia Tenth edition, Pearson Education series, 2016 2 Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer organization, M	2 Hours 45 Hours esign -The am Stallings, Ic Graw Hill,						
Total Lecture Hours Text Book(s) 1 David A. Patterson and John L. Hennessy, Computer Organization and Determination Hardware / Software Interface 6 th Edition, Morgan Kaufmann, 2020 Reference Book(s) 1 Computer Architecture and Organization-Designing for Performance, Willia Tenth edition, Pearson Education series, 2016 2 Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer organization, M Fifth edition, Reprint 2011.	2 Hours 45 Hours esign -The am Stallings, Ic Graw Hill,						
Total Lecture Hours Text Book(s) 1 David A. Patterson and John L. Hennessy, Computer Organization and De Hardware / Software Interface 6 th Edition, Morgan Kaufmann, 2020 Reference Book(s) 1 Computer Architecture and Organization-Designing for Performance, Willia Tenth edition, Pearson Education series, 2016 2 Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer organization, M Fifth edition, Reprint 2011. Mode of Evaluation: CAT, Written Assignments, Quiz and FAT.	2 Hours 45 Hours esign -The am Stallings, Ic Graw Hill,						
Total Lecture Hours Text Book(s) 1 David A. Patterson and John L. Hennessy, Computer Organization and De Hardware / Software Interface 6 th Edition, Morgan Kaufmann, 2020 Reference Book(s) 1 Computer Architecture and Organization-Designing for Performance, Willia Tenth edition, Pearson Education series, 2016 2 Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer organization, M Fifth edition, Reprint 2011. Mode of Evaluation: CAT, Written Assignments, Quiz and FAT. Recommended by Board of Studies 04-03-2022	2 Hours 45 Hours esign -The am Stallings, Ic Graw Hill,						

BCSE301L Software Engineering L T P						С		
				3	0	0	3	
Pre-requis	ite	NIL	Sy	llabı	us v	ersi	on	
					1.0			
Course Ob	ojective	9S						
1. To introduce the essential Software Engineering concepts.								
2. To impai	2. To impart concepts and skills for performing analysis, design develop, test and evolve							
efficient sof	tware s	systems of various disciplines and applications						
3. Tomake	familia	ar about engineering practices, standards and metrics for	or de	velo	ping	J		
software cor	mponents	and products.						
Course Ou	Itcome	S						
On complet	tion of	this course, student should be able to:						
1. App	ly and	l assess the principles of various process model	s fo	r th	e s	oftw	are	
	elopme	ent. No various software project management activities the	nt ind	Juda	ام م	annir	20	
Z. Den Esti	mation	s Risk assessment and Configuration Management	at int	Juue	s hig		ıy,	
3. Perf	form R	equirements modelling and apply appropriate design a	nd te	estin	a he	euris	tics	
to p	roduce	quality software systems.			0			
4. Den	nonstra	ate the complete Software life cycle activities from requ	iirem	ents	ana	alysi	s to	
maii	ntenan	ce using the modern tools and techniques.						
5. Esc	alate t	he use of various standards and metrics in evaluati	ng tr	ne p	roce	ess a	and	
proc	JUCI.							
Module:1	Over	view Of Software Engineering				6 ho	urs	
Nature of S	oftwar	e. Software Engineering. Software process, project, pro	oduct	. Pro	oces	s		
Models		-,		,				
Classical E	volutic	nary models, Introduction to Agility - Agile Process-Ex	ktrem	ie pr	ogra	amm	iing	
- XP Proce	ss – P	rinciples of Agile Software Development framework -	Over	view	/ of	Syst	em	
Engineering	9							
Module:2	Intro	duction To Software Project				6 ho	urs	
Diamaina (Mana	gement	<u> </u>	4	4 5	1	+	
- (Human	Resou	rces Time-scale Costs) Risk Management RMMM F	COS Plan					
Agile Proje	ect Ma	nagement Managing team dynamics and communi	icatio	n N	J∟ ∕letr	ics a	and	
Measureme	ent		oano	•••, •			2110	
Module:3	Mode	Iling Requirements			8	3 ho	urs	
Software re	equirer	nents and its types, Requirements Engineering pro	oces	s, R	lequ	irem	ent	
Elicitation,	Syster	n Modeling - Requirements Specification and Req	uiren	nent	Va	lidati	on,	
Requireme	Requirements Elicitation techniques, Requirements management in Agile.							
Module:4	Softw	/are Design			8	3 ho	urs	
Design con	cepts a	and principles - Abstraction - Refinement - Modularity C	Cohes	sion	cou	pling	J,	
Architectura	al desig	gn, Detailed Design Transaction Transformation, Refac	torin	g of	des	igns	,	
Module:5	Valid	ation And Verification				<u>7 ho</u>	urs	
Strategic A	pproac	h to Sottware Testing, Testing Fundamentals Test Pla	n, Te	st D	esig	n, T	est	
Execution,		ws, inspection and Auditing – Regression Testing –	- Mul	atio	n I Mal	estin aile 4	g -	
	and to	coung - resume web based System - Mobile App to ools – DevOps Testing – Cloud and Rig Data Testing	ະວິດແມ່	J —	IVIU	JIIG	.ઌઙા	
		Sin Deveperreating cloud and big bata realing						
Module:6	Softw	vare Evolution			4	4 ho	urs	

Software Maintenance, Types of Maintenance, - Software Configuration Management – Overview – SCM Tools. Re-Engineering, Reverse Engineering, Software Reuse

Module:7	Quality Assurance				4 hours	
Product and Process Metrics, Quality Standards Models ISO, TQM, Six-Sigma, Process						
improvem	ent Models: CMM & CM	MI. Quality Con	trol and	Quality Ass	surance - Quality	
Management - Quality Factors - Methods of Quality Management						
Module:8 Contemporary Issues		2 hours				
Total Lecture hours:				45 hours		
Text Boo	k(s)					
1. Ian S	omerville, Software Engine	ering, 10 th Editior	n, Addison	-Wesley, 20)15	
Referenc	e Books					
1. Roge	1. Roger S. Pressman and Bruce R. Maxim, Software Engineering: A Practitioner's					
Approach, 10 th edition, McGraw Hill Education, 2019						
2. Willia	2. William E. Lewis, Software Testing and Continuous Quality Improvement, Third Edition,					
Auerbach Publications, 2017						
Mode of Evaluation: CAT, Written assignment, Quiz, FAT.						
Recommended by Board of Studies 04-03-2022						
Approved by Academic Council No. 65 Date 17-03-2022						

O O						
Pre-requisite NIL Syllabus version 1.0 1.0 Course Objectives 1. To introduce the essential Software Engineering concepts. 2. To impart concepts and skills for performing analysis, design develop, test and evolve efficient software systems of various disciplines and applications 3. To make familiar about engineering practices, standards and metrics for developing software components and products. Course Outcome On completion of this course, student should be able to:						
1.0 Course Objectives 1. To introduce the essential Software Engineering concepts. 2. To impart concepts and skills for performing analysis, design develop, test and evolve efficient software systems of various disciplines and applications 3. To make familiar about engineering practices, standards and metrics for developing software components and products. Course Outcome On completion of this course, student should be able to:						
 Course Objectives To introduce the essential Software Engineering concepts. To impart concepts and skills for performing analysis, design develop, test and evolve efficient software systems of various disciplines and applications To make familiar about engineering practices, standards and metrics for developing software components and products. Course Outcome On completion of this course, student should be able to: 						
 To introduce the essential Software Engineering concepts. To impart concepts and skills for performing analysis, design develop, test and evolve efficient software systems of various disciplines and applications To make familiar about engineering practices, standards and metrics for developing software components and products. Course Outcome On completion of this course, student should be able to:						
 To impart concepts and skills for performing analysis, design develop, test and evolve efficient software systems of various disciplines and applications To make familiar about engineering practices, standards and metrics for developing software components and products. Course Outcome On completion of this course, student should be able to:						
efficient software systems of various disciplines and applications 3. To make familiar about engineering practices, standards and metrics for developing software components and products. Course Outcome On completion of this course, student should be able to:						
 To make familiar about engineering practices, standards and metrics for developing software components and products. Course Outcome On completion of this course, student should be able to: 						
Software components and products. Course Outcome On completion of this course, student should be able to:						
Course Outcome						
Course Outcome						
()n completion of this course, student should be able to:						
Chi completion of this course, student should be able to.						
1. Demonstrate the complete Software life cycle activities from requirements						
analysis to maintenance using the modern tools and techniques.						
Indicative Experiments						
1. Analysis and Identification of the suitable process models						
2. Work Break-down Structure (Process Based, Product Based, Geographic						
Based and Role Based) and Estimations						
3. Requirement modelling using Entity Relationship Diagram(Structural Modeling)						
4. Requirement modelling using Context flow diagram, DFD (Functional Modeling)						
5. Requirement modelling using State Transition Diagram (Behavioral Modeling)						
6. OO design – Use case Model, Class Model						
7. OO design – Interaction Models						
8. OO design – Package, Component and deployment models						
9. Design and demonstration of test cases. Functional Testing and Non- Functional						
lesting (using any open source tools)						
10. Story Boarding and User Interface design Modelling						
Total Laboratory Hours 30 nours						
1 Ion Somerville, Software Engineering, 10 th Edition, Addison Wesley, 2015						
1. Ian Somerville, Software Engineering, 10" Edition, Addison-Wesley, 2015						
Reference books 1 Description of Drugo D. Moving Cofficient A. Drugtific and Statements						
Approach 10 th edition McGraw Hill Education 2019						
2 William F Lewis Software Testing and Continuous Quality Improvement Third						
Edition.						
Auerbach Publications. 2017						
Mode of assessment: Continuous assessments. FAT.						
Recommended by Board of Studies 04-03-2022						
Approved by Academic Council No. 65 Date 17-03-2022						

