

SCHOOL OF ELECTRICAL ENGINEERING

M. Tech Power Electronics andDrives

(M.Tech MPE)

Curriculum (2023-2024 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

To be a leader for academic excellence in the field of electrical, instrumentation and control engineering imparting high quality education and research leading to global competence for the societal and industrial developments.

MISSION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

- Impart high quality education and interdisciplinary research by providing conducive teaching learning environment and team spirit resulting in innovation and product development.
- Enhance the core competency of the students to cater to the needs of the industries and society by providing solutions in the field of electrical, electronics, instrumentation and automation engineering.
- Develop analytical skills, leadership quality and team spirit through balanced curriculum.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints

PO_03: Having an ability to design and conduct experiments, as well as to analyze and interpret data

PO_04: Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice

PO_05: Having problem solving ability- solving social issues and engineering problems

PO_06: Having adaptive thinking and adaptability

PO_07: Having a clear understanding of professional and ethical responsibility

PO_08: Having a good cognitive load management [discriminate and filter the available data] skills

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Power Electronics and Drives)programme, graduates will be able to

- PSO1: Apply technical knowledge, skills and analytical ability to design, develop and test power electronic converters and drives using modern tools and technologies.
- PSO2: Solve the real world problems in the emerging fields like smart grid, renewable energy interfaces, and electric vehicles and to develop innovative technologies relevant to social, ethical, economic and environmental issues
- PSO3: Solve research gaps and provide solutions to socioeconomic, and environmental problems.

CREDIT STRUCTURE

Category-wise Credit distribution

NEW CREDIT STRUCTURE	CREDITS
Core Courses	24
Discipline Elective Courses	12
(3 Credits/Elective Course)	
Open Elective Courses	3
Skill Enhansement courses	5
1. Technical report writing-2	
2. Qualitative Skills Practice -1.5	
3. Quantitative Skills Practice- 1.5	
Project/ Internship	26
 Study oriented project-2 	
2. Design Project-2	
3. Internship/Dissertation I-10	
4. Internship/Dissertation II-22	
Total Graded Credit Requirement	70

DETAILED CURRICULUM

Discipline Core

0	0			T		
S.	Course	Course Title			P	С
No.	Code					
1	MPED501L	Advanced Semiconductor Devices	3	0	0	3
		Anglusia of Davida Octovertana	-	0	0	0
2	MPED502L	Analysis of Power Converters	3	0	0	3
	MPED502P	Analysis of Power Converters	0	0	2	1
3	MPED503L	Switched Mode Power Supplies	2	0	0	2
			0		0	4
4	MPED504L	Generalized Machine Theory	3	1	0	4
5	MPED505L	Industrial Electrical Drives	3	0	0	3
	MPED505P	Industrial Electrical Drives	0	0	2	1
6	MPED506L	Special Machines and Control	3	0	0	3
7	MPED507L	Advanced Processors for Power	3	0	0	3
		Converters	Ũ			-
	MPED507P	Advanced Processors for Power	0	0	2	1
		Converters				
Total Credits						24

Discipline Elective

S. No.	Course Code	Course Title	L	Т	Ρ	С
1	MPED601L	Modern Control Theory	3	0	0	3
2	MPED602L	Intelligent Control	3	0	0	3
3	MPED603L	Energy Storage Systems	3	0	0	3
4	MPED604L	Solar Photo Voltaic Systems	3	0	0	3
5	MPED605L	Electric and Hybrid Electric Vehicles	3	0	0	3
6	MPED606L	Wind Energy Conversion Systems	3	0	0	3
7	MPED607L	Microgrid Technologies	3	0	0	3
8	MPED608L	Integrated Circuits for Power Conversion	2	0	0	2
	MPED608P	Integrated Circuits for Power Conversion	0	0	2	1
9	MPED609L	Power Electronics Applications in Power Systems	3	0	0	3
10	MPED610L	Embedded Systems Design for Power Electronic Applications	2	0	0	2
	MPED610P	Embedded Systems Design for Power Electronic Applications Lab	0	0	2	1
11	MPED611L	FPGA for Power Electronic Converters	3	0	0	3

Curriculum (Semester wise Break up)

Semester-1	Category	L	Т	Ρ	С
Advanced Semiconductor Devices	DC-1	3	0	0	3
Analysis of Power Converters	DC-2	3	0	0	3
Analysis of Power Converters Lab	DC-2 L	0	0	2	1
Generalized Machine Theory	DC-3	3	1	0	4
Advanced Processors for Power Converters	DC-4	3	0	0	3
Advanced Processors for Power Converters Lab	DC-4 L	0	0	2	1
Discipline Elective-1	DE-1	3	0	0	3
Technical Report Writing	Core				2
Qualitative Skills Practice	Core				1.5
Study Oriented Project	Core				2
Total Credits (Seme	ester-1)				23. 5

Semester-2	Category	L	Т	Ρ	C
Switched Mode Power Supplies	DC-5	2	0	0	2
Industrial Electrical Drives	DC-6	3	0	0	3
Industrial Electrical Drives Lab	DC-6 L	0	0	2	1
Special Machines and Control	DC-7	3	0	0	3
Discipline Elective-2	DE-2	3	0	0	3
Discipline Elective-3	DE-3	3	0	0	3
Discipline Elective-4	DE-4	3	0	0	3
Open Elective-1/ Discipline Elective-5	OE-1/DE-5	3	0	0	3
Quantitative Skills practice	Core				1.5
Design Project	Core				2
Total Credits (Semester-2)					

Semester-3	Category	Credits
Internship I/ Dissertation I	Project/ Internship	10

Sem	ester-4	Category	Credits
Internship II/ Disse	rtation II	Project/ Internship	12

	Discipline Core			
Course code	Course Title	L	TF	
MPED501L	Advanced Semiconductor Devices	3	0 0	3
Pre-requisite		Syllab		
	\\	versio		
Course Objective			1.0	
Course Objective	s tudents understand the importance of appropriate devices selection ba	ased o	n the	
application rec		1300 0	i the	
	. e various power semiconductor device characteristics and significance	e of gat	e driv	е
Expected Course				
At the end of the 1. Identify and ca 2. Appropriate de 3. Examine and c voltage, currer 4. Analyze the ch	e course the student will be able to ategorize power electronic switches based on its rating evice selection suitable for application classify various power semiconductor switching characteristics and sur- nt controlled devices haracteristics of new emerging power semiconductor devices. priate protection circuits to overcome problems associated with power of the second s			
	onductor device selection devices overview; Attributes of an ideal switch; application	reauir	6 ho	
•	ower handling capability; Safe Operating Area; Device selection shing losses; EMI due to switching	ction s	strate	gy:
Module:2 Power	Diodes		5 ho	ours
	ructure, operating principle, switching characteristics, types stics; device datasheet; simulation of power diode characteris		vard	and
	r Thyristors		6 hc	
switching characte	Physics of operation, Two transistor analogy; concept of latch eristics; converter grade and inverter grade and other type steady state and dynamic models of Thyristor; simulation of p	s; se	ries a	and
	r Transistors		6 ho	
characteristics; N Darlington; Safe or	s: Construction, static characteristics, physics of operatilegative temperature co-efficient and secondary break perating regions; dynamic models of BJT; comparison of BJT er transistor characteristics	down;	Pov	ver
	MOSFETs and IGBTs		7 ho	
and switching cha	e controlled devices: construction, inversion layer significance aracteristics; steady state and dynamic models of MOSFE er MOSFET and IGBT characteristics	•••		
Module:6 Emerg	ging Power Devices		7 hoi	urs
•	ces; Intelligent Power Modules; Silicon Carbide Devices; Wand lateral structures, Turn-on and Turn-off characteristics		-	

	dule:7	Gate Driving and Protecti	on			6 hours
ls	olation ci	cuits: pulse transformer, op	to-coupler; Gate	drives cire	cuit: semicondu	ctor devices
ar	nd wide I	bandgap power devices; [Design of snubbe	ers; Heat	sink: selection	, types and
m	ounting ty	/pes; simulation of gate driv	e circuits			
		1-				-
Мо	dule:8	Contemporary issues				2 hours
				Total L	ecture hours:	45 hours
Τe	ext Book	(s)				
1.	Ned M	ohan, Tore M. Undeland, "P	ower Electronics -	- Converte	ers, Applications	and Design"
	John W	/iley & Sons, 3rd edition 2007	7.			-
2. Rashid M.H., "Power Electronics: Circuits, Devices and Applications ", Pearson Education, 4th						
edition June 2014.						
	edition		•	••		
Re	edition eference	June 2014.				
	eference	June 2014.		of Wide B	andgap Power S	
	F. Wan	June 2014. Books	, Characterization	of Wide B	andgap Power S	
1.	F. Wan Device	June 2014. Books g, Z. Zhang and E. A. Jones	, Characterization 4910 (2018)		0.1	emiconducto
1.	F. Wan Devices B.J.Bal	June 2014. Books g, Z. Zhang and E. A. Jones s, IET, ISBN-13: 978-178561	, Characterization 4910 (2018)		0.1	emiconducto
1. 2.	F. Wan Device B.J.Bal Compa	June 2014. Books g, Z. Zhang and E. A. Jones s, IET, ISBN-13: 978-178561 iga, "Gallium Nitride and Sili	, Characterization 4910 (2018)		0.1	emiconducto

device datasheet

Course Code	Course Title	LTPC						
MPED502L	Analysis of Power Converters	3 0 0 3						
Pre-requisite	Nil	Syllabus						
		version						
1.0								
Course Objectives								
-	systematic approach for transient and steady state analysis o	f power electronic						
	with passive and active loads.							
	e advanced converters such as multi-level inverters and compare	are different PWM						
techniques	for their control.							
Exported Cou								
Expected Cou								
	ion of this course the student will be able to I the working principle and analyse the different types single pha	aco roctifioro						
	the working principle and analyse the different types single pha							
	d design the different configurations of DC-DC converters.							
•	ious types of Inverters and Examine the harmonics.							
•	e various types of power electronic converters.							
	NGLE PHASE CONTROLLED RECTIFIER	7 hours						
	C to DC controlled converter configurations: Semi-converter and							
	R, RL, RLE load; Continuous and discontinuous conduction	· ·						
	ver factor and power factor improvement techniques; Effect of s	source inductance;						
Dual converter								
Module:2 T	IREE PHASE CONTROLLED RECTIFIER	8 hours						
	C to DC controlled converters configurations: Semi-converter a							
	R, RL, RLE load; Continuous and discontinuous conduction							
	of source inductance; Multi-quadrant converter; Multi-pulse cor							
	C-DC CONVERTERS	7 hours						
	Buck, Boost, Buck-Boost; Multi-port and interleaved convert							
converters; De	ign and control of DC-DC converter; Multi-quadrant choppers a	and applications						
Module:4 D	C-AC INVERTERS	9 hours						
	oltage Source Inverter (VSI) and Current Source Inverter (CSI)							
	and 180° modes of operation; PWM techniques: Sine PWM, sp							
	ters: Types, voltage control and applications; Harmonic spectr							
	nitigation techniques; Filter design; Device selections							
	C VOLTAGE CONTROLLERS	6 hours						
	nd three phase voltage regulators; R and RL load, range of cor	ntrol; Single phase						
cycloconverters	: Types and operating principle							
I	OWER CONVERTERS APPLICATION	6 hours						
	ions; Front end rectifier design; Motor control applications							
compensation; vehicles	UPS; Induction heating; Power converters in renewable er	lergy and electric						
VEHICIES								

Total Lecture hours:	45 hours

Mode of Evaluation: CAT / Assignment / Quiz / FAT

Module:7

Text	Textbook(s)						
1.	Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice Hall India,						
	New Delhi, 2017.						
2.	Ned Mohan, Tore M. Undeland, "Powe	er Electronics –	Converters	s, Applications and Design",			
	John Wiley & Sons, 2008.						
Refe	erence Books						
1.	Joseph Vithayathil, "Power Electronic	cs – Principles	and Appli	cations", Tata McGraw-Hill			
	edition, 2010.						
2.	Bin Wu, Mehdi Narimani, "High-Powe	er Converters a	and AC Dr	rives", John Wiley & Sons,			
	2017.			-			
3.	William Shepherd and Li Zhang, "Pow	er Converter C	ircuits", Ma	arcel Dekker Inc, New York,			
	2004.						
Reco	ommended by Board of Studies	09-07-2022					
Appr	Approved by Academic Council No. 67 Date 08-08-2022						

Course Code	Course Title	L	Т	Ρ	С	
MPED502P	Analysis of Power Converters Lab	0	0	2	1	
Pre-requisite	Pre-requisite Nil S					
			1.	0		
Course Objectiv 1. To acquire kr hardware.	es nowledge on the design of power converters and implement usi	ng si	mula	ation	and	
Expected Cours	e Outcome					
On the completion	n of this course the student will be able to					
2. Ability to fabri	late the power electronic converter topologies cate the various types of power electronic converters					
Indicative Exper	iments		hc	ours		
(SCR/MOS						
2. Losses and	thermal estimation of power converters					
3. Switching c	haracteristics and driver circuits for wide band gap devices					
4. Performanc converter	e analysis of Single-phase controlled AC-DC one-pulse					
converter (F						
6. Performanc (R, RL-Load	e analysis of Three-phase controlled AC-DC six-pulse converter त्र)					
7. Performanc	e analysis of AC-AC voltage regulator					
8. Performanc	e analysis of AC-AC cyclo-converter					
9. Voltage con	trol of Single-phase inverter- R, RL load					
10. Implementa	tion of Three-phase inverter- R load					
11. Duty ratio-c	ontrolled DC-DC converters (Buck, Boost, Buck-Boost)					
12. Implementa	tion of Multi quadrant chopper					
13. PWM contro	ol of DC-AC inverters					
14. Harmonic m	nitigations of VSI					
15. Power facto	or correction circuit					
I	Total Laboratory Hours:	1	4	30 h	ours	

Text	Textbook(s)					
1.	Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice Hall India, New					
	Delhi, 2017.					
2.	Ned Mohan, Tore M. Undeland, "Power Electronics – Converters, Applications and Design",					
	John Wiley & Sons, 2008.					

Refe	Reference Books						
1.	Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill						
	edition, 2010.						
2.	Bin Wu, Mehdi Narimani, "High-Power	r Converters an	d AC Drive	s", John Wiley & Sons, 2017.			
Reco	Recommended by Board of Studies 09-07-2022						
Appr	oved by Academic Council	No. 67	Date	08-08-2022			

<u> </u>	(Deemed to be University under section 3 of UGC Act, 1956)	<u> </u>			
Course Code	Course Title			P	<u>C</u>
MPED503L	Switched Mode Power Supplies		2 0	0	2
Pre-requisite	Nil	Sylla			on
Course Objective			1.0	,	
	knowledge on switch mode power conversion concepts				
•	d Development of appropriate switched mode power sup	nlies	for r	artic	ular
application		piloo		-un tio	aiui
application					
Course Outcome					
	se the student will be able to				
•	ferent non isolated DC-DC converters for steady-state operat	ion.			
•	rcuit models for different dc –dc converters				
	solated and non-isolated dc-dc converters				
	gnetic components of dc-dc converters				
5. Build dynai	mic and small signal model of switched mode power converte	rs.			
	-Isolated DC-DC converters			5 hc	
•	ysis: ideal Buck, Boost, Buck – Boost and Cuk Converters	•			CM),
operating principle	s, constituent elements, characteristics, comparisons and sele	ectior) crite	ria	
Module:2 Mod	elling and Analysis of Non-Isolated converters			4 hc	urs
	lysis: non-ideal Buck, Boost, Buck-Boost and Cuk Conve	erters	los		
efficiency		011010	, 100	,000	ana
Module:3 Isola	ated converters			4 hc	ours
Significance of iso	lated converters; Steady State Analysis: Forward Converter, F	=ly-ba	ick Co	onve	rter,
Push pull, Half and	d full bridge Converter	-			
	netic circuit Design			4 hc	
• •	equency Inductor, transformer and capacitors for SMPS app	licatio	on; In	put 1	ilter
design					
Module:5 Dyna	amic Analysis and Control of Switching Converters			5 hc	urs
	cuit modelling of converters: dynamic equation of buck, boost	st and	d buc		
•	signal model and converter transfer functions; Control of conv				
	rol; PWM controller Integrated circuits		,	0	
Module:6 Res	onant Converters			3 hc	ours
	ies resonant circuit-parallel resonant circuits ;Resonant swite				age
switching and Zero	o current switching; Soft switched bidirectional dual active brid	lge co	nver	ers.	
Medula:7	liestions of SMDC			<u>.</u>	
	lications of SMPC	ton C	0000	3 hc	
	ection in Switching Power Supplies: Low Input SMPS for Lap c devices, EV charging systems; Case studies: SMPC sim				
source tools	u devices, EV charging systems, case studies. SMPC SIM	uialiO	n usi	iy o	pen
	ntemporary Topics			2 hc	ours
	Total Lecture hours:		3	0 hc	ours
Textbook(s)					

M.TECH

1.	Robert W. Erickson and DraganMaksimovic, "Fundamentals of Power Electronics",						
	Springer, 3rd edition, 2020.						
2.	Simon Ang, Alejandro Oliva, "Power-Switching Converters", CRC Press, Vol. No., 3rd						
	Edition, 2010.	-					
Refe	Reference Books						
1.	Philip T Krein, "Elements of Power Ele	ectronics ", Oxfo	ord Univers	sity Press, 2nd Edition, 2017.			
2.	Ned Mohan, Undeland and Robbin, "F	ower Electroni	cs 3ed (An	Indian Adaptation):			
	converters, Application and design" W	'iley India Pvt L	td, 3rd Edi	tion, 2022.			
Mode	e of Evaluation: Continuous Assessmen	t Test, Digital A	ssignmen	t, Quiz and Final Assessment			
Test	Test						
Reco	mmended by Board of Studies	09-07-2022					
Appro	Approved by Academic Council No. 67 Date 08-08-2022						

