

SCHOOL OF ELECTRICAL ENGINEERING

M. Tech Control and Automation

(M.Tech CA)

Curriculum

(2023-2024 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

To be a leader for academic excellence in the field of electrical, instrumentation and control engineering imparting high quality education and research leading to global competence for the societal and industrial developments.

MISSION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

- Impart high quality education and interdisciplinary research by providing conducive teaching learning environment and team spirit resulting in innovation and product development.
- Enhance the core competency of the students to cater to the needs of the industries and society by providing solutions in the field of electrical, electronics, instrumentation and automation engineering.
- Develop analytical skills, leadership quality and team spirit through balanced curriculum.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

PROGRAMME OUTCOMES (POs)

- PO_01: Having an ability to apply mathematics and science in engineering applications
- PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints
- PO_03: Having an ability to design and conduct experiments, as well as to analyze and interpret data
- PO_04: Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice
- PO_05: Having problem solving ability- solving social issues and engineering problems
- PO_06: Having adaptive thinking and adaptability
- PO_07: Having a clear understanding of professional and ethical responsibility
- PO_08: Having a good cognitive load management [discriminate and filter the available data] skills

ADDITIONAL PROGRAMME OUTCOMES (APOs)

APO_01: Having an ability to be socially intelligent with good SIQ (Social Intelligence Quotient) and EQ (Emotional Quotient)

APO_02: Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)

APO_03: Having design thinking capability

APO_04: Having computational thinking (Ability to translate vast data in to abstract concepts and to understand database reasoning

APO_05: Having Virtual Collaborating ability

APO_06: Having an ability to use the social media effectively for productive use

APO_07: Having critical thinking and innovative skills

APO_08: Having a good digital footprint

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Control and Automation) programme, graduates will be able to

- PSO1: Apply technical knowledge, skills and analytical ability to design and develop controllers as well as employ techniques for automation of systems using modern tools and technologies.
- PSO2: Analyse, interpret and solve problems related to process control, automation, measurement and control etc.
- PSO3: Solve research gaps and provide solutions to socio-economic, and environmental problems.

CREDIT STRUCTURE

Category-wise Credit distribution

Credits Break	up
	CREDITS
Discipline Core	24
Discipline Elective	12
Projects and Internship	26
Open Elective	3
Skill Enhancement	5
Total	70

DETAILED CURRICULUM

Discipline Core

Sl.no	Course Code	Course Title	L	Т	P	Credit
1	MCOA501L	Applied Mathematical Methods in Control Engineering	3	1	0	4.0
2	MCOA502L	System Theory	3	0	0	3.0
3	MCOA502P	System Theory Lab	0	0	2	1.0
4	MCOA503L	Random Variables and State Estimation	3	0	0	3.0
5	MCOA504L	Smart Sensor Systems	3	0	0	3.0
6	MCOA505L	Process Dynamics and Control	3	0	0	3.0
7	MCOA505P	Process Dynamics and Control Lab	0	0	2	1.0
8	MCOA506L	Real Time Embedded Systems	2	0	0	2.0
9	MCOA506P	Real Time Embedded Systems Lab	0	0	2	1.0
10	MCOA507L	Industrial Automation	2	0	0	2.0
11	MCOA507P	Industrial Automation Lab	0	0	2	1.0

Discipline Elective

Sl.no	Course Code	Course Title	L	T	P	Credit
1	MCOA601L	Building Automation	3	0	0	3.0
2	MCOA602L	Industrial Robotics	3	0	0	3.0
3	MCOA603L	Control of Electric Drives	3	0	0	3.0
4	MCOA604L	Machine Learning	2	0	0	2.0
5	MCOA604P	Machine Learning Lab	0	0	2	1.0
6	MCOA605L	Advanced Python Programming	1	0	0	1.0
7	MCOA605P	Advanced Python Programming Lab	0	0	4	2.0
8	MCOA606L	Optimal Control Systems	3	0	0	3.0
9	MCOA607L	Adaptive and Robust Control	3	0	0	3.0
10	MCOA608L	Discrete Control Systems	3	0	0	3.0
11	MCOA609L	Multivariable Control System	3	0	0	3.0
12	MCOA610L	Industrial Data Networks	3	0	0	3.0