BCSE302L	Database Systems	L T P C			
		3 0 0 3			
Pre-requisite	NIL	Syllabus version			
		1.0			
Course Objectiv	05	1.0			
1 To understand	the concents of File system and structure	of the database: Designing an			
Entity-Relationship model for a real-life application and Mapping a database schema					
from the ER m	nodel.	mapping a database conoma			
2. To differentiat	e various normal forms, evaluate relationa	al schemas for design qualities			
and optimize a	a query.	0 1			
3. To impart tl	ne working methodologies of transacti	on management, understand			
concurrency of	control, recovery, indexing, access metho	ods and fundamental view on			
unstructured c	lata and its management.				
Course Outeers					
Course Outcom	es				
1 Comprehend	this course, student should be able to:	in an organization and design			
the structure :	and operation of the relational data model	In an organization and design			
2 Develop a d	atabase project depending on the busin	ess requirements considering			
various desig	n issues.				
3. List the conce	pts of indexing and accessing methods.				
4. Explain the co	oncept of a database transaction processin	g and comprehend the concept			
of database fa	acilities including concurrency control, backu	up and recovery.			
5. Review the	fundamental view on unstructured data	and describe other emerging			
database tech	inologies.				
	have Sustance Concepts and				
MADULA'I LISTS	naco Svetome Lonconte and	1 hours			
Module:1 Data	itecture	4 hours			
Module:1 Data Arch Need for datab	itecture – Characteristics of Datab	4 hours ase Approach – Advantages of			
Need for datab using DBMS ap	itecture ase systems – Characteristics of Datab pproach - Actors on the Database M	4 hours ase Approach – Advantages of lanagement Scene: Database			
Module:1 Data Arch Need for datab using DBMS ap Administrator - C	itecture ase systems – Characteristics of Datab pproach - Actors on the Database M assification of database management syste	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas			
Module:1 Data Arch Need for datab using DBMS ap Administrator - C and Instances -	itecture ase systems – Characteristics of Datab oproach - Actors on the Database M lassification of database management syste Three-Schema Architecture - The Data	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment -			
Module:1 Data Arch Need for datab using DBMS ap Administrator - Cl and Instances - Centralized and	itecture ase systems – Characteristics of Datab oproach - Actors on the Database M assification of database management syste Three-Schema Architecture - The Data Client/Server Architectures for DB	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of			
Module:1 Data Arch Need for datab using DBMS ap Administrator - C and Instances - Centralized and Database Manag	itecture ase systems – Characteristics of Datab oproach - Actors on the Database M assification of database management syste Three-Schema Architecture - The Data Client/Server Architectures for DBI ement Systems	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of			
Module:1 Data Arch Need for datab using DBMS ap Administrator - Cl and Instances - Centralized and Database Manag Module:2 Rela	itecture ase systems – Characteristics of Datab oproach - Actors on the Database M lassification of database management syste Three-Schema Architecture - The Data I Client/Server Architectures for DB ement Systems itional Model and E-R Modeling	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours			
Module:1 Data Arch Need for datab using DBMS ap Administrator - C and Instances - Centralized and Database Manag Module:2 Rela Relational Model	itecture ase systems – Characteristics of Datab oproach - Actors on the Database M assification of database management syste Three-Schema Architecture - The Data Client/Server Architectures for DBI ement Systems itional Model and E-R Modeling : Candidate Keys, Primary Keys, Foreign	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of <u>6 hours</u> Keys - Integrity Constraints - of Attributes Pelationships			
Module:1 Data Arch Need for datab using DBMS ap Administrator - Cl and Instances - Centralized and Database Manag Module:2 Rela Relational Model Handling of Null Structural Constr	base Systems Concepts and itecture	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of <u>6 hours</u> Keys - Integrity Constraints - of Attributes, Relationships, poing FR model to a relational			
Module:1 Data Arch Need for datab using DBMS ap Administrator - Cl and Instances - Centralized and Database Manag Module:2 Rela Relational Model Handling of Null Structural Constr schema – Extend	itecture ase systems – Characteristics of Datab oproach - Actors on the Database M lassification of database management syste Three-Schema Architecture - The Data I Client/Server Architectures for DB ement Systems itional Model and E-R Modeling : Candidate Keys, Primary Keys, Foreign s - Entity Relationship Model: Types aints, Relational model Constraints – Mag ed ER Model - Generalization – Specializat	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of <u>6 hours</u> Keys - Integrity Constraints - of Attributes, Relationships, oping ER model to a relational ion – Aggregations,			
Module:1 Data Arch Need for datab using DBMS ap Administrator - C and Instances - Centralized and Database Manag Module:2 Rela Relational Model Handling of Null Structural Constr schema – Extend Module:3 Rela	base Systems Concepts and itecture ase systems Characteristics of Database ase systems – Characteristics of Database M assification of database management system Three-Schema Architecture - The Database Mathematication of database management system Itere-Schema Architecture - The Database Itere-Schema Architectures for DBt Database Itere-Schema Architectures for DBt DBt	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours Keys - Integrity Constraints - of Attributes, Relationships, pping ER model to a relational ion – Aggregations. 6 hours			
Module:1 Data Arch Need for datab using DBMS ap Administrator - C and Instances - Centralized and Database Manag Module:2 Rela Relational Model Handling of Null Structural Constr schema – Extend Module:3 Rela	base Systems Concepts and itecture ase systems Characteristics of Datab ase systems - Characteristics of Datab poroach - Actors on the Database M assification of database management system - Three-Schema Architecture - The Database Three-Schema Architecture - The Database M client/Server Architectures for DBI ement Systems - Total Model and E-R Modeling tional Model and E-R Modeling - Scheidel - Generalization - Specializat s - Entity Relationship Model: Types aints, Relational model Constraints - Maged - Maged ed ER Model - Generalization - Specializat - Specializat tional Database Design - - Schema Refinement - Guidelines for F	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours Keys - Integrity Constraints - of Attributes, Relationships, pping ER model to a relational ion – Aggregations. 6 hours Relational Schema - Functional			
Module:1 Data Arch Need for datab using DBMS ap Administrator - Cl and Instances - Centralized and Database Manag Module:2 Rela Relational Model Handling of Null Structural Constr schema – Extend Module:3 Rela Database Design dependencies -	base Systems Concepts and itecture ase systems Characteristics of Datab ase systems – Characteristics of Datab oproach - Actors on the Database M assification of database management system Three-Schema Architecture - The Database Massification of database management system Itere-Schema Architecture - The Database Itere-Schema Mathematication Specializat Itere-Schema Mathematication Mathematication Mathematication Itere-Schema Mathematication Mathematication Mathematication Itere-Schema Architecture - Mathematication Mathematication Itere-Schema Architecture - Genera	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours Keys - Integrity Constraints - of Attributes, Relationships, oping ER model to a relational ion – Aggregations. 6 hours Relational Schema - Functional ormalization: First, Second and			
Module:1DataArchNeed for databusing DBMS apAdministrator - Cland Instances -Centralized andDatabase ManagModule:2RelationalHandling of NullStructural Constrschema – ExtendModule:3RelationalDatabase Designdependencies -Third Normal For	base Systems Concepts and itecture ase systems Concepts and ase systems – Characteristics of Database oproach - Actors on the Database M assification of database management system Three-Schema Architecture - The Database Massification of database management system Three-Schema Architectures for DBtabase Itement Systems - Three-Schema Architectures for DBtabase ement Systems - Architectures for DBtabase itement Systems - Candidate Keys, Primary Keys, Foreign S s - Entity Relationship Model: Types aints, Relational model Constraints – Mage Model - Generalization – Specializat tional Database Design - - Arioms on Functional Dependencies- Norm ms - Boyce Codd Normal Form, Multi-vata <td>4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours Keys - Integrity Constraints - of Attributes, Relationships, pping ER model to a relational ion – Aggregations. 6 hours Relational Schema - Functional ormalization: First, Second and lued dependency and Fourth</td>	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours Keys - Integrity Constraints - of Attributes, Relationships, pping ER model to a relational ion – Aggregations. 6 hours Relational Schema - Functional ormalization: First, Second and lued dependency and Fourth			
Module:1DataArchNeed for databusing DBMS apAdministrator - Cland Instances -Centralized andDatabase ManagModule:2RelaRelational ModelHandling of NullStructural Constrschema – ExtendModule:3RelaDatabase Designdependencies -Third Normal ForNormal form - Joi	base Systems Concepts and itecture ase systems Concepts and ase systems – Characteristics of Datab oproach - Actors on the Database M assification of database management system Three-Schema Architecture - The Database Three-Schema Architecture - The Database Database Itent/Server Architectures for DBI ement Systems - The Database itional Model and E-R Modeling : Candidate Keys, Primary Keys, Foreign s - Entity Relationship Model: Types aints, Relational model Constraints – Mag ed ER Model - Generalization – Specializat tional Database Design – Axioms on	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours Keys - Integrity Constraints - of Attributes, Relationships, pping ER model to a relational ion – Aggregations. 6 hours Relational Schema - Functional prmalization: First, Second and lued dependency and Fourth			
Module:1 Data Arch Need for datab using DBMS ap Administrator - Cl and Instances - Centralized and Database Manag Module:2 Rela Relational Model Handling of Null Structural Constr schema – Extend Module:3 Rela Database Design dependencies - Third Normal For Normal form - Joi	base Systems Concepts and itecture assification Characteristics of Database assification of database management syste Three-Schema Architecture - The Database Itent/Server Architectures for DBI ement Systems - The Database itional Model and E-R Modeling - - : Candidate Keys, Primary Keys, Foreign s - Entity Relationship Model: Types aints, Relational model Constraints - Marged itonal Database Design - - Schema Form, Multi-va m - Schema Refinement - Guidelines for m - Schema Refinement - Guidelines for m - Schema Refinement - Guidelines for m - Schema Refinement - Guidelines for M	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours Keys - Integrity Constraints - of Attributes, Relationships, oping ER model to a relational ion – Aggregations. 6 hours Relational Schema - Functional ormalization: First, Second and lued dependency and Fourth 8 hours			
Module:1 Data Arch Need for datab using DBMS ap Administrator - Cl and Instances - Centralized and Database Manag Module:2 Rela Relational Model Handling of Null Structural Constr schema – Extend Module:3 Rela Database Design dependencies - Third Normal For Normal form - Joi Module:4 Phys	base Systems Concepts and itecture ase systems Characteristics of Datab ase systems Actors on the Database M assification of database management system Three-Schema Architecture The Database d Client/Server Architectures for DBI ement Systems Itional Model and E-R Modeling Itional Model and E-R Modeling : Candidate Keys, Primary Keys, Foreign s s Entity Relationship Model: Types aints, Relational model Constraints – Mage Model - Generalization – Specializat tional Database Design in Axioms on Functional Dependencies- No ms Boyce Codd Normal Form, Multi-va n n dependency and Fifth Normal form Sical Database Design and Query essing Sizela Javade S	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours Keys - Integrity Constraints - of Attributes, Relationships, pping ER model to a relational ion – Aggregations. 6 hours Relational Schema - Functional ormalization: First, Second and lued dependency and Fourth 8 hours			
Module:1DataArchNeed for databusing DBMS apAdministrator - Cland Instances -Centralized andDatabase ManagModule:2RelaRelational ModelHandling of NullStructural Constrschema – ExtendModule:3RelaDatabase Designdependencies -Third Normal ForNormal form - JoiModule:4PhysProcFile Organization	base Systems Concepts and itecture ase systems – Characteristics of Datab ase systems – Characteristics of Datab oproach – Actors on the Database M assification of database management system Three-Schema Architecture – The Database d Client/Server Architectures for DBI ement Systems – Model and E-R Modeling – tional Model and E-R Modeling – Candidate Keys, Primary Keys, Foreign s - Entity Relationship Model: Types aints, Relational model Constraints – Maged ER Model - Generalization – Specializat – maints, Relational model Constraints – Maged ER Model - Generalization – Specializat – maints, Relational model Constraints – Maged ER Model - Generalization – Specializat – maints, Relational model Constraints – Maged ER Model - Generalization – Specializat – maints, Relational model Constraints – Maged ER Model - Generalization – Specializat – maints, Relational model Constraints – Maged ER Model - Generalization – Specializat – maints, Boyce Codd Normal Form, Multi-va –	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours Keys - Integrity Constraints - of Attributes, Relationships, pping ER model to a relational ion – Aggregations. 6 hours Relational Schema - Functional prmalization: First, Second and lued dependency and Fourth 8 hours multi-level indexing, dynamic bit Statio and Dynamic bits is a second and			
Module:1 Data Arch Need for datab using DBMS ap Administrator - Cl and Instances - Centralized Database Manag Module:2 Relational Model Handling of Null Structural Constr schema – Extend Module:3 Relational For Normal form - Joi Module:4 Physe Proc File Organization multilevel Indexin	base Systems Concepts and itecture assification Characteristics of Database assification of database management syste Three-Schema Architecture - The Database Itent/Server Architectures for DBI ement Systems - The Database itional Model and E-R Modeling : Candidate Keys, Primary Keys, Foreign s - Entity Relationship Model: Types aints, Relational model Constraints – Mage ed ER Model - Generalization – Specializat - Mage intonal Database Design - Multi-va n - Schema Refinement - Guidelines for F Axioms on Functional Dependencies- No ms - Boyce Codd Normal Form, ms - Boyce Codd Normal Form, ms - Boyce Codd Normal Form, <t< th=""><td>4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours Keys - Integrity Constraints - of Attributes, Relationships, oping ER model to a relational ion – Aggregations. 6 hours Relational Schema - Functional ormalization: First, Second and lued dependency and Fourth 8 hours multi-level indexing, dynamic es: Static and Dynamic Hashing Relational Algebra - Query</td></t<>	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours Keys - Integrity Constraints - of Attributes, Relationships, oping ER model to a relational ion – Aggregations. 6 hours Relational Schema - Functional ormalization: First, Second and lued dependency and Fourth 8 hours multi-level indexing, dynamic es: Static and Dynamic Hashing Relational Algebra - Query			
Module:1 Data Arch Need for datab using DBMS ap Administrator - Cl and Instances - Centralized and Database Manag Module:2 Rela Relational Model Handling of Null Structural Constr schema – Extend Module:3 Rela Database Design dependencies - Third Normal For Normal form - Joi Module:4 Phys Proc File Organization multilevel Indexin – Relational Alge	base Systems Concepts and itecture ase systems Concepts and ase systems Characteristics of Database M assification of database management system Three-Schema Architecture The Database M assification of database management system The Database M assification of database management system The Database M assification of database management system The Database M assification of database Architectures for DBI ement Systems the Database DBI ement Systems stonal Model: Types aints, Relational model Constraints – Maged Mage e ER Model - Generalization – Specializat Mage Mage Mage a - Schema Refinement - Guidelines for F Axioms on Functional Dependencies- Norms Normal form </th <td>4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours Keys - Integrity Constraints - of Attributes, Relationships, oping ER model to a relational ion – Aggregations. 6 hours Relational Schema - Functional ormalization: First, Second and lued dependency and Fourth 8 hours multi-level indexing, dynamic es: Static and Dynamic Hashing Relational Algebra - Query ptimization: Heuristic guery</td>	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours Keys - Integrity Constraints - of Attributes, Relationships, oping ER model to a relational ion – Aggregations. 6 hours Relational Schema - Functional ormalization: First, Second and lued dependency and Fourth 8 hours multi-level indexing, dynamic es: Static and Dynamic Hashing Relational Algebra - Query ptimization: Heuristic guery			
Module:1 Data Arch Need for datab using DBMS ap Administrator - Cl and Instances - Centralized and Database Manag Module:2 Relational Module:3 Relational Module:3 Relational Module:4 Physical Database Design Actional Module:4 Physical Proce File Organization multilevel Indexin – Relational Processing – Co optimization Rule	Dase Systems Concepts and itecture ase systems – Characteristics of Datab ase systems – Characteristics of Datab oproach - Actors on the Database M assification of database management system Three-Schema Architecture - The Database ement Systems itional Model and E-R Modeling : Candidate Keys, Primary Keys, Foreign s - Entity Relationship is - Entity Relationship Model: Types aints, Relational model Constraints – Maged ER Model - Generalization – Specializat Maged ional Database Design	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours Keys - Integrity Constraints - of Attributes, Relationships, pping ER model to a relational ion – Aggregations. 6 hours Relational Schema - Functional ormalization: First, Second and lued dependency and Fourth 8 hours multi-level indexing, dynamic es: Static and Dynamic Hashing Relational Algebra - Query ptimization, Heuristic query and Hashing - Tuple Relational			
Module:1DataArchNeed for databusing DBMS apAdministrator - Cland Instances -Centralized andDatabase ManagModule:2RelationalModule:2RelationalHandling of NullStructural Constrschema – ExtendModule:3RelationalDatabase Designdependencies -Third Normal ForNormal form - JoiModule:4PhysProceFile Organizationmultilevel Indexin– Relational AlgoProcessing – CooptimizationRuleCalculus.	base Systems Concepts and itecture ase systems – Characteristics of Datab ase systems – Characteristics of Datab oproach – Actors on the Database M assification of database management systems Three-Schema Architecture – The Database d Client/Server Architectures for DBl ement Systems	4 hours ase Approach – Advantages of lanagement Scene: Database ems - Data Models - Schemas abase System Environment - MSs – Overall Architecture of 6 hours Keys - Integrity Constraints - of Attributes, Relationships, pping ER model to a relational ion – Aggregations. 6 hours Relational Schema - Functional ormalization: First, Second and lued dependency and Fourth 8 hours multi-level indexing, dynamic es: Static and Dynamic Hashing Relational Algebra - Query ptimization, Heuristic query and Hashing - Tuple Relational			

Introduction to Transaction Processing - Transaction concepts: ACID Properties of Transactions, Transaction States - Serial and Serializable Schedules - Schedules based on recoverability - Schedules based on Serializability - Conflict Serializability - Recovery Concepts: Log Based Recovery Protocols, Recovery based on deferred update, Recovery techniques based on immediate update – Shadow Paging Algorithm

Module:6 Concurrency Control In Transaction 8 hours Processing

Concurrent Transactions - Lost Update Problem - Concurrency Control Techniques: Time Stamp Based Protocols, Thomas Write Rule, Lock Based Protocols, Lock Compatibility Matrix, - Two-Phase Locking Protocol - Lock Conversions - Graph Based Protocols for Concurrency Control - Tree Protocol for Concurrency Control – Deadlocks Based on Locks in Transactions - Deadlock Handling Techniques - Transaction Deadlock Detection Techniques – Transaction Deadlock Prevention Techniques – Multi-Granularity Locking for avoiding Transaction Deadlocks

Module:7 NOSQL Database Management 3 hours Introduction, Need of NoSQL, CAP Theorem, different NoSQL data bases: Key-value data stores, Columnar families, Document databases, Graph databases

Module:8	Contemporary Issues	
----------	---------------------	--

2 Hours

Total Lecture hours:

45 hours

Te>	kt Book							
1.	R. Elmasri & S. B. Navathe, Fundamentals of Database Systems, Addison Wesley, 7 th							
	Edition, 2016		-	-				
Ref	ference Books							
۲.	A. Silberschatz, H. F. Korth & S. Su	idarshan, Dat	abase Sy	stem Concepts, McGraw Hill,				
	7 th Edition 2019.							
2.	Raghu Ramakrishnan, Database Ma	anagement Sy	ystems, M	lcgraw-Hill, 4 th Edition, 2018				
3.	C.J.Date, A.Kannan, S.Swamynathan," An Introduction to Database Systems", Pearson,							
	Eighth Edition, 2006							
4.	Gerardus Blokdyk, NoSQL Databases A Complete Guide, 5STARCooks, 2021							
Mode of Evaluation: CAT, Written assignments, Quiz and FAT.								
Red	Recommended by Board of Studies 04-03-2022							
App	Approved by Academic Council No. 65 Date 17-03-2022							

BCSE302P		Datak	base System	s Lab			L	Т	Ρ	С
							0	0	2	1
Pre-requisite						Syll	labı	is v	ersi	ion
								1.0		
Co	urse Objective	es								
1.	 Basic ability to understand the concepts of File system and structure of the database; Designing an Entity-Relationship model for a real-life application and Mapping a database schema from the ER model. 								ase; g a	
2.	2. Differentiate various normal forms, evaluate relational schemas for design qualities and									
3.	Explain the v during a trans recovery, inde management.	vorking methodologies saction failure. Unders exing, access methods	of transacti stand the ba and fundame	on manag sic conce ental view	gement an epts on co on unstruc	nd g ncu cture	give Irren ed c	a icy lata	solu con and	tion trol, d its
0.0										
	urse Outcome) this source student sh								
	Design the str	unis course, student sho	the relations	lO: Nata ma	dol					
2	Examine the c	lata requirements of the	real world a	nd design	uei. La datahas	e m	ana	ner	neni	ł
2.	system			nu uesign			ana	gei	nem	1
	eyetein.									
Ind	icative Experi	ments								
1.	1 Data Definition and Data Manipulation Language									
2.	Constraints									
3.	Single row fu	nctions								
4.	Operators an	d aroup functions								
5.	Sub query, vi	ews and joins								
6.	High Level La	anguage Extensions - P	rocedures, F	unctions,	Cursors ar	nd T	rigg	ers		
	Total Laboratory Hours 30 hours									
Te>	t Book									-
1.	1. R. Elmasri & S. B. Navathe, Fundamentals of Database Systems, Addison Wesley, 7 th Edition, 2016									
Reference Books										
1.	1. A. Silberschatz, H. F. Korth & S. Sudarshan, Database System Concepts, McGraw Hill, 7 th Edition 2019.									
2.	2. Raghu Ramakrishnan, Database Management Systems, Mcgraw-Hill, 4 th Edition, 2018									
3.	3. C.J.Date, A.Kannan, S.Swamynathan," An Introduction to Database Systems", Pearson, Eighth Edition, 2006.									
4.	4. Gerardus Blokdyk, NoSQL Databases A Complete Guide, 5STARCooks, 2021									
Мо	Mode of assessment: Continuous assessments, FAT									
Red	commended by	/ Board of Studies	04-03-2022							
Арр	Approved by Academic Council No. 65 Date 17-03-2022									

BCSE303L	Operating Systems			L	Τ	Ρ	С
				3	0	0	3
Pre-requisite NIL			Syllabus version				
1.0							
Course Objective	es						
1. To introduce	the operating system concepts, designs	and provid	le sk	ills	requ	uired	to
2 To describe th	s services.	in large sca		stom	, da	eian	
3 To develop the	e knowledge for application of the various	design issue	s anc		vice	siyiri. Ne	
	e knowledge for application of the validas	ucoign ioouc	5 and	1 301	100		
Course Outcome	25						
On completion of	this course student should be able to:						
1. Interpret the e	evolution of OS functionality, structures, la	avers and an	v vla	ario	us t	vnes	s of
system calls of	f various process states.		P-) -			5600	
2. Design sched	uling algorithms to compute and compare	various sche	dulin	a cri	teria	a.	
3. Apply and a	analyze communication between inter	process a	nd	svnc	:hro	nizat	tion
techniques.	,	•		5			
4. Implement p	age replacement algorithms, memory	managem	ent	prob	lem	ns a	and
segmentation.		-					
5. Differentiate	the file systems for applying different	allocation,	acc	ess	tec	hniq	ue,
representing v	virtualization and providing protection and s	security to O	S.				
Module:1 Intro	duction					3 ho	urs
Introduction to (DS: Functionality of OS - OS design	issues - S	Struct	urin	g n	nethe	ods
(monolithic, layer	ed, modular, micro-kernel models) - Abst	ractions, pro	cess	es, I	resc	ource	€S -
Influence of secur	ity, networking, and multimedia.						
Module:2 OS P	rinciples					1 ho	urs
System calls, Sys	stem/Application Call Interface – Protectior	n: User/Kerne	el mo	des	- In	terru	ipts
-Processes - St	ructures (Process Control Block, Read	y List etc.)	, Pro	ces	s c	reat	on,
management in U	nix – Threads: User level, kernel level thre	ads and thre	ad m	ode	ls.		
Module:3 Sche	eduling		-		ç) ho	urs
Processes Scheo	luling - CPU Scheduling: Pre-emptive, n	on-pre-empt	ive -	Mu	tipro	ces	sor
scheduling – De	adlocks - Resource allocation and ma	nagement -	Dea	dloc	k h	and	ling
mechanisms: prev	vention, avoidance, detection, recovery.						
Module:4 Cond	currency				<u> </u>	<u>s no</u>	urs
Inter-process cor	nmunication, Synchronization - Impleme	nting synchi	roniza	atior	i pr	imiti	ves
(Peterson's solution	on, Bakery algorithm, synchronization hard	iware) - Serr	hapno	bres		lass	icai
Synchronization p	roblems, Monitors. Solution to Dining Phil	osophers pro	neid	1 – 1	PC	in U	nix,
Modulo E Moment Monogement							
Moin momony n	ory management	oc Virtual	mor	one	/		
wain memory management, wemory anocation strategies, virtual memory: Hardware support for virtual memory (caching TLR). Paging Segmentation Demand Paging Page							
Faults - Page Replacement - Thrashing - Working Set							
Module:6 Virtu	alization and File System					s ho	urs
Mana	agement					, 110	aro
Virtual Machines - Virtualization (Hardware/Software, Server, Service, Network - Hypervisors)							
- Container virtualization - Cost of virtualization - File system interface (access methods							
directory structures) - File system implementation (directory implementation, file allocation)							
methods) - File system recovery - Journaling - Soft updates - Log-structured file system -							
Distributed file system.							
Module:7 Stor	age Management, Protection and				e	6 ho	urs
Secu	irity						
Disk structure an	d attachment – Disk scheduling algorithn	ns (seek tim	e, ro	tatio	nal	late	ncy
based)- System t	hreats and security - Policy vs mechanic	sm - Access	s vs a	auth	enti	catio	n - I

System protection: Access matrix – Capability based systems - OS: performance, scaling, future directions in mobile OS.