		Course Title	L	Т	Ρ	С
MPED504L		Generalized Machine Theory	3	1	0	4
Pre-requisite		NIL	:	Sylla		
				vers		
Course Obie				1.	0	
Course Object		niques and analytical methods for dealing with and s		<u>a on</u>	oroti	onol
		electrical machines.		y op	ciali	unai
		practise their research skills and find solutions to real pro-	ohler	ns		
2. 00000	p unu		00101	10.		
Course Outco	ome					
At the end of t	the cou	irse, the student will be able to				
1. Analys	sis of co	onversion and utilization of electric energy systems.				
2. The tra	ansforn	nation of three-phase to two-phase axis model.				
		dynamic models of the DC machine, the synchronous m	nachi	ne, ir	nduc	tion
		special machine.				
		dge about the limitations for a dynamic model of an elect		mac	nine.	
5. Have k	knowle	dge on the dynamic analysis of Interconnected machines	S.			
Module:1	Princi	ples of Electromagnetic Conversion			7 hc	oure
		e excited systems; Field energy ,co-energy and r	mech	anica		
		nergy conversion ;Single and Multiple excited systems				
expression				1		
•						
		Transformation and Reference Frame Theory			9 hc	
		sformation from three phase to two phase ; Transformation	ation	from	rota	ting
axes to station						
		es; Park's transformation ;Physical interpretation;				•
Reference fra	me the	eory ; Transformation between reference frames station	ary c	ircuit	vari	•
Reference fra	me the		ary c	ircuit	vari	•
Reference fra	me the n ;Stea	eory ; Transformation between reference frames stationary state voltage equation	ary c	ircuit		able
Reference fra transformation	me the s;Stead	eory ; Transformation between reference frames stationary state voltage equation	-		8 hc	able
Reference fra transformation Module:3 Analysis of D	me the s;Stead DC Ma C mac	eory ; Transformation between reference frames stationary state voltage equation	-		8 hc	able
Reference fra transformation Module:3 Analysis of Dr analysis; Tran	me the s;Stead DC Ma C mac sfer fu	eory ; Transformation between reference frames stationary dy state voltage equation	-		8 hc trans	able ours
Reference fra transformation Module:3 Analysis of D analysis; Tran Module:4	me the stear DC Ma C mac sfer fur Mode l	eory ; Transformation between reference frames stationary dy state voltage equation achine chines using the primitive machine equation ; Steady s nctions of DC generator and motor ling of Induction Machine	state	and	8 hc trans 8 hc	able
Reference fra transformation Module:3 Analysis of D analysis; Tran Module:4 Voltage and to	me the <u>Stead</u> DC Ma C mac Isfer fut Model orque e	eory ; Transformation between reference frames stationary dy state voltage equation achine whines using the primitive machine equation ; Steady s nctions of DC generator and motor ling of Induction Machine equations; Machine variables ;Arbitrary reference frame a	state	and otor r	8 hc trans 8 hc efere	able ours sient
Reference fra transformation Module:3 Analysis of D analysis; Tran Module:4 Voltage and to frames ;Stead	DC Ma C mac sfer fur Model orque e dy stat	eory ; Transformation between reference frames stationary dy state voltage equation achine chines using the primitive machine equation ; Steady s nctions of DC generator and motor ling of Induction Machine	and ro	and otor r	8 hc trans 8 hc efere vith r	able ours sient
Reference fra transformation Module:3 Analysis of Di analysis; Tran Module:4 Voltage and to frames ;Stead sinusoidal sup	me the ;Stead DC Ma C mac isfer fun Model orque e dy stat oply wa	eory ; Transformation between reference frames stationary dy state voltage equation	and ro	and otor r	8 hc trans 8 hc efere vith r	able
Reference fra transformation Module:3 Analysis of D analysis; Tran Module:4 Voltage and to frames ;Stead sinusoidal sup Module:5	me the <u>DC Ma</u> C mac sfer fun Model orque e dy stat oply wa Model	eory ; Transformation between reference frames stationary dy state voltage equation achine whines using the primitive machine equation ; Steady sonctions of DC generator and motor ling of Induction Machine equations; Machine variables ;Arbitrary reference frame a te operation ;Dynamic model ;Operations of induction eveforms ;simulation of arbitrary reference frame and line ling of Synchronous Machine	and ro motearise	and otor re tor w	8 hc trans 8 hc efere vith r odel 9 hc	able ours sient ours ence
Reference fra transformation Module:3 Analysis of D analysis; Tran Module:4 Voltage and to frames ;Stead sinusoidal sup Module:5 Reactance of	me the <u>p;Stead</u> <u>DC Ma</u> C mac <u>sfer fu</u> <u>Model</u> orque e dy stat <u>pply wa</u> <u>Model</u> synch	eory ; Transformation between reference frames stationary dy state voltage equation achine chines using the primitive machine equation ; Steady s nctions of DC generator and motor ling of Induction Machine equations; Machine variables ;Arbitrary reference frame a te operation ;Dynamic model ;Operations of induction aveforms ;simulation of arbitrary reference frame and line ling of Synchronous Machine ronous machine ; Time constants of synchronous machine	and ro and ro arise	and otor re for w	8 hc trans 8 hc efere vith r odel 9 hc age	able ours sient ours ence non-
Reference fra transformation Module:3 Analysis of Dr analysis; Tran Module:4 Voltage and to frames ;Stead sinusoidal sup Module:5 Reactance of torque equatio	Me the stead DC Ma C mac asfer ful orque e dy stat oply wa Modell synch on; Ma	eory ; Transformation between reference frames stationary dy state voltage equation achine chines using the primitive machine equation ; Steady s nctions of DC generator and motor ling of Induction Machine equations; Machine variables ;Arbitrary reference frame a te operation ;Dynamic model ;Operations of induction veforms ;simulation of arbitrary reference frame and line ling of Synchronous Machine ronous machine ; Time constants of synchronous machine variables ; Arbitrary reference frame and rotor	and ro and ro arise chine refer	and otor re tor w d mo ;Volt ence	8 hc trans 8 hc efere vith r odel 9 hc age fran	able ours burs burs ence non ance
Reference fra transformation Module:3 Analysis of Dr analysis; Tran Module:4 Voltage and to frames ;Stead sinusoidal sup Module:5 Reactance of torque equatio Park's equatio	Modell orque e dy stat ply wa Modell synch on; Ma on ; Dy	eory ; Transformation between reference frames stationary dy state voltage equation achine chines using the primitive machine equation ; Steady s nctions of DC generator and motor ling of Induction Machine equations; Machine variables ;Arbitrary reference frame a te operation ;Dynamic model ;Operations of induction aveforms ;simulation of arbitrary reference frame and line ling of Synchronous Machine ronous machine ; Time constants of synchronous machine variables ; Arbitrary reference frame and rotor achine variables ; Arbitrary reference frame and rotor achine variables ; Arbitrary reference frame and rotor	and ro and ro arise chine refer	and otor re tor w d mo ;Volt ence	8 hc trans 8 hc efere vith r odel 9 hc age fran	able ours burs burs ence non- burs and and
Reference fra transformation Module:3 Analysis of Dr analysis; Tran Module:4 Voltage and to frames ;Stead sinusoidal sup Module:5 Reactance of torque equatio Park's equatio	Modell orque e dy stat ply wa Modell synch on; Ma on ; Dy	eory ; Transformation between reference frames stationary dy state voltage equation achine chines using the primitive machine equation ; Steady s nctions of DC generator and motor ling of Induction Machine equations; Machine variables ;Arbitrary reference frame a te operation ;Dynamic model ;Operations of induction aveforms ;simulation of arbitrary reference frame and line ling of Synchronous Machine ronous machine ; Time constants of synchronous machine variables ; Arbitrary reference frame and rotor achine variables ; Arbitrary reference frame and rotor achine variables ; Arbitrary reference frame and rotor	and ro and ro arise chine refer	and otor re tor w d mo ;Volt ence	8 hc trans 8 hc efere vith r odel 9 hc age fran	able ours burs burs ence non- burs and and
Reference fran transformation Module:3 Analysis of Dr analysis; Tran Module:4 Voltage and to frames ;Stead sinusoidal sup Module:5 Reactance of torque equation Park's equation Simulation of I	Me the stead DC Ma C mac asfer fur Modell orque e dy stat oply wa Modell synch on; Ma on; Dy linearis	eory ; Transformation between reference frames stational dy state voltage equation achine whines using the primitive machine equation ; Steady sonctions of DC generator and motor ling of Induction Machine equations; Machine variables ;Arbitrary reference frame at e operation ;Dynamic model ;Operations of induction veforms ;simulation of arbitrary reference frame and line ling of Synchronous Machine ronous machine ; Time constants of synchronous machine variables ; Arbitrary reference frame and rotor mamic model of synchronous machine ;Effects of masked model	and ro and ro arise chine refer	and otor re tor w d mo ;Volt ence	8 hc trans 8 hc efere /ith r odel 9 hc age fran	able <u>ours</u> sient <u>ours</u> and nes; tion;
Reference fra transformation Module:3 Analysis of Dr analysis; Tran Module:4 Voltage and to frames ;Stead sinusoidal sup Module:5 Reactance of torque equatio Park's equatio Simulation of I Module:6	Model by the DC Ma C mac asfer fur Model by stat ply wa Model synch on; Ma on; Dy linearis Model	eory ; Transformation between reference frames stational dy state voltage equation achine achine chines using the primitive machine equation ; Steady sonctions of DC generator and motor ling of Induction Machine equations; Machine variables ;Arbitrary reference frame at e operation ;Dynamic model ;Operations of induction veforms ;simulation of arbitrary reference frame and line ling of Synchronous Machine ronous machine ; Time constants of synchronous machine variables ; Arbitrary reference frame and rotor mamic model of synchronous machine ;Effects of mased model ling of Special Machines	and ro motearise chine reference	and otor re or w d mo ;Volt ence ic sa	8 ho trans 8 ho efere vith r odel 9 ho age fran atura	able <u>ours</u> <u>ours</u> and nes; tion; <u>ours</u>
Reference fra transformation Module:3 Analysis of Dr analysis; Tran Module:4 Voltage and to frames ;Stead sinusoidal sup Module:5 Reactance of torque equatio Park's equatio Simulation of I Module:6	Model by Stead DC Ma C mac asfer fur Model by stat ply wa Model synch on; Ma on; Dy linearis Model and dy	eory ; Transformation between reference frames stational dy state voltage equation achine whines using the primitive machine equation ; Steady sonctions of DC generator and motor ling of Induction Machine equations; Machine variables ;Arbitrary reference frame at e operation ;Dynamic model ;Operations of induction veforms ;simulation of arbitrary reference frame and line ling of Synchronous Machine ronous machine ; Time constants of synchronous machine variables ; Arbitrary reference frame and rotor mamic model of synchronous machine ;Effects of masked model	and ro motearise chine reference	and otor re or w d mo ;Volt ence ic sa	8 ho trans 8 ho efere vith r odel 9 ho age fran atura	able <u>purs</u> <u>sien</u> <u>purs</u> ance ance nes; tion
Reference fra transformation Module:3 Analysis of Dr analysis; Tran Module:4 Voltage and to frames ;Stead sinusoidal sup Module:5 Reactance of torque equatio Park's equatio Simulation of I Module:6 Steady-state a	Model DC Ma C mac asfer fur Model orque e dy stat oply wa Model synch on; Ma on; Dy linearis Model and dy and dyr	eory ; Transformation between reference frames stational dy state voltage equation achine chines using the primitive machine equation ; Steady s nctions of DC generator and motor ling of Induction Machine equations; Machine variables ;Arbitrary reference frame a te operation ;Dynamic model ;Operations of induction aveforms ;simulation of arbitrary reference frame and line ling of Synchronous Machine ronous machine ; Time constants of synchronous machine variables ; Arbitrary reference frame and rotor vanamic model of synchronous machine ;Effects of massed model ling of Special Machines ynamic model: Permanent magnet synchronous machine	and ro motearise chine reference	and otor re or w d mo ;Volt ence ic sa	8 ho trans 8 ho efere vith r odel 9 ho age fran atura	able <u>ours</u> sient <u>ours</u> ance non- <u>ours</u> anc nes; tion; <u>ours</u>
Reference frattransformation Module:3 Analysis of Dranalysis; Tran Module:4 Voltage and to frames; Stead sinusoidal sup Module:5 Reactance of torque equation Park's equation Simulation of I Module:6 Steady-state a Module:7	Model DC Ma C mac asfer fur Model orque e dy stat oply wa Model synch on; Ma on; Dy linearis Model and dy and dyr	eory ; Transformation between reference frames stationaries dy state voltage equation achine chines using the primitive machine equation ; Steady sonctions of DC generator and motor ling of Induction Machine equations; Machine variables ;Arbitrary reference frame at e operation ;Dynamic model ;Operations of induction weforms ;simulation of arbitrary reference frame and line ling of Synchronous Machine ronous machine ; Time constants of synchronous machine variables ; Arbitrary reference frame and rotor rnamic model of synchronous machine ;Effects of mased model ling of Special Machines ynamic model : Permanent magnet synchronous machine model : Switched reluctance motor ling of Inter connected machines	and ro and ro arise chine refer agnet	and otor re tor w d mc ;Volt ence ic sa	8 hc trans 8 hc efere vith r odel 9 hc age fran atura 9 hc C mo	able purs sien purs ence non- purs anc nes tion purs otor
Reference fra transformation Module:3 Analysis of Dianalysis; Tran Module:4 Voltage and to frames ;Stead sinusoidal sup Module:5 Reactance of torque equatio Park's equatio Simulation of I Module:6 Steady-state a Steady state a Module:7 Dynamical A Transformatio	Model Model by state by	eory ; Transformation between reference frames stationaries dy state voltage equation achine chines using the primitive machine equation ; Steady sonctions of DC generator and motor ling of Induction Machine equations; Machine variables ;Arbitrary reference frame at e operation ;Dynamic model ;Operations of induction weforms ;simulation of arbitrary reference frame and line ling of Synchronous Machine ronous machine ; Time constants of synchronous machine variables ; Arbitrary reference frame and rotor rnamic model of synchronous machine ;Effects of mased model ling of Special Machines ynamic model : Permanent magnet synchronous machine model : Switched reluctance motor ling of Inter connected machines	state and ro and ro earise chine refer agnet	and otor re tor w d mc ;Volt ence ic sa BLD(8 hc trans 8 hc efere vith r odel 9 hc age fran atura 9 hc C mo 8 hc matri	able purs sien purs ence non ance nes tion purs ces

		(Deemed f	o be University under section 3 of		
Мос	dule:8	Contemporary issues		2 Hours	
			Total L	ecture hour	rs: 60 hours
Tex	t Book(s				
1.		PC, Wasynczuk O, Sudhoff Sl	D (2013) Analysi	is of electrica	al machinery and drive
1.	systems	s, 3 rd edition. IEEE Press			
2.	.Bimal k	K.bose, (2015), Modern Power	Electronics and A	AC Drives, P	rentice Hall.
Ref	erence E	looks			
1.	R. Krish	nan, (2015) Electric motor driv	es, modeling, an	alysis and co	ontrol, Pearson.
2.	A. E. Fit	zgerald, Charles Kingsley and	Stephen D. Uma	ans, (2020), l	Electric Machinery, Mc
Ζ.	Graw H	ill, Indian Edition.			-
3.	Ion Bold	lea, (2017) Variable speed ger	erators, CRC Pr	ess.	
Mod	de of Eva	luation: Continuous Assessme	nt Tests, Quizze	s, Assignmer	nt,Final Assessment
Tes	t				
Rec	commend	ed by Board of Studies	09-07-2022		
Арр	roved by	Academic Council	No. 67	Date (08-08-2022

Course Code	(Deemed to be University under section 3 of UGC Act, 1956) Course Title	L	Т	Р	С			
MPED505L	Industrial Electrical Drives	3	0	Г 0	3			
Pre-requisite		Syllab	-	-	-			
Fielequisite	MPED502L MPED504L	Synab	u5 v	CI 31				
1.0								
Course Objective	S							
	asic concepts of load and drive interaction, speed control cor	ncepts	of ac	and	dc			
	reversal, regenerative braking aspects, design methodology.	•						
2. To analyze EN	II and mitigate Harmonics in energy efficient drives.							
	• ·							
Expected Course								
•	of this course the student will be able to							
	rives dynamics and identify the suitable power converter rational formation of DC drives and construct its controller.	ngs.						
	ferent types of DC drives and construct its controller. ferent types of AC drives and construct its controller.							
-	All and EMC standards and different energy saving schemes.							
	and Line standards and different energy saving schemes.							
Module:1 Drive	e Dynamics and Power Ratings		7	' ho	urs			
	ric Drives: Multi quadrant operation, Moment of inertia, Tor							
	ar motion loads; Selection of motor power rating: Classes of d							
	g; Selection of power converters: Direct converters, converter							
	rating from motor specification, Factors for drive selection,	Overio	ad ca	apac	uty,			
Control range, Der	ating factor, Efficiency							
Module:2 Cont	trol of DC Motor Drive		6	ho	urs			
	speed and torque of DC motors, Controlled rectifier-based sp	eed co						
quadrant, Two qua	drant and four quadrant-controlled DC motor drive; Chopper	fed sp	eed	cont	rol:			
Four quadrant ope	rations; Closed loop control							
Module:3 Cont	trol of Induction Motor Drive		7	' ho	ure			
	I: Characteristics and equivalent circuit of poly-phase induc	tion m						
	: Stator voltage control, variable frequency control, V/f co							
	methods; Rotor side control: static rotor resistance control							
	oubly fed induction motor drive							
				-				
	or Control of Induction Motor Drive			ho				
•	control, types of vector control, direct vector control, indirect v							
	ol, stator flux-oriented control, air gap flux-oriented control, c				Its-			
speed sensor less	control, Concept of space vectors, DTC control strategy of in	lauctio	n mo					
	trol of Synchronous Machine Drives			' ho				
	valent circuits and dynamic model of synchronous machine;				ent			
control, maximum	torque per ampere control, direct torque control, and power f	actor c	ontro	bl				
Module:6 Elec	tromagnotic Interference and Harmonics			ha				
	tromagnetic Interference and Harmonics I and EMC, EMC for power converters, grounding and shield	dina E		ho class				
	roduction to harmonics, harmonic measurement techniques, r	•						
mitigation tools		Jugun		0010	40			
Module:7 Ener	gy Saving in Electric Drives		4	ho	urs			

Classification of energy efficiency, Energy efficient motor starting and control, Load over time, Applications with variable and constant torque, Life cycle costs and system savings using regenerated power

Module:8 Contemporary issues 2 hours

Total Lecture hours:

45 hours

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Text	tbook(s)						
1.	Bimal K Bose, "Modern Power Electronics and AC Drives", Pearson Education Asia, 2012.						
2.	R. Krishnan, Electric Motor Drives: N	R. Krishnan, Electric Motor Drives: Modelling, Analysis, and Control, 2015, Second edition,					
	Pearson Education India.						
Refe	erence Books						
1.	Gopal K Dubey, "Fundamentals of El	ectrical Drives	s", CRC Pre	ess, Second Edition, 2015.			
2.	Peter vas, Vector control of AC Mach	ines –Oxford	university p	oress, 1990.			
3.	R. Raja Singh, Energy Conservatio Lambert Academic Publishing, Germ	0	for Asynch	ronous Machine Drives, Lap			
4.	Danfoss Handbook on VLT Frequence Converters", PE-MSMBM Publication		, "Facts Wo	rth Knowing about Frequency			
5.	5. T.J.E Miller, "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford 1989.						
Rec	ommended by Board of Studies	09-07-2022	2				
App	roved by Academic Council	No. 67	Date	08-08-2022			

C		(Deemed to be University unde			Ŧ			
	rse Code D505P	Course T Industrial Electric		L 0	Т 0	P 2	C 1	
	Pre-requisite MPED502L				-	versi	ion	
	MPED504L							
Cou	rse Objective				1.0)		
		the performance of Electrical dr	rives experimentally under	vario	us o	pera	ting	
	conditions.	a various anod control strategies	, for alastria drivas					
2. 1		ne various speed control strategies	s for electric drives					
Expe	ected Course	Dutcome						
		of this course the student will be al	ble to					
1. 7	To design and	conduct experiments, as well as ar	nalyse and interpret data.					
Indic	cative Experir	ents			Н	ours		
1.	-	peed control of AC to DC converte	er fed DC motor drive					
2.	.	peed control of DC to DC converte						
	•							
3.	•	ontrol of DC motor drive under fou	•					
4.	•	ontrol AC to AC regulator fed indu						
5.	Speed control	l of induction motor drive using V/f	fcontrol					
6.	Speed control	l of induction motor drive using VV	/C+ control					
7.	Speed control	l of induction motor drive using fiel	ld-oriented control					
8.	Speed contro	l of induction motor drive using flux	x sensor less control					
9.	Dynamic bra	ing of induction motor drive						
10.	Automatic m	tor adaption for machine parameter	er estimation and formation					
11.	Performance	analysis of the induction motor dri	ve with regenerative loadin	g				
12.	Speed contro	l of slip ring induction motor using	static rotor resistance cont	rol				
13.	Speed contro	l of permanent magnet synchrono	us motor (PMSM) drive					
14.	Speed control of synchronous drive using PI/PID controller							
15.	Speed control of synchronous reluctance motor (Syn.RM) drive							
16.	Performance analysis of the PMSM drive with regenerative loading							
17.	Performance	analysis of the Syn.RM drive with	regenerative loading					
18.	Speed contro	l using static Kramer drive and sta	tic Scherbius drive					
19.	Performance	analysis of doubly fed induction m	otor					
20.	Drive power	ind harmonics measurements						
	1			I				