13 MCOA611L Data Acquisition and Hardware Interfaces 3 0 0 3.0

Projects and Internship

Sl.no	Course Code	Course Title	L	Т	P	Credit
1	MCOA696J	Study Oriented Project	0	0	0	2.0
2	MCOA697J	Design Project	0	0	0	2.0
3	MCOA698J	Internship I/ Dissertation I	0	0	0	10.0
4	MCOA699J	Internship II/ Dissertation II	0	0	0	12.0

Open Elective

Sl.no	Course Code	Course Title	L	Т	P	Credit
1	MFRE501L	Français Fonctionnel	3	0	0	3.0
2	MGER501L	Deutsch fuer Anfaenger	3	0	0	3.0

Skill Enhancement

Sl.no	Course Code	Course Title	L	Т	P	Credit
1	MENG501P	Technical Report Writing	0	0	4	2.0
2	MSTS501P	Qualitative Skills Practice	0	0	3	1.5
3	MSTS502P	Quantitative Skills Practice	0	0	3	1.5

Course Code	Course Title		L	Т	Р	С
MCOA501L	Applied Mathematical Methods in Control Engineering		3	1	0	4
Pre-requisite	NIL	5	Syllab	us v	ersic/	on
				1.0		

To present a clear exposition of basics of linear algebra, matrix theory, differential equations to represent the nonlinear systems through mathematical methods including,

- 1. Understanding of their physical significance and mathematical representation of nonlinear systems through modelling.
- 2. Existence and uniqueness of the solution of the models, computation of equilibrium points and visualize their behaviour through phase plane analysis.

 3. Stability analysis and controller design for nonlinear systems.

Course Outcome:

On completion of the course, the student will be able to

- 1. Analyse and interpret the physical significance of different mathematical tools such as vector space, convergence, continuity, eigen values, eigen vectors and matrix norm to represent the dynamical systems and their applications to control theory as well as visualize the behaviour of the dynamical system in different coordinate dimensional coordinates.
- 2. Represent the dynamical systems in the form of differential equation and check the existence of the solution of the differential equation and learn different methods for solving it.
- 3. Analyse the behaviour and properties of nonlinear systems such as equilibrium points, limit cycles through phase plane technique.
- 4. Utilize different mathematical tools such as convergence, continuity and differentiability to analyse the stability criteria of the nonlinear systems, describing function method to analyse stability in frequency domain.
- 5. Utilize different design techniques such as feedback linearization, back stepping method and feedback control to design controller for nonlinear dynamical systems.

Module:1 Basics of Linear Algebra:

7 hours

Introduction to set theory, vector fields, Physical Interpretation of Linear Vector Spaces, Supremum and infimum, Physical Interpretation of Normed Linear Spaces, Banach and Hilbert Spaces, Physical Interpretation of Convergence, Continuity, Differentiability and **Applications**

Matrix Theory: Module:2

8 hours

Physical Interpretation of Eigenvalues and Eigenvectors and its applications, Matrix Transformations, Physical Interpretation of Induced Norms and Matrix Measures, Similarity Transformation-Diagonalization, Singular values, Singular Value Decomposition (SVD) and its Applications, Pseudo Inverse, Jacobian matrix, Linear matrix inequalities, concept of rank, and nullity

Differential Equations: Module:3

Existence, Physical Interpretation of Uniqueness, Physical Interpretation of Well-posedness of Solutions, Approximation of Solutions, Lipchitz condition, Comparison functions and their applications

Module:4	Analysis of Dynamical Systems:	8 hours
Introduction	Foatures of Linear and Nonlinear Systems: Examples of r	honomona modale 8