Modul	e:8 Contemporary Issues		2 hours						
	Total Lecture he	ours:	45 hours						
Text B	ook								
1. Ab	raham Silberschatz, Peter B. Galvin, Greg Ga	igne, "Ope	erating System Concepts",						
20	18, 10 th Edition, Wiley, United States.								
Refere	nce Books								
1. An	drew S. Tanenbaum, "Modern Operating S	systems",	2016, 4 th Edition, Pearson,						
Ur	United Kingdom.								
2. W	2. William Stallings, "Operating Systems: Internals and Design Principles", 2018, 9th								
Edition, Pearson, United Kingdom.									
Mode of Evaluation: CAT, Written Assignment, Quiz, FAT									
Recommended by Board of Studies 04-03-2022									
Approv	Approved by Academic Council No. 65 Date 17-03-2022								

BCSE303P		Operating Systems Lab		L	Т	Ρ	С
				0	0	2	1
Pre-requisite		Nil	Syl	lab	us v	ersi	on
					1.0		
Co	urse Objective	es					
1.	To introduce	the operating system concepts, designs and provide	e ski	ills	requ	lired	to
0	Implement the	Services.		4.0.00	. ما م	.:	
2.	To describe in	e trade-ons between conflicting objectives in large scale	e Sys	sterr	i des	sign.	
3. Co			anu	sei	VICE	5.	
On	completion of	; this course, student should be able to:					
1	Interpret the e	evolution of OS functionality structures layers and app	lv v	ario	us t	vnes	sof
	system calls o	f various process states.	., .	ano		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. 0.
2.	Design schedu	uling algorithms to compute and compare various sched	ulind	a cri	teria	۱.	
3.	Apply and a	analyze communication between inter process an	id s	sync	hro	nizat	ion
	techniques.			•			
4.	Implement p	age replacement algorithms, memory manageme	nt	prot	lem	is a	and
	segmentation.						
	Differentiate	the file systems for applying different allocation,	acce	ess	tec	hniq	ue,
	representing v	irtualization and providing protection and security to OS	•				
	i a a tir ca Error a vi						
	Cative Experi	ments					
1.	Study of Bas	sic Linux Commands		<u> </u>	<u> </u>		
2.	Sholl Drogro	ming (VQ Decision making Leoning Multi level brond	501 2		з.		
3. 1		d process using fork () system call. Orphan and Zambia	nne	<u>J)</u>	- or	otio	<u>_</u>
4. 5	Simulation of	f CPU scheduling algorithms (ECES SIE Priority and E			ohin		11
<u> </u>		rocess synchronization using semanhores / monitors	oun	un)	
0. 7	Simulation o	f Banker's algorithm to check whether the given system	ie ir	n saf	io et	ato (٦r
1.	not Also che	ack whether addition resource requested can be granted	l imr	ned	iatel	v	
8.	Parallel Thre	ad management using Pthreads library. Implement a da	ata p	aral	lelis	y m	
	using multi-t	hreading	P				
9.	Dynamic me	mory allocation algorithms - First-fit, Best-fit, Worst-fit al	gori	thm	S		
10.	Page Replac	cement Algorithms FIFO, LRU and Optimal	<u> </u>				
11.	Implement a	file locking mechanism.					
12.	Virtualization	n Setup: Type-1, Type-2 Hypervisor (Detailed Study Rep	ort)				
	Total Laboratory Hours 30 hours						
Te>	t Book						
1.	Fox, Richard,	"Linux with Operating System Concepts", 2022, 2 nd Ed	ditio	n, C	hap	mar	1
	and Hall/CRC	, UK.					
Keterence Books							
1.	2013, 2 nd Edition, O'Reilly Media, Inc, United States.						
2.	Abraham Silberschatz, Peter B. Galvin, Greg Gagne, "Operating System Concepts",						
	2018, 10 th Ed	ition, Wiley, United States.					
Мо	de of Assessr	nent: Continuous Assessments, FAT					
Red	Recommended by Board of Studies 04-03-2022						
Арр	proved by Acad	iemic Council No. 65 Date 17-03-20	22				

BCSE304L	Theory of Computation		L T P C				
D							
Pre-requisite	Pre-requisite Nil						
Course Objectiv							
1 Types of gram	mars and models of automata						
2. Limitation of c	omputation: What can be and what cannot be o	compute	d.				
3. Establishing c	onnections among grammars, automata and fo	rmal lan	quages.				
J			0 0				
Course Outcom	10						
On completion o	f this course, student should be able to:						
1. Compare and	analyse different computational models						
2. Apply rigorous	sly formal mathematical methods to prove prop	erties of	languages,				
grammars and a	utomata.						
3. Identify limitat	ions of some computational models and possib	le metho	ods of proving them.				
4. Represent the	abstract concepts mathematically with notation	ns.					
Module:1 Intro	duction to Languages and Grammars		1 hours				
Recall on Proc	f techniques in Mathematics - Overview of	a Con	nutational Models -				
Languages and	Grammars - Alphabets - Strings - Operations	onlan	quages Overview on				
Automata			guages, evennew en				
Module:2 Finit	te State Automata		8 hours				
Finite Automata	a (FA) - Deterministic Finite Automata (DFA	4) - No	n-deterministic Finite				
Automata (NFA)	- NFA with epsilon transitions - NFA without	épsilon	transition, conversion				
of NFA to DFA, I	Equivalence of NFA and DFA – minimization of	DFA					
Module:3Regular Expressions and Languages7 hours							
Regular Express	sion - FA and Regular Expressions: FA to re	gular ex	pression and regular				
expression to FA	A - Pattern matching and regular expressions	- Regula	ar grammar and FA -				
Pumping lemma	for regular languages - Closure properties of re	egular la					
Module:4 Con	text Free Grammars	Ambi	/ nours				
context-Free G	plification of CEG Elimination of Licology sy	mbole I	Juit productions Null				
productions - No	ormal forms for CEG: CNE and GNE - Pumpi	na Lemr	ma for CEL - Closure				
Properties of CF							
Module:5 Pus	– hdown Automata		5 hours				
Definition of the	Pushdown automata - Languages of a Pus	hdown a	automata – Power of				
Non-Determinist	ic Pushdown Automata and Deterministic push	down au	Itomata				
Module:6 Turi	ng Machine		6 hours				
Turing Machines	as acceptor and transducer - Multi head and	Multi tap	be Turing Machines –				
Universal Turing	Machine - The Halting problem - Turing-Churc	h thesis					
Module:7 Rec	ursive and Recursively Enumerable		6 hours				
Recursive and	Recursively Enumerable Languages Langu	ane tha	t is not Recursively				
Enumerable (RE) – computable functions – Chomsky Hierarchy – Undecidable problems -							
Post's Correspon	ndence Problem						
Module:8 Con	temporary Issues		2 hours				
	• •						
	Total Lecture hours:		45 hours				
Text Book							
1. J.E. Hopcro	oft, R. Motwani and J.D. Ullman, "Introduct	tion to	Automata Theory,				
Languages	and Computation", Third Edition, Pearson Edu	ucation,	India 2008. ISBN:				
978-813172	0479						
Reference Bool	<s< td=""><td></td><td></td></s<>						

1. Peter Linz, "An Introduction to Formal Languages and Automata", Sixth Edition, Jones & Bartlett, 2016. ISBN: 978-9384323219

2. K. Krithivasan and R. Rama, "Introduction to Formal Languages, Automata and Computation", Pearson Education, 2009. ISBN: 978-8131723562

Mode of Evaluation: CAT, Assignment, Quiz, FAT.						
Recommended by Board of Studies	04-03-2022	2				
Approved by Academic Council	No. 65	Date	17-03-2022			
BCSE305I	Embedded Systems		1	Т	Ρ	С
--------------------	---	-----------	----------	--------------	----------------	--------
			3	0		3
Pre-requisite	NIL	Syll	abu	s ve	ersio	on
				1.0		
Course Objectiv	es					
1. To expose stud	lents to various challenges and constraints of specia	l purpos	e co	omp	uting]
systems in terms	of resources and functional requirements.					
2. To introduce st	ta converters LIART etc. their interfacing program	systems	VIZ.	, sei mor	nsor ht fou	S r
developing any sr	mart systems and various serial communication prot	ning env	ont	imal		J
components inter	facing and communication	00013 101	υρι	mai		
3. To make stude	nts understand the importance of program modeling	, optimiz	atio	n		
techniques and d	ebugging tools for product development and explore	various	solu	ution	is fo	r
real time scheduli	ng issues in terms of resources and deadline.					
Course Outcome	95 this serves, students should be able to:					
On completion of	this course, students should be able to:	orique m	icro	oont	rollo	vro
and interfaces				JOIN	IOIIE	:15
2. To summarie	s. Is the functionality of any special purpose com	outina s	vste	m.	and	to
propose smar	t solutions to engineering challenges at the prototyp	e level.	<i>,</i>	,		
3. To examine the	ne working principle and interface of typical embedde	ed syster	m co	omp	oner	nts,
create progra	mme models, apply various optimization approaches	includir	ng si	mula	atior	า
environment a	and demonstration using debugging tools					
4. To evaluate the	ne working principle of serial communication protoco	is and th	neir j	orop	er u	ise,
to recommon	analyze the benefits and drawbacks of real-time scr	ieauiing	aigo	orith	ms a	and
Module:1 Intro	duction			5	i ho	urs
Overview of Em	bedded Systems, Design challenges, Embedded	process	sor t	ech	nolo	av.
Hardware Design	, Micro-controller architecture -8051, PIC, and ARM	•				0,77
Module:2 I/O In	terfacing Techniques			8	b ho	urs
Memory interfaci	ng, A/D, D/A, Timers, Watch-dog timer, Counters	, Encod	ler 8	s D	ecod	der,
UART, Sensors a	nd actuators interfacing.					
Module:3 Arch	itecture of Special Purpose Computing			6	6 ho	urs
Syste	em devieee Dete Compressor Image Capturing De	viene Ar	cohit	ootu	ro (and
Requirements Cl	allenges & Constraints of special purpose computing	a syster	n	ectu	ne a	anu
Module:4 Prog	ramming Tools	y syster		7	' ho	urs
Evolution of emb	edded programming tools. Modelling programs. C	ode opti	miza	ation	1. Lo	aic
analyzers, Progra	Imming environment.	oue opu			.,	.g.e
Module:5 Real	Time Operating System			8	b ho	urs
Classification of	Real time system, Issues & challenges in RTS,	Real ti	me	sch	edul	ling
schemes- EDF-R	MS & Hybrid techniques, eCOS, POSIX, Protothrea	ds.				
Module:6 Emb	edded Networking Protocols			5	5 ho	urs
Inter Integrated	Circuits (I2C), Controller Area Network, Embedde	ed Ether	rnet	Co	ntrol	ller,
Modulo:7 Appl	i, Zigbee, Will.				ho	
Introduction to e	medded system applications using case studies		in	4 Aar		
sector Automot	ive electronics Consumer Electronics Indust	ial con	ntr∩l≤	ryi s I	Med	ical
Electronics.				-, 1		.501
				_		

			Total Lectu	ire hours	: 45 hours		
Tex	kt Book						
1.	Marilyr	n Wolf, Computers as Co	omponents – F	Principles	of Embedded Computing		
	Systen	n Design, Fourth Edition, N	lorgan Kaufman	Publishe	rs, 2016.		
Re	ference	Books					
1.	Embeo	Ided Systems Architecture	, Programming	and Desig	n, by Raj Kamal, McGraw		
	Hill Ed	ucation, 3e, 2015.					
2.	Embeo	lded System Design A Uni	fied Hardware/S	Sofware Ir	troduction, by Vahid G Frank		
	and Gi	vargis Tony, John Wiley &	Sons, 2009.				
Мо	Mode of Evaluation: CAT, written assignment, Quiz, FAT						
Re	commer	nded by Board of Studies	04-03-2022				
Ар	proved b	by Academic Council	No. 65	Date	17-03-2022		

BCSE306L	Artificial Intelligence		L	Т	Ρ	С
			3	0	0	3
Pre-requisite	NIL	Syl	labı	IS V	ersi	on
				1.0		
Course Objective	9S					
1. To impart	artificial intelligence principles, techniques and its histol	ry.		م ما		ما ما م
Z. 10 assess	tion problem adving and learning methods in the	ie Da ooluiu		KNC	wiec	ige ing
probloms	ation, problem solving, and learning methods in s	SOIVII	ig e	engi	neer	ing
	n intelligent systems by assembling solutions to con	orate		mnu	Itatic	nal
problems	p intelligent systems by assembling solutions to con	oreit		npu	lano	nai
probleme						
Course Outcome						
On completion of	this course, student should be able to					
1. Evaluate A	vrtificial Intelligence (AI) methods and describe their fou	undat	ions	_		
2. Apply bas	ic principles of AI in solutions that require problem	n-sol	vina.	inf	erer	ice.
perception	, knowledge representation and learning.					,
3. Demonstra	ate knowledge of reasoning, uncertainty, and knowledge	je re	pres	enta	ation	for
solving rea	al-world problems					
4. Analyse ar	nd illustrate how search algorithms play a vital role in p	roble	m-so	olvin	ıg	
Module:1 Intro	duction			6	<u>ን ho</u>	urs
Introduction- Evo	olution of AI, State of Art -Different Types of A	rtifici	al I	ntell	igen	ce-
Applications of	AI-Subfields of AI-Intelligent Agents- Structure of	Inte	llige	nt /	Ager	nts-
Environments			1			
Module:2 Prob	em Solving based on Searching				<u>s ho</u>	urs
Introduction to P	roblem Solving by searching Methods-State Space	sear	ch,	Unir	itorn	led
Search Wethous	- Uniform Cost Search, Breadth First Search- Depth		Sea	arcn	-Dep)IN-
	rauve deepening deput-first, mormed Search Methods	5- De	SLF	iist .	Sear	cn,
	Search and Adversarial Search				<u>i ho</u>	ure
	rithms – Hill-climbing search Simulated appealing Ge	notic			m	urə
Adversarial Search	h: Game Trees and Minimax Evaluation. Elementary tw	vo-nl	aver	s na	iii, imes	
tic-tac-toe Minima	ax with Alpha-Beta Pruning	vo pi	ayer	s ga	moe	·.
Module:4 Logi	c and Reasoning			8	3 ho	urs
Introduction to Lo	gic and Reasoning -Propositional Logic-First Order Log	lic-In	ferer	nce	in Fi	rst
Order Logic- Unifi	cation, Forward Chaining, Backward Chaining, Resolut	ion.				
Module:5 Unce	rtain Knowledge and Reasoning			5	hοι	ırs
Quantifying Unce	rtainty- Bayes Rule -Bayesian Belief Network- Appro	xima	ate I	nfer	ence) in
Bayesian network	S					
Module:6 Plan	ning			7	/ ho	urs
Classical planning	g, Planning as State-space search, Forward search	, ba	ckwa	ard	sear	ch,
Planning graphs,	Hierarchical Planning, Planning and acting in Nondete	ərmin	istic	dor	nain	s –
Sensor-less Planr	ning, Multiagent planning		1			
Module:7 Com	municating, Perceiving and Acting			6	ን ho	urs
Communication-F	undamentals of Language -Probabilistic Language Pro	cess	ing -	Info	rmat	ion
Retrieval- Informa	tion Extraction-Perception-Image Formation-Object Re	ecogi	nitioi	<u>ו.</u>		
	emporary issues			2	: 10	urs
	Total Lecture ho	urs:		4	j ho	urs
Tout Do - I-				-TL		
	d Nonia D 2015 Artificial Intelligence A Madam An	proc	- h	rd 🗖	ditio	
Prentice Hall.	iu Norvig, F. 2015. Artificial Intelligence - A wodern Ap	proa	JI, J		unio	ι,

Ret	Reference Books						
1.	1. K. R. Chowdhary, Fundamentals of Artificial Intelligence, Springer, 2020.						
2	Alpaydin, E. 2010. Introduction to	o Machine Learni	ng. 2 nd	Edition, MIT Press.			
Мо	de of Evaluation: CAT, Assignmer	nt, Quiz, FAT					
Re	Recommended by Board of Studies 04-03-2022						
Ар	proved by Academic Council	No. 65	Date	17-03-2022			

BCSE307L Compiler Design				Т	Ρ	С	
			3	0	0	3	
Pre-requisite	NIL	Sy	llab	us \	/ers	ion	
				1.0			
Course Objective	es						
1. To provide fund	lamental knowledge of various language translators.						
2. To make studer	nts familiar with lexical analysis and parsing techniques						
3. To understand	3. To understand the various actions carried out in semantic analysis.						
4. To make the students get familiar with how the intermediate code is generated.							
5. To understand the principles of code optimization techniques and code generation.							