Total Laboratory Hours: 30

30 hours

Text	Textbook(s)							
1.	Bimal K Bose, "Modern Power Electronics and AC Drives", Pearson Education Asia, 2012.							
2.	R. Krishnan, Electric Motor Drives: Modelling, Analysis, and Control, 2015, Second edition, Pearson Education India.							
Refe	erence Books							
1.	Gopal K Dubey, "Fundamentals of Ele	ctrical Drives",	CRC Pres	s, Second Edition, 2015.				
2.	Peter vas, Vector control of AC Machines –Oxford university press, 1990.							
Reco	ommended by Board of Studies	09-07-2022						
Appr	oved by Academic Council	No. 67	Date	08-08-2022				

	de	Special Machines and Con	trol	L	Т	Ρ	С
MPED506L				3	0	0	3
Pre-requisite	Pre-requisite MPED502L						sior
<u>i io ioquioit</u>					v. 1.		0.01
Course Obje	ectives:						
1. To im	part kno	owledge on special types of electro-mechanic	al energy convers	sion m	ach	ines	an
their i	mporta	nce.					
2. To se	lect the	appropriate special machine drive for the sp	ecific purpose				
Expected Co							
		f this course the student will be able to: nt magnet material property and circuits					
		ber motor with the drive circuits					
		ed reluctance motor from synchronous reluct	ance motor				
		ave and sine wave permanent magnet brush		_			
		anced synchronous motor and develop the			con	/ent	iona
motors							
Meduleid	Ctom	an Matava				<u>c</u> h	
Module:1		er Motors working; Modes of excitation: Drive circuits	Control Aspects	· Con			ours
angle		working, wodes of excitation. Drive circuits	, Control Aspects	s, con	cep		lea
angio							
Module:2	Switc	hed Reluctance Motors				6 h	ours
Construction	al and v	vorking; Power Converters and controllers; I	Methods of rotor p	oositio	n se	ensir	ng
Module:3	Synch	nronous Reluctance Motors				6 h	ours
		vorking; Significance of direct and quadrature	inductances; Ph	nasor o			
			· · · · ·		Ŭ		
		anent Magnet Brushless DC Motors				8 h	
Permanent	Magnet	materials, Magnet Characteristics, Perme			neti	с с	ircui
Permanent analysis of Pl	Magnet MBLDC				neti	с с	ircui
Permanent analysis of Pl	Magnet MBLDC	materials, Magnet Characteristics, Perme			neti	с с	ircui
	Magnet MBLDC control	materials, Magnet Characteristics, Perme			neti	c c nuta	ircui
Permanent analysis of Pl closed loop c Module:5	Magnet MBLDC control Perma	materials, Magnet Characteristics, Perme ; EMF and torque equations; Power Converte	rs; Hall-effect sen	sor; Č	neti omn	c c nuta 7h	ircui ation ours
Permanent analysis of Pl closed loop o Module:5 Principle of	Magnet MBLDC control Perma operati	materials, Magnet Characteristics, Perme ; EMF and torque equations; Power Converte anent Magnet Synchronous Motors	rs; Hall-effect sen	sor; Č	neti omn	c c nuta 7h	ircui ation ours
Permanent analysis of Pl closed loop of Module:5 Principle of Converter Vo	Magnet MBLDC control Perma operati olt-ampe	materials, Magnet Characteristics, Perme ; EMF and torque equations; Power Converte anent Magnet Synchronous Motors on; EMF and Torque equations; Synchro ere requirements	rs; Hall-effect sen	sor; Č	omn omn or (c c nuta 7h diag	ircui ation ours ram
Permanent analysis of Pl closed loop of Module:5 Principle of Converter Vo Module:6	Magnet MBLDC control Perma operati olt-ampe	materials, Magnet Characteristics, Perme ; EMF and torque equations; Power Converte anent Magnet Synchronous Motors on; EMF and Torque equations; Synchro ere requirements nced Synchronous Machines	rs; Hall-effect sen	sor; Č	omn	c c nuta 7h diag 5 h	ours
Permanent analysis of Pl closed loop of Module:5 Principle of Converter Vo Module:6 Construction	Magnet MBLDC control Perma operati olt-ampe Advar and wo	materials, Magnet Characteristics, Perme ; EMF and torque equations; Power Converte anent Magnet Synchronous Motors on; EMF and Torque equations; Synchro ere requirements nced Synchronous Machines orking: Flux Switching and Flux Reversal Mac	rs; Hall-effect sen	sor; Č	omn	c c nuta 7h diag 5 h	ours
Permanent analysis of Pl closed loop of Module:5 Principle of Converter Vo Module:6 Construction flux Machine	Magnet MBLDC control Perma operati olt-ampe Advar and wo applica	materials, Magnet Characteristics, Perme ; EMF and torque equations; Power Converte anent Magnet Synchronous Motors on; EMF and Torque equations; Synchro ere requirements nced Synchronous Machines orking: Flux Switching and Flux Reversal Mac ations	rs; Hall-effect sen	sor; Č	or on one of the second	c c nuta 7h diag 5 h	ircui ation ours ram ours Axia
Permanent analysis of Pl closed loop of Module:5 Principle of Converter Vo Module:6 Construction flux Machine Module:7	Magnet MBLDC control Perma operati olt-ampe Advar and wo ; applica Linea	materials, Magnet Characteristics, Perme ; EMF and torque equations; Power Converte anent Magnet Synchronous Motors on; EMF and Torque equations; Synchro ere requirements nced Synchronous Machines orking: Flux Switching and Flux Reversal Mac ations r Motors	rs; Hall-effect sen nous Reactance; chines, Claw Pole	sor; Č Phas	or o	c c nuta 7h diag 5 h ors, j	ours ours ram ours ours
Permanent analysis of Pl closed loop of Module:5 Principle of Converter Vo Module:6 Construction flux Machine Module:7 Construction	Magnet MBLDC ontrol Perma operati olt-ampe Advar and wo ; applica and wo	materials, Magnet Characteristics, Perme ; EMF and torque equations; Power Converte anent Magnet Synchronous Motors on; EMF and Torque equations; Synchro ere requirements nced Synchronous Machines orking: Flux Switching and Flux Reversal Mac ations r Motors orking: Linear DC Motors, Linear Induction M	rs; Hall-effect sen nous Reactance; chines, Claw Pole	sor; Č Phas	or o	c c nuta 7h diag 5 h ors, j	ours ours ram ours ours
Permanent analysis of Pl closed loop of Module:5 Principle of Converter Vo Module:6 Construction flux Machine Module:7 Construction	Magnet MBLDC ontrol Perma operati olt-ampe Advar and wo ; applica and wo	materials, Magnet Characteristics, Perme ; EMF and torque equations; Power Converte anent Magnet Synchronous Motors on; EMF and Torque equations; Synchro ere requirements nced Synchronous Machines orking: Flux Switching and Flux Reversal Mac ations r Motors	rs; Hall-effect sen nous Reactance; chines, Claw Pole	sor; Čí Phas Alteri	or o	c c nuta 7h diag 5 h ors, j	ours ours ours ours ours
Permanent analysis of Pl closed loop of Module:5 Principle of Converter Vo Module:6 Construction flux Machine Module:7 Construction	Magnet MBLDC control Operati olt-ampe and wo capplica and wo cand Rel	materials, Magnet Characteristics, Perme ; EMF and torque equations; Power Converte anent Magnet Synchronous Motors on; EMF and Torque equations; Synchro ere requirements nced Synchronous Machines orking: Flux Switching and Flux Reversal Mac ations r Motors orking: Linear DC Motors, Linear Induction M	rs; Hall-effect sen nous Reactance; chines, Claw Pole	sor; Čí Phas Alteri	netion	c c nuta 7h diag 5 h ors, 1 5 h	ours ours ram ours ours
Permanent analysis of Pl closed loop of Module:5 Principle of Converter Vo Module:6 Construction flux Machine Module:7 Construction Linear Switch	Magnet MBLDC control Operati olt-ampe and wo capplica and wo cand Rel	materials, Magnet Characteristics, Perme ; EMF and torque equations; Power Converte anent Magnet Synchronous Motors on; EMF and Torque equations; Synchro ere requirements nced Synchronous Machines orking: Flux Switching and Flux Reversal Mac ations r Motors orking: Linear DC Motors, Linear Induction M uctance Motors; applications	rs; Hall-effect sen nous Reactance; chines, Claw Pole	sor; Čí Phas Alteri	or on one the second se	c c nuta 7h diag 5 h ors, . 5 h Mc 2 h	ours ours ours ours ours ours ours
Permanent analysis of Pl closed loop of Module:5 Principle of Converter Vo Module:6 Construction flux Machine Module:7 Construction Linear Switch Module:8	Magnet MBLDC ontrol Perma operatiolt-amperian and wo applica Linear and wo ded Rel Conte	materials, Magnet Characteristics, Perme ; EMF and torque equations; Power Converte anent Magnet Synchronous Motors on; EMF and Torque equations; Synchro ere requirements nced Synchronous Machines orking: Flux Switching and Flux Reversal Mac ations r Motors orking: Linear DC Motors, Linear Induction M uctance Motors; applications mporary issues Total Lecture hours:	rs; Hall-effect sen nous Reactance; chines, Claw Pole	sor; Čí Phas Alteri	or on one the second se	c c nuta 7h diag 5 h ors, . 5 h Mc 2 h	ircui ation ours ours ours Axia
Permanent analysis of Pl closed loop of Module:5 Principle of Converter Vo Module:6 Construction flux Machine Module:7 Construction Linear Switch Module:8	Magnet MBLDC ontrol Perma operati olt-ampe Advar and wo applica Lineal and wo conte	materials, Magnet Characteristics, Perme ; EMF and torque equations; Power Converte anent Magnet Synchronous Motors on; EMF and Torque equations; Synchro ere requirements nced Synchronous Machines orking: Flux Switching and Flux Reversal Mac ations r Motors orking: Linear DC Motors, Linear Induction M uctance Motors; applications	rs; Hall-effect sen nous Reactance; chines, Claw Pole	sor; Čí Phas Alteri	or on one the second se	c c nuta 7h diag 5 h ors, . 5 h Mc 2 h	ircu atior our ram our Axia our

(Deemed to be University under section 3 of UGC Act, 1956)							
1.	T.J.E Miller, "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press						
	Oxford 1989.						
2.	R. Krishnan, "Permanent Magne	R. Krishnan, "Permanent Magnet and Brushless DC Motors Drives", CRC Press, New York					
	2010.						
Referen	nce Books						
1.	T. Kenjo and S. Nagamori, "Perr	manent Magnet ar	nd Brushle	ss DC Motor", Clarendon Press,			
	London 1988.	-					
2.	T. Kenjo, "Stepper Motors and tl	heir Microprocess	or Controls	s", Clarendon Press, London.			
		•					
3.	Ion Boldea, "Linear Electric M	lachines, Drives	and MAG	LEVs Handbook", CRC Press,			
	London, 2013.						
4.	P. P. Aearnely, "A Guide to Mote	or Theory and Pra	ctice Step	per Motors", Peter Perengrinus,			
	London, 1982.	-		-			
5.	T. Kenjo and S. Nagamori, "Perr	manent Magnet ar	nd Brushle	ss DC Motor", Clarendon Press,			
	London 1988.	-					
Recom	mended by Board of Studies	09-07-2022					
Approve	ed by Academic Council	No. 67	Date	08-08-2022			

Course Code MPED507L	Course Title	L	тί	P	С
	Advanced Processors for Power Converters			0	3
Pre-requisite	Nil	Sylla	-	-	
		- ,		.0	
Course Objective	S				
1. Introducing AF	M Processor and DSP controller.				
2. Overview of re	esources available in ARM Processor and DSP-controller wh	nich w	ill be	e us	ed to
generate pulse	9S.				
3. Overview of p	ogramming frame work, software building blocks and Interru	ot stru	ctur	es, E	Event
manager, and	compare unit.				
Expected Course					
	of this course the student will be able to				
	e Arm processor architecture	-::4			
	s and PWM to generate triggering pulses for power electronic the exceptions of ARM processor to vary the triggering puls.			vor	
electronic circu		03 101	pow	VCI	
	gnal processing in ARM processor.				
	h the peripherals of DSP processor for power electronics app	licatio	ns.		
Module:1	ARM Processors			5 h	ours
	chitecture and pipelining; Programmer's model; Data pat	hs ar	nd ii		
	ced Microcontroller Bus architecture; ARM instruction set; /				
	nput and Output (GPIO); Analog to Digital Converter; Digital to				
Simple programmi			0		,
Module:2	Timers and PWM				
	f operation of Timers; Match Registers; Generation of PW		ing	Com	ours
	Control; Single and Double Edge Controlled PWM; program				npare
triggering pulses for		mming			npare
	or power converters	mming			npare
Modulo:3	or power converters	mming		gen	npare erate
Module:3	or power converters Component Interfacing and Networks		g to	gen 6 h	erate
System Control;	Component Interfacing and Networks RTC, Watch Dog Timer, USB 2.0 Full-Speed device co	ntrolle	g to	gen 6 h	erate
System Control;	or power converters Component Interfacing and Networks	ntrolle	g to	gen 6 h	erate
System Control;	Component Interfacing and Networks RTC, Watch Dog Timer, USB 2.0 Full-Speed device co erface; UART, I2C Bus Serial Interface, SPI, SSP Serial Interf	ntrolle	g to	gen <u>6 h</u> ⁄ith I	erate
System Control; Communication in Module:4	Component Interfacing and Networks RTC, Watch Dog Timer, USB 2.0 Full-Speed device co	ntrolle faces	g to er w	gen <u>6 h</u> /ith I 6 h	npare erate ours DMA, ours
System Control; Communication in Module:4 Exception handlin Interrupt, PWM In	Component Interfacing and Networks RTC, Watch Dog Timer, USB 2.0 Full-Speed device co verface; UART, I2C Bus Serial Interface, SPI, SSP Serial Interface Exception and Interrupt Handling g overview; Interrupts; Interrupt Handling Schemes; Externaterrupt, ADC Interrupt; Utility of interrupts in closed loop component	ntrolle faces	er w	gen 6 h /ith I 6 h pt, 1	ours DMA, Timer
System Control; Communication in Module:4 Exception handlin	Component Interfacing and Networks RTC, Watch Dog Timer, USB 2.0 Full-Speed device co verface; UART, I2C Bus Serial Interface, SPI, SSP Serial Interface Exception and Interrupt Handling g overview; Interrupts; Interrupt Handling Schemes; Externaterrupt, ADC Interrupt; Utility of interrupts in closed loop component in the set of the set o	ntrolle faces	er w	gen 6 h /ith I 6 h pt, 1	ours DMA, Timer
System Control; Communication in Module:4 Exception handlin Interrupt, PWM In system; Programm	Component Interfacing and Networks RTC, Watch Dog Timer, USB 2.0 Full-Speed device co erface; UART, I2C Bus Serial Interface, SPI, SSP Serial Interf Exception and Interrupt Handling g overview; Interrupts; Interrupt Handling Schemes; Extern terrupt, ADC Interrupt; Utility of interrupts in closed loop co	ntrolle faces	er w	gen 6 h /ith I 6 h pt, 7 real	ours DMA, Timer time
System Control; Communication in Module:4 Exception handlin Interrupt, PWM In system; Programm Module:5	Component Interfacing and Networks RTC, Watch Dog Timer, USB 2.0 Full-Speed device co erface; UART, I2C Bus Serial Interface, SPI, SSP Serial Interface, SPI, SSP Serial Interface Exception and Interrupt Handling g overview; Interrupts; Interrupt Handling Schemes; Extern terrupt, ADC Interrupt; Utility of interrupts in closed loop co Digital Signal Processing with ARM	ntrolle faces nal Int ntrol o	er werru	gen 6 h /ith I pt, 7 real 6 h	ours ours ours ours fimer time
System Control; Communication in Module:4 Exception handlin Interrupt, PWM In system; Programm Module:5 Representing a D	Component Interfacing and Networks RTC, Watch Dog Timer, USB 2.0 Full-Speed device co erface; UART, I2C Bus Serial Interface, SPI, SSP Serial Interface; UART, I2C Bus Serial Interface, SPI, SSP Serial Interface Exception and Interrupt Handling g overview; Interrupts; Interrupt Handling Schemes; Extern terrupt, ADC Interrupt; Utility of interrupts in closed loop co Digital Signal Processing with ARM igital Signal; Introduction to DSP on the ARM; Industry need	ntrolle faces nal Int ntrol o	er werru	gen 6 h /ith I pt, 7 real 6 h	ours ours ours ours fimer time
System Control; Communication in Module:4 Exception handlin Interrupt, PWM In system; Programm Module:5 Representing a D	Component Interfacing and Networks RTC, Watch Dog Timer, USB 2.0 Full-Speed device co erface; UART, I2C Bus Serial Interface, SPI, SSP Serial Interface, SPI, SSP Serial Interface Exception and Interrupt Handling g overview; Interrupts; Interrupt Handling Schemes; Extern terrupt, ADC Interrupt; Utility of interrupts in closed loop co Digital Signal Processing with ARM	ntrolle faces nal Int ntrol o	er werru	gen 6 h /ith I pt, 7 real 6 h	ours ours ours ours fimer time
System Control; Communication in Module:4 Exception handlin Interrupt, PWM In system; Programm Module:5 Representing a D implementation pe	Component Interfacing and Networks RTC, Watch Dog Timer, USB 2.0 Full-Speed device comperface; UART, I2C Bus Serial Interface, SPI, SSP Serial Interface; UART, I2C Bus Serial Interface, SPI, SSP Serial Interface; Overview; Interrupt Handling g overview; Interrupts; Interrupt Handling Schemes; Externaterrupt, ADC Interrupt; Utility of interrupts in closed loop compering Digital Signal Processing with ARM igital Signal; Introduction to DSP on the ARM; Industry neerspective on the processors	ntrolle faces nal Int ntrol o	er werru	gen 6 h /ith I pt, T real 6 h the c	npare erate ours DMA, fimer time ligital
System Control; Communication in Module:4 Exception handlin Interrupt, PWM In system; Programm Module:5 Representing a D implementation pe Module:6	Component Interfacing and Networks RTC, Watch Dog Timer, USB 2.0 Full-Speed device co reface; UART, I2C Bus Serial Interface, SPI, SSP Serial Interface; UART, I2C Bus Serial Interface, SPI, SSP Serial Interface Exception and Interrupt Handling g overview; Interrupts; Interrupt Handling Schemes; Extern terrupt, ADC Interrupt; Utility of interrupts in closed loop co- ning Digital Signal Processing with ARM igital Signal; Introduction to DSP on the ARM; Industry neer rspective on the processors Digital Signal Processor	ntrolle faces nal Int ntrol c	er w erru of a	gen 6 h rith I pt, 7 real 6 h the c	ours ours ours ours fimer time digital
System Control; Communication in Module:4 Exception handlin Interrupt, PWM In system; Programm Module:5 Representing a D implementation pe Module:6 Basic architecture	Description Description Component Interfacing and Networks RTC, Watch Dog Timer, USB 2.0 Full-Speed device correlates; UART, I2C Bus Serial Interface, SPI, SSP Serial Interface; UART, I2C Bus Serial Interface, SPI, SSP Serial Interface; Overview; Interrupt Handling g overview; Interrupts; Interrupt Handling Schemes; Externaterrupt, ADC Interrupt; Utility of interrupts in closed loop conting Digital Signal Processing with ARM igital Signal; Introduction to DSP on the ARM; Industry neerspective on the processors Digital Signal Processor System configuration registers; Memory addressing mode;	ntrolle faces nal Int ntrol c eds fro	er w err w erru of a om t	gen 6 h rith I pt, 7 real 6 h the c 9 h	ours ours DMA, ours ligital dling;
System Control; Communication in Module:4 Exception handlin Interrupt, PWM In system; Programm Module:5 Representing a D implementation pe Module:6 Basic architecture Instruction set; Pr	Digital Signal Processor Digital Signal Processor System configuration registers; Memory addressing mode;	ntrolle faces nal Int ntrol o eds fro	er w erru of a om t	gen 6 h /ith I ft, T real 6 h the c 9 h handut (C	ipare erate ours DMA, ours fimer time digital digital
System Control; Communication in Module:4 Exception handlin Interrupt, PWM In system; Programm Module:5 Representing a D implementation pe Module:6 Basic architecture Instruction set; Pr Functionality; Utili	Description Description Component Interfacing and Networks RTC, Watch Dog Timer, USB 2.0 Full-Speed device correlates; UART, I2C Bus Serial Interface, SPI, SSP Serial Interface; UART, I2C Bus Serial Interface, SPI, SSP Serial Interface; Overview; Interrupt Handling g overview; Interrupts; Interrupt Handling Schemes; Externaterrupt, ADC Interrupt; Utility of interrupts in closed loop conting Digital Signal Processing with ARM igital Signal; Introduction to DSP on the ARM; Industry neerspective on the processors Digital Signal Processor System configuration registers; Memory addressing mode;	ntrolle faces nal Int ntrol o eds fro	er w erru of a om t	gen 6 h /ith I ft, T real 6 h the c 9 h handut (C	ipare erate ours DMA, ours fimer time digital digital

		(Deemed to	be University under section 3 of UGC #	Act, 1956)	
Мо	dule:7	Real Time Digital Sign	al Processing		5 hours
	•	ocessing; Frame Based P cessing; Overlap Methods	0.	•	Usage of Buffers in
Module:8		Lecture by industry ex	xperts		2 hours
			Total I	Lecture hours:	45 hours
Toy	tbook(s)				
1.	Optimizing Sy	oss, Dominic Symes, Chris vstem Software" Morgan K iyat, Steven Campbell, "D	aufmann Publisher	rs, 2011.	
2.	press, New Y	ork, Washington Dc, 2012			
Ref	erence Books				
1.		Christopher Hinds "ARM A on, CRC Press Taylor & Fr			s and Techniques"
2.	Ata Elahi, Tr 2015	evor Arjeski "ARM Assen	nbly Language with	ו Hardware Exp	eriments", Springer
Rec	commended by	Board of Studies	09-07-2022		
Δnn	roved by Acad	emic Council	No. 67	Date	08-08-2022

Cour	rse Code	(Deemed to be University under section 3 of UGC Act, 1956) Course Title	L	Т	Р	С
	D507P	Advanced Processors for Power Converters Lab	0	0	2	1
Pre-r	requisite		Syllab	us v	ersi	on
				1.0		
	rse Objectiv					
	Se the resol	urces available with ARM and DSP controller to generate contro	ol signal	IS TOP	. bor	ver
Expe	ected Cours	e Outcome				
		n of this course the student will be able to conduct experiments, as well as analyze and interpret data.				
Indic	ative Exper	iments		hou	irs	
1.	Control sigr	nal for obtaining variable duty cycle.				
2.	Obtaining p	ulse width modulated signal from a saw tooth and DC signal.				
3.	Processor b	based control of a single phase half-wave controlled converter				
4.	Single phas	e single quadrant DC-DC converter and its control.				
5.	Control of a	single phase single quadrant bridge type AC-DC converter.				
6.	Single pha processor.	se two quadrant AC-DC converter controlled through ARM	1			
7.	High power	single quadrant bridge type AC-DC converter and its control				
8.	Control of a	High power two quadrant bridge type AC-DC converter.				
9.	ARM proce	ssor based control of a residential UPS.				
10.	Digital cont	rol of high power industrial inverter.				
11.	Control of the	nree phase AC voltage controller				
12.	Single phas	se step down cycloconverter and its control.				
13.	PWM contro	ol of single quadrant DC chopper				
14.	DSP based	implementation of PWM techniques to control an inverter.				
15.	Control of s	ingle phase half controlled converter using DSP processor				
16.	Control of c	hopper circuit in TRC and variable frequency method				
	1	Total Laboratory Hours	:	30) ho	urs

Text	book(s)
1.	Andrew N.Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide
	Designing and Optimizing System Software" Morgan Kaufmann Publishers, 2011.
2.	Hamid A. Toliyat, Steven Campbell, "DSP based electromechanical motion control", CRC
	press, New York, Washington Dc, 2012.