Introduction, Features of Linear and Nonlinear Systems: Examples of phenomena, models &

derivation of system equations. Fundamental properties: Existence & uniqueness, Dependence on initial conditions & parameters, Equilibrium points, Taylor's series, Types of non-linearity, Common nonlinearities in control systems, Typical Examples **Phase Plane Analysis:** Module:5 8 hours Concepts of phase plane analysis, Construction of phase portrait, Phase plane analysis of linear system and nonlinear system, Existence of limit cycles **Stability Analysis:** Module:6 10 hours Lyapunov stability of autonomous and nonautonomous systems, LaSalle's invariance Principle, Stability analysis of nonlinear systems in frequency domain: Describing function fundamentals, describing functions of common nonlinearities, Describing function analysis of nonlinear systems, Limit cycles, Stability of Oscillations Module:7 10 hours Case Studies: Controller Design Problems and Feedback linearization method, Backstepping method, Feedback control technique, Introduction to Linear programming. Module:8 **Contemporary Issues** 3 hours Total Lecture hours: 60 hours Textbook(s) Alexander S. Poznyak, "Advanced Mathematical Tools for Automatic Control Engineers", Elsevier, First Edition, 2008 Slotine and Li, "Applied Nonlinear Control", Prentice Hall Inc., 2005. Reference Books H. K. Khalil, "Nonlinear Systems", Prentice Hall, 2015. M. Vidyasagar, "Nonlinear Systems Analysis", Prentice Hall, 2002. 2. 3. D. Smith, M. Eggen and R. St. Andre, "A Transition to Advanced Mathematics" Cengage Learning International Edition, 2014. K A. Ross "Elementary Analysis" Springer, 2013. H. Logemann and E. P. Ryan "Ordinary Differential Equations", Analysis, Qualitative 5. Theory and Control, Springer, 2014. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 09-07-2022 Approved by Academic Council No. 67 Date 08-08-2022

Course Code	Course Title	L	Т	Р	С
MCOA502L	System Theory	3	0	0	3
Pre-requisite	NIL	Sylla	bus	versi	on
			1.0	0	

To present a clear exposition of the basics of modern control including

- Create state models of practical systems after understanding state modelling concepts
- 2. Analyse the models for the five properties of stability, controllability, observability, stabilizability and detectability
- 3. Design a controller, observer and reduced-order observer for the models of the systems

Course Outcome:

On completion of the course, the student will be able to

- 1. Model dynamical systems and realize them in different canonical forms
- 2. Solve the linear and nonlinear state equations
- 3. Analyze the state models for the five properties of the systems
- 4. Design a state feedback controller and state observer for simple practical dynamic systems.
- 5. Analyze linear and nonlinear system models for stability

Module:1 State Variable Representation:

6 hours

Introduction-Concept of State-State equation for Dynamic Systems-Time invariance and linearity-Non uniqueness of state model-canonical forms - State Diagrams-Physical System and State Assignment

Module:2 | Solution of State Equation:

6 hours

Existence and uniqueness of solutions to continuous-time state equations-Solution of linear time varying and linear time invariant state equations-Evaluation of matrix exponential-System modes-Role of Eigenvalues and Eigenvectors.

Module:3 | Properties of the System:

6 hours

Stability, Controllability and Observability - Stabilizability and Detectability-Test for Continuous time systems- Time varying and Time invariant case.

Module:4 Controller and Observer Design:

6 hours

Introduction-Controllable and Observable Companion Forms-SISO and MIMO Systems-The Effect of State Feedback on Controllability and Observability-Pole Placement by State Feedback for both SISO and MIMO Systems-Full Order and Reduced Order Observers.

Module:5 | Lyapunov Stability:

6 hours

Introduction-Equilibrium Points-Stability in the sense of Lyapunov-BIBO Stability-Stability of LTI Systems-Equilibrium Stability of Nonlinear Continuous Time Autonomous Systems.

Module:6 Lyapunov's Direct Method:

6 hours

The Direct Method of Lyapunov and the Linear Continuous-Time Autonomous Systems-Finding Lyapunov Functions for Nonlinear Continuous Time Autonomous Systems-Krasovskii and Variable-Gradient Method.