6. To provide foundation for study of high-performance compiler design.

Course Outcomes

1. Apply the skills on devising, selecting, and using tools and techniques towards compiler design

2. Develop language specifications using context free grammars (CFG).

3. Apply the ideas, the techniques, and the knowledge acquired for the purpose of developing software systems

developing software systems.

4. Constructing symbol tables and generating intermediate code.

5. Obtain insights on compiler optimization and code generation.

Module:1 INTRODUCTION TO COMPILATION AND LEXICAL ANALYSIS 7 hours

Introduction to LLVM - Structure and Phases of a Compiler-Design Issues-Patterns-Lexemes-Tokens-Attributes-Specification of Tokens-Extended Regular Expression- Regular expression to Deterministic Finite Automata (Direct method) - Lex - A Lexical Analyzer Generator.

Module:2	SYNTAX ANALYSIS	8 hours
Role of Pa	arser- Parse Tree - Elimination of Ambiguity – Top Down Parsing	g - Recursive
Descent Pa	arsing - LL (1) Grammars – Shift Reduce Parsers- Operator Precede	nce Parsing -
LR Parsers	, Construction of SLR Parser Tables and Parsing- CLR Parsing- LAI	_R Parsing.
Module:3	SEMANTICS ANALYSIS	5 hours
Syntax Dire	cted Definition – Evaluation Order - Applications of Syntax Directed	Translation -
Syntax Dire	cted Translation Schemes - Implementation of L-attributed Syntax E	Directed
Definition.		
Module:4	INTERMEDIATE CODE GENERATION	5 hours
Variants of	Syntax trees - Three Address Code- Types - Declarations - Procedu	ures -
Assignmen	t Statements - Translation of Expressions - Control Flow - Back Pate	hing- Switch
Case State	ments.	
Module:5	CODE OPTIMIZATION	6 hours
Loop optim	nizations- Principal Sources of Optimization -Introduction to Data Fl	ow Analysis -
Basic Bloo	cks - Optimization of Basic Blocks - Peephole Optimization	- The DAG
Representa	tion of Basic Blocks -Loops in Flow Graphs - Machine Independent	Optimization-
Implementa	ation of a naïve code generator for a virtual Machine- Security chec	king of virtual
machine co	de.	
Module:6	CODE GENERATION	5 hours
Issues in th	ne design of a code generator- Target Machine- Next-Use Informat	ion - Register
Allocation a	and Assignment- Runtime Organization- Activation Records.	
Module:7	PARALLELISM	7 hours
Parallelizati	ion-Automatic Parallelization- Optimizations for Cache Locality and	
Vectorizatio	on- Domain Specific Languages-Compilation- Instruction Scheduling	and
Software P	ipelining- Impact of Language Design and Architecture Evolution on	Compilers-
Static Sing	e Assignment	
Module:8	Contemporary Issues	2 hours

		Total L	ecture hours:	45 hours					
Text Book(s)									
1. A. V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman, Compilers: Principles,									
techniques, & tools, 2007, Seco	nd Edition, Pears	on Educat	ion, Boston.						
Reference Books									
1. Watson, Des. A Practical Appro-	ach to Compiler C	Constructio	on. Germany, Sp	oringer					
International Publishing, 2017.									
Mode of Evaluation: CAT, Quiz, Writ	ten assignment a	nd FAT							
Recommended by Board of Studies 04-03-2022									
Approved by Academic Council	No. 65	Date	17-03-2022						

BCSE	E307P	C	ompiler Desigr	Lab		L	Τ	Ρ	С
						0	0	2	1
Pre-r	equisite					Syllabı	is v	ersi	on
							1.0		
Cour	se Objectives		-						
1. To	provide fundam	ental knowledge o	f various langua	ge transla	tors.				
2.10	make students	familiar with phase	s of compiler.						
3.10	provide foundat	ion for study of hig	n-performance c	complier a	lesign.				
Cour	se Outcome								
1. Ap	ply the skills on	devisina. selectina	and using tools	and techr	niques tow	vards c	omp	oiler	
desig	n	5, 5	5						
2. De	evelop language	specifications usir	ng context free g	rammars	(CFG).				
3. Ap	ply the ideas, the	e techniques, and	the knowledge a	cquired fo	or the purp	oose of			
devel	oping software	e systems.	-						
4Co	nstructing symb	ol tables and gene	rating intermedia	ate code.					
5. Ob	tain insights on	compiler optimizat	ion and code ger	neration.					
	- 41								
Indic	ative Experime	nts							
1.		ON OF LEXR USING L	_LVM.						
2.		on of nandwritten p	arser using LLV	VI					
3.	Generating co	Dae with the LLVM	backend.						
4.	Defining a rea	al programming lan	iguage.					.	
5.		rsive descent par	ser for the CFG	anguag	je and in	npieme	nt i	t us	ing
6	Write a I R na	urser for the CEG la	anguage and imr	lomont it	in the usi	nallV	ΊNΛ		
7	Intro to Flex a	nd Rison	anguage and imp				111.		
' ·	Modify the sc	anner and parser s	so that terminatin	n a stater	ment with	" [.] b" in	stea	nd of	f "•"
	results in the	output being printe	d in binary.	ig a statol	none wien	, 0	0100		',
8.	Using LLVM-s	style RTTI for the A	ST and General	tina IR fro	m the AS	т.			
9.	Converting ty	pes from an AST d	lescription to LL	/M types.					
10.	Emitting asse	mbler text and obj	ect code.						
		·	Tota	al Labora	tory Hou	rs 30	hou	ırs	
Mode	of assessment:	CAT, FAT							
Text	Book(s)								
1	Learn LLVM 1	2: A beginner's g	juide to learning	g LLVM o	compiler t	ools a	nd (core	;
	libraries with C	++							
Refer	rence Books	<u> </u>		•					
1.	Watson, Des	A Practical Appro	pach to Compile	er Constru	uction. Ge	ermany	/, S	pring	ger
	International Pi	ublishing, 2017.							
Deet		and of Oticalian	04 02 0000						
Keco	mmenaea by Bo	bard of Studies	04-03-2022	Deta	17 00 00	000			
Appro	oved by Academ		CO .0/	Date	17-03-20)22			

BCSE308L	Computer Networks			L	Т	Ρ	С
				3	0	0	3
Pre-requisite	NIL		Syl	labu	s ve	ersio	on
					1.0		
Course Objective	es						
1. To build an ur networking, pr	nderstanding among students about the fundator of the fundation of the fun	amental o	conce	pts c	of cc	ompu	uter
2. To help stude	nts to acquire knowledge in design, implemer	nt and an	alyze	perf	orm	ance	e of
OSI and TCP-	IP based Architectures.						
3. To identify th	e suitable application layer protocols for	specific	appli	catio	ns	and	its
respective sec	curity mechanisms.						
Course Outcome							
On completion of	this course, student should be able to:						
1 Interpret the d	ifferent huilding blocks of Communication net	work and	t ite ar	chite	octu	r۵	
2 Contrast differ	ent types of switching networks and analyze t	the nerfo	rman	n of	net	worl	<i>、</i>
3 Identify and ar	alvze error and flow control mechanisms in c	lata link l	laver		not	won	`
4. Design sub-ne	etting and analyze the performance of netwo	ork laver	with	vari	ous	rout	tina
protocols.							
5 Compare vario	ous congestion control mechanisms and ident	tify appro	opriate	e trar	ispo	ort la	ver
protocol for re	al time applications with appropriate security	mechani	sm.		•		,
Modulo:1 Notw	orking Principles and Lavered				6	ho	ure
Archi	tecture				Ľ	, 110	urs
Data Communicat	tions and Networking. A Communications Mo	del – Dat	a Cor	nmu	nica	tion	s -
Evolution of netwo	ork. Requirements . Applications. Network To	nology (l	ine co	onfia	urat	ion.	0
Data Flow). Proto	cols and Standards. Network Models (OSI, T	CP/IP)		g		,	
Module:2 Circu	it and Packet Switching				7	′ ho	urs
Switched Commu	nications Networks – Circuit Switching – Pack	ket Switc	hina –	- Cor	npa	riso	n
of Circuit Switchin	g and Packet Switching – Implementing Netw	ork Soft	ware,	Netv	vork	ing	
Parameters(Trans	mission Impairment, Data Rate and Performa	ance)				Ū	
Module:3 Data	Link Layer	*			8	3 ho	urs
Error Detection ar	nd Correction – Hamming Code , CRC, Check	sum- Flo	ow coi	ntrol			
mechanism – Slid	ing Window Protocol - GoBack - N - Selective	e Repeat	- Mult	tiple	acc	ess	
Aloha - Slotted Ale	oha - CSMA, CSMA/CD – IEEE Standards(IE	EE802.3	6 (Ethe	ernet),		
IEEE802.11(WLA	N))- RFID- Bluetooth Standards						
Module:4 Netw	ork Layer				8	3 ho	urs
IPV4 Address Spa	ace – Notations – Classful Addressing – Class	sless Ado	dressi	ng –	Net	wor	k
Address Translati	on – IPv6 Address Structure – IPv4 and IPv6	header f	ormat				
Module:5 Rout	ng Protocols				6	5 ho	urs
Routing-Link State	e and Distance Vector Routing Protocols- Imp	lementa	tion-P	erfor	mar	nce	
Analysis-Packet	Iracer						
Module:6 I rans	sport Layer			T 0	_ 5	o ho	urs
TCP and UDP-Co	ngestion Control-Effects of Congestion-Traffic	c Manag	emen	-10	-0		
Congestion Contr	ol-Congestion Avoidance Mechanisms-Queui	ng wecn	anism	IS-Q	55		
Parameters	ection lover					ha	
Application layor	Callon layer				3	s no	urs
Modulo:8 Cont			2111			bo	
	בוויףטומו א וספתבס				2	. 110	u13
	Total Lacture hours				45	i ho	lire
					+0	- 110	u13
Text Book							
1. Behrouz A.	Forouzan, Data communication and Netwo	orking, 5	5th E	ditior	ı, <mark>2</mark>	017	,

	McGraw Hill Education.						
Ref	Reference Books						
1.	1. James F. Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach, 6th						
	Edition, 2017, Pearson Educatio	n.	_				
2.	William Stallings, "Data and Co	mputer Commur	nication",	10th Edition, 2017, Pearson,			
	United Kingdom.	-					
Мо	de of Evaluation: CAT, Written A	ssignment, Quiz	FAT				
Red	Recommended by Board of Studies 04-03-2022						
Арр	proved by Academic Council	No. 65	Date	17-03-2022			

BCS	SE308P	Computer Networks Lab	L	T	Ρ	С
			0	0	2	1
Pre	-requisite	NIL S	yllabu	s ve	ersio	n
				1.0		
Οοι	irse Objective	es				
1. [·]	To build an ur	nderstanding among students about the fundamental con	cepts	of co	ompi	uter
	networking, pr	otocols, architectures, and applications.		-		
2.	l o help stude	nts to acquire knowledge in design, implement and analy	ze per	form	ance	e of
	USI and TCP-	·IP based Architectures.	- I' 4' -		اء مر ما	:4-
3.	To Identify th	le suitable application layer protocols for specific ap	plication	ons	and	Its
Cou	respective sec					
On	arse Outcome	this course, student should be able to:				
	Interpret the d	liferent building blocks of Communication notwork and its	archit	octu	iro	
2	Contrast differ	ent types of switching networks and analyze the perform:	ance o	fnet	hworl	<i>、</i>
3	Identify and ar	nalyze error and flow control mechanisms in data link lave	arioe e ar			`
4.	Design sub-ne	etting and analyze the performance of network laver w	th var	ious	rout	tina
	protocols.					
5.	Compare vario	ous congestion control mechanisms and identify appropri	ate tra	nspo	ort la	yer
	protocol for re	al time applications with appropriate security mechanism.				,
Indi	cative Experi	iments				
1.	Study of Bas	sic Network Commands, Demo session of all networking	nardwa	are a	and	
	Functionaliti	es				
2.	Error detecti	ion and correction mechanisms				
3.	Flow control	mechanisms				
4.	IP addressin	ng Classless addressing				
5.	Observing P	Packets across the network and Performance Analysis of	<u>Routin</u>	g pro	otoco	ols
6.	Socket prog	ramming(TCP and UDP) - Some challenging experiments	s can b	e gi	ven	on
	Socket prog	ramming functions and a set				
1.	Simulation o	of unicast routing protocols				
ö.	in notwork	in mansport layer Protocols and analysis of congestion co	TILFOI TO	ecnn	iique	5
0		NS alight converte reaches the given heat name or ID ad	Irooo			
9.		Total Laboratory Hour	11055 c 20	hou	rc	
Τογ	t book		3 30	nou	13	
	W Richard Ste	evens Llix Network Programming 2ndEdition Pearson F	ducat	ion	2014	
Mod	de of assess	nent: Continuous assessment. FAT		,	_010	
Rec	ommended by	y Board of Studies 04-03-2022				
App	roved by Acad	demic Council No. 65 Date 17-03-202	2			
<u>hh</u>	TOVED by Acat					

BCSE309L	09L Cryptography and Network Security L T P C						
		3 0 0 3					
Pre-requisite	NIL	Sylla	bus y	versi	on		
			1.0)			
	es	- 1 1					
1. To explore the	e concepts of basic number theory and cryptographic te	cnniqu	les.				
2. To impart cor	ncept of Hash and Message Authentication, Digital Signa	atures	anu				
3 To reveal the	hasics of transport layer security. Web Security and va	ious tv	nes r	h			
System Secu	rity	1003 13	pes c				
Course Outcom	es						
On completion of	this course, students should be able to:						
1. To know the f	undamental mathematical concepts related to security.						
2. To understan	d concept of various cryptographic techniques.						
3. To apprehence	the authentication and integrity process of data for var	ous ap	oplica	tions	_		
4. To know fund	amentals of Transport layer security, web security, E-M	all Sec	urity	and I	Р		
Security							
Module:1 Fund	amentals of Number Theory			5 ho	urs		
Finite Fields and	Number Theory: Modular arithmetic. Euclidian Algorithm	1. Prim	ality ⁻	Testir	<u>นเอ</u> าa:		
Fermats and Eule	ers theorem, Chinese Reminder theorem, Discrete Loga	rithms			.3.		
Module:2 Sym	metric Encryption Algorithms			7 ho	urs		
Symmetric key cr	yptographic techniques: Introduction to Stream cipher, I	Block o	cipher	: DES	З,		
AES,IDEA, Block	Cipher Operation, Random Bit Generation and RC4			<u></u>			
Module:3 Asyr	nmetric Encryption Algorithm and Key Exchange			8 ho	urs		
cryptography Ho	momorphic Encryption and Secret Sharing, Key distribution	tion ar	urve nd Ko	v			
exchange protoco	bls. Diffie-Hellman Key Exchange. Man-in-the-Meddle A	ttack		y			
Medule: 4 Mee	Direct and Uach Eurotians	1		<u>E ha</u>			
Requirements for	Hash Functions, Security of Hash Functions, Message	Diges		<u>5 no</u> 5)	urs		
Secure Hash Fur	nction (SHA) Birthday Attack HMAC	Diges		5),			
Module:5 Digit	al Signature and Authentication Protocols			7 ho	urs		
Authentication Re	equirements. Authentication Functions. Message Auther	ticatio	n Co	des.	urs		
Digital Signature	Authentication, Authentication Protocols, Digital Signat	ire Sta	ndard	ds, RS	SA		
Digital Signature,	Elgamal based Digital Signature, Authentication Applic	ations:	Kerb	eros,			
X.509 Authentica	tion Service, Public Key Infrastructure (PKI)						
Module:6 Tran	sport Layer Security and IP Security			4 ho	urs		
Transport-Layer S	Security, Secure Socket Layer(SSL), TLS, IP Security: C	vervie	w: IP	Secu	ırity		
Architecture, Enc	apsulating Payload Security						
Module:7 E-ma	ail Web and System Security			7 ho	ure		
Electronic Mail Se	ecurity Pretty Good Privacy (PGP) S/MIME Web Secu	ritv [.] W	eh Se	ecurit	v		
Considerations, S	Secure Electronic Transaction Protocol	incy. ••	00 00	Journ	y		
Intruders, Intrusic	on Detection, Password Management, Firewalls: Firewal	l Desi	gn Pri	nciple	es,		
Trusted Systems							
Module:8 Cont	emporary Issues			2 ho	urs		
	Total Lastura haura	1		5 hc	uro		
			4	0110	uis		
Text Book							
1. Cryptograph	y and Network Security-Principles and Practice, 8 th Ed	ition, t	by Sta	allings	;		