Reference Books 1. William Hohl, Christopher Hinds "ARM Assembly Language – Fundamentals and Techniques" Second Edition, CRC Press Taylor & Francis Group 2015. 2. Ata Elahi, Trevor Arjeski "ARM Assembly Language with Hardware Experiments", Springer 2015, Recommended by Board of Studies 09-07-2022 Approved by Academic Council No. 67 Date 08-08-2022

Course cod	•	Discipline Electives		-		
	le	Course Title	L 3	Т	Ρ	С
MPED601L Modern Control system Pre-requisite NIL					0	3
Pre-requisit	Sylla			sion		
				1.0)	
Course Obj	•					
-		pth knowledge of linear and nonlinear systems and to ana	alyze 1	he p	ohys	sical
		ate space.				
	0	ntroller and observer using state space model.				
Course Out		d digital control concepts.				
		irse, the student will be able to				
		ar and nonlinear systems				
	•	space model of linear and nonlinear systems				
		feedback controller and observer				
	•	arious stability notions and stability analysis				
		control techniques to dynamic systems				
• • •						
Module:1	Linear	Systems			9 h	ours
		te equations for dynamic systems, state diagrams; Time inval				
	•	ations; state transition matrix; Relation between state model ar	nd tran	sfer	func	tion;
		ystems; Discrete state variable analysis	1			
Module:2		sis of Linear Systems				ours
		eigen vectors; system modes; Controllability; Observability;	; Cano	nica	al to	rms:
		Stabilizability and detectability			0 6	
Module:3		Feedback Control and Observer Design				ours
Decision of a				. d	~ ~ ~	
		Iback control: Regulation and tracking; Design of full order				
observer; Ex	xtended	state observer; Discrete pole placement and observer desig				
observer; Ex	xtended					
observer; Ex and case stu	xtended udies	state observer; Discrete pole placement and observer desig		ulati	ion 1	tools
observer; Ex and case stu Module:4	xtended udies	state observer; Discrete pole placement and observer designeer Systems	ın; Sim	ulati	ion 1 7 h	tools ours
observer; Ex and case stu Module:4 Nonlinear dy	xtended udies Nonlir ynamics	state observer; Discrete pole placement and observer desig	ın; Sim delling	of r	ion f 7 h	tools ours near
observer; Ex and case stu Module:4 Nonlinear dy systems: ec	xtended udies Nonlir ynamics quilibrium	state observer; Discrete pole placement and observer designeer Systems common nonlinearities, features of nonlinear systems; Mod	ın; Sim delling	of r	ion f 7 h	tools ours near
observer; Ex and case stu Module:4 Nonlinear dy systems: ec converters: l	xtended udies Nonlir ynamics quilibrium bifurcatio	state observer; Discrete pole placement and observer designeer Systems common nonlinearities, features of nonlinear systems; Mod points, linearization, state space averaging; Nonlinear pho on and chaos	ın; Sim delling	of r	ion t 7 h ionli n po	ools ours near ower
observer; Ex and case stu Module:4 Nonlinear dy systems: ec converters: I Module:5	xtended udies Nonlir ynamics quilibrium bifurcatio	state observer; Discrete pole placement and observer designeer Systems common nonlinearities, features of nonlinear systems; Mod points, linearization, state space averaging; Nonlinear pho on and chaos ty Analysis	ın; Sim delling enome	of r	ion i 7 ho ionli n po 6 ho	ours near ower
observer; Ex and case stu Module:4 Nonlinear dy systems: ec converters: I Module:5 Stability of L	xtended udies Nonlir ynamics quilibrium bifurcatio Stabili _TI Syste	state observer; Discrete pole placement and observer designed tear Systems common nonlinearities, features of nonlinear systems; Mode points, linearization, state space averaging; Nonlinear pho- on and chaos ty Analysis ems: BIBO stability; Nyquist stability criteria; Stability in the s	In; Sim	of r of r	ion t 7 ho ionli n po 6 ho vapu	ours near ower ours nov;
observer; Ex and case stu Module:4 Nonlinear dy systems: ec converters: I Module:5 Stability of L	xtended udies Nonlir ynamics quilibrium bifurcatio Stabili _TI Syste	state observer; Discrete pole placement and observer designeer Systems common nonlinearities, features of nonlinear systems; Mod points, linearization, state space averaging; Nonlinear pho on and chaos ty Analysis	In; Sim	of r of r	ion t 7 ho ionli n po 6 ho vapu	ours near ower ours nov;
observer; Ex and case stu Module:4 Nonlinear dy systems: ec converters: I Module:5 Stability of L Lyapunov fu	xtended udies Nonlir ynamics quilibrium bifurcation Stabili _TI Syste inctions:	state observer; Discrete pole placement and observer designed ear Systems common nonlinearities, features of nonlinear systems; Mod points, linearization, state space averaging; Nonlinear phon on and chaos ty Analysis ems: BIBO stability; Nyquist stability criteria; Stability in the s methods of construction; Stability analysis: Lyapunov direct a	In; Sim	of r na i of Ly	ion f 7 h ionli n po 6 h i vapu t me	ools near ower ower
observer; Ex and case stu Module:4 Nonlinear dy systems: ec converters: I Module:5 Stability of L Lyapunov fu Module:6	xtended udies Nonlir ynamics quilibrium bifurcatio bifurcation I Stabili TI Syste Inctions:	state observer; Discrete pole placement and observer designed mear Systems a common nonlinearities, features of nonlinear systems; Mode a points, linearization, state space averaging; Nonlinear pho- on and chaos ty Analysis ems: BIBO stability; Nyquist stability criteria; Stability in the se methods of construction; Stability analysis: Lyapunov direct a mear Control Techniques	In; Sim	of r na i of Ly	ion t 7 h ionli n po 6 h vapu t me 6 h	ools near ower ours nov; thod
observer; E: and case stu Module:4 Nonlinear dy systems: ec converters: I Module:5 Stability of L Lyapunov fu Module:6 Lyapunov ba	xtended udies Nonlir ynamics quilibrium bifurcatio bifurcation Stabili _TI Syste inctions: Nonlir ased cor	state observer; Discrete pole placement and observer designed tear Systems common nonlinearities, features of nonlinear systems; Mode a points, linearization, state space averaging; Nonlinear pho- on and chaos ty Analysis ems: BIBO stability; Nyquist stability criteria; Stability in the se- methods of construction; Stability analysis: Lyapunov direct a methods of construction; Stability analysis; Lyapunov direct a methods of construction; Lyapunov direct a methods of construction; Lyapunov direc	In; Sim	of r na i of Ly	ion t 7 h ionli n po 6 h vapu t me 6 h	ools near ower ours nov; thod
observer; E: and case stu Module:4 Nonlinear dy systems: ec converters: I Module:5 Stability of L Lyapunov fu Module:6 Lyapunov ba	xtended udies Nonlir ynamics quilibrium bifurcatio bifurcation Stabili _TI Syste inctions: Nonlir ased cor	state observer; Discrete pole placement and observer designed mear Systems a common nonlinearities, features of nonlinear systems; Mode a points, linearization, state space averaging; Nonlinear pho- on and chaos ty Analysis ems: BIBO stability; Nyquist stability criteria; Stability in the se methods of construction; Stability analysis: Lyapunov direct a mear Control Techniques	In; Sim	of r na i of Ly	ion t 7 h ionli n po 6 h vapu t me 6 h	ools near ower ours nov; thod
observer; E: and case stu Module:4 Nonlinear dy systems: ed converters: I Module:5 Stability of L Lyapunov fu Module:6 Lyapunov ba output linear	xtended udies Nonlir ynamics quilibrium bifurcatio bifurcation TI Syste inctions: Nonlir ased cor rization;	state observer; Discrete pole placement and observer designed and observer designed and observer; Discrete pole placement and observer designed and observer designed and observer; Mode points, linearization, state space averaging; Nonlinear photon and chaos ty Analysis ems: BIBO stability; Nyquist stability criteria; Stability in the semethods of construction; Stability analysis: Lyapunov direct and the semethods of construction; Stability analysis: Lyapunov direct and the semethods of construction; Stability analysis: Lyapunov direct and the semethods of construction; Stability analysis: Lyapunov direct and the semethods of construction; Stability analysis: Lyapunov direct and the semethods of construction; Discrete analysis and the semethods and the semethods and the semethods and the semethods are control; Design examples	In; Sim	of r na i of Ly zatio	ion f 7 ho ionli n po <u>6 ho</u> i me <u>6 ho</u> n, ir	ools
observer; Ex and case stu Module:4 Nonlinear dy systems: ec converters: I Module:5 Stability of L Lyapunov fu Module:6 Lyapunov ba output linear	xtended udies Nonlir ynamics quilibrium bifurcatio bifurcation TI Syste inctions: Nonlir ased cor rization;	state observer; Discrete pole placement and observer designed tear Systems common nonlinearities, features of nonlinear systems; Mode a points, linearization, state space averaging; Nonlinear pho- on and chaos ty Analysis ems: BIBO stability; Nyquist stability criteria; Stability in the se- methods of construction; Stability analysis: Lyapunov direct a methods of construction; Stability analysis; Lyapunov direct a methods of construction; Lyapunov direct a methods of construction; Lyapunov direc	In; Sim	of r na i of Ly zatio	ion f 7 ho ionli n po <u>6 ho</u> i me <u>6 ho</u> n, ir	ools near ower ours nov; thod
observer; E: and case stu Module:4 Nonlinear dy systems: ec converters: I Module:5 Stability of L Lyapunov fu Module:6 Lyapunov ba	xtended udies Nonlir ynamics quilibrium bifurcatio bifurcation TI Syste inctions: Nonlir ased cor rization;	state observer; Discrete pole placement and observer designed and observer designed and observer; Discrete pole placement and observer designed and observer designed and observer; Mode points, linearization, state space averaging; Nonlinear photon and chaos ty Analysis ems: BIBO stability; Nyquist stability criteria; Stability in the semethods of construction; Stability analysis: Lyapunov direct and the semethods of construction; Stability analysis: Lyapunov direct and the semethods of construction; Stability analysis: Lyapunov direct and the semethods of construction; Stability analysis: Lyapunov direct and the semethods of construction; Stability analysis: Lyapunov direct and the semethods of construction; Discrete analysis and the semethods and the semethods and the semethods and the semethods are control; Design examples	In; Sim	of r na i of Ly zatio	ion f 7 ho ionli n po <u>6 ho</u> i me <u>6 ho</u> n, ir	ools

Taxt								
Iexti	Textbook(s)							
1.	Ogata, K. (2010). Modern control engineering (Vol. 5). Upper Saddle River, NJ: Prentice hall.							
2.	Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control (Vol. 199, No. 1, p. 705).							
۷.	^{2.} Englewood Cliffs, NJ: Prentice hall.							
Refe	rence Books							
1.	Chi-Tsong Chen, 'Linear System T	heory and Design'	, Oxford U	niversity Press,1984				
2.	Khalil, H. K. (2015). Nonlinear con	trol (Vol. 406). New	/ York: Pe	arson.				
3.	Sira-Ramirez, H. J., & Silva-Or			design techniques in power				
З.	electronics devices. Springer Scier	nce & Business Me	edia.					
4.	Banerjee, S., & Verghese, G. C. (Eds.). (2001). Non	linear phe	nomena in power electronics:				
4.	Bifurcations, chaos, control, and a	pplications. Wiley-I	EEE Pres	5.				
5.	Tymerski R, Chuinard A, Rytkone	n F. Applied classi	cal and m	odern control system design.				
5.	Lecture Notes, ECE451, Portland	State University.						
6.	Donald, E. (2016). Optimal control	theory: an introduc	ction. Dove	er Publications.				
7	G. F. Franklin, J. D. Powell and	M Workman, 'Dig	ital Contro	ol of Dynamic Systems', PHI				
1.	7. (Pearson), 2008.							
Mode	e of Evaluation : Continuous Assess	ment Tests, Quizze	es, Assigni	ment, Final Assessment Test				
Reco	ommended by Board of Studies	09-07-2022						
Appro	oved by Academic Council	No. 67	Date	08-08-2022				