William, published by Pearson, 2	2020		
Reference Books			
1. Cryptography and Network Secu	urity, 3 rd Edition, t	oy Behrou	z A Forouzan and Depdeep
Mukhopadhyay, published by Mo	cGrawHill, 2015	-	
Mode of Evaluation: CAT, written as	ssignment, Quiz,	and FAT	
Recommended by Board of Studies	04-03-2022		
Approved by Academic Council	No. 65	Date	17-03-2022

BC	SE309P	Cryptogra	nhy and Netwo	rk Securit	vlab		Т	Р	С
	020001	Oryprogra	pily and notice		y Lab	0	0	2	1
Pre	-requisite	NIL			S	Svllabi	ls v	ersi	on
						<u>j</u>	1.0		<u> </u>
Со	urse Objective)S							
1.	Understand va	rious Private and P	ublic Key cryptc	graphic alg	orithms.				
2.	To learn about	hash functions and	digital signatur	e algorithm	าร				
3.	Acquire knowle	edge in various netv	work security mo	odels					
Οοι	urse Outcome								
On	completion of t	his course, student	s should be able	e to:					
1.	Implement vari	ious cipher techniqu	ues without usin	g standard	cryptograp	hic libi	rary		
	functions				·				
Z.	Develop the va	arious nash function	is and digital sig	nature algo	orithms for (amere	nt		
2	Applications	is socured petworki	ing based applic	ation					
<u>J.</u>			ing-based applie	alion					
Ind	icative Experi	ments							
1.	Consider a se	ender and receiver v	who need to exc	hange dat	a confidenti	allv us	ina		
	symmetric en	cryption. Write prog	ram that implen	nents DES	encryption	and de	ecry	ptior	ก
	using a 64 bi	t key size and 64 bi	t block size				•	•	
2.	Consider a se	ander and receiver w	who need to exc	hange dat	a confidenti	ally us	ing		
	symmetric en	cryption. Write prog	ram that implen	nents AES	encryption	and de	ecry	ptior	٦
_	using a 64/12	28/256 bits key size	and 64 bit bloc	k size.					
3	Develop an c	nipper scheme by u	ising RSA			<u> </u>	·		
4.	Develop a ML	<u>5 hash algorithm the second s</u>	hat finds the Me	essage Aut	hentication	Code	(MA	<u>(C)</u>	
5	Find a Messa	ge Authentication C	Code (MAC) for g	given varia	ble size me	ssage	by	using	g
	Moosuro tho	SHA-256 Hash alg	for varving mor		for both SH	1 1 2 9	200	100	1
	256.	Time consumptions	for varying mes	saye size		A-120	and		A-
6	Develop the [Digital Siganture sta	ndard(DSS)for	verifying th	e legal com	munic	atin	g	
	parties								
7	Design a Diffi	e Hellman multipart	ty key exchange	protocol a	ind perform	Man-	in-th	ne-	
_	Middle Attack								
8	Develop a sin	nple client and serve	er application us	sing SSL se	ocket comm	nunica	tion		
9	Develop a sin	nple client server m	odel using telne	et and capt	ure the pac	kets tr	ans	mitte	эd
	with tshark A	nalyze the pcap file	e and get the tra	insmitted d	lata (plain te	ext) us	ing	any	
	packet captur	ing library.	aina SSU and	boorvo the	o doto				
10		b application that in	nnlemente ISAI	V web toke	o uala				
				tal Labor	atory Hour	s 30	hoi	irs	
Mo	de of assessm	ent: Continuous A	ssessment FAT			J 50	100	10	
Rec	commended by	Board of Studies	04-03-2022						
Apr	proved by Acad	lemic Council	No. 65	Date	17-03-202	2			

Course code	Course Title			L	Τ	Ρ	C
BCSE206L	Foundations of Data Scier	nce	_	3	0	0	3
Pre-requisite	NIL		Sy	llab	us v	ers	ion
					1.0		
Course Objective	es						
1. To provide required fo	e fundamental knowledge on data scien or the field of data science.	ice with quer	rying	an	d ar	naly	tics
2. To understand the process of handling heterogeneous data, pre-process and visualize them for better understanding							
 To gain the fundamental knowledge on data science tools and gain basic skill set to solve real-time data science problems. 							
Course Outcome							
	; of the course the student will be able to						
	ohtain fundamental knowledge en data sei	0000					
1. Admity to	oblain fundamental knowledge on data sci	ence.					
2. Demonst	rate pronciency in data analytics.		ام در ما		- 41		inal
3. Apply ad	e considerations to work on dimensionali	ly reduction	and	ma	aine	mai	icai
4. Handle v	arious types of data and visualize them	using throug	h pr	ogra	amm	ning	for
knowledg	e representation.			•		•	
5. Demonsti	rate numerous open source data scie	nce tools to	so	lve	real	l-wo	rld
problems	through industrial case studies.						
Modulo:1 Data	Science Context				5	ho	ure
Nood for Data	Science Context	- Saianaa Dr)		
Intelligence and	Data Science – What is Data Science - Data	a Science Pr			- DI	1 CI	
required	Data Science – Frerequisites for a Da	la Scientist -	- 10	1015	and		1115
Modulo:2 Datak	asos for Data Science				7	bo	ure
Structured Ouer	/ Language (SOL): Basic Statistics [Data Munding	n F	iltor	ina		ine
Addregation Wind	dow Functions Ordered Data preparing		y, i cum <i>i</i>	≏nt l	ng, Data	ahas	1113, 200
Wide-column Data	abases and Graphical Databases	NO OQE. DO	curri		Juic	ibac	100,
Module:3 Data	Science Methodology				8	ho	urs
Analytics for Data	Science – Examples of Data Analytics	– Data Analv	tics	Life	cvcle	e: D	ata
Discovery, Data P	reparation. Model Planning, Model Buildin	a. Communic	ate F	Resi	ilts.		
Module:4 Data	Analytics on Text	3,			7	' ho	urs
Major Text Minir	ng Areas – Information Retrieval – Da	ta Mining –	Nat	ural	Lar	าตนะ	ade
Processing NLP)	 Text analytics tasks: Cleaning and Par 	rsing. Searchi	ina.	Ret	rieva	al. T	ext
Mining. Part-of-S	Speech Tagging, Stemming, Text Ar	alvtics Pipe	line.	N	LP:	Ma	aior
components of NL	P. stages of NLP, and NLP applications.						
Module:5 Platfo	orm for Data Science				6	ho	urs
Python for Data	Science –Python Libraries – Data Fram	e Manipulatio	n w	ith r	านm	pv a	and
pandas – Explora	ation Data Ánalysis – Time Series Data	set – Člustei	ring	with	ı Py	, thoi	n –
Dimensionality Re	eduction. Python integrated Developmer	nt Environmei	nts	(IDE) fo	or D	ata
Science.				•			
Module:6 GNU Octave for Mathematical Operations 6 hours					urs		
Handling Vectors	and Matrices: Multiplication, Transpose,	Random Mat	trix o	crea	tion,	, Eig	gen
Vectors and Eiger	n Values, Determinants. Arithmetic Operat	tions – Set Oj	pera	tions	s – I	Plot	ting
Data.							
Module:7 Tableau 4 hours					urs		
Tableau Introduc	tion – Dimensions, Measures, Descri	ptive Statisti	CS,	Bas	ic	Cha	irts,
Dashboard Design	n Principles, Special Chart Types, Integrat	e Tableau witl	h Gc	ogle	e Sh	eets	3.
Module:8 Conte	emporary Issues				2	ho	urs

			Total Lecture ho	ours:		45 hou	rs
Tex	kt Book	(s)					
4	Sanjee	v Wagh, Manisha Bhend	e, Anuradha Tha	kare, 'Fi	undamentals o	f Data Scienc	æ,
1.	CRC P	ress, 1 st Edition, 2022.					
Re	Reference Books						
1	Avrim	Blum, John Hopcroft,	Ravindran Kann	an, "Fo	undations of	Data Science	е",
1.	Cambr	idge University Press, Firs	st Edition, 2020.				
2	Joel G	rus, "Data Science from S	Scratch: First Prin	ciples w	vith Python", O'	Reilly Media, ′	1 st
Ζ.	Edition	, 2015.					
3	Ani A	dhikari and John DeN	ero, 'Computati	onal an	nd Inferential	Thinking: Th	he
Э.	Founda	ations of Data Science', G	itBook, 2019.				
Мо	de of Ev	aluation : Continuous Ass	essment Tests, C	Quizzes,	Assignment, F	inal	
Ass	sessmer	nt Test					
Re	commer	ided by Board of Studies	12-05-2022				
Ар	proved b	y Academic Council	No. 66	Date	16-06-2022		

Course code	Course Title		LT	Ρ	С
BCSE207L	Programming for Data Scienc	e	2 0	0	2
Pre-requisite	NIL	Syl	labus	vers	ion
	1.0				
Course Objective	es la				
1. To provid	1. To provide necessary knowledge on data manipulation and to perform analysis on				
the practi	the practical problems using a programming approach.				
2. To generate report and visualize the results in graphical form using programming					
tools.					
3. To learn a	and implement R programs for data science.				
Course Outcome) Af the service the student will be able to				
	of the course, the student will be able to				
1. Engrave a	nd use R language to solve problems.				
2. Design a s	incide to the data through statistical infor				
3. Formulate	insights from the data through statistical men	ences.			
	nu visualize the results, analyze the performa		1015.		
Module:1 Funct	tions in R			2 ho	urs
Programming with	h R- Running R Code - Including Com	ments - Defin	ina V	ariab	les
Functions -Built-in	R Functions - Loading Functions - Writing R	Functions - Usi	na Co	nditic	onal
Statements.			ng ee	laitie	, near
Module:2 Vecto	ors and Lists			3 ho	urs
Vector - Vectorize	d Operations - Vector Indices - Vector Filterin	ng - Modifying '	Vector	s, Lis	sts -
Creating Lists - A	ccessing List Elements - Modifying Lists- Ap	plying Function	ns to L	ists v	with
lapply().					
Module:3 Data	Wrangling			4 ho	urs
Understanding Da	ata - The Data Generation Process - Find	ling Data - Ty	pes of	Dat	a -
Interpreting Data	- Using Data to Answer Questions - Data	Frames - Wor	king w	ith D	ata
Frames -Working	with CSV Data.				
Module:4 Mani	oulating Data with dplyr and tidyr			5 ho	urs
Data Manipulation	n - Core dplyr Functions- Performing Sequ	ential Operation	ons -A	nalyz	zing
Data Frames by	Group - Joining Data Frames Together - dpl	lyr in Action: A	nalyzir	ig Fli	ight
Data- Reshaping	Data with tidyr -From Columns to Rows	s: gather() - F	From F	Rows	to
Columns: spread() - tidyr in Action: Exploring Educational Statis	stics.			
Module:5 Acce	ssing Databases and Web APIs			5 ho	urs
An Overview of	Relational Databases -A Taste of SQL-Acc	essing a Datal	base f	om	R -
Accessing Web A	PIs -RESTful Requests -Accessing Web AP	'Is from R -Pro	cessin	g JS	ON
Data - APIs in Acti	on: Finding Cuban Food in Seattle.			<u></u>	
Module:6 Data	Visualization	Cala atin a Vi		<u>6 no</u>	urs
Designing Data V	Isualizations - The Purpose of Visualization	- Selecting VI	sual Li	ayou	IS -
	e Graphical Encourings - Expressive Data Dis	Pagio Plotting	ang Ae	sine	105
Complex Lavoute	and Customization Building Mans. gaplet2 in	- Dasic Flotting	a study	ypio ,	12 -
Module:7 Intera	and Customization - Duilding Maps- gyplotz in	II ACIIOII. A Cas	e siuu	/. 3 ho	ure
The Plotly Packar	ie - The Rhokeh Package - The Leaflet Pack	ane - Interactiv		alizat	tion
in Action: Explorin	a Changes to the City of Seattle	age - meraenv	C VI3U	anza	
Module:8 Contemporary Issues 2 hours					
	Total Lecture hours:		3	0 ho	urs
Text Book(s)					
1 Michael Free	man and loel Ross Programming Skills for	r Data Science	· Start	W/rit	ting
	man and ooor roos, ribyranning Okins Ior		. Otari	***	-ing

	Code to Wrangle, Analyze, and Visualize Data with R, Addison-Wesley, 2018.			
Ref	Reference Books			
1	Benjamin S. Baumer, Daniel T.	Kaplan and Nicl	nolas J. H	lorton, Modern Data Science
١.	with R, Chapman and Hall/CRC,	2021.		
2.	2. John Mount and Nina Zumel, Practical Data Science with R, 2 nd edition, Wiley, 2019.			
Mo	de of Evaluation : Continuous Ass	essment Tests, 0	Quizzes, A	ssignment, Final
Ass	sessment Test			-
Recommended by Board of Studies 12-05-2022				
Approved by Academic Council No. 66 Date 16-06-2022				16-06-2022

Cou	irse code		Course Title	e		L	. T	Ρ	С
BCS	SE207P	Program	mming for Data	Science I	_ab	0	0	2	1
Pre	-requisite	NIL				Sylla	bus v	/ers	ion
							1.0		
Cou	Course Objectives								
	1. To provide necessary knowledge on data manipulation and to perform analysis on							on	
	the practical problems using statistical and machine learning approach.								
	2. To genera	ate report and visu	alize the results	in graph	ical form	using p	progra	amm	ning
	tools.		6 1 1						
	3. To learn a	nd implement R pro	ograms for data s	cience.					
Cou									
	n completion	<u>s</u> of the course, the s	tudent will be abl	e to					
Opo	1 Program a	on the course, the s	to solve problem						
	2 Design a s	suitable form for an	alvsis from real-ti	ne data					
	3 Formulate	insights from the d	ata through statis	stical infer	ences				
	4. Evaluate a	and visualize the res	sults, analyze the	performa	ince of the	e mode	ls.		
			, ,	1					
Indi	cative Experi	iments							
1.	Functions in	R					4 h	ours	5
2.	Vectors and	Lists					2 h	ours	3
3.	Data Frames	S					4 h	ours	5
4.	Handling Mis	ssing Data					4 h	ours	5
5.	Manipulating	g Data with dplyr an	d tidyr				2 h	ours	3
6.	Processing .	JSON Data					2 h	ours	3
7.	APIs						3 h	ours	3
8	Data Visuali	zation					3 h	ours	3
9.	Interactive V	isualization in R					3 h	ours	3
10.	Case Study						3 h	ours	3
			То	otal Labo	ratory Ho	urs	30 h	our	S
Mod	le of assessm	ent: Continuous as	sessment / FAT /	Oral exa	mination a	ind oth	ers		
Rec	ommended by	y Board of Studies	12-05-2022						
App	roved by Acad	demic Council	No. 66	Date	16-06-20)22			