MDEDGGG	Course Title		Т	Ρ	С
MPED602L	Intelligent Control	3	0	0	3
Pre-requisite	NIL	Syllab	us v	ersi	on
			1.0		
Course Objectives	· · · · ·				
1. Apply neura	networks, fuzzy logic and optimization techniques for obtaini	na desire	ed ou	Itput	
•••	layer neural networks with proper architecture.	3			
•	igent techniques for real time applications.				
Expected Course	•				
	of this course the student will be able to:				
•	the mathematical model of a neuron and demonstrate the cond	cepts of f	eedf	orwa	Ird
neural netwo		•			
2. Apply the	packpropagation training technique and recurrent networ	ks for a	solvii	na t	he
engineering				3	
0 0	appropriate the fuzzy logic control for real time applications.				
	optimisation methods for real time applications.				
-	able artificial intelligent technique for solving typical task.				
Module:1	ificial Neural Network		6	hou	rs
	I of a neuron; Neuron models: Single / multi inputs; Activation	function	ne · N	otwo	rk
	/ multiple layers, perceptron network, leaning rule, pattern				
separability limitatio		0103311100		, mic	ai
Module:2 Supe	rvised learning		7	hou	rs
	I Network; Learning mechanism: Supervised learning, multil	laver per			
pattern classificatio	n and function approximation; Back propagation algorithm; nts of back propagation algorithm; Levenburg Marguard	Drawbad	cks ii	n Ba	ck
pattern classificatio propagation; Varia	n and function approximation; Back propagation algorithm;	Drawbao It Algori	cks ii thm;	n Ba Oth	ck
pattern classificatio propagation; Varia supervised learning	n and function approximation; Back propagation algorithm; nts of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule,	Drawbao It Algori	cks ii thm;	n Ba Oth	ck
pattern classificatio propagation; Varia supervised learning Module:3 Asso	n and function approximation; Back propagation algorithm; nts of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks	Drawbad It Algori Adaline	cks in thm; netw 8	n Ba Oth ork	ck her
pattern classificatio propagation; Varia supervised learning Module:3 Asso Associative learning	n and function approximation; Back propagation algorithm; nts of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out	Drawbad It Algori Adaline t-star ru	thm; netw 8 le; 1	n Ba Oth ork hou Patte	ck her I rs
pattern classificatio propagation; Varia supervised learningModule:3Asso learningAssociative association; Hetero	n and function approximation; Back propagation algorithm; nts of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m	Drawbad It Algori Adaline t-star ru nemory; (cks in thm; <u>netw</u> 8 le; I	n Ba Oth rork hou Patte	ck her i rs ern ve
pattern classificatio propagation; Varia supervised learningModule:3Asso learningAssociative association; Hetero	n and function approximation; Back propagation algorithm; nts of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out	Drawbad It Algori Adaline t-star ru nemory; (cks in thm; <u>netw</u> 8 le; I	n Ba Oth rork hou Patte	ck her i rs ern ve
pattern classificatio propagation; Varia supervised learning Module:3 Asso Associative learnin association; Hetero networks; Architecto	n and function approximation; Back propagation algorithm; nts of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m ure and algorithm; Kohonen Self-organizing maps, Learning v	Drawbad It Algori Adaline t-star ru nemory; (cks in thm; <u>netw</u> 8 Ie; I Comp antiz	n Ba Oth oork hou Patte petiti atior	ck her I rs ve
pattern classificatio propagation; Varia supervised learningModule:3Asso Associative learningAssociative networks; ArchitectModule:4Fuzzy	n and function approximation; Back propagation algorithm; hts of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m ure and algorithm; Kohonen Self-organizing maps, Learning v v Systems	Drawbad It Algori Adaline t-star ru nemory; (ector qua	cks in thm; <u>netw</u> 8 Ie; I Comp antiz	n Ba Oth ork hou Patte petiti ation	ck her i rs ve
pattern classificatio propagation; Varia supervised learningModule:3Asso Associative learningAssociative networks; ArchitectuModule:4Fuzzy Comparison of crisp	n and function approximation; Back propagation algorithm; nts of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m ure and algorithm; Kohonen Self-organizing maps, Learning v v Systems sets and fuzzy sets; Basic fuzzy set operation and approxima	Drawbac It Algori Adaline t-star ru nemory; (ector qua ite reaso	ks ii thm; netw 8 le; l Comp antiz 8 ning;	n Ba Oth oork Patte petiti ation	ck her irs ve irs zy
pattern classificatio propagation; Varia supervised learningModule:3AssoAssociative association; Hetero networks; ArchitectoModule:4FuzzyComparison of crisp relations; Fuzzificat	n and function approximation; Back propagation algorithm; nts of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m ure and algorithm; Kohonen Self-organizing maps, Learning v y Systems sets and fuzzy sets; Basic fuzzy set operation and approximation ion methods; Min-Max Composition; Defuzzification Methods	Drawbac It Algori Adaline t-star ru nemory; (ector qua ite reaso ; Fuzzy	ks ii thm; netw 8 le; l Comp antiz 8 ning;	n Ba Oth oork Patte petiti ation	ck her i rs ve i rs zy
pattern classificatio propagation; Varia supervised learningModule:3AssoAssociative association; Hetero networks; ArchitectoModule:4FuzzyComparison of crisp relations; Fuzzificat	n and function approximation; Back propagation algorithm; nts of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m ure and algorithm; Kohonen Self-organizing maps, Learning v v Systems sets and fuzzy sets; Basic fuzzy set operation and approxima	Drawbac It Algori Adaline t-star ru nemory; (ector qua ite reaso ; Fuzzy	ks ii thm; netw 8 le; l Comp antiz 8 ning;	n Ba Oth oork Patte petiti ation	ck her i rs ve i rs zy
pattern classificatio propagation; Varia supervised learningModule:3Asso Associative learningAssociative networks; ArchitectuModule:4Fuzzy Comparison of crisp relations; Fuzzificat systems; Predicate	n and function approximation; Back propagation algorithm; nts of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m are and algorithm; Kohonen Self-organizing maps, Learning v v Systems sets and fuzzy sets; Basic fuzzy set operation and approximation ion methods; Min-Max Composition; Defuzzification Methods logic; Fuzzy Decision Making; Fuzzy based controller design	Drawbac It Algori Adaline t-star ru nemory; (ector qua ite reaso ; Fuzzy	ks ii thm; <u>netw</u> le; l Comp antiz Comp antiz Rule	h Ba Oth ork Patte petiti ation hou Fuz bas	ck her Irs ve Irs Zy ed
pattern classificatio propagation; Varia supervised learningModule:3Asso Associative learningModule:3Asso relation; Hetero networks; ArchitectoModule:4Fuzzy relations; Fuzzificat systems; PredicateModule:5Optime	n and function approximation; Back propagation algorithm; nts of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m are and algorithm; Kohonen Self-organizing maps, Learning v v Systems sets and fuzzy sets; Basic fuzzy set operation and approximation ion methods; Min-Max Composition; Defuzzification Methods logic; Fuzzy Decision Making; Fuzzy based controller design mization Algorithms	Drawbad It Algori Adaline t-star ru nemory; (ector qua te reaso ; Fuzzy	cks ii thm; <u>netw</u> 8 lle; I Comp antiz Comp antiz Rule Rule	h Ba Oth ork Patte petiti ation hou Fuz bas	ck her Irs ern Ve Irs Zy ed
pattern classificatio propagation; Varia supervised learningModule:3AssoAssociative association; Hetero networks; ArchitectoModule:4FuzzyComparison of crisp relations; Fuzzificat systems; PredicateModule:5Optim Requirement of optimic	n and function approximation; Back propagation algorithm; nts of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m ure and algorithm; Kohonen Self-organizing maps, Learning v v Systems sets and fuzzy sets; Basic fuzzy set operation and approximation ion methods; Min-Max Composition; Defuzzification Methods logic; Fuzzy Decision Making; Fuzzy based controller design mization Algorithms; Single and multi-objective functions; O	Drawbac It Algori Adaline t-star ru nemory; (ector qua ite reaso ; Fuzzy ptimizatio	ks in thm; <u>netw</u> 8 Ile; I Comp antiz Comp antiz 8 Rule 6 on w	h Ba Oth ork Patte petiti ation hou ; Fuz bas hou ith a	ck her Irs zy ed Irs nd
pattern classificatio propagation; Varia supervised learningModule:3Asso Associative learningModule:3Asso association; Hetero networks; ArchitectreModule:4Fuzzy Comparison of crisp relations; Fuzzificat systems; PredicateModule:5Optim Requirement of optimition	n and function approximation; Back propagation algorithm; nts of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m are and algorithm; Kohonen Self-organizing maps, Learning v v Systems sets and fuzzy sets; Basic fuzzy set operation and approximation ion methods; Min-Max Composition; Defuzzification Methods logic; Fuzzy Decision Making; Fuzzy based controller design mization Algorithms	Drawbac It Algori Adaline t-star ru nemory; (ector qua ite reaso ; Fuzzy ptimizatio	ks in thm; <u>netw</u> 8 Ile; I Comp antiz Comp antiz 8 Rule 6 on w	h Ba Oth ork Patte petiti ation hou ; Fuz bas hou ith a	ck her Irs zy ed Irs nd
pattern classificatio propagation; Varia supervised learningModule:3AssoAssociative association; Hetero networks; ArchitectoModule:4FuzzyComparison of crisp relations; Fuzzificat systems; PredicateModule:5Optim Requirement of optimic	n and function approximation; Back propagation algorithm; nts of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m ure and algorithm; Kohonen Self-organizing maps, Learning v v Systems sets and fuzzy sets; Basic fuzzy set operation and approximation ion methods; Min-Max Composition; Defuzzification Methods logic; Fuzzy Decision Making; Fuzzy based controller design mization Algorithms; Single and multi-objective functions; O	Drawbac It Algori Adaline t-star ru nemory; (ector qua ite reaso ; Fuzzy ptimizatio	ks in thm; <u>netw</u> 8 Ile; I Comp antiz Comp antiz 8 Rule 6 on w	h Ba Oth ork Patte petiti ation hou ; Fuz bas hou ith a	ck her Irs zy ed Irs nd
pattern classificatio propagation; Varia supervised learningModule:3Asso Associative learningModule:3Asso relation; Hetero networks; ArchitectoModule:4Fuzzy relations; Fuzzificat systems; PredicateModule:5Optim Requirement of opt without constraints Applications	n and function approximation; Back propagation algorithm; ints of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m are and algorithm; Kohonen Self-organizing maps, Learning v v Systems sets and fuzzy sets; Basic fuzzy set operation and approximation methods; Min-Max Composition; Defuzzification Methods logic; Fuzzy Decision Making; Fuzzy based controller design mization Algorithms imization algorithms; Single and multi-objective functions; Optic; Multi-level optimization; Evolutionary algorithms; Optic	Drawbac It Algori Adaline t-star ru nemory; (ector qua ite reaso ; Fuzzy ptimizatio	ks ii thm; <u>netw</u> 8 le; I Comp antiz Comp antiz Rule 6 on w too	h Ba Oth ork Patte petiti ation hou Fuz bas hou ith a	ck her Irs zrn ve zy ed Irs nd ox;
pattern classificatio propagation; Varia supervised learningModule:3Asso Associative learningModule:3Asso relation; Hetero networks; ArchitectoModule:4Fuzz Fuzzificat systems; PredicateModule:5Optim Requirement of optimition without constraints ApplicationsModule:6ANN	n and function approximation; Back propagation algorithm; ints of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m are and algorithm; Kohonen Self-organizing maps, Learning v v Systems sets and fuzzy sets; Basic fuzzy set operation and approximation in methods; Min-Max Composition; Defuzzification Methods logic; Fuzzy Decision Making; Fuzzy based controller design mization Algorithms; Single and multi-objective functions; Operation with the set optimization; Evolutionary algorithms; Optimization based controllers and estimators	Drawbad It Algori Adaline t-star ru hemory; (ector qua ite reaso ; Fuzzy ptimization	ks ii thm; <u>netw</u> 8 le; I Comp antiz 8 ning; Rule 6 on w too	h Ba Oth ork Patte petiti ation hou Fuz bas hou ith a l bo	ck her Irs Ve Irs Zy ed Irs nd Dx;
pattern classificatio propagation; Varia supervised learningModule:3Asso Associative learningModule:3Asso association; Hetero networks; ArchitectuModule:4Fuzzy Comparison of crisp relations; Fuzzificat systems; PredicateModule:5Optim Requirement of opt without constraints ApplicationsModule:6ANN Data pre-processing	n and function approximation; Back propagation algorithm; ints of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m are and algorithm; Kohonen Self-organizing maps, Learning v v Systems sets and fuzzy sets; Basic fuzzy set operation and approximation in methods; Min-Max Composition; Defuzzification Methods logic; Fuzzy Decision Making; Fuzzy based controller design imization Algorithms; Single and multi-objective functions; Optic; Multi-level optimization; Evolutionary algorithms; Optic based controllers and estimators g; Convergence; Practical training issues; Neural networks for	Drawbad It Algori Adaline t-star ru nemory; (ector qua tte reaso ; Fuzzy ptimization mization	ks in thm; netw 8 le; I Comp antiz 8 ning; Rule 6 on w too 8 task:	h Ba Oth ork Patte petiti ation hou Fuz bas hou ith a l bo	ck her Irs ve Irs zy ed Irs nd Dx;
pattern classificatio propagation; Varia supervised learningModule:3Asso Associative learningModule:3Asso Association; Hetero networks; ArchitectuModule:4Fuzzy Comparison of crisp relations; Fuzzificat systems; PredicateModule:5Optim Requirement of opt without constraints ApplicationsModule:6ANN Data pre-processing control, Indirect comparison	n and function approximation; Back propagation algorithm; ints of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m are and algorithm; Kohonen Self-organizing maps, Learning v v Systems sets and fuzzy sets; Basic fuzzy set operation and approximation in methods; Min-Max Composition; Defuzzification Methods logic; Fuzzy Decision Making; Fuzzy based controller design mization Algorithms; Single and multi-objective functions; Operation with the set optimization; Evolutionary algorithms; Optimization based controllers and estimators	Drawbad It Algori Adaline t-star ru hemory; (ector qua te reaso ; Fuzzy ptimization mization r control rameter	ks ii thm; netw 8 le; I Comp antiz Comp antiz 8 Rule 6 On w too 8 task: estir	h Ba Oth ork Patte petiti ation hou Fuz bas hou ith a l bo Dire matic	ck her Irs zy ed Irs zy ed Irs nd Dx;
pattern classificatio propagation; Varia supervised learningModule:3Asso Associative learningModule:3Asso Association; Hetero networks; ArchitectuModule:4Fuzzy Comparison of crisp relations; Fuzzificat systems; PredicateModule:5Optim Requirement of opt without constraints ApplicationsModule:6ANN Data pre-processing control, Indirect co Neural learning bas	n and function approximation; Back propagation algorithm; ints of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m associative, Auto associative and Bi-direction algorithm; Soma bised controllers and estimators association, Temperature control; System identification; Online pa	Drawbac It Algori Adaline t-star ru hemory; (ector qua te reaso ; Fuzzy ptimization mization r control rameter of estima	ks ii thm; netw 1e; 1 Compantiz Compantiz Rule 6 0n w too 8 task: estir ation	h Ba Oth ork Patte petiti ation hou Fuz bas hou ith a d bire natic spe	ck her Irs zern ve zy ed Irs zy ed Irs nd Dx;
pattern classificatio propagation; Varia supervised learningModule:3AssoAssociative association; Hetero networks; ArchitectuModule:4FuzzyComparison of crisp relations; Fuzzificat systems; PredicateModule:5Optim Requirement of opt without constraints ApplicationsModule:6ANN Data pre-processing control, Indirect co Neural learning bas and accuracy on the	n and function approximation; Back propagation algorithm; ints of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m are and algorithm; Kohonen Self-organizing maps, Learning v v Systems sets and fuzzy sets; Basic fuzzy set operation and approximation methods; Min-Max Composition; Defuzzification Methods logic; Fuzzy Decision Making; Fuzzy based controller design nization Algorithms imization algorithms; Single and multi-objective functions; Opti- based controllers and estimators g; Convergence; Practical training issues; Neural networks for htrol, Temperature control; System identification; Online pa- ed parameter estimation for high performance drive, impact	Drawbac It Algori Adaline t-star ru hemory; (ector qua te reaso ; Fuzzy ptimization mization r control rameter of estima	ks ii thm; netw 1e; 1 Compantiz Compantiz Rule 6 0n w too 8 task: estir ation	h Ba Oth ork Patte petiti ation hou Fuz bas hou ith a d bire natic spe	ck her Irs zern ve zy ed Irs zy ed Irs nd Dx;
pattern classificatio propagation; Varia supervised learningModule:3AssoAssociative association; Hetero networks; ArchitectuModule:4FuzzyComparison of crisp relations; Fuzzificat systems; PredicateModule:5Optim Requirement of opt without constraints ApplicationsModule:6ANN Data pre-processing control, Indirect co Neural learning bas and accuracy on the	n and function approximation; Back propagation algorithm; ints of back propagation algorithm; Levenburg Marguard methods: supervised Hebb's rule, Widrow Hoff learning rule, ciative and Competitive networks g; Unsupervised Hebb's rule; In-star learning rule; Out associative, Auto associative and Bi-directional associative m are and algorithm; Kohonen Self-organizing maps, Learning v v Systems sets and fuzzy sets; Basic fuzzy set operation and approximation methods; Min-Max Composition; Defuzzification Methods logic; Fuzzy Decision Making; Fuzzy based controller design nization Algorithms imization algorithms; Single and multi-objective functions; Optic; Multi-level optimization; Evolutionary algorithms; Optic based controllers and estimators g; Convergence; Practical training issues; Neural networks for htrol, Temperature control; System identification; Online pa ed parameter estimation for high performance drive, impact the drive performance; ANN based maximum power point tra-	Drawbac It Algori Adaline t-star ru hemory; (ector qua te reaso ; Fuzzy ptimization mization r control rameter of estima	ks ii thm; netw 1e; 1 Compantiz Compantiz Rule 6 0n w too 8 task: estir ation	h Ba Oth ork Patte petiti ation hou Fuz bas hou ith a d bire natic spe	ck her Irs zern ve zy ed Irs zy ed Irs nd Dx;

		Total	Lecture h	nours:	45 hours	
Text Book(s)						
1.	Jack M. Zurada, "Introduction to A	Artificial Neural Sy	stems",Jai	co Publishing	House, 2016.	
2.						
Refer	ence Books					
1.	J.S.R Jang, C.T Sun, E.Mizutani,	"Neuro-Fuzzy So	ft Computii	ng", Pearson l	Education, 2011.	
2.	Nguyen, Prasad, Walker, and Wa Hall /CRC Press, 2003.	Iker, "A First Cour	se in Fuzzy	y and Neural (Control", Chapman	
3.	Orłowska-Kowalska, Teresa, Blaa Intelligent Control in Power Electr				d and	
 4. Hagan, Martin T., Howard B. Demuth, and Mark Beale. "Neural network design", PWS Publishing Co., 1997. 						
Recor	mmended by Board of Studies	09-07-2022				
Appro	oved by Academic Council	No.67	Date	08-08-2022		

Course code	(Deemed to be University under section 3 of UGC Act, 1956) Course Title		--	Р	C
MPED603L	Energy Storage Systems	3	0	P 0	С 3
Pre-requisite	NIL	Sylla	-	-	-
Tre-requisite		Oyne	<u>1.(</u>		51011
Course Objectives				<u>,</u>	
	nd different types of Energy Storages.				
	basic physics, chemistry, and engineering issues o	f ene	ergy	sto	rage
	h as batteries, thermoelectric converters, fuel cells, supercar		•••		0
3. To design er	nergy storage systems for different applications.				
Course Outcome					
	the student will be able to				
-	rent energy storage techniques and recent trends.				
•	ferent battery technologies and its characteristics.				
•	cells, supercapacitors and its applications.				
4. Discuss the	applications of energy storage in PV.				
Module:1 Energ	gy Storage			7 h/	ours
	al and chemical energy storage systems and its applications	· Avai	ilahle		
	econd law efficiency; Helmholtz & Gibb's function; Recent				
storage systems; Er					orgy
Module:2 Class	sical Battery			7 h	ours
	ttery performance: charging and discharging, storage dens	ity, er	nergy	de	nsity
and safety issues; M	Iodelling of batteries				
	rn batteries			7 ho	ours
Zinc-air, Nickel hydr	ide, Lithium battery; State of charge; Technology challenges				
Medule: A Sume				7 6	
	r capacitors	la i erla	f		ours
	Types of electrodes and electrolytes; Electrode materials:				
	metal oxide and conducting polymers; Electrolyte: aquadvantages of super capacitors: Modelling of super capacit				
super capacitors	advantages of super capacitors; Modelling of super capacit	.015, 7	γρηι	Jan	
Module:5 Fuel of	cells			8 ho	ours
	nergy conversion; Modelling of Fuel Cells, maximum intrins	sic eff			
	nverter; Physical interpretation; Carnot efficiency factor i				
energy converters;	Types of fuel cells: hydrogen oxygen cells, hydrogen air ce	ll, alka	aline	fue	cell
and phosphoric fuel	cell				
	gy Storage Applications	- 1			ours
	r Electronics Converters in Energy Storage Systems; Stand		•		
case studies and sir	ected systems; Power smoothing, grid ancillary services, en	ergy	mana	ager	nent
Case sludies di la SII					
Module:7 Cont	temporary issues:			2 ha	ours
					•
	Total Lecture hours:		4	<u>5 h</u>	ours
Text Book(s)					
1. Yves Brun	et, "Energy Storage", Wiley-ISTE, 1 st Edition, 2010.				

(Deemled to be oniversity under section 5 of OCC Act, 1550)						
2. Robert A.Huggins, "Energy Storage", Springer, 2 nd Edition, 2015.						
Reference Books						
1.	1. Andrei G. Ter-Gazarian, "Energy storage systems for Power systems", 2nd edition, IET					
	2011.			-		
2.	R M. Dell, D.A.J. Rand, "Unders	standing Batteries"	RSC Publ	ications, 1 st edition, 2012.		
3.	Tetsuya Osaka, Madhav Datta	a, "Energy Storage	e Systems	in Electronics-New Trends		
	in Electrochemical Technology"	, CRC Press, 2000).			
Mode of	Evaluation : Continuous Assess	ment Tests, Quizze	es, Assignr	nent, Final Assessment Test		
Recomn	nended by Board of Studies	09-07-2022				
Approve	ed by Academic Council	No. 67	Date	08-08-2022		