Course code	Course Title		L	Т	Ρ	С
BCSE208L	Data Mining		2	0	0	2
Pre-requisite	NIL	Sy	llab	us v	ers	ion
				1.0		
Course Objective	es					
1. To introdu mining.	ce the fundamental processes data wareh	nousing and majo	r issi	ues	in d	ata
2. To impart	the knowledge on various data mining co	oncepts and tech	nique	es th	nat o	can
be applied	to text mining, web mining etc.				<i>.</i> .	
3. To develo mining.	p the knowledge for application of data m	ining and social	impa	cts	d tc	ata
Course Outcome						
Upon completion	or the course the student will be able to	d data mining t	o tha	- da	منمن	~ ~
I. Interpret t	ne contribution of data warehousing an	a data mining t	5 ine	e de	CISI	on-
2 Construct	sterrs.	processing techni	auor			
2. Construct	interesting patterns from large amounts	of data using A	ques	,. iatio	n D	مارير
J. Discover i Mining	meresting patients norn large amounts	or uata using A	5500	alio		uie
4 Extract us	eful information from the labeled data using	a various classifie	ers ar	nd C	:om	nile
unlabeled	data into clusters applying various clusteri	na algorithms	,15 ai			pile
5 Demonstr	ate canacity to perform a self-directed nier	ng algorithms.	rk th	at re	auir	20
the applica	ation of data mining techniques		K UIG	atro	qui	03
Module:1 Data	Warehousing			4	ho	iirs
Introduction to D	ata warehouse - Data Warehouse model	s- Data warehou	<u>6</u> 2	rchit		
Three-tier data wa	arehouse architecture - Data warehouse model	odeling: Data cu	he a	nd C		лс. Р _
Star and Snowflat	ke Schema	loucing. Data ou				1
Module:2 Intro	duction to Data Mining			3	ho	urs
Introduction to d	ata mining - Data mining functionalities -	Steps in data r	ninin			-222
Classification of d	ata mining systems - Major issues in data	mining		9 2	000	00
Module:3 Data	Preprocessing	inining.		3	ho	urs
Data Preprocessi	ng: An overview - Data cleaning - Data ir	tegration -Data r	educ	tion	- D	ata
transformation	ng. An overview - Data cleaning - Data in	licgration -Data i	cuuc	lion	- 0	ala
Module:4 Frequ	ent Pattern Mining			4	ho	lire
Frequent Pattern	Mining: Basic Concepts and a Road Man	- Efficient and so	ralah	۔ fr		ent
item set mining m	ethods: Apriori algorithm FP-Growth algo	rithm - Mining fre		nt ite	equ m e	ente
using vertical data	format		quei	n ne	111 3	013
Module:5 Class	ification Techniques			5	ho	ure
General approac	to classification. Classification by d	ocision trop ind	uctio	- J	Bo	
classification me	thods Model evaluation and select	ion Technique	actio	 	Day	yes ove
classification acc	uracy - advanced classification methods:	Bavesian belief	notu	orka		270
	aracy - advanced classification methods.	Dayesian Deller	netw	UIKa)- Lo	a∠y
Modulo:6 Clust	or Analysis			5	ho	ure
Types of data in	elustor analysis Partitioning methods	K Modoid Clust	oring	<u>כ</u> זי		city
based methods -	Grid based methods - Outlier analysis.		.ennų	ι - L		Sity
Module:7 Data Mining Trends and Research 4 hours						urs
Front	liers					
Overview of Web	Overview of Web mining-Temporal and Spatial mining-Other methodologies of data mining:				ng:	
Statistical data mi	ning- Data mining applications.				<u> </u>	
Module:8 Cont	emporary Issues			2	ho	urs

			Total Lecture ho	ours:	30 hours
Тех	kt Book	(s)			
4	Jiawei	Han and Micheline Kam	ber, Data Mining	g: Conce	pts and Techniques, Morgan
1.	Kaufm	ann Publishers, third editio	on, 2013.		
Re	Reference Books				
1	Partee	k Bhatia, Data Mining	and Data Wa	rehousin	ng: Principles and Practical
1.	Techni	ques, Cambridge Univers	ity Press, 2019.		
2	Pang-I	Ning Tan, Michael Steinb	ach, Anuj Karpat	ne, Vipir	n Kumar, Introduction to Data
Ζ.	Mining	, Pearson, 2 nd Edition, 201	19.		
Мо	de of Ev	aluation : Continuous Ass	essment Tests, C	Quizzes, J	Assignment, Final
Ass	sessmer	nt Test			-
Re	commer	nded by Board of Studies	12-05-2022		
Ар	proved b	y Academic Council	No. 66	Date	16-06-2022

Course code		Course Title			L	Т	Ρ	С
BCSE208P		Data Mining Lab)		0	0	2	1
Pre-requisite	NIL			Syl	abı	is v	ersi	on
					1	.0		
Course Objectiv	es							
1. To introdu data minir	ice the fundamental	processes data	warehousing	and m	najo	r iss	sues	; in
2. To impart	the knowledge on	various data min	ing concepts	and te	chr	nique	es t	hat
can be ap	plied to text mining,	web mining etc.	•			•		
3. To develo	p the knowledge fo	r application of o	data mining a	ind soc	cial	impa	acts	of
data minir	ng.							
Course Outcom	e							
1. Interpret t support s	he contribution of d	ata warehousing	and data mi	ning to	the	e de	cisi	on-
2. Construct	, the data needed for	[.] data mining usir	na preprocess	sina tea	hni	aue	s.	
3. Discover Mining	nteresting patterns f	from large amou	nts of data us	ing As	soci	atio	n R	ule
4 Extract us	seful information fro	m the labeled c	lata using va	rious d	las	sifie	rs a	and
Compile i	inlabeled data into c	lusters applying	various cluste	ring al	aori	thm	s	
5 Demonstr	ate capacity to per	form a self-dired	cted niece of	practi	cal	wor	s. k th	nat
requires t	he application of dat	a mining technig	ues	praoti	oui			
Indicative Exper	iments							
1 Introduction	to exploratory data	analysis using R						
2 Demonstrat	e the Descriptive Sta	atistics for a sam	ple data like r	nean i	ned	ian		
variance an	d correlation etc.			nean, i		,		
3. Demonstrat	e Missing value ana	lvsis using samp	le data.					
4. Demo of A	priori algorithm on	various data s	ets with vary	/ina co	onfic	lenc	e a	and
support.								
5. Demo of Fl	P Growth algorithm	on various data	sets with var	ying c	onfi	deno	ce a	and
6 Demo on C	assification Technic	ues such as Dec	ision Tree (IF	3/04				
Bayesian et	c., and using sample	e data.			,	,		
7. Demonstrat	ion of Clustering Tec	chniques K-Medo	oid and Hierar	chical.				
8. Demonstrat	ion on Document Sir	milarity Techniqu	es and meas	uremei	nts.			
9. Simulation of	of Page Rank Algorit	hm.						
10. Demonstrat	ion on Hubs and Aut	thorities.						
		Tota	al Laboratory	Hour	S (30 h	our	S
Text Book(s)								
Jiawei Han and N	licheline Kamber, D	ata Mining: Conc	epts and Tec	hnique	s, N	lorg	an	
Kaufmann Publis	hers, third edition, 20	013.						
Reference Book	S				<u> </u>			
Parteek Bhatia, Techniques, Can	Data Mining and bridge University Pr	l Data Wareho ess, 2019.	ousing: Princ	iples	and	Pr	acti	cal
Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar, Introduction to Data			ata					
Mining, Pearson,	2 ¹¹ Edition, 2019.							
Mode of Assess	nent: Continuous As	sessment / FAT	/ Oral examin	ation a	nd o	othe	rs	
Recommended h	v Board of Studies	12-05-2022	3. 6. 37.61.111					
Approved by Aca	demic Council	No. 66	Date 16	-06-20	22			
, , , , , , , , , , , , , , , , ,								

Course code	Course Title Machine Learning			L 3	T 0	P 0	C 3
Pre-requisite	NII		Sv	llah		ers	ion
Tre-requisite			Uy	nab	10	013	
Course Objectiv	/es				1.0		
1. To teach the	theoretical foundations of various learning	algorithms.					
2. To train the	students better understand the context of s	upervised and	d uns	upe	rvise	ed	
learning thro	ugh real-life examples.			•			
3. To understa	nd the need for Reinforcement learning in r	eal – time pro	blem	IS.			
4. Apply all learning algorithms over appropriate real-time dataset.							
5. Evaluate the	algorithms based on corresponding metric	s identified.					
Course Outcom	e						
At the end of this	course, student will be able to:	f					
1. Understand,	visualize, analyze and preprocess the data	i from a real-t	imes	sour	ce.		
2. Apply applo	mate algorithm to the data.	riata informat	lion		irad	for	the
5. Analyze the	nelication			equ	neu	101	uie
A Evaluate the	pplication.	uld be applied	t ot	ho d	lata	and	to
4. Evaluate ine	t relevant algorithm according to the enviro	nment		ne u	ala	anu	10
Suggest mo							
Module:1 Intro	duction to Machine Learning and Pre-				4	ho	urs
requ	isites						
Introduction to N	lachine Learning – Learning Paradigms – F	PAC learning	– Ve	rsio	n Sp	ace	s –
Role of Machine	Learning in Artificial Intelligence applicatior	IS.					
Module:2 Sup	ervised Learning – I				7	ho	urs
Linear and No	n-Linear examples – Multi–Class & Mu	Iti-Label clas	sifica	atior	ı —	Lin	ear
Regression – Mu CART – Error bo	iltiple Linear Regression – Naïve Bayes Cl unds.	assifier – Dec	cisior	n Tre	es -	– ID	3 –
Module:3 Sup	ervised Learning – II				8	ho	urs
K-NN classifier	- Logistic regression – Perceptron – Sing	le layer & M	ulti-la	ayer	- 5	Supp	port
Vector Machines	– Linear & Non-linear – Metrics & Error Co	rrection.					
Module:4 Uns	upervised Learning				9	ho	urs
Clustering basic	s (Partitioned, Hierarchical and Density ba	ased) - K-Me	ans	clus	terin	ıg –	K-
Mode clustering	 Self organizing maps – Expectation max 	imization – P	rinci	pal (Com	pon	ent
Analysis – Kern	el PCA – tSNE (t-distributed stochastic n	eignbor embe	eddir	ng) -	IVIE	strics	3 Å
Error Correction.	mble Leerning					bo	
Rice Verience	Tradeoff Pagging and Pagating (Pagd	om forcata A	dah		0	$\frac{10}{10}$	urs
inclusive) – Metr	s & Error Correction	Sin lorests, A	labo	JUSI	,	3 00	osi
Module:6 Mac	hine Learning in Practice				3	ho	urs
Class Imbalance	– SMOTE – One Class SVM – Optimizatio	n of hyper pa	rame	eters			
Module:7 Reir	forcement Learning (RL)	, , , , , , , , , , , , , , , , , , ,			8	ho	urs
Basics of RL -	RL Framework – Markov Decision Proces	s – Exploratio	on V	s Ex	ploi	tatic	n -
Polices, Value F	unctions and Bellman Equations – Solution	Methods – Q	-lear	ning			
Module:8 Con	temporary Issues					1 h	our
	Total Lecture hours:45 hours					urs	
Text Book(s)							
Ethem Alpa	/din, Introduction to Machine Learning, M	IT Press, Pre	entice	e Ha	all o	f Ind	dia,
¹ Third Editior	2014.						

	Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction			
2.	(Adaptive Computation and Machine Learning series) 2 nd edition, A Bradford Book;			
	2018.			
Ref	ference Books			
1	Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, Foundations of Machine			
1.	Learning, MIT Press, 2012.			
2.	Tom Mitchell, Machine Learning, McGraw Hill, 3rd Edition, 1997.			
3.	Charu C. Aggarwal, Data Classification Algorithms and Applications, CRC Press, 2014			
Mo	Mode of Evaluation : Continuous Assessment Tests, Quizzes, Assignment, Final			
Ass	sessment Test			
Por	commonded by Roard of Studios 00.05.2022			

Recommended by Board of Studies	09-05-2022		
Approved by Academic Council	No. 66	Date	16-06-2022

Cou	rse code		Course T	itle			L	Т	Ρ	С
BCS	E209P	Mach	ine Lear	ning Lal	0		0	0	2	1
Pre-	requisite	Nil				Sylla	abu	s v	ersi	on
							1	.0		
Cou	rse Objective	es								
1	. To teach th	ne theoretical foundat	ions of va	arious le	arning alg	gorithm	IS.			
2	2. To train the	e students better und	erstand th	ne conte	xt of supe	ervised	an	d		
	unsupervis	ed learning through r	eal-life ex	kamples						
3	To underst	and the need for Reir	nforceme	nt learni	ng in real	– time	e pro	ble	ms.	
4	. Apply all le	arning algorithms over	er approp	riate rea	I-time da	taset.				
5	5. Evaluate th	ne algorithms based o	on corres	ponding	metrics id	dentifie	ed.			
Cou										
1	. At the end	of this course, studer	nt will be a	able to:						
Ž	2. Understand	d, visualize, analyze	e and pro	eproces	s the dat	ta fror	n a	rea	al-tii	me
	Source.	opriato algorithm to t	ha data							
	b. Apply appl	opnate algorithm to the	he uala.	oonvor	to opp	ropriot	~ ir	ofor	mot	ion
4	required fo	r the real - time appli	ication	COnver	l lu appi	opnau		IIOII	IIdu	OII
5	Fvaluate th	n the real – time appli	arious alc	orithme	that cou	ld ha :	ann	hail	to t	łho
	data and to	suggest most releva	ant algorit	hm acco	ording to t	he en	/iror	ncu nme	nt	.nc
Indi	cative Experi	iments	and algorit		i ang to t					
1.	Linear & Mu	Itiple Linear Regressi	on							
2.	Naïve Bayes	s classifier								
3.	Decision tree	es – ID3 & CART								
4.	Logistic regr	ession								
5.	Support Vec	tor Machines – Linea	r & Non-l	inear						
6.	Single & Mu	Itilayer Perceptron								
7.	K-NN, K-Me	ans & K-mode cluste	ring							
8.	Random – fo	prest								
9.	Adaboost, X	Gboost								
10.	Principal cor	nponent analysis								
11.	Self – Organ	iizing maps								
12.	12. Q-Learning									
	Total Laboratory Hours 30 hours									
Mod	e of Evaluatio	on: CAT / Mid-Term L	ab/ FAT							
Rec	ommended by	y Board of Studies	09-05-2	022						
Арр	roved by Acad	demic Council	No. 66	Date	16-06-20)22				

Course code Course Title		L	Τ	Ρ	С					
BCSE331L Exploratory Data Analysis		2	0	0	2					
Pre-requisite NIL	Sy	llab	us v	/ers	ion					
			1.0							
Course Objectives										
1. The course introduces the methods for data preparation and data	und	ersta	andi	ng.						
2. It covers essential exploratory techniques for understanding n	nultiv	varia	te o	data	by					
summarizing it through statistical and graphical methods.					-					
3. Supports to summarize use of predictive analytics, data	scie	nce	an	d d	ata					
visualization.										
Course Outcomes										
At the end of the course, the student will be able to										
1. Handle missing data in the real world data sets by choosing	appi	ropri	ate							
methods.	•••	•								
2. Summarize the data using basic statistics. Visualize the data	a us	sing	bas	sic						
graphs and plots.		•								
3. Identify the outliers if any in the data set.										
4. Choose appropriate feature selection and dimensionality reduction	า.									
5. Apply Techniques for handling multi-dimensional data.										
Module:1 Introduction to Exploratory Data Analysis			4	l ho	urs					
Introduction to Exploratory Data Analysis (EDA) – Steps in EDA, Data	а Ту	pes:	Nu	mer	ical					
Data – Discrete data, continuous data – Categorical data – Measureme	nt S	cale	s: N	omi	nal,					
Ordinal, Interval, Ratio – Comparing EDA with classical and Bayesian A	Anal	ysis	– S	oftw	are					
tools for EDA.										
Module:2 Data Transformation			4	l ho	urs					
Transformation Techniques: Performing data deduplication - re	plac	ing	va	lues	_					
Discretization and binning. Introduction to Missing data, handling missing	ng d	lata:	Tra	ditic	nal					
methods - Maximum Likelihood Estimation.										
Module:3 Correlation Analysis and Time Series			4	l ho	urs					
Analysis										
Types of analysis: Univariate analysis - bivariate analysis - multivariate ar	nalys	sis. 7	Time	e Sei	ries					
Analysis (TSA): Fundamentals of TSA - characteristics of TSA - Time	e ba	ased	inc	exin	g -					
visualizing time series – grouping time series data - resampling time serie	es da	ata.								
Module:4 Data Summarization and Visualization			4	<u>ho</u>	urs					
Statistical summary measures, data elaboration, 1-D Statistical data analy	ysis,	2-D	Sta	tisti	cal					
data Analysis, contingency tables, n-D Statistical data analysis. Visualizat	tion:	Sca	tter	plot	s —					
Dot charts - Bar plots.										
Module:5 Clustering Algorithms			. 4	<u>no</u>	urs					
Introduction to Spectral clustering – Document clustering – Minimu	im .	Spai	nnin	ġг	ree					
clustering. Overview of Model-based clustering – Expectation-Maxim	Izati	on a	algo	ritnn	1 —					
Hierarchical Aggiomerative model-based clustering. Outlier detection usin	ig C	iuste	ering	. . n. n.						
Module:6 Dimensionality Reduction			4	I NO	urs					
Linear Methods: Principal Component Analysis (PCA) – Singular Valu	еD	ecor	npo	SITIO	n —					
Factor Analysis -Intrinsic Dimensionality. Non Linear methods: Multidim	iens	lona	1 50	aiin	g –					
Manifold Learning – Sell-Organizing Maps.				I la a						
Constructing linear regression model evaluation	o) /		4		urs					
Constructing linear regression model – evaluation – computing accurate	cy –		Jers	เลทด	and					
accuracy. Understanding reinforcement learning: Difference Detwee	II S	upe	IVISE	su a	DITE					
reinforcement learning – Applications of reinforcement learning.										
				. 110	uis					