Course Code	Course Title	L	Т	Ρ	С
MPED604L	Solar Photo Voltaic Systems	3	0	0	3
Pre-requisite	MPED501L	Syllab			ion
			1.0)	
Course Objective					
	and the importance and applications of Solar Energy	_			
2. To make t	nem acquainted with power electronic interface circuits for Sola	r Energ	gу		
Course Outcome					
he end of the cour	se the student will be able to				
 Apply new 	techniques for estimation of solar PV cell parameters				
2. Develop n	ew tracking techniques and reconfiguration methods for improve	ed pow	er ex	xtrac	tion
from solar	PV systems				
3. Design a p	hotovoltaic system and its interfacing circuits for stand-alone, gi	rid coni	nect	syst	em.
4. Compute	the cost analysis and payback period of solar PV installatio	ns and	d ca	tego	rize
various en	vironmental impacts of PV.			-	
5. Understan	d the different standards and communication system used in so	olar PV	' sys	tems	5.
Module:1 Sola	ar PV cell fundamentals			5 hc	urs
	solar energy conversion; Solar cell: types, material propertie	s and			
			0011	Suac	uon
	racteristics of a PV module. New materials for PV cell solar	PV m	odel	lina	
	racteristics of a PV module; New materials for PV cell; solar ing techniques: performance parameters: cell efficiency .fill fact		odel	ling	
	racteristics of a PV module; New materials for PV cell; solar ing techniques; performance parameters: cell efficiency ,fill fact		odel	ling	
equations: modell	ing techniques; performance parameters: cell efficiency ,fill fact			•	and
equations: modell Module:2 Max	ing techniques; performance parameters: cell efficiency ,fill fact	or		6 hc	and
equations: modell Module:2 Max Formation of PV	ing techniques; performance parameters: cell efficiency ,fill fact	or of sha	ding	6 hc	and urs ə of
equations: modelModule:2MaxFormation of PVbypass and block	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect	or of sha	ding	<mark>6 hc</mark> , us	and urs e of and
equations: modelModule:2MaxFormation of PVbypass and block	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects V characteristics; Tracking techniques and array reconfigur	or of sha	ding	<mark>6 hc</mark> , us	and urs e of and
equations: modell Module:2 Max Formation of PV bypass and bloc temperature on F maximum power of	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects V characteristics; Tracking techniques and array reconfigure extraction	or of sha	ding idiati meth	6 hc , us ion nods	and urs e of and for
equations: modell Module:2 Max Formation of PV bypass and bloc temperature on F maximum power of Module:3 State	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects V characteristics; Tracking techniques and array reconfigure extraction mdalone PV Systems	of shat of irra ration	ding idiati meth	6 hc , us ion nods 7 hc	and urs e of and for urs
equations: modellModule:2MaxFormation of PVbypass and bloctemperature on Imaximum power ofModule:3Standalone PV standalone	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects V characteristics; Tracking techniques and array reconfigure extraction mdalone PV Systems /stem: design, schematics, array and battery sizing; Charge of	of shad of irra ration controll	ding idiati meth ers;	6 hc , us ion nods 7 hc Off-	and urs e of and for urs grid
equations: modellModule:2MaxFormation of PVbypass and bloctemperature on Fmaximum power ofModule:3Standalone PV sinverters; Balance	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects PV characteristics; Tracking techniques and array reconfigurextraction mdalone PV Systems ystem: design, schematics, array and battery sizing; Charge of of system (BOS) for power plant: Supporting structures, mounti	of shad of irra ration controll	ding idiati meth ers; l inst	6 hc , us ion nods 7 hc Off- tallat	and urs e of and for urs grid ion,
equations: modell Module:2 Max Formation of PV bypass and bloc temperature on R maximum power of Module:3 Standalone PV sy inverters; Balance cables, maintenar	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects V characteristics; Tracking techniques and array reconfigure extraction mdalone PV Systems /stem: design, schematics, array and battery sizing; Charge of	of shad of irra ration controll	ding idiati meth ers; l inst	6 hc , us ion nods 7 hc Off- tallat	and urs e of and for urs grid ion,
equations: modellModule:2MaxFormation of PVbypass and bloctemperature on Fmaximum power ofModule:3Standalone PV syinverters; Balance	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects PV characteristics; Tracking techniques and array reconfigurextraction mdalone PV Systems ystem: design, schematics, array and battery sizing; Charge of of system (BOS) for power plant: Supporting structures, mounti	of shad of irra ration controll	ding idiati meth ers; l inst	6 hc , us ion nods 7 hc Off- tallat	and urs e of and for urs grid ion,
equations: modell Module:2 Max Formation of PV bypass and bloc temperature on R maximum power of Module:3 Stan Standalone PV sy inverters; Balance cables, maintenar pumping	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects PV characteristics; Tracking techniques and array reconfigure extraction mdalone PV Systems vstem: design, schematics, array and battery sizing; Charge of of system (BOS) for power plant: Supporting structures, mounting ace and monitoring; Typical applications: design of Home lighting	of shad of irra ration controll	ding idiati meth ers; l inst m, ar	6 hc , uso nods 7 hc Off- tallat	and urs of and for urs grid ion, ater
equations: modellModule:2MaxFormation of PVbypass and bloctemperature on Bmaximum power ofModule:3Standalone PV syinverters; Balancecables, maintenarpumpingModule:4Grid	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects PV characteristics; Tracking techniques and array reconfigurextraction mdalone PV Systems vstem: design, schematics, array and battery sizing; Charge of of system (BOS) for power plant: Supporting structures, mounting ace and monitoring; Typical applications: design of Home lighting I Connected PV Systems	of shad of irra ration controll ing and syster	ding Idiati meth ers; I inst m, ai	6 hc , us ion nods 7 hc Off- tallat nd w 8 hc	and urs e of and for urs grid ion, ater urs
equations: modellModule:2MaxFormation of PVbypass and bloctemperature on fmaximum power ofModule:3StarStandalone PV syinverters; Balancecables, maintenarpumpingModule:4GridInterfacing with th	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects PV characteristics; Tracking techniques and array reconfigure extraction mdalone PV Systems ystem: design, schematics, array and battery sizing; Charge of of system (BOS) for power plant: Supporting structures, mounting the and monitoring; Typical applications: design of Home lighting P Design Schematics , Interface Components, Types of grid	of sha of irra ration controll ing and syster	ding Idiati meth ers; l inst m, ar	6 hc , us ion nods 7 hc Off- tallat nd w 8 hc Bala	and urs e of and for urs grid ion, ater urs nce
equations: modellModule:2MaxFormation of PVbypass and bloctemperature on Imaximum power ofModule:3StatStandalone PV syinverters; Balancecables, maintenarpumpingModule:4GridInterfacing with thof system; Buildir	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects PV characteristics; Tracking techniques and array reconfigure extraction mdalone PV Systems ystem: design, schematics, array and battery sizing; Charge of of system (BOS) for power plant: Supporting structures, mounting ice and monitoring; Typical applications: design of Home lighting P Dever grid: Schematics ,Interface Components, Types of grid gs integrated PV systems: analysis and performance; PV SYS	of sha of irra ration controll ing and syster	ding Idiati meth ers; l inst m, ar	6 hc , us ion nods 7 hc Off- tallat nd w 8 hc Bala	and urs e of and for urs grid ion, ater urs nce
equations: modellModule:2MaxFormation of PVbypass and bloctemperature on fmaximum power ofModule:3StarStandalone PV syinverters; Balancecables, maintenarpumpingModule:4GridInterfacing with th	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects PV characteristics; Tracking techniques and array reconfigure extraction mdalone PV Systems ystem: design, schematics, array and battery sizing; Charge of of system (BOS) for power plant: Supporting structures, mounting ice and monitoring; Typical applications: design of Home lighting P Dever grid: Schematics ,Interface Components, Types of grid gs integrated PV systems: analysis and performance; PV SYS	of sha of irra ration controll ing and syster	ding Idiati meth ers; l inst m, ar	6 hc , us ion nods 7 hc Off- tallat nd w 8 hc Bala	and urs e of and for urs grid ion, ater urs nce
equations: modell Module:2 Max Formation of PV bypass and bloc temperature on R maximum power of Module:3 Standalone PV sy Standalone PV sy inverters; Balance cables, maintenar pumping Module:4 Grid Interfacing with th of system; Buildir including financial	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects PV characteristics; Tracking techniques and array reconfigure extraction mdalone PV Systems //stem: design, schematics, array and battery sizing; Charge of of system (BOS) for power plant: Supporting structures, mounting ace and monitoring; Typical applications: design of Home lighting PI Connected PV Systems e power grid: Schematics ,Interface Components, Types of grid gs integrated PV systems: analysis and performance; PV SYS evaluation	of sha of irra ration controll ing and syster	ding Idiati meth ers; I inst m, ar	6 hc , us ion nods 7 hc Off- tallat nd w 8 hc Bala	and urs of of of of of of of of of of
equations: modellModule:2MaxFormation of PVbypass and bloctemperature on fmaximum power ofModule:3StarStandalone PV siinverters; Balancecables, maintenarpumpingModule:4GridInterfacing with thof system; Buildirincluding financialModule:5Ene	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects PV characteristics; Tracking techniques and array reconfigure extraction mdalone PV Systems //stem: design, schematics, array and battery sizing; Charge of of system (BOS) for power plant: Supporting structures, mounting ince and monitoring; Typical applications: design of Home lighting P Dever grid: Schematics ,Interface Components, Types of grid gs integrated PV systems: analysis and performance; PV SYS evaluation rgy Storage	of sha of irra ration controll ing and syster I interfa ST; pre	ding Idiati meth ers; I inst m, ar	6 hc , usi ion nods 7 hc Off- tallat nd w 8 hc Bala ing [Bala	and urs e of and for urs grid ion, ater urs DPR urs
Module:2 Max Formation of PV bypass and block bypass and block bypass and block temperature on R maximum power of Module:3 Standalone PV sy Standalone PV sy inverters; Balance cables, maintenar pumping Module:4 Grid Interfacing with th of system; Buildir including financial Module:5 Energy storage d Energy storage d	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects PV characteristics; Tracking techniques and array reconfigure extraction mdalone PV Systems vstem: design, schematics, array and battery sizing; Charge of of system (BOS) for power plant: Supporting structures, mounti- ace and monitoring; Typical applications: design of Home lighting I Connected PV Systems e power grid: Schematics ,Interface Components, Types of grid gs integrated PV systems: analysis and performance; PV SYS evaluation rgy Storage evices: Structure, Different types, and Materials for Energy Store	of shad of irra ration controll ing and syster I interfa ST; pre	ding diati meth ers; l inst m, at ace, epari	6 hc , us ion nods 7 hc Off- tallat nd w 8 hc Bala ing [6 hc erials	and urs of and for urs grid ion, ater urs pR urs of for
equations: modell Module:2 Max Formation of PV bypass and block bypass and block bypass and block temperature on R maximum power of Module:3 Standalone PV synthysis Standalone PV synthysis inverters; Balance cables, maintenar pumping Module:4 Grid Interfacing with the of system; Buildir including financial Module:5 Energy storage d Low and High Te	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects PV characteristics; Tracking techniques and array reconfigure extraction malone PV Systems ystem: design, schematics, array and battery sizing; Charge of of system (BOS) for power plant: Supporting structures, mounting ace and monitoring; Typical applications: design of Home lighting P Dewer grid: Schematics ,Interface Components, Types of grid gs integrated PV systems: analysis and performance; PV SYS evaluation rgy Storage evices: Structure, Different types, and Materials for Energy Storage emperature Storage Applications; Measurement of battery periods and the storage Applications; Measurement of battery periods integrated PV systems (Materials for Energy Storement) explored to the storage Applications; Measurement of battery periods end to the storage Applications; Measurement of the storage Applications; Measurement applications; Measurement applications; Measurement applications; Measurement applications; Me	of shad of irra ration controll ing and syster I interfa ST; pre	ding diati meth ers; l inst m, at ace, epari	6 hc , us ion nods 7 hc Off- tallat nd w 8 hc Bala ing [6 hc erials	and urs of and for urs grid ion, ater urs pR urs of for
equations: modell Module:2 Max Formation of PV bypass and bloc temperature on F maximum power of Module:3 Standalone PV sy Standalone PV sy inverters; Balance cables, maintenar pumping Module:4 Grid Interfacing with th of system; Buildir including financial Module:5 Ene Energy storage d Low and High Te	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects PV characteristics; Tracking techniques and array reconfigure extraction mdalone PV Systems vstem: design, schematics, array and battery sizing; Charge of of system (BOS) for power plant: Supporting structures, mounti- ace and monitoring; Typical applications: design of Home lighting I Connected PV Systems e power grid: Schematics ,Interface Components, Types of grid gs integrated PV systems: analysis and performance; PV SYS evaluation rgy Storage evices: Structure, Different types, and Materials for Energy Store	of shad of irra ration controll ing and syster I interfa ST; pre	ding diati meth ers; l inst m, at ace, epari	6 hc , us ion nods 7 hc Off- tallat nd w 8 hc Bala ing [6 hc erials	and urs e of and for urs grid ion, ater urs pR urs of for
equations: modell Module:2 Max Formation of PV bypass and block bypass and block bypass and block temperature on R maximum power of Module:3 Standalone PV synthysis Standalone PV synthysis inverters; Balance cables, maintenar pumping Module:4 Grid Interfacing with th of system; Buildir including financial Module:5 Energy Module:5 Energy storage d Low and High Te discharge cycle of High Te discharge cycle of	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects PV characteristics; Tracking techniques and array reconfigur extraction mdalone PV Systems /stem: design, schematics, array and battery sizing; Charge of of system (BOS) for power plant: Supporting structures, mounti- ice and monitoring; Typical applications: design of Home lighting P Dewer grid: Schematics ,Interface Components, Types of grid gs integrated PV systems: analysis and performance; PV SYS evaluation rgy Storage evices: Structure, Different types, and Materials for Energy Stores emperature Storage Applications; Measurement of battery peria a battery; Estimation techniques	of shad of irra ration controll ing and syster I interfa ST; pre	ding diati meth ers; l inst m, at epari Mate nce,	6 hc , us nods 7 hc Off- tallat nd w 8 hc Bala ing [Bala ing [Cha	and urs e of and for urs grid ion, ater urs pPR urs of for urs
equations: modell Module:2 Max Formation of PV bypass and bloc temperature on F maximum power of Module:3 Standalone PV sy Standalone PV sy inverters; Balance cables, maintenar pumping Module:4 Grid Interfacing with th of system; Buildir including financial Module:5 Ene Energy storage d Low and High Te discharge cycle o Module:6 Cos	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects PV characteristics; Tracking techniques and array reconfigurextraction mdalone PV Systems vstem: design, schematics, array and battery sizing; Charge of of system (BOS) for power plant: Supporting structures, mounting the and monitoring; Typical applications: design of Home lighting I Connected PV Systems e power grid: Schematics ,Interface Components, Types of grid gs integrated PV systems: analysis and performance; PV SYS evaluation rgy Storage evices: Structure, Different types, and Materials for Energy Store merature Storage Applications; Measurement of battery peria a battery; Estimation techniques t Analysis and Environmental Issues	of sha of irra ration controll ing and syster syster I interfa ST; pre	ding Idiati meth ers; I inst m, ar epari Mate nce,	6 hc , uso nods 7 hc Off- tallat nd w 8 hc Bala ing [6 hc 6 hc	and urs of and for urs grid ion, ater urs oPR urs for urs for urs for urs
equations: modell Module:2 Max Formation of PV bypass and bloc temperature on R maximum power of Module:3 Star Standalone PV sy inverters; Balance cables, maintenar pumping Module:4 Grid Interfacing with th of system; Buildir including financial Module:5 Ene Energy storage d Low and High Te discharge cycle o Module:6 Cos Cost analysis and	ing techniques; performance parameters: cell efficiency ,fill fact imum power extraction methods modules and arrays: series and parallel combination, effect king diodes; Need for Maximum power tracking: effects PV characteristics; Tracking techniques and array reconfigur extraction mdalone PV Systems /stem: design, schematics, array and battery sizing; Charge of of system (BOS) for power plant: Supporting structures, mounti- ice and monitoring; Typical applications: design of Home lighting P Dewer grid: Schematics ,Interface Components, Types of grid gs integrated PV systems: analysis and performance; PV SYS evaluation rgy Storage evices: Structure, Different types, and Materials for Energy Stores emperature Storage Applications; Measurement of battery peria a battery; Estimation techniques	of sha of irra ration controll ing and syster syster l interfa ST; pre	ding Idiati meth ers; I inst m, ai epari Mate nce, ;; ins	6 hc , us ion nods 7 hc Off- tallat nd w 8 hc Bala Bala ing [6 hc erials , cha 6 hc	and urs of of of of of of of of of of

and land rec	uirements	wei	piants. En	VIIOIIIIeiii		
Module:7	Standards and communica	tion				5 hours
IEEE Standa	ard 1547; Elements of commu	inica	ation and r	etworking	: architectu	res, standards, PLC,
Zigbee, GSI (WAN)	M, BPL, Local Area Network (LAN	I); House	Area Netw	vork (HAN)	;Wide Area Network
Module:8	Contemporary Topics					2 hours
	· · · · · · · · · · · · · · · · · · ·					
			Т	otal Lectu	ure hours:	45 hours
Textboo	ok(s)					
	el Boxwell, "Solar Electricity Ha y - designing and installing sola					
2. Cheta	n Singh Solanki "Solar PV tech	nolo	ogy and sy	stem", PH	I learning p	rivate limited, 2015
Referer	ice Books					
	yhani, "Design of Smart Power & Sons, 2019.	Grie	d Renewał	ole Energy	v Systems",	3 rd Edition John
2. D. Yo	gi Goswami , "Principles of Sol	ar E	ngineering	" 3 rd Editic	n, , CRC P	ress, 2015
3. Sukha	tme S.P., "Solar Energy", Tata	Mc	Graw Hills	P Co., 3rd	d Edition, 20	800
4. Roger 2017	Messenger, Amir Abtahi, "Pho	otovo	oltaic Syste	ems Engin	eering", 4 th	edition, CRC Press,
	th C.Budka, Jayant G. Deshpa Grids', Springer, 2014	ande	e, Marina T	hottan, 'C	ommunicati	on Networks for
Mode of Eva Test	luation: Continuous Assessme	ent T	Fest, Digita	II Assignm	ent, Quiz a	nd Final Assessment
Recommend	led by Board of Studies		09-07-20	22		
Approved by	Academic Council	No	. 67	Date	08-08	-2022

Course Code	(Deemed to be University under section 3 of UGC Act, 1956) Course Title	1	Т	Р	С
MPED605L	Electric and Hybrid Electric Vehicles	3	0	0	3
Pre-requisite		Syllab	us v	ersi	on
		<u>o j nak</u>	1.0		•
Course Objectives					
	owledge on Electric vehicles and its architectures.				
	suitable motor drive and battery for Electric vehicles.				
3. Charging inf	rastructure and methods of charging of EVs.				
Course Outcome					
	of this course the student will be able to:				
	the environmental issues of conventional vehicles and need of	of Elect	tric v	ehic	les
2. Describe the	e different architectures of Hybrid Electric and Electric vehicles	5			
	characteristics of electric motor drives for Electric vehicles				
4. Develop bat	tery pack, battery management system and estimate SoC of t	he bat	tery.		
5. Comprehend	d the various charging strategies of EVs and their constraints				
Module:1 Vehic	le dynamics		e	ò ho	urs
	onal Vehicles; Social and environmental impacts of ICE vehic	cles; In			
	olution of hybrid electric, Electric and fuel cell vehicles; Vehicl				
dynamics: Vehicle r	esistive forces and Tractive effort	-			
	d Electric vehicle architectures			<u>5 ho</u>	
	o, Mild, Full HEV; Architectures: Series, Parallel and Series-F				
aspects, complete s	onents; Hybrid drive train topologies: Power flow control, c	ompar	son,	aes	sign
aspecis, complete s					
Module:3 Electr	ric vehicle architectures		5	5 ho	urs
Components of ele	ctric vehicle; Electric drivetrain topologies: Power flow co	ntrol, (Comp	oaris	son,
Design aspects; Mo	dern electric drive trains; complete structure of EV				
Madula 4				7 1	
	ric Motor drives for EVs ontrol of DC Motor drives; Three-phase Induction Motor drive	o: Druc		7 ho	
	es; Switched Reluctance Motor drives; Synchronous relucta				
	ng Characteristics; Hub/In-wheel motors for EVs; Driving (
Indian drive cycles			.) P		
	ry and Energy Storage Systems for EVs			3 ho	
· · ·	e, Lithium polymer and Metal oxide batteries; Battery specifi				-
	selection of batteries for different types of EVs; Packing; prote				
	n, disposal and second use and methods of recycling of batter				
storage devices	uper capacitor, Fuel Cell and their analysis; Hybridization		rent	ene	igy
storage devices					
Module:6 Batte	ry Management System		6	6 ho	urs
Functions, design of	considerations and various components of BMS; Cell balance	cing: T	ypes	s of	cell
balancing; SoC esti	mation: Luenberger Observer method, Extended Kalman filte	r metho	bd		
.	• • •				
	arging systems			<u>6 ho</u>	
	charging system; On-board and OFF board chargers; EV c	harging	g sta	ndai	rds;
Wireless EV chargin	iy and types				

		(Deen	ied to be University under section 5 o	1 000 Hdl, 1930)		
Мо	dule:8	Contemporary issues				2 hours
					-	
			То	tal Lecture	e hours:	45 hours
Tex	t Book(s	; (
1.		Larminie, John Lowry "Elections, 2012.	ctric Vehicle Tecl	nnology Ex	kplained", 2	2nd edition, Wiley
2		d Ehsani, Yimin Gao, Sebas Il Vehicles: Fundamentals", (2	Ali Emadi,	"Modern E	lectric, Hybrid and
Ref	erence E	Books				
1	Iqbal H	lussain, "Electric and Hyb	orid Vehicles-Des	ign Funda	amentals",	CRC Press, 2 nd
1	edition,	2011.		-		
2.	Chris M	i, MA Masrur, and D W Gao,	"Hybrid Electric V	'ehicles- Pr	inciples and	d Applications with
Ζ.	Practica	al Perspectives", Wiley, 2011.	•			
3.	Davide	Andrea, "Battery manageme	nt Systems for Lai	ge Lithium	-Ion Battery	/ Packs", Artech
з.	House,	2010.	-	-	-	
4	Ottoring	Veneri "Technologies and A	pplications for Sm	art Chargir	ng of Electr	ic and Plug-in
4	Hybrid	Vehicles", Springer publisher	s, 2017.	_	-	-
Mod	de of Eva	Iluation: Continuous Assessn	nent Test, Digital /	Assignmen	t, Quiz and	Final Assessment
Tes	st			-		
Rec	commend	led by Board of Studies	09-07-2022			
App	proved by	Academic Council	No. 67	Date	08-08-202	22

.

Course Code	Wind Energy Conversion Systems		L	Т	Ρ	С
MPED606L			3	0	0	2
Pre-requisite	MPED501L	Sv	Jla		-	3
i i o i oquiono			ersi		•	
				1.0		
Course Objectiv	es:					
•	lifferent types of generators and appropriate power elect	ronic	con	trol	ler	s for
	nd offshore wind energy systems				_	
2. To unders	tand the grid integration and power quality issues with t	heir st	tano	dare	ds	
Expected Course	o Outoomou					
Expected Cours	n of this course the student will be able to:					
	sic concepts of wind turbines and their characteristics ar	nd dis	2112	e th		
	ls of wind turbines.		003	5 1		
	ious generator configurations, power converters and the	eir cor	ntro	bl		
techniques.						
	e grid integration, power quality issues and recommend	the st	tand	daro	ds.	
4. Summaries the	e offshore wind power generation.					
Module 1 Fun	damental of Wind Energy Generation System			7	' hơ	ours
	damental of Wind Energy Generation System	onente	s ar			ours
Aerodynamic Pri	nciples; design, Betz limit, and Power limitations. Compo			nd t	уре	es of
Aerodynamic Pri wind turbines. O	nciples; design, Betz limit, and Power limitations. Compo perating characteristics of wind turbine, wind turbine s	afety.	Ae	nd t rod	ype yna	es of amic
Aerodynamic Pri wind turbines. O power controls;	nciples; design, Betz limit, and Power limitations. Compo perating characteristics of wind turbine, wind turbine sa lap power control, yaw control, stall and pitch. Gener	afety. ator c	Ae ont	nd t rod rol;	ype yna M	es of amic PPT
Aerodynamic Pri wind turbines. O power controls; t control schemes	nciples; design, Betz limit, and Power limitations. Compo perating characteristics of wind turbine, wind turbine sa lap power control, yaw control, stall and pitch. Gener , turbine power profile, optimal tip speed ratio, optir	afety. ator c	Ae ont	nd t rod rol;	ype yna M	es of amic PPT
Aerodynamic Pri wind turbines. O power controls; control schemes	nciples; design, Betz limit, and Power limitations. Compo perating characteristics of wind turbine, wind turbine sa lap power control, yaw control, stall and pitch. Gener	afety. ator c	Ae ont	nd t rod rol;	ype yna M	es of amic PPT
Aerodynamic Prin wind turbines. O power controls; to control schemes Braking; electrica	nciples; design, Betz limit, and Power limitations. Compo perating characteristics of wind turbine, wind turbine sa lap power control, yaw control, stall and pitch. Gener , turbine power profile, optimal tip speed ratio, optimal and mechanical.	afety. ator c	Ae ont	nd t rod rol; ue o	ype yna M cor	es of amic PPT
Aerodynamic Prin wind turbines. O power controls; f control schemes Braking; electrica Module:2 Win	nciples; design, Betz limit, and Power limitations. Compo perating characteristics of wind turbine, wind turbine sa flap power control, yaw control, stall and pitch. Gener , turbine power profile, optimal tip speed ratio, optir al and mechanical. d Generator Configuration	afety. ator c mal to	Ae cont orqu	nd t rod rol; ie o 5	ype yna M cor	es of amic PPT atrol.
Aerodynamic Prin wind turbines. O power controls; f control schemes Braking; electrica Module:2 Win Fixed speed ger	nciples; design, Betz limit, and Power limitations. Compo perating characteristics of wind turbine, wind turbine sa lap power control, yaw control, stall and pitch. Gener , turbine power profile, optimal tip speed ratio, optimal and mechanical.	afety. ator c mal to spee	Ae cont orqu d g	nd ty rod rol; ue o 5 jene	ype yna M cor	es of amic PPT atrol. Durs tors;
Aerodynamic Prin wind turbines. O power controls; f control schemes Braking; electrica Module:2 Win Fixed speed gen reduced capacit	nciples; design, Betz limit, and Power limitations. Componenting characteristics of wind turbine, wind turbine set lap power control, yaw control, stall and pitch. General, turbine power profile, optimal tip speed ratio, optimal and mechanical.	afety. ator c mal to spee ypes;	Ae cont orqu d g sy	nd ty rol; irol; ie d 5 nch	ype yna Cor bror	es of amic PPT ntrol. Durs tors; nous
Aerodynamic Prin wind turbines. O power controls; f control schemess Braking; electricat Module:2 Win Fixed speed ger reduced capacit generators, asy	nciples; design, Betz limit, and Power limitations. Componenting characteristics of wind turbine, wind turbine states power control, yaw control, stall and pitch. Generat, turbine power profile, optimal tip speed ratio, optimal and mechanical.	afety. ator c mal to spee ypes;	Ae cont orqu d g sy	nd ty rol; irol; ie d 5 nch	ype yna Cor bror	es of amic PPT ntrol. Durs tors; nous
Aerodynamic Prin wind turbines. O power controls; f control schemess Braking; electrica Module:2 Win Fixed speed ger reduced capacit generators, asy generator, and tr	nciples; design, Betz limit, and Power limitations. Componenting characteristics of wind turbine, wind turbine sector power control, yaw control, stall and pitch. General, turbine power profile, optimal tip speed ratio, optimal and mechanical. d Generator Configuration nerators; soft starters, two speed variations. Variable y converters, full capacity converters. Generator ty nchronous generators, high voltage generator, sw ansverse flux generator.	afety. ator c mal to spee ypes;	Ae cont orqu d g sy	nd t rod; ue d 5 nch relu	ype yna Cor bra iror	es of amic PPT ntrol. Durs tors; nous ance
Aerodynamic Prin wind turbines. O power controls; f control schemes Braking; electrica Module:2 Win Fixed speed ger reduced capacit generators, asy generator, and tr Module:3 Pow	nciples; design, Betz limit, and Power limitations. Componenting characteristics of wind turbine, wind turbine set and power control, yaw control, stall and pitch. General, turbine power profile, optimal tip speed ratio, optimal and mechanical. d Generator Configuration merators; soft starters, two speed variations. Variable y converters, full capacity converters. Generator ty nchronous generators, high voltage generator, swansverse flux generator.	afety. ator c mal tc spee ypes; witche	Ae cont orqu d g systed	nd ty rod; rol; ue (5 ene nch relu 8	ype yna Cor hc arai iror icta	es of amic PPT htrol. Durs tors; hous ance
Aerodynamic Prin wind turbines. O power controls; f control schemess Braking; electrica Module:2 Win Fixed speed gen reduced capacit generators, asy generator, and tr Module:3 Pow Converter config	nciples; design, Betz limit, and Power limitations. Componenting characteristics of wind turbine, wind turbine states power control, yaw control, stall and pitch. Generation, turbine power profile, optimal tip speed ratio, optimal and mechanical. d Generator Configuration merators; soft starters, two speed variations. Variable y converters, full capacity converters. Generator ty nchronous generators, high voltage generator, swansverse flux generator.	afety. ator c mal tc spee ypes; witche conve	Ae cont orqu d g sy d d	nd t rod rol; ue 5 lene nch relu 8 s, v	ype yna Cor hc era Iror Icta	es of amic PPT htrol. Durs tors; nous ance Durs tage
Aerodynamic Prin wind turbines. O power controls; f control schemess Braking; electrica Module:2 Win Fixed speed ger reduced capacit generators, asy generator, and tr Module:3 Pow Converter config source converter	nciples; design, Betz limit, and Power limitations. Componenting characteristics of wind turbine, wind turbine set lap power control, yaw control, stall and pitch. General and mechanical. d Generator Configuration nerators; soft starters, two speed variations. Variable y converters, full capacity converters. Generator ty nchronous generators, high voltage generator, swansverse flux generator. ver Electronic Interface and Control Jurations; AC voltage controllers, interleaved boost of s, current source converters, and back-to-back power	afety. ator c mal tc spee ypes; witche conve	Ae cont orqu d g sy ed	nd t rod rol; ue 5 lene nch relu 8 s, v	ype yna Cor hc era Iror Icta	es of amic PPT htrol. Durs tors; nous ance Durs tage
Aerodynamic Prin wind turbines. O power controls; f control schemess Braking; electrica Module:2 Win Fixed speed ger reduced capacit generators, asy generator, and tr Module:3 Pow Converter config source converter	nciples; design, Betz limit, and Power limitations. Componenting characteristics of wind turbine, wind turbine states power control, yaw control, stall and pitch. Generation, turbine power profile, optimal tip speed ratio, optimal and mechanical. d Generator Configuration merators; soft starters, two speed variations. Variable y converters, full capacity converters. Generator ty nchronous generators, high voltage generator, swansverse flux generator.	afety. ator c mal tc spee ypes; witche conve	Ae cont orqu d g sy ed	nd t rod rol; ue 5 lene nch relu 8 s, v	ype yna Cor hc era Iror Icta	es of amic PPT htrol. Durs tors; nous ance Durs tage
Aerodynamic Print wind turbines. O power controls; f control schemes Braking; electricaModule:2Win Fixed speed ger reduced capacit generators, asy generator, and trModule:3Pow Converter config source converter voltage-oriented	nciples; design, Betz limit, and Power limitations. Componenting characteristics of wind turbine, wind turbine set lap power control, yaw control, stall and pitch. General and mechanical. d Generator Configuration nerators; soft starters, two speed variations. Variable y converters, full capacity converters. Generator ty nchronous generators, high voltage generator, swansverse flux generator. ver Electronic Interface and Control Jurations; AC voltage controllers, interleaved boost of s, current source converters, and back-to-back power	afety. ator c mal tc spee ypes; witche conve	Ae cont orqu d g sy ed	nd tr rod rol; ue o 5 nch relu 8 s, v rs. o	ype yna M cor hc ara iror icta	es of amic PPT htrol. Durs tors; nous ance Durs tage htrol:
Aerodynamic Prinwind turbines. O power controls; for control schemess Braking; electricated and the speed ger reduced capacite generators, asy generator, and transporter config source converter voltage-oriented and the speed ger voltage-oriented and the speed g	nciples; design, Betz limit, and Power limitations. Componenting characteristics of wind turbine, wind turbine set lap power control, yaw control, stall and pitch. Generation, turbine power profile, optimal tip speed ratio, optimal and mechanical.	afety. ator c mal tc spee ypes; witche conve conve conve	Ae cont orqu d g sy d d d g sy ted	nd tri rodi rol; ue o 5 lene nch relu 8 s, v rs. o 7	ype yna M cor hc ara iror icta iror icta	es of amic PPT htrol. Durs tors; nous ance Durs tage htrol:
Aerodynamic Print wind turbines. O power controls; f control schemes Braking; electricaModule:2WinFixed speed ger reduced capacit generators, asy generator, and trModule:3Pow Converter config source converter voltage-orientedModule:4Grid Grid	nciples; design, Betz limit, and Power limitations. Componenting characteristics of wind turbine, wind turbine set lap power control, yaw control, stall and pitch. General , turbine power profile, optimal tip speed ratio, optimal and mechanical. d Generator Configuration nerators; soft starters, two speed variations. Variable y converters, full capacity converters. Generator ty nchronous generators, high voltage generator, sw ansverse flux generator. ver Electronic Interface and Control jurations; AC voltage controllers, interleaved boost of s, current source converters, and back-to-back power control - decoupled controller, real and reactive power of I Integration and Grid Codes ection requirements and grid codes; steady state of	afety. ator c mal tc spee ypes; witche conve conve conve	Ae cont orqu d g sy ed	nd tr rod rol; ie o 5 jene nch relu 8 s, v rs. o 7 , d	ype yna M cor Pra iror icta iror icta volt cor	es of amic PPT htrol. Durs tors; hous ance Durs tage htrol: Durs amic
Aerodynamic Prin wind turbines. O power controls; f control schemess Braking; electrica Module:2 Win Fixed speed ger reduced capacit generators, asy generator, and tr Module:3 Pow Converter config source converter voltage-oriented Module:4 Grid Wind interconner operation, fault	nciples; design, Betz limit, and Power limitations. Componenting characteristics of wind turbine, wind turbine set lap power control, yaw control, stall and pitch. Generation, turbine power profile, optimal tip speed ratio, optimal and mechanical.	afety. ator c mal tc spee ypes; witche conve conve conve conve	Ae cont orqu d g sy d d g sy d d rter l.	nd tr rod rol; ue (5 lene nch relu 8 s, (rs. (7 , d (c ch	ype yna M cor iror iror iror iror iror iror iror	es of amic PPT htrol. Durs tors; nous ance Durs tage htrol: Durs amic oper,
Aerodynamic Prin wind turbines. O power controls; f control schemess Braking; electrica Module:2 Win Fixed speed ger reduced capacit generators, asy generator, and tr Module:3 Pow Converter config source converter voltage-oriented Module:4 Gric Wind interconne operation, fault in dynamic voltage	nciples; design, Betz limit, and Power limitations. Componenting characteristics of wind turbine, wind turbine set lap power control, yaw control, stall and pitch. General , turbine power profile, optimal tip speed ratio, optimal and mechanical. d Generator Configuration nerators; soft starters, two speed variations. Variable y converters, full capacity converters. Generator ty nchronous generators, high voltage generator, sw ansverse flux generator. ver Electronic Interface and Control purations; AC voltage controllers, interleaved boost of s, current source converters, and back-to-back power control - decoupled controller, real and reactive power of I Integration and Grid Codes ection requirements and grid codes; steady state of ride through, series dynamic braking resistor, crowba	afety. ator c mal tc spee ypes; witche conve conve conve conve	Ae cont orqu d g sy d d g sy d d rter l.	nd tr rod rol; ue (5 lene nch relu 8 s, (rs. (7 , d (c ch	ype yna M cor iror iror iror iror iror iror iror	es of amic PPT htrol. Durs tors; nous ance Durs tage htrol: Durs amic oper,
Aerodynamic Prinwind turbines. Opower controls; f control schemess Braking; electrication Module:2 Win Fixed speed ger reduced capacit generators, asy generator, and tr Module:3 Pow Converter config source converter voltage-oriented Module:4 Gric Wind interconne operation, fault f dynamic voltage control, and synce	nciples; design, Betz limit, and Power limitations. Componenting characteristics of wind turbine, wind turbine series power control, yaw control, stall and pitch. General and mechanical. d Generator Configuration merators; soft starters, two speed variations. Variable y converters, full capacity converters. Generator ty nchronous generators, high voltage generator, swansverse flux generator. rer Electronic Interface and Control Jurations; AC voltage controllers, interleaved boost of s, current source converters, and back-to-back power control - decoupled controller, real and reactive power of the through, series dynamic braking resistor, crowbar restorer, ramp rate limitations, ancillary services for free thronization methods.	afety. ator c mal tc spee ypes; witche conve conve conve conve	Ae cont orqu d g sy d d g sy d d rter l.	nd tri rodi rol; ue (5 iene nch relu 8 s, (rs. (7 , d (c ch nd)	ype yna M cor hc ara iror icta iror icta voli cor	es of amic PPT htrol. Durs tors; hous ance Durs tage htrol: Durs tage
Aerodynamic Printwind turbines. Opower controls; for control schemess power controls; for control schemess Braking; electrication Module:2 Wind Fixed speed ger reduced capacition generators, asy generators, and tr Module:3 Pow Converter config source converter voltage-oriented Module:4 Gric Wind interconner operation, fault dynamic voltage control, and sync Module:5 Pow	nciples; design, Betz limit, and Power limitations. Component perating characteristics of wind turbine, wind turbine satilap power control, yaw control, stall and pitch. General , turbine power profile, optimal tip speed ratio, optimal and mechanical. d Generator Configuration merators; soft starters, two speed variations. Variable y converters, full capacity converters. Generator ty nchronous generators, high voltage generator, sw ansverse flux generator. der Electronic Interface and Control purations; AC voltage controllers, interleaved boost of s, current source converters, and back-to-back power control - decoupled controller, real and reactive power of the function requirements and grid codes; steady state of ride through, series dynamic braking resistor, crowba restorer, ramp rate limitations, ancillary services for free thronization methods.	afety. ator c mal tc spee ypes; witche conve conve conve conve contro	Ae cont orqu d g syled d g syled id rter in lin lin lin lin lin	nd tr rod rol; ue o 5 ene nch relu 8 s, `` rs. o 7 , d' c ch nd ``	ype yna M cor iror iror iror irota iror iror iror iror iror iror iror iro	es of amic PPT htrol. Durs tors; nous ance Durs tage htrol: Durs amic oper, tage
Aerodynamic Prin wind turbines. O power controls; f control schemess Braking; electrica Module:2 Win Fixed speed ger reduced capacit generators, asy generator, and tr Module:3 Pow Converter config source converter voltage-oriented Module:4 Grid Wind interconne operation, fault dynamic voltage control, and sync Module:5 Pow	nciples; design, Betz limit, and Power limitations. Componenting characteristics of wind turbine, wind turbine series power control, yaw control, stall and pitch. General and mechanical. d Generator Configuration merators; soft starters, two speed variations. Variable y converters, full capacity converters. Generator ty nchronous generators, high voltage generator, swansverse flux generator. rer Electronic Interface and Control Jurations; AC voltage controllers, interleaved boost of s, current source converters, and back-to-back power control - decoupled controller, real and reactive power of the through, series dynamic braking resistor, crowbar restorer, ramp rate limitations, ancillary services for free thronization methods.	afety. ator c mal to spee ypes; witche conve conve conve conve contro operat r, dc quenc	Ae cont orqu d g sy d d g sy ed rter l. ion link cy a	nd tri rodi rol; ue (5 lene nch relu 8 s, (rs. (7 , d (c ch nd (7 , d (c ch nd (7 , d (c ch nd (7 , d (7 , d) (7 , d) () (7 , d) (7 , d) () () () () () () () () () (ype yna M cor hc ara iror icta voli cor iati	es of amic PPT htrol. Durs tors; nous ance Durs tage htrol: Durs amic oper, tage oper, tage

Module:6 Offshore Wind Energy

Typical subsystems, turbine technology, transmission network; HVAC and HVDC, and Sea substation impact on power system.

4 hours

Module:7Digital Monitoring and Control of Wind Energy Systems6 hoursComponents of SCADA control systems; remote terminal unit, intelligent electronic devices
and interfaces. SCADA communication; requirements, topologies and protocols. Energy
management systems for WES; challenges, data flow time frames, and forecasting. Digital
twin technology for WES.6 hours

Mod	lule:8	Contemporary issues:			2 hours
		Total Lecture hours:			45 hours
Mod	e of Ev	aluation: CAT / Assignme	nt / Quiz / FAT		· · · · · ·
Text	t Book(s)			
1		u, Yongqiang Lang, Navid Id Energy Systems", John	•	•	Power Conversion and Control
2	Siegfr	ied Heier, "Grid Integration	n of Wind Energy	y Conver	sion Systems", Wiley, 2009.
Refe	erence	Books			
1	Thom	as Ackkermann, "Wind Po	wer in Power Sy	rstems", 、	John Wiley & Sons, Ltd, 2012.
2	Gonza	alo Abad, Jesus Lopez,	Miguel Rodrigu	ez, Luis	Marroyo, Grzegorz Iwanski,
		y Fed Induction Machine er 2011, Wiley-IEEE Pres	•	Control	for Wind Energy Generation,
3	Olimp	o Anaya-Lara, David Ca	ampos-Gaona,	Edgar N	Ioreno-Goytia, Grain Adam,
	"Offsh	oreWind Energy Generation	tion: Control, Pr	otection,	and Integration to Electrical
	Syster	ms", John Wiley & Sons, 2	2014.		5
4	Mini S	. Thomas, John D. McDona	ald, "Power Syste	m SCADA	A and smart grids", CRC Press,
		and Francis, April 2015.			-
Rec	ommen	ded by Board of Studies	09-07-2022		
		y Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title		TP	
MPED607L	Microgrid Technologies	3	0 0	-
Pre-requisite	MPED501L S	yllab	us ve	rsior
			1.0	
Course Object				
•	modern control technologies for microgrids in islanded and grid cor	necte	ed	
operatio				
2. Underst	and the concepts for communication in microgrid.			
Course Outcor				
	e course, the student will be able to and the microgrid types and configurations			
	the various types of control in microgrid			
	hanced knowledge on control and energy management of islanded	1 and	arid	
	ed operation		gna	
	the power quality problems and incorporation of protection scheme	es po	ower a	ualitv
	ment technologies	00, p0	, no. 9	aanty
	he application for the various communication protocols in microgrid	b		
	· · · · · · · · · · · · · · · ·			
	icrogrid Configurations			nour
Components of	Microgrid; CERTS Microgrid Test Bed; DC Microgrid; HFAC	Micro	ogrid;	LFA
Microgrid; Hybr	id DC and AC Coupled Microgrid; Grid Connected Mode; Islande	ed mo	ode; B	atter
Charging mode	; design of power converters for integration			
	icrogrid Control Techniques			nour
	nodel of microgrid; Impact of load characteristics; Hierarchical			
	tertiary control; Local control; Centralized Control; Decentralized Co			
control; PQ Cor	trol; Droop control methods; Frequency/Voltage Control; Inverter C)utput	Impe	danc
Madula 2	antral and Managamant in Standalana Miaraguid	—	0	
	ontrol and Management in Standalone Microgrid slanded microgrid; control and optimization techniques; energy	otorc		nour
	ower sharing; Stability; IEEE standards; Case study	51012	age. e	nerg
manayement, r	ower sharing, Stability, ILLE standards, Case study			
Module:4 O	peration and Energy management in Grid Connected Microgrid	d	8	nour
	connected microgrid; Grid synchronization; Control and optimization;			
	; Energy management; Power sharing; Stability; IEEE and CIGRE			
study			,	00.0
•				
Module:5 Po	ower Quality Assessment & Enhancement		6	nour
Power Quality	Issues; Impact of Power Quality on microgrid; Power Qual		nprove	emer
technologies; C	ompensators and controllers for power quality issues; IEEE standa	rds		
Module:6 M	icrogrid Protection		5	nour
	DC microgrid; Challenges in Microgrid Protection; Protection in gri	id cor		
islanded mode				
	ommunication in Microgrid			nour
	Protocols in microgrid; architectures; standards; Local Area Netwo	ork (L	.AN);	
Communication				
Communication Area Network (I	HAN); Wide Area Network (WAN); Basics of Web Service and CL	OUD	Comp	uting
Communication	HAN); Wide Area Network (WAN); Basics of Web Service and CL	OUD	Comp	uting
Communication Area Network (I Cyber Security	HAN); Wide Area Network (WAN); Basics of Web Service and CL	OUD		nour

M.TECH

			Tota	al Lecture hours:	45 hours		
Tex	tbook(s)						
1.	Nikos Hatziargyriou,(2014) Microgrid	ds: Architecture	es and Con	trol, Wiley Press			
2.	Hasan Bevrani, <u>Bruno François</u> and <u>Toshifumi Ise</u> ,(2017) "Microgrid Dynamics and Control" Wiley Press						
Ref	erence Books						
1.	Hasan Bevrani, <u>Bruno François</u> ar Wiley Press	nd <u>Toshifumi Is</u>	<u>e,</u> (2017) "N	Microgrid Dynamics	and Control"		
2.	David Wenzhong Gao, (2015) "Ener	gy Storage for	Sustainabl	e Microgrid" Acade	mic Press		
3.	Georgios I. Orfanoudakis, Babar H Sara, (2014) "Power Electronic Cor				mad A. Abu-		
Moc	de of Evaluation: Continuous Assessm	ent Test, Digita	al Assignme	ent, Quiz and Final	Assessment		
Tes	t		0				
Rec	commended by Board of Studies	09-07-2022					
-	proved by Academic Council	No. 67	Date	08-08-2022			

VIT VIT VIIT Vellore Institute of Technology

0		(Deemed to be University under section 3 of UG	C Act, 1956)		-		_
Course Code MPED608L	;	Integrated Circuits for Power C	onversion	L 2	Т 0	P 0	<u>C</u> 2
Pre-requisite	e Ni	1	Svil	abus v		-	2
i le-lequisite		L	Oyn	<u>abus v</u> 1.0	ei 310	<u>, , , , , , , , , , , , , , , , , , , </u>	
Course Objec	ctives			1.0			
		and analyze PWM techniques for powe	r converters				
		tical design thinking for closed loop and		on			
	•	B schematic and layout	0 ,				
Course Outco							
		se, the student will be able to					
-		choose suitable carrier wave generation		wer con	verte	ers	
		ors, ADC and DAC for closed loop powe	r converters				
		table circuits for grid synchronization					
4. Prepar	re Sche	matic and PCB Layout					
Module:1	Switchi	ng pulse generation for power conver	tors			6 ho	
		Non-Linear applications; Trailing edge, I		double		-	
		5 Timer based application circuits; Pulse					
converters; inv					40.00		
		interfaces			1	4 ho	
Hall effect ser	nsor: A	C/DC Voltage and current sensors, signal	l gain design; 8 bit	ADC a	nd D	ACs	i
Module:3 (Closed	loon control				4 ho	
		loop control Itage regulation using analog and digital	I Integrated circuits				
		meters; Real time interface: Rapid contro		s, Desig	jii ali	u tu	1 III I
			5 prototyping				
Module:4 (Grid sy	nchronization				5 ho	our
Voltage contr	rolled o	scillator: frequency control; grid synch	ronization: phase	locked	loop	э (F	LL
Hardware-in-tl	he-loop						
		Supply ICs				<u>5 ho</u>	
•	•	ply ICs: Fixed and adjustable regulators			•		
• •	•	; Switching regulator ICs; Opto-driver cire	cuits; Pulse transfo	ormer: d	lriver	Circ	uits
Multiple isolate	ed grou	nds			1		
Module:6 F		homotic and Layout Design				4 ho	
		hematic and Layout Design atic design, PCB Layout, 3D Visualiza	ation: Sample PC	R dosic			
converters	Ochem				, i i i i i i i i i i i i i i i i i i i	n pe	, , , , , , , , , , , , , , , , , , ,
Module:7 (Conterr	porary Topics				2 ho	our
		Total L	ecture hours:		3	0 ho	our
Text Book(s)							
		ghlin and Frederick F. Driscoll, "Operati earning Private Limited, Sixth Edition, 20		nd Linea	ar In	tegr	ate
Reference Bo	ooks						
	-	estad and Louis Nashelsky, "Electronic	Devices and Circu	uit Theo	ory",	Prer	ntic
Hall, Ele	eventh I	Edition, 2015.					