			Total Lecture ho	ours:	30hours				
Tex	xt Book	(s)							
1.	Suresh	, Kumar Mukhiva, Usma	n Ahmed. "Hand	ds-On Ex	oloratory Data Analysis with				
	Pvthor	" 1 st Edition. 2020. Packt	Publishing.						
2.	Martine	ez, W , Martinez Á & J.L.	Solka : Explorat	ory Data	Analysis with MATLAB, CRC				
	Press, A Chapman & Hall Book, 3 rd Edition, 2017								
Re	ference	Books							
1.	Michae	el Jambu, "Exploratory and	d multivariate data	a analysis	", 1991, 1 st Edition,				
	Acade	mic Press Inc.		·					
2.	Charu	C. Aggarwal, "Data Mining	g The Text book"	, 2015, Sp	ringer.				
3.	Craig I	K. Enders, "Applied Missin	g Data Analysis"	, 2010, 1 st	Edition, The Guilford Press.				
Мо	Mode of Evaluation: CAT / written assignment / Quiz / FAT / Project								
					-				
Re	commer	nded by Board of Studies	12-05-2022						
Ap	proved by Academic Council No. 66 Date 16-06-2022								

Co	urse code		Course Title	;			L	Т	Ρ	С
BC	SE331P	Explo	oratory Data Ana	alysis Lab)		0	0	2	1
Pre	e-requisite	NIL				Sy	llab	us	vers	ion
								1.0		
Со	urse Objective	es								
	1. Emphasize	e the importance of	programming in	EDA.						
	2. Familiarize	e the student with R	programming for	r various t	asks.					
_	3. Explore da	ata structures and fi	le processing fac	ilities in R	language).				
Co	urse Outcome	es								
At	the end of the o	course, the student	will be able to							
	1. Engrave s	imple R programs.		_						
	2. Debug and	d execute R prograi	ms using R studio	Э.						
	3. Implement	t several algorithms	in R language.							
Indicative Experiments										
1	Data transfor	mation and pre-pro	cessing Write R	nroarame	to read da	ata		1 h	oure	
1.	from keyboar	d and transform it to	o various randes	like [_3 +9	1016au ua	ala			Juis)
	IO 11 etc		o various ranges		Ŋ, [', ' '],					
2.	Write R progr	rams to read data fr	om kevboard or t	ext files a	nd compu	te		6 h	ours	
	summary me	asures like arithmet	ic mean, median	, mode, va	ariance an	nd		-		
	standard devi	iation. Also read a s	set of X,Y values	and find c	ovariance					
	and correlation	on, use statistical te	chniques to ident	ify outlier	data					
3.	Estimation of	missing data, globa	al methods, class	based m	ethods,			6 h	ours	•
	multiple impu	tation methods etc								
4	Exploratory D	ata Analysis for Str	uctured Data					4 h	ours	;
4.	Write R progr	rams to implement t	he k-means clust	tering algo	orithm by			6 h	ours	•
	reading the d	ata and user-specif	ied value of k. Di	splay the						
	characteristic	s of the clusters for	ind by the algorit	hm.						
5.	Write R progr	rams for nearest ne	ighbour algorithm	ns for clas	sification			<u>4 h</u>	ours	;
—			То	tal Labor	atory Hou	Jrs	3	50 h	our	S
Mo	de of assessm	ent: Continuous as	sessment / FAT /	Ural exa	mination a	nd c	other	S		
Recommended by Board of Studies 12-05-2022										
Approved by Academic CouncilNo. 66Date16-06-2022										

Course code)	Course Title		L	Т	Ρ	С			
BCSE332L		Deep Learning		3	0	0	3			
Pre-requisite	;	NIL	S	/llab	us v	vers	ion			
					1.0					
Course Obje	ctive	es								
1. Introdu netwo	uce rks.	major deep neural network frameworks and issue	es il	n ba	asic	ne	ural			
2. To sol	ve re	eal world applications using Deep learning.								
Course Outc	ome	S								
At the end of	this o	course, student will be able to:								
1. Under	stan	d the methods and terminologies involved in dee	p r	neura	al n	etwo	ork,			
differe	entiat	e the learning methods used in Deep-nets.								
2. Identif	y an	a apply suitable deep learning approaches for given apple	2002	ition	•					
3. Design	n an	a develop custom Deep-nets for human intuitive applica	tion	S.						
4. Design of test procedures to assess the efficiency of the developed model.										
5. To uno	aers	and the need for Reinforcement learning in real – time	proc	biem	S.					
	ntro	duction to neural networks, and deen neural network	ke			7 ho	lire			
Neural Netwo	orks	Basics - Eunctions in Neural networks – Activation func	tion		s fu	nctio	<u>uis</u> on -			
Function app	roxin	nation - Classification and Clustering problems - Deer	o ne	etwor	ks l	basi	cs -			
Shallow neura	al ne	etworks – Activation Functions – Gradient Descent – E	Back	<pre>c Pro</pre>	pag	atio	n –			
Deep Neural	Netw	orks – Forward and Back Propagation – Parameters –	Нур	erpa	iram	eter	s.			
Module:2 Ir	mpro	oving deep neural networks			8	3 ho	urs			
Mini-batch G	iradie	ent Descent – Exponential Weighted Averages – Gra	dier	nt D	esce	ent v	with			
Momentum -	– R	MSProp and Adam Optimization – Hyperparameter	er t	unin	а –	Ba	atch			
Normalization	ייי 1 – S	Softmax Regression – Softmax classifier – Deep Lear	nina	Fra	me	Nork	s –			
Data Augmen	ntatio	n - Under-fitting Vs Over-fitting.					-			
Module:3 C	onv	olution neural networks			(6 ho	urs			
Foundations	of C	anvolutional Noural Natworks CNN operations Ar	<u>chit</u>	octur	·~	Sim				
Convolution	Un C	onvolutional Neural Networks – Chin operations – Al	t In	cont			and			
others	NELW	ork – Deep Convolutional Models – Resider, Alexider	ι, π	cepi		NEL	anu			
Module:4 R	Peru	rrent networks				s ho	urs			
Recurrent Ne	ural	Networks - Bidirectional RNNs Encoder Decoder Sea	lien	ce-to)-Se		nce			
Architectures.	. D	eep Recurrent Networks, Auto encoders - Bid	irect	tiona	I E	Enco	der			
Representatio	, ons f	rom Transformers (BERT).								
Module:5 R	Recu	rsive neural networks			(6 ho	urs			
Long-Term D	Эере	ndencies - Echo State Networks - Long Short-Term	Mer	nory	an	d Ot	her			
Gated RNNs	- Op	timization for Long-Term Dependencies - Explicit Memo	ory.							
Module:6 A	dva	nced Neural networks				6 ho	urs			
Transfer Lear	ning	 Transfer Learning Models – Generative Adversarial N 	letw	/ork	and	thei	r			
variants – Reg	gion	based CNN – Fast RCNN - You Only Look Once – Sing	gle s	shot	dete	ctor	<u>.</u>			
	veep	reinforcement learning	<u>De!</u>		<u>,</u>	b ho	urs			
Deep Keinto	oten	Critic (A2C) and Acurahranous Advantage Actor Crit	roll tic /	Noc (raدی ۱		.s -			
hased Reinfor	rcom	ent Learning – Challenges	uc (730) -	- IVIC	JUEI			
Module 8 C	cont	amporarv issues		Т		1 h	our			
		Total Lecture h	าอนเ	rs:	45	і Но	urs			
Text Book(s)										

1.	Ian Goodfellow Yoshua Bengio Aaron Courville, Deep Learning, MIT Press, 2017.								
2	Michael Nielsen, Neural Networks	s and Deep L	earning,	Determination Press, first					
	Edition, 2013.		-						
Ret	ference Books								
1.	N D Lewis, Deep Learning Step by	Step with Pyth	non, 2016.						
2.	Josh Patterson, Adam Gibson, I	Deep Learning	j: A Prac	titioner's Approach, O'Reilly					
	Media, 2017.								
3	Umberto Michelucci, Applied Deep Learning. A Case-based Approach to Understanding								
	Deep Neural Networks, Apress, 20	18.							
4	Giancarlo Zaccone, Md. Rezau	lKarim, Ahme	ed Mensl	nawy, Deep Learning with					
	TensorFlow: Explore neural networ	ks with Pythor	i, Packt P	ublisher, 2017.					
Мо	de of Evaluation: CAT / Written Assig	gnment / Quiz	/ FAT						
		-							
Re	Recommended by Board of Studies 09-05-2022								
Арр	pproved by Academic Council No. 66 Date 16-06-2022								

Οοι	irse code		Course T	ïtle			L	Τ	Ρ	С
BCS	SE332P		Deep Learni	ng Lab			0	0	2	1
Pre	-requisite	NIL				Sy	llab	us v	ersi	on
							1	.0		
Οοι	irse Objective	<u>S</u>								
	1. Introduce ma	ajor deep neural nei	twork framewo	orks and	issues in t	basic ne	eura	net	worł	(S.
	2. To solve rea	i world applications	using Deep le	earning.						
Col	ursa Quitaamaa									
	he end of this c	<u>»</u> ourse student will l	he able to:							
	1 Understand	the methods an	d terminoloa	ies invo	lved in d	leep ne	eura	l ne	etwo	ork
	differentiate	e the learning metho	ods used in De	eep-nets.			Juio			····,
	2. Identify and	apply suitable deep	learning appl	roaches f	or given a	pplicatio	on.			
	3. Design and o	develop custom De	ep-nets for hu	man intu	itive applic	ations.				
	4. Design of tes	st procedures to as	sess the effici	ency of th	ne develop	ed mod	lel.			
5. Understand the need for Reinforcement learning in real – time problems.										
Indi	cative Experin	nents			· · · ·			101		
1.	Demonstration	n and implementation	on of Shallow	architect	ure, using			10 N	ours	3
	Python, Tenso	ornow and Keras.								
	 Google 	e Colaboratory - Clo	onina GitHub	repositor	v. Upload	Data.				
	Importing Kaggle's dataset, Basic File operations									
Implementing Perceptron,										
	 Digit C 	Classification : Neur	al network to	classify N	/INIST data	aset				
2.	Hyper parame	eter tuning and regulation (DE	liarization pra	ctice -				4 nc	ours	
	 Multila Mini hu 	yer Perceptron (BP	'N)							
3	Convolution N	aton gradient desce	lication using '	Tonsorfic	w and Key	200		<u>1 hc</u>	ure	
5.		fication of MNIST C	lication using Dataset using (аз,			Jui 3	
	 Eace r 	ecognition using Cl	NN							
4.	Object detecti	ion using Transfer L	earning of CN	N archit	ectures			2 hc	ours	
5.	Image denois	ing (Fashion datase	et) using Auto	Encoder	S			2 hc	ours	i -
	Handli	ng Color Image in I	Neural Networ	'k aka Sta	acked Auto	D				
	Encod	ers (Denoising)						0 4 4		
ю.	l ext processi	ng, Language Mode	eiing using RN	IN				2 nc	ours	
7.	Transfer Lear	ning models for cla	ssification pro	blems				2 hc	ours	;
		0	·							
8	8 Sentiment Analysis using LSTM							2 hr	oure	
0.								2		
9.	Image genera	ition using GAN						2 hc	ours	i
	Total Laboratory Hours							20 h	0.11r	
Mod	le of Evaluation	CAT / Mid_Term I	ah/ FAT	i Ulai Là	boratory	10015	•		ours	2
Rec	ommended by	Board of Studies	09-05-2022							
Арр	roved by Acade	emic Council	No. 66	Date	16-06-20)22				

Course code	Course Title		L	Τ	Ρ	С
BCSE333L	Statistical Inference		2	0	0	2
Pre-requisite	NIL	Sy	/llab	us v	vers	ion
		<u> </u>		1.0		
Course Objective	es			<u> </u>		
1. To stu	udy statistical methods for hypotheses testing and	i so	lving	j in	fere	nce
problei	MS. Arrest the regulte in a way that draws evidence based	d on	dw	all ir	oforn	nod
	nos from data	l an	u w	311-11	nom	lieu
3. To der	ive conclusions from data and analyze its implications					
Course Outcome	95					
At the end of the of	course, the student will be able to					
1. Unde	rstand the notion of a parametric model, point estimatio	n of	the	para	amet	ters
and p	roperties of a good estimator.					
2. Learn	the concept of interval estimation and confidence inter	vals.				
3. Unde	rstand and perform large-sample tests of hypotheses.					
4. Discu	ss nonparametric tests of hypotheses.					
5. Trans	late and correlate the statistical analysis into Statistical	infe	renc	е		
			-			
Module:1 Intro	duction to Estimator	4			1 ho	urs
Population, samp	ie, parameter and statistic- Estimator, Estimate-chara	icter	ISTIC	s of	a go	boc
Sufficient conditio	n for consistency. Sufficiency Eactorization Theorem	Mini	mal	es	linia	
Efficiency- Applic	ations of Lehmann-Scheffe's theorem Rao - Black	well	Th	eore	m :	and
applications Bave	esian Estimation	wen		COIC	//// 0	and
Module:2 Point	Estimation			Į	5 ho	urs
Methods of point	estimation- Maximum likelihood method (the asymptotic	c pro	pert	ies (of M	L
estimators are no	ot included), Large sample properties of ML estimato	، v (w	vitho	ut p	roof)-
applications of MI	LE, Method of Minimum variance, method of moments	s, me	etho	d of	leas	st
squares, method	of minimum chi-square.					
Module:3 Interv	val Estimation		<u> </u>		<u>3 ho</u>	urs
Confidence limits	and confidence coefficient; Duality between acceptar	ice i	regio	o nc	fat	test
and a confidence	e interval; Construction of confidence intervals for po	pula	ation	pro	por	tion
Confidence interv	als for mean and variance of a normal population: Diff	ns(ia oron	arge	Sa	mpie	the
mean and ratio of	two normal populations	EIEII			CCII	uie
Module:4 Test	ing of hypotheses				4 ho	urs
Types of errors	power of a test most powerful tests. Nevman-Pe	arso	n F	unda	ame	ntal
Lemmaand its ap	plications: Notion of Uniformly most powerful tests: Lik	celiho	boc	Rati	o te	sts:
Description and p	roperty of LR tests - Application to standard distribution	s.				
Module:5 Large	e sample tests			4	1 ho	urs
Large sample pro	operties; Tests of significance (under normality ass	sump	otion)- T	est	for
a single populatio	n mean, proportion; Test for equality of two m	nean	s, I	prop	ortic	ons;
Test for variance,	Test for correlation and Test for Regression.					
Module:6 Smal	I sample tests			4	<u>1 ho</u>	urs
Student's t-test, te	est for a population mean, equality of two population n	near	ıs, p	aire	d t-te	est,
F-test for equalit	y of two population variances; Chi-square test f	or g	jood	ness	s of	tit,
Independence of a	attributes.				4 6 6	
Sign tost Wilcow	parametric tests on Signed rank test Modian test Wilcoven Menn Wh	itno		2 -+ 「	+ 110	urs toot
and One sample	Kolmogorov Smirnov test Kruskel Wellis-H-test De	scrin	y ie: ntion	א, ד חדי	nner	ties
and applications	Nontogorov omittov tost, Nusital vvallis-ri-tost. Do	Jonh			Shei	

Mo	dulo 8	Contomporary Issues	2 hours							
IVIO	uule.o	contemporary issues	2 110015							
		lotal hours	30 hours							
Tex	kt Book	(s)								
1.	Robert	t V Hogg, Elliot A Tannis and Dale L.Zimmerman, Probability ar	d Statistical							
	Inferer	nce, 9 th Edition, Pearson publishers, 2015.								
2.	Manoj	Kumar Srivastava and Namita Srivastava, Statistical Inference	e Testing of							
	Hypotheses, Prentice Hall of India, Kindle Edition, 2014.									
Re	ference	Books								
1.	Marc S	S. Paolella, Fundamental statistical inference: A computational ap	proach, Wiley,							
	2018.									
2.	B. K. K	Kale and K. Muralidharan, Parametric Inference, Narosa Publishing	House, 2016.							
3.	Miller,	I and Miller, M, John E. Freund's Mathematical statistics wit	h Applications,							
	Pearso	on Education, 2002.								
4.	George	e Casella and Roger L.Berger, Statistical Inference, 2nd edition	on, Casebound							
	Engels	ska, 2002.								
Мо	de of Ev	valuation: CAT / written assignment / Quiz / FAT / Project / Seminar								
Re	commer	nded by Board of Studies 12-05-2022								
Ар	proved b	by Academic Council No. 66 Date 16-06-2022								