(Deemed to be University under section 5 of UGC Act, 1956)							
2.	Bob Dobkin, Jim Williams, "Analog Circuit Design: A Tutorial Guide to Applications and						
Ζ.	^{2.} Solutions", Elsevier Inc, First Edition, 2011.						
3.							
4.	Datasheets: Devices and IC's						
Mod	e of Evaluation: Continuous Ass	sessment Tests,	Quizzes,	Assignment, Final Assessment Test			
Reco	ommended by Board of	09-07-2022					
Stud	ies						
Appr	oved by Academic Council	No. 67	Date	08-08-2022			

		a mutai a unai Ara	(Deemed to be University un	nder section 3 of U	GC Act, 1956)		<u> </u>			
	rse Code	-	Course				L	T	Ρ	C
	D608P		ed Circuits for P	ower Co	nversion Lab		0	0	2	1
Pre-	requisite	Nil				Syl	labu		ersi	on
Cou	rse Objective	6						1.0		
	•	nd fabricate PWM	circuits for powe	r convert	tors					
		validate the cont								
•	ected Course									
	•	of this course the analysing variou			wer conversion					
Indic	cative Experin	ments						Но	urs	
1.	Generation of	of symmetric and	asymmetric carr	ier waves	3					
2.	Switching pu	Ilse generation fo	r non-isolated D	C to DC c	converter					
3.	Variable free	quency pulse gen	eration using VC	0						
4.	Pulse width	modulation using	555 timer							
5.	PWM contro	lled rectifier with	grid synchronizat	tion						
6.	Switching pu	Ilse generation fo	r single phase in	verter						
7.	Implementat	ion of dual linear	regulated power	supply						
8.	Generation of	of phase shifted s	witching pulses							
9.	Generation of	of gate pulses with	h dead-band							
10.	Generation of	of overlapping gat	te pulses							
11.	Switching pu	Ilse generation fo	r three phase inv	/erter						
12.	Gate pulse g	eneration for mul	ltilevel inverter							
13.	Preparation	of schematic and	PCB Layout							
				Total	Laboratory Ho	ours:		30	ho	Jrs
Tevt	Book(s)									
		in and Frederick	E. Driscoll "C	peration:	al Amplifiers ar	nd I in	ear	Inte	ara	ted
		ning Private Limit							3.4	
Refe	erence Books									
	•	ad and Louis Nas	helsky, "Electron	ic Device	es and Circuit Th	heory"	, Pre	entic	e H	all,
	enth Edition, 2	2015. Villiams, "Analog (Circuit Docian: A	Tutorial	Guide to Applica	tions (and	S	Ition	
	vier Inc, First E	•	Sircuit Design. A	TULONAL			anu	301		15,
	ommended by		09-07-2022							
Stud	ies			1	1					
Appr	oved by Acad	emic Council	No. 67	Date	08-08-2022					

	(Deemed to be University under section 3 of UGC Act, 1956)	_			-
Course Code	Course Title	L	T	P	<u>C</u>
MPED609L	Power Electronics Application in Power Systems Nil	3	0	0	3
Pre-requisite		Sylla	<u>bus</u> 1.		sion
Course Objective	S		1.	U	
1. To impart ir	n-depth knowledge of reactive power control, application of FA It the importance of flexible AC transmission systems and con-			oller	S.
Course Outcome					
 Apply the c Operation, Operating power flow Application 	se the student will be able to oncept of load compensation and reactive power control to A0 modelling and performance analysis of shunt and Series FAC principle, modeling and control structure of Phase angle reg controller of FACTS controllers in transmission system hsive knowledge of line commutated and modular multilevel co	TS dev gulator	vices and	s d Un	ified
Module:1 Tran	smission System Compensation			6 h(ours
	Systems : importance of controllable parameters, stability Lim	iits; Th	eory		
Madula:2 SVC				<u>Ch</u>	
	and STATCOM	Valt			ours
	unt compensation ;SVC : Comparison of different SVC aracteristics ,Dynamic compensation	, voit	age	COL	itrol;
Module:3 TCS	C and SSSC			6 ho	ours
	series compensation ; TCSC: modelling of TCSC, operating of acteristics; SSSC: control range and VA rating	control	sch	eme	,sub
Module:4 Phas	se angle Regulator			6 ha	ours
Objectives of volt	age and phase angle regulator : Thyristor controlled voltage	e and	pha		
Module:5 Unifi	ed Power flow controller			6 ho	ours
	e : control structure, Performance analysis				
Module:6 Appl	lication of FACTS Devices			6 ha	ours
	resonance, Damping oscillations, Transient stability and	d volta	age		
	Voltage DC Transmission				ours
	Converter: Line commutated converters and Modular Multi lev	el con	verte		
Module:8 Cor	ntemporary Topics			2 h	ours
	Total Lecture hours:		4	15 ho	ours
Textbook(s)					
	orani & Lazzlo Gyugi "Understanding FACTS. Concepts & Tec	hnolo	gy o	F	
FACTS, 318	andard publishers & distributors, 2011				

	Transmission systems" John Wiley and Sons, 2001							
Refe	Reference Books							
1.	T.J.E Miller "Reactive Power Control in Electric system" John Wiley & Sons, NY, 2010.							
2.	Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez, "FACTS: Modelling and							
	Simulation in Power Networks", John Wiley, 2011							
3.	K.R.Padiyar, "FACTS controllers in Power transmission and disribution", New Academic							
	Science, 2011							
4.	Dragan Jovcic, "High Voltage Direct Current Transmission: Converters, Systems and							
	DC Grids", 2019, Wiley Publications							
Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment								
Test								
Reco	mmended by Board of Studies	09-07-2022						
Appro	Approved by Academic Council No. 67 Date 08-08-2022							

Course Code	(Deemed to be University under section 3 of UGC Act, 1956) Course Title	L	Т	Р	С	
MPED610L	Embedded Systems Design for Power Electronic		0	0	2	
• • • • -	Applications				-	
Pre-requisite						
·				.0		
Course Objectiv	/es:					
1. Introducir	ng embedded system concepts and to emphasize the significa	nce of th	e sar	ne for	power	
	s engineer					
	Embedded C program to control the power converters					
	of resources available in ARM cortex processor					
4. To create	a closed loop control of drives using embedded systems					
			rtoro			
	bedded C programs to generate triggering pulses for the pow					
	he power converter circuits using different on chip perip	nerais a	valla	ble in	ARIVI	
processo						
-	Inctional overview of ARM cortex M processor	onio circi	uite u	cina ti	imore	
•	gram for ARM cortex M processor to control the power electr gram for ARM cortex M processor to use the interrupts to var			•		
•	mbedded System	y the rea	i unne		hours	
	em processor; hardware unit; software embedded into a	avetem:	- Evo			
•	•	•		•		
-	em; Embedded Design life cycle; Layers of Embedded	Systems	, sig	nincai	ice oi	
	m in Power Electronic applications.			6	hours	
	mbedded System Building Process	ri Linkor	Man			
	Compiling, Cross Compiling, Linking; Locating; Compiler Drive		•			
-	ter loading; Loading on the target; Embedded File System, nions; Enumeration Pointers; Scope of Variables; Embedded					
converter applica	•	C progra		ng ioi	power	
	ommunication protocol			5	hours	
	; SCI; Ethernet; CAN; LIN; flexray; MOST; SCADA; significal	nco in nc	wor			
	RM Cortex M processor				hours	
	view of ARM Cortex M; Pinouts and pin description; GPI	Det Svet	000 0			
	FG); ADC; DAC; Closed loop control of Power Converters	J 5, J 56		Johnge	lation	
	mers, PWM and Interrupts			6	hours	
	M6 and TIM7); General Purpose Timers (TIM2 to TIM5); Gene					
· ·	anced Control Timers (TIM1 and TIM8); Independent Wa	•			•	
	DG); Programming to generate triggering pulses with timers	•				
•	r (PWM); Nested Vectored Interrupt Controller (NVIC);			•		
	; EXTI Registers, PWM control of Power Converters and Inverters		me	Tupi	LVEIII	
. ,	ontemporary Issues	enters.		2	hours	
				2	nours	
	Total Lect	ure hou	's:	30	hours	
	Total Lect	ure hou	'S:	30	hours	
Text Book(s)					hours	
Text Book(s)	, "The Definitive Guide to ARM Cortex M3 and Cortex M4 Pro				hours	

Computers as components :							
Wayne Wolf "Computers as components : Principles of Embedded Computing System							
Design", The Morgan Kaufmann Series in Computer Architecture and Design, 2013							
Reference Books							
Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig Manjikian, "Computer Organization and							
Embedded Systems", Mc Grawhill International Edition, 2012							
Shibu K.V, "Introduction to Embedded Systems", Tata Mc Grawhill, 2014							
Vincent Mahout, "Assembly Language Programming ARM Cortex M3" Wiley 2012							
Larry D. Pyeatt, "Modern Assembly Language Programming with the ARM Processor", Newnes,							
Elsevier 2016							
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar							
Recommended by Board of Studies 04.04.2023							
		Date	30-06-2023				
1	tt, "Modern Assembly Lang : CAT / Assignment / Quiz / Board of Studies	tt, "Modern Assembly Language Program : CAT / Assignment / Quiz / FAT / Project /	tt, "Modern Assembly Language Programming with t : CAT / Assignment / Quiz / FAT / Project / Seminar Board of Studies 04.04.2023				

Cou	Irse Code	a might & states Asso	Course Ti		on 3 of UGC Act, 1956)	L	Т	Р	С		
	PED610P	Embedded Syste			er Electronic	0	0	2	1		
	LDOIDI	•	Applications			v	U	2	•		
Dro	roquicito	, NIL	Applications				Sville Sville		roion		
Pre	-requisite						Sylla	bus ve	rsion		
								1.0			
	rse Object										
		resources available	with ARM co	ortex M n	nicrocontroller to	o gene	erate co	ontrol s	gnals for		
,		onverters	opinulata th	o oontro							
	rse Outcor	external signals to m	ianipulate th	e contro	Isignais						
				ha ahla	to						
		ion of this course the d Conduct experime				t eteb :	o cont	rol the	nower		
	tronic circui			as analy.		uala i			50000		
	cative Exp								Hours		
		Programming									
1		the chopper							2 Hour		
2		olling the converters							2 Hour		
3		ate triggering pulses	for inverters						2 Hour		
4		ating triggering pulses		AC volta	ge regulators				2 Hour		
5		o and step down the							2 Hour		
6		nerates PWM pulses							2 Hour		
7		ternal interrupt to va			opper				2 Hour		
8	Which use	es timer interrupt and	d external int	errupt to	generate trigge	ering p	ulses	for	2 Hour		
		requency inverter.									
9	To generate sine PWM using PWM interrupt							2 Hour			
10								2 Hour			
11								2 Hour			
12	<u> </u>							2 Hour			
<u>13</u> 14								2 Hour 2 Hour			
15		n have a closed loop	control of D	C motor					2 Hour		
10	which ca				Total	labor	atory	hours:	30 hours		
					lotar	Lubon	atory				
Tox	t Book(s)										
1.	. ,	u, "The Definitive Gu	ido to ADM (Cortox M	2 and Cartax M	11 Drov		o" Now			
١.	Elsevier, 2	-				14 1100	Jessoi	S New	165,		
		.014									
2.	Wayne Wolf "Computers as components : Principles of Embedded Computing System										
	Design",Tł	ne Morgan Kaufman	n Series in C	computer	Architecture an	nd Des	sign,20	13			
Refe	erence Boo	ks									
1.			asic Safwat	Zaky N	araig Maniikiar	"Cor	nnutor	Organ	ization and		
1.	Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig Manjikian, "Computer Organization and Embedded Systems", Mc Grawhill International Edition, 2012										
2.						I. 2014	1				
3.	Shibu K.V, "Introduction to Embedded Systems", Tata Mc Grawhill, 2014 Vincent Mahout, "Assembly Language Programming ARM Cortex M3" Wiley 2012										
3. 4.		yeatt, "Modern Asse			•				" Newnes		
ч.	Elsevier 2		anory Langu	age 110	granning with		MVL E LU	5003301	, NGWIICO,		
Mod		tion: Experiment Per	rformance As	ssessme	nt / FAT						
		by Board of	04.04.202								
Stuc		,									
		ademic Council	No. 70	Date	30-06-2023						
- 99	ГЕСН			24.0	30 00 2020				_		

Course Objectives: 1. Introducing F engineer 2. To write verile 3. Utilizing FPG. 4. To create a c Course Outcomes: 1. Control the polyoard. 2. Understand th 3. Write verilog based drives. 5. Write code for triggering pulse Module:1 FPGA	Course Title FPGA for Power Electronic Converters NIL PGA concepts and to emphasize the significance of the sar PGA concepts and to emphasize the significance of the sar PGA concepts and to emphasize the significance of the sar PGA concepts and to control the power converters A to generate triggering pulses for different power electron osed loop control of drives using FPGA Pwer converter circuits using different peripherals that can be the functioning of FPGA board to utilize it for the control of program for FPGA board to control the power electron to the timers, PWM etc. HDL program for FPGA board to have a closed loop cor Program for FPGA board to have a closed loop cor Programmable Gate Arrays – CPLD Vs FPGA, Developmer	3 Syll Syll me for p ic circui pe desig power c ic circui ntrol of progra	1. Dower its gned i its usi powe ams t	r electron n the FPG rters ing differ er conver to genera 7 hou	3 n nics PGA rent rter rate
Course Objectives: 1. Introducing F engineer 2. To write verile 3. Utilizing FPG. 4. To create a c Course Outcomes: 1. Control the polyoard. 2. Understand th 3. Write verilog based drives. 5. Write code for triggering pulse Module:1 FPGA	PGA concepts and to emphasize the significance of the sar og HDL program to control the power converters A to generate triggering pulses for different power electron osed loop control of drives using FPGA ower converter circuits using different peripherals that can b the functioning of FPGA board to utilize it for the control of p HDL program for FPGA board to control the power electron the timers, PWM etc. HDL program for FPGA board to have a closed loop cor or Hardware in loop for Power converters, verilog HDL ses for the power converters	me for p ic circui be desig power c ic circui ntrol of _ progra	1. Dower its gned i its usi powe ams t	.0 relectron n the FPG rters ing differd er conver to genera 7 hou	nics PGA rent rter rate
 Introducing F engineer To write verile Utilizing FPG To create a c Course Outcomes: Control the po- board. Understand th Write verilog based drives. Write verilog based drives. Write code for triggering puls 	by HDL program to control the power converters A to generate triggering pulses for different power electron osed loop control of drives using FPGA ower converter circuits using different peripherals that can b the functioning of FPGA board to utilize it for the control of p HDL program for FPGA board to control the power electron the timers, PWM etc. HDL program for FPGA board to have a closed loop cor or Hardware in loop for Power converters, verilog HDL ses for the power converters	me for p ic circui be desig power c ic circui ntrol of _ progra	1. Dower its gned i its usi powe ams t	.0 relectron n the FPG rters ing differd er conver to genera 7 hou	nics PGA rent rter rate
 Introducing F engineer To write verile Utilizing FPG To create a c Course Outcomes: Control the po- board. Understand th Write verilog based drives. Write verilog based drives. Write code for triggering puls 	by HDL program to control the power converters A to generate triggering pulses for different power electron osed loop control of drives using FPGA ower converter circuits using different peripherals that can b the functioning of FPGA board to utilize it for the control of p HDL program for FPGA board to control the power electron the timers, PWM etc. HDL program for FPGA board to have a closed loop cor or Hardware in loop for Power converters, verilog HDL ses for the power converters	be desig power c nic circui	its gned i conve its usi powe ams t	n the FPG rters ing differ er conver to genera 7 hou	PGA rent rter rate
engineer 2. To write verile 3. Utilizing FPG 4. To create a c Course Outcomes: 1. Control the po board. 2. Understand th 3. Write verilog b peripherals lik 4. Write verilog b based drives. 5. Write code fo triggering puls Module:1 FPGA ntroduction to Field F	by HDL program to control the power converters A to generate triggering pulses for different power electron osed loop control of drives using FPGA ower converter circuits using different peripherals that can b the functioning of FPGA board to utilize it for the control of p HDL program for FPGA board to control the power electron the timers, PWM etc. HDL program for FPGA board to have a closed loop cor or Hardware in loop for Power converters, verilog HDL ses for the power converters	be desig power c nic circui	its gned i conve its usi powe ams t	n the FPG rters ing differ er conver to genera 7 hou	PGA rent rter rate
Course Outcomes:1. Control the polyboard.2. Understand the3. Write verilog beripherals like4. Write verilog based drives.5. Write code for triggering pulseModule:1FPGANtroduction to Field F	wer converter circuits using different peripherals that can be the functioning of FPGA board to utilize it for the control of p HDL program for FPGA board to control the power electron the timers, PWM etc. HDL program for FPGA board to have a closed loop cor be Hardware in loop for Power converters, verilog HDL ses for the power converters	power c ic circui ntrol of _ progra	conve its usi powe ams t	rters ing differ er conver to genera 7 hou	rent rter rate
board. 2. Understand th 3. Write verilog beripherals like 4. Write verilog based drives. 5. Write code for triggering pulse Module:1 FPGA ntroduction to Field F	he functioning of FPGA board to utilize it for the control of p HDL program for FPGA board to control the power electron the timers, PWM etc. HDL program for FPGA board to have a closed loop cor or Hardware in loop for Power converters, verilog HDL ses for the power converters	power c ic circui ntrol of _ progra	conve its usi powe ams t	rters ing differ er conver to genera 7 hou	rent rter rate
 4. Write verilog based drives. 5. Write code for triggering puls Module:1 FPGA ntroduction to Field F 	HDL program for FPGA board to have a closed loop cor or Hardware in loop for Power converters, verilog HDL ses for the power converters	_ progra	ams t	to genera 7 hou	rate
ntroduction to Field F					
ntroduction to Field F	Programmable Gate Arrays – CPLD Vs EPGA Developmer				urs
		nt and e	evoluti	ion of dia	
Blocks (CLB), Input/0	verification tools, Abstraction levels of digital system des Dutput Block (IOB) – Programmable Interconnect Point (Pl and Virtex FPGA boards. Significance of FPGA in Power E	P) – Xil	linx 4		•
Module:2 Verilo	g HDL			7 hou	urs
	y HDL and simulation using Xilinx Webpack - Modeling style ing, gate delays, switch-level Modeling, Hierarchal structur				ow,
Module:3 Verilo	g Programming for Combinational Logic Circuits			7 hou	urs
	for combinational logic circuits – Adder/subtractor – Multip y Encoder - Decoders – Comparators, generating trigg			-	
Module:4 Verilo	g Programming for Sequential Logic Circuits			6 hou	urs
• • •	o for sequential logic circuits - Flip-Flops, Shift Registers, of multi-phase clock - Finite State Machine Modelling.	Counte	ers, C	lock divid	der
	cation of Design Codes			6 hou	urs
•	files - Functional verification, simulation types, Test Bence ding to control power converters.	ch desig	gn, va	alue char	nge
,	acing Peripherals with FPGA Board		e	6 hours	
	ntation using Verilog HDL (P, PI, PID, etc.) – Modelling p e ADC and DAC blocks with FPGA – closed loop control o			•	sing
-	A Applications to Power Electronic System	•		6 hours	
Gate Pulse generati	on for AC-AC converter, AC-DC converter, PWM generat C motor control, Induction Motor Control	tion for			ter,
	Total Lectur	re hour	rs:	45 hou	urs

Tex	t Book(s)					
1.	Samir Palnitkar, "Verilog HDL: A Guid Second Edition, 2009.	e to Digital Desi	gn and Synt	thesis" Pearson,		
2.	Wayne Wolf, "FPGA-Based System D	esign", Prentice	Hall India F	Pvt. Ltd., 2005.		
Ref	erence Books					
1.	Ming-Bo Lin., Digital System Designs Wiley, 2008.	and Practices U	sing Verilog	HDL and FPGAs.		
2.	Woods, R., McAllister, J., Yi, Y. and Lightbody, G. FPGA-based implementation of signal processing systems. John Wiley & Sons, 2017.					
3.	M. H. Rashid, "Power Electronics: Circuits, Devices and Applications. Pearson 3rd edition, 2013.					
Мос	de of Evaluation: CAT / Assignment / Qu	uiz / FAT / Projec	ct / Seminar			
Rec	commended by Board of Studies	04.04.2023	}			
App	proved by Academic Council	No. 70	Date	30-06-2023		