Cou	irse code	Co	urse Title				L	Т	Ρ	С
BCS	SE333P	Statistic	al Inference Lab				0	0	2	1
Pre	-requisite	NIL				Sy	/llab	us v	vers	ion
								1.0		
Cou	irse Objecti	ves								
	1. To s	tudy statistical me	thods for hypot	heses te	sting and	so	lving	j in	fere	nce
	probl	ems.								
	2. To in	terpret the results in	n a way that dra	ws evide	nce-basec	l an	d we	ell-ir	nforn	ned
	decis	ions from data.								
	<u>3.</u> To de	rive conclusions from	m data and analy	ze its imp	lications.					
Cou	irse Outcom	ies								
At th	he end of the	course, the student	will be able to							
	1. Understand the notion of a parametric model, point estimation of the parameters									
	and	properties of a good	estimator.		.					
	2. Con	quer the concept of	interval estimation	n and con	fidence int	terva	als.			
Analyze and perform large-sample tests of hypotheses.										
	4. Disc	uss nonparametric to	ests of hypothese	es.						
	5. Trar	slate and correlate t	he statistical ana	lysis into	Statistical	infe	renc	е		
							-			
Indi	cative Expe	riments								
1	Methods of	Estimation – MLE a	ind Method of Mo	oments				2 h	ours	;
2	Estimation	of Confidence interv	als					<u>4 h</u>	ours	;
3	P- value ar	id Power of the test						2 h	ours	j
4	Large Sam	ple Tests- Test for P	opulation mean 8	& Populati	on			4 h	ours	j
_	proportions	; · · · · · · · · · · · · · · · · · · ·		<u> </u>						
5	Small Sam	ple lests – t – test to	or population mea	an, Paired	t-test			<u>4 h</u>	ours	•
6	F- test for p	population variances						<u>2 h</u>	our	
/	Chi-square	test for goodness of	fit and test for at	tributes				<u>4 h</u>	ours	j
8	Test for co	relation and test for	regression					<u>6 h</u>	ours	;
9	9 Non-parametric tests							<u>4 h</u>	ours	;
	Total Laboratory Hours							30 h	our	5
Mod	le of assessr	nent: Continuous as	sessment / FAT /	Oral exa	mination a	nd c	other	S		
Rec	ommended I	by Board of Studies	12-05-2022		1					
Approved by Academic Council No. 66 Date 16-06-2022										

Course Co	urse Code Course Title					Ρ	С
BCSE334L	-	Predictive Analytics		3	0	0	3
Pre-requis	ite	NIL	Syl	lab	us v	ersi	on
					1.0		
Course Ob	ojectiv	es					
1.	Learn	the fundamental principles of analytics for busines	s and	lea	arn l	how	to
	Visuali	ze and explore data to better understand relationships	amon	g va	ariab	les.	
2.	lo uno	derstand the techniques of modeling and examine how	/ predi	ICTIV	e ar	nalyt	ICS
2	can be	e used in decision making.					
3.	Арріу	predictive models to generate predictions for new data					
Expected	Cours	e Outcome					
Upon com	oletion	of the course the student will be able to					
1.	Under	stand the importance of predictive analytics and pro	ocessir	ng (of d	ata	for
	analys	is.		5			
2.	Descri	be different types of predictive models.					
3.	Apply	regression and classification model on applications	for de	ecisi	on r	mak	ing
	and ev	valuate the performance.					-
4.	Analyz	te the impact of class imbalance on performance	measu	ure	for	mo	del
	predic	tions and models that can mitigate the issue during trai	ning.				
5.	Define	and apply time series forecasting models in a variety of	of busi	nes	s co	ntex	ts.
Module:1	Intro	duction to Analytics			5	hou	irs
Introduction	n to p	predictive analytics – Business analytics: types, a	oplicat	lons	3- I\	/1006	els:
predictive	model	s – descriptive models – decision models - appi	cation	S -	an	alyti	cal
tecnniques	Data	Dre pressesing and Medal Tuning				hai	
Data transf	Dala	ane: Individual predictors. Multiple predictors. Dealing	with p	nice			
Removing		ng Rinning Predictors, Multiple predictors, Dealing	wiui Π na Γ)ata	ing v Si	nlitti	es, na
Resampling	7.uui a.		ig, L	/414		piittii	''y,
Module:3	Predi	ctive Modeling			6	hou	urs
Propensity	mode	ls, cluster models, collaborative filtering, application	is and	d fu	Inda	mer	ntal
limitations.	Statist	ical Modeling- Formal Definition, Model Comparison, C	lassifi	cati	on.		
Module:4	Com	parison of Regression Models			<u>7</u>	hou	Jrs
Measuring	Perfor	mance in Regression Models - Linear Regression an	d Its C	Jous	sins	- NO	on-
Linear Reg	gressic	on Models - Regression Trees and Rule-Based M	lodels	Ca	ase	Stu	ay:
Compressi	ve Stre	engin of Concrete Mixtures.			- 7	hai	
Moouring	Dorfo	parison of Classification Models	io ond	<u>4 0</u>	1 thor	nou	
Classificati	ion Ma	dels Non Linear Classification Models Classificat	on Tr		and		alı Jo
Rased Mor	dels - N	Indel Evaluation Techniques		563	and		116-
Module:6	Rem	edies for Severe Class Imbalance			6	hoi	irs
The Effect	t of C	lass Imbalance - Model Tuning - Alternate Cutoffs	Ac	lius	tina	Prid	or
Probabilitie	es - U	negual Case Weights - Sampling Methods - Cost-	Sensit	live	Tra	inin	a.
Measuring	Predic	tor Importance - Factors that can affect Model Perform	ance.				9.
Module:7	Time	Series Analysis			6	hou	urs
Methods for	or time	series analyses - Analysis: Motivation - Exploratory	analys	is –	Pre	dict	ion
and forecas	sting –	Classification – Regression analysis – Signal estimation	ion —	Sec	ymer	ntati	on.
Models – A	utoreg	ressive model - Partial autocorrelation function.		_ `			
Module:8	Con	temporary Issues			2	hou	ırs
		Total Lecture Hours:			45	hou	ırs

Text Book(s)								
1.	Kuhn, Max, and Kjell Johnson. Ap	plied Predictiv	e Modelir	ng, 3 rd Edition, Springer, 2019.				
2.	Jeffrey Strickland, Predictive a	nalytics using	g R, Sin	nulation educators, Colorado				
	Springs, 2015.							
Reference Books								
1.	Anasse Bari, Mohamed Chaouchi, Tommy Jung, Predictive Analytics for dummies, 2 nd							
	edition Wiley, 2016.							
2.	Daniel T.Larose and Chantal D.Larose, Data Mining and Predictive Analytics, 2 nd							
	edition Wiley, 2015.							
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar								
, , , , , , , , , , , , , , , , , , ,								
Recommended by Board of Studies		12-05-2022						
Approved by Academic Council		No. 66	Date	16-06-2022				

Course code	Course Title				Ρ	С				
BCSE335L	E335L Healthcare Data Analytics				0	3				
Pre-requisite	equisite NIL Sy				llabus version					
						1.0				
Course Objectives										
1. Describe how data-based healthcare can help in improving outcomes for patient health.										
2. To design data models that combine patient records from multiple sources to form a										
patient cer	ntric view of data.									
3. To use data analytics to find health concerns and solutions to the problem faced by a										
patient.										
4. To find m	neaningful patterns and trends in healthcare data t	o h	elp	the	ove	rall				
population.										
Course Outcomes										
At the end of the course, the student will be able to										
1. Explain the concepts of Healthcare Data Analytics and healthcare foundations.										
2. Apply machine learning techniques on healthcare data analytics.										
3. Measure	and analyse the quality of health-care systems.									
4. Develop i	models for effective predictions in healthcare applicatior	າຣ.								
5. Use mod	ern day emerging technologies in healthcare data analy	tics	proc	ess.						
Module:1 Intro	duction to Healthcare Data Analytics	141		3	ho	urs				
Introduction – No	theore Applytics - Foundations of Heal	Ithca	are /	Anai	ytics	3 —				
Examples of Heal	Incare Analytics.			5	ha					
Healthcare deliver	ncare Foundations		iont	u data	2. th	<u>uis</u>				
iourney from nat	ient to computer - Standardized clinical codesets -	Rr.	ooki	uale na d	a. un dow	с n				
healthcare analyti	cs: nonulation medical task data format disease		can	ig v						
Module:3 Mach	ine Learning Foundations for Healthcare			8	ho	urs				
Model framework	s for medical decision making: Tree-like reasoning. Pro	hah	ilistia	rea		ina				
and Bayes theore	em. Criterion tables and the weighted sum approach.	Patt	ern	asso	ociat	tion				
and neural netw	orks - Machine learning pipeline: Loading the d	ata,	Cle	anir	ng a	and				
preprocessing the	e data, Exploring and visualizing the data, Selecting fe	ature	es, T	rain	ing	the				
model parameters	s, Evaluating model performance.									
Module:4 Meas	uring Healthcare Quality			8	ho	urs				
Introduction to he	althcare measures, Medicare value-based programs: 7	Гhe	Hos	oital	Val	ue-				
Based Purchasing (HVBP) program, The Hospital Readmission Reduction (HRR) program,										
The Hospital-Acquired Conditions (HAC) program, The End-Stage Renal Disease (ESRD)										
quality incentive program, The Skilled Nursing Facility Value-Based Program (SNFVBP),										
The Home Health Value-Based Program (HHVBP), The Merit-Based Incentive Payment										
System (MIPS).					_					
Module:5 Making Predictive Models in Healthcare 8 hours										
Introduction to Predictive Analytics - Obtaining and Importing the NHAMCS Dataset -										
Making the Response Variable - Splitting the Data into Train and Test Sets - Preprocessing										
Ine Freucior variables - Duiluing the Models - Using the Models to Make Predictions -										
Modulo:6 Hoalt	ueis. heara Analytics Applications		1	6	ho	ure				
Introduction - D	ncare Analytics Applications - Predictive Apply	tice	Δnr	o Solica	tion	uið s -				
Prescriptive Apoly	tics Application	103	νh	mud		5 -				
Module 7 Heal	theare and Emerging Technologies			5	ho	lire				
Healthcare analyt	ics and the internet - Healthcare and the Internet of T	Thin	 - 21	U Hea	althe	are				
i louidiouro unalyt			- ⁻	100		aic				
analytics and social media - Healthcare and deep learning - Obstacles, ethical issues, and										
--	---	--	-----------------	------	------------	--	--	--	--	--
Мо	2 hours									
			Total Lecture h	ours	45 hours					
Text Book(s)										
1.	Kumar	Kumar, Vikas Vik. Healthcare Analytics Made Simple: Techniques in healthcare								
	compu	iting using machine learning and Python. Packt Publishing Ltd, 2018.								
2.	El Morr, Christo, and Hossam Ali-Hassan. Analytics in healthcare: a practical									
	introduction. Springer, 2019.									
Reference Books										
1.	Dinov, Ivo D. "Data Science and Predictive Analytics." Springer, Ann Arbor, MI, USA									
	https://	os://doi. org/10 1007 (2018): 978-3.								
2.	Yang, Hui, and Eva K. Lee, eds. Healthcare analytics: from data to knowledge to									
	healthcare improvement. John Wiley & Sons, 2016.									
Mode of Evaluation: CAT / written assignment / Quiz / FAT / Project / Seminar / group										
discussion										
		ded by Deend of Ot all a	40.05.0000							
Re	commer	ided by Board of Studies	12-05-2022							
Approved by Academic Council No. 66 Date 16-06-2022					16-06-2022					

Course code	Course Title					L	Τ	Ρ	С		
BCSE336L	Financial Data Analytics					2	0	0	2		
Pre-requisite	NIL				Sy	/llab	us \	/ers	ion		
	•						1	.0			
Course Objectives											
1. To learn to model financial time series using liner ARMA type time series.											
2. To study a	and analyze to test a	and model hetero	scedas	tic effects us	sing	ARC	CH /				
GARCH t	GARCH type time series.										
3. To learn how to test for unit root and construct ARMA models.											
Course Outcomes											
At the end of the course, the student will be able to											
1. Approach	1. Approach and analyze any financial data.										
2. Differentia	ate between various	time series mod	els.								
3. Perform c	ross-validation of va	arious financial m	odels de	eveloped.							
4. Forecast future observations on financial data.											
Madulard Fina											
Module:1 Fina	David Violda and Inel	r properties	latility	Evenables	and	Vier	2 	+ no	urs		
Asset Returns – Bond Yields and Prices – Implied Volatility – Examples and Visualization of											
Modulo:2 Lino	ar models for finar	cial timo corios						1 ho	ure		
Simple autoreore	assive models - Sin	nle moving aver	ade mo	dels _ Simr	nle A	RM	Δm	odel	<u>uis</u> s _		
Unit Root nonstat	tionarity – Exponent	ial smoothing	age me			11 11 11	- III	ouci	3 –		
Module:3 Sea	sonal and Long	nemorv model	s				4	1 ho	urs		
Seasonal models	- Regression mode	els with time serie	es errors	s – Lona me	emor	v m	odel	s.			
Module:4 Ass	et Volatility and	Volatility mod	els	g		<u> </u>	4	l ho	urs		
Characteristics of	f Volatility – Structu	re of a model – T	estina f	or ARCH E	ffect	– A	RCF	I Mo	del		
– GARCH Mode	I – GARCH-M Mo	del – Exponenti	al Garc	h Model –	Thr	eshc	ld (GAR	CH		
model – Stochast	tic volatility model –	alternative appro	aches.								
Module:5 Applications of Volatility Models 4 hours											
Garch Volatility	Term structure – O	ption pricing and	l hedgir	ng - Time \	/arvi	ng (Corr	elati	ons		
and Betas – Mini	mum Variance Portf	olios – Predictior	ı. Ö	0	,	U					
Module:6 High	requency Fina	ancial Data					2	1 ho	urs		
Nonsynchronous	trading – Bid ask	spread of tradin	g prices	s – Empirica	al cł	nara	cteri	stics	of		
trading data – Mo	dels for price chang	ges.	-								
Module:7 Valu	e at Risk						2	1 ho	urs		
Risk measure an	d Coherence – Risk	metrics –Extrem	e value	approach to	o Va	lue a	at Ri	sk –			
Peak over thresh	olds.										
Module:8 Cont	emporary Issues						2	2 ho	urs		
		-									
		Total Lecture no	ours:				3() no	urs		
Text Book(s)											
1. Ruey S. Tsay	y An Introduction to	Analysis of Finar	ncial Da	ta with R, W	/iley,	201	3.				
Reference Book	S										
1. Analysis of Financial Time Series, by Ruey S. Tsay, 3rd edition, Wiley Series in Probability and Statistics, 2010.											
2. William G. Foote, Financial Engineering Analytics: A Practice Manual Using R, 2018.								8.			
 Statistical Analysis of Time-Series Data in SPlus, by Ren´e Carmona, Springer, March 4, 2004. 											
Mode of Evaluation	on: CAT / written as	signment / Quiz /	FAT / F	Project / Ser	nina	r					
Recommended b	y Board of Studies	12-05-2022		-							
Approved by Aca	demic Council	No. 66	Date	16-06-20	022						

Course code		Course Title					L	Т	Ρ	С
BCSE336P		Financial Data Analytics Lab					0	0	2	1
Pre-requisite		NIL				Sy	/llabus version			ion
								1.0		
Course Objectives										
1. Learn	how	<i>i</i> to model financial	time series using	liner ARN	/A type ti	me s	erie	s.		
2. Study	how	to test and model	heteroscedastic	effects usi	ng ARCH	/ G/	٩RC	H ty	pe ti	me
series.										
3. Acquire how to test for unit root and construct ARMA models.										
At the end of	the	= course the student	will be able to							
	ach	and analyze any fir	will be able to							
2 Differ	- ntia	te between various	time series mod	els						
3. Perfo	m ci	ross-validation of va	arious financial m	odels dev	eloped.					
4. Forec	ast f	uture observations	on financial data							
Indicative Experiments										
1. Given a simple daily return of a concern as data, implement and								8 h	ours	i
execute	execute a R program to compute the sample mean, standard deviation,									
skewnes	skewness, excess kurtosis, minimum and maximum of each simple									
return se	ries.									
2. Consider	. Consider the daily range (daily high–daily low) of Apple stock from							8 h	ours	i
January	January 2, 2007 to December 23, 2011. One can obtain the data by the									
package	package quantmod from Yanoo. Compute the first 100 lags of ACF of									
	range series has long memory build an ARMA model for the data									
3 Consider	Consider the 30-year conventional mortgage rates from April							8 h	ours	
1971 to 1	1971 to November 2011 Build a pure time series model for the monthly							0 11	Juis	
mortgage	mortgage rate. Perform model checking and find the fitted model.									
4. Use the	Use the quantmod package to obtain the daily prices of Apple stock							6 h	ours	;
from	from									
January 2, 2007, to November 30, 2011.										
Use an A	Use an ARMA–GARCH model to obtain the daily volatility of the stock.									
Compare the three volatility series.										
Total Laboratory Hours							3	80 h	our	S
Mode of assessment: Continuous assessment / FAT / Oral examination and others										
Recommended by Board of Studies			12-05-2022		40.00.0					
Approved by Academic Council No. 66 Date 16-06-2022										