Module:7 Realization:

6 hours

Output Controllability-Reducibility- System Realizations minimal realization, balanced realization

Mod	dule:8	Contemporary Issues			3 hou	urs
			Total	Lecture h	ours: 45 ho	urs
Tex	tbook(s)					
1.	Ogata,	"Modern Control Engine	ering", 5th Editio	n, Prentic	e Hall India, 2010.	
2.	M. Go	oal, "Modern Control Syst	tem Theory", 3 rd	edition, N	ew Age International, 2014	4.
Ref	erence E	Books				
1.	Slotine	and Li, "Applied Nonline	ar Control", Prer	ntice Hall I	nc., 2005.	
2.	Hassa	n K Khalil, "Nonlinear Co	ntrol", Pearson, l	Boston, 20)15.	
Mod	de of Eva	luation: CAT / Assignme	nt / Quiz / FAT /	Project / S	Seminar	
Rec	ommend	ed by Board of Studies	09-07-2022			
IddA	roved by	Academic Council	No. 67	Date	08-08-2022	

Cou	urse Code		Course Tit	le		L	Т	Р	С
МС	OA502P		System Theory	y Lab		0	0	2	1
Pre	-requisite	NIL				Sylla	bus	vers	ion
							1.0)	
Cou	urse Objectiv	es							
	•	ne behaviour of linea		•	•				
	2. Design co	ntroller, observer ar	nd reduced-order	r observer	•				
	urse Outcome								
		this course, the stud				.i	40.000		
		ne response and pro introller, observer, a							
		ing Experiments (II			1 101 1111041	oyoton			
1.		ling of armature-cor	•				2	houi	rs
2.	_	ling of field-controlle					_	hou	
3.	+	ling of dc generator					-	hou	
4.	_	ling of balancing bro	oomstick				_	hou	
5.		ling of bridge circuit					_	hou	
6.		ling of magnetic sus					_	hou	
7.	+	ling of ball on beam					2	houi	rs
8.		ty and observability		trolled dc	motor		2	houi	rs
9.		ty and observability					2	hou	rs
10.		ty and observability					2	hou	rs
11.		ty and observability			ystem		2	hou	rs
12.	Design of st	ate feedback contro	ller for balancing	broomst	ick problem)	2	hou	rs
13.	Design of ol	oserver for balancing	g broomstick pro	blem	<u> </u>		2	hou	rs
14.		ate feedback contro	·		problem w	ith	2	hou	rs
15.	Stability ana	llysis of straight and	inverted pendul	um			2	hou	rs
			•						
	•			Total	Laboratory	/ Hour	s 30) ho	urs
Mod	de of assessm	ent: Continuous ass	sessment, FAT						
Tex	t Book								
1.	Ogata, "Mode	ern Control Enginee	ring", 5th Edition	, Prentice	Hall India,	2010.			
2.	Dorf and Bish	nop, 'Modern Contro	ol Systems', 14th	Ed., Pear	son, 2022				
Ref	erence Book	S							
1.		ise, "Control System							
2.	M. Gopal, "M	odern Control Syste	em Theory", 3rd I	Ed., New	Age Interna	ational,	201	4.	
Mod	de of Evaluation	on: Assignment, FA	Γ						
Red	commended by	y Board of Studies	09-07-2022						
App	proved by Aca	demic Council	No. 67	Date	08-08-202	22			

Course Code	Course Title		L	Т	Р	С
MCOA503L	Random Variables and State Estimation		3	0	0	3
Pre-requisite	NIL	Sy	llab	us v	ers	ion
				1.0		

- 1. Impart knowledge on random processes and the estimation process
- 2. Explore prediction and identification methods to recognize and control random processes
- 3. Estimate a system model using parametric and non-parametric approaches

Course Outcome

On the completion of this course the student will be able to:

- 1. Characterize the random variables based on single and multiples random variables functions
- 2. Analyze the behavior of a random process using statistical tools
- 3. Design optimal estimators for variables and systems having stochastic nature
- 4. Apply the concepts of filtering and prediction for a random process
- 5. Conduct experiments to build and test parametric and non-parametric system models

Module:1 Random Variables

Hours: 6

Probability: Sample space, Conditional probability, Bayes theorem; Random variable: Cumulative Distribution Function (CDF), Probability Density Function (PDF), Conditional CDF; Multiple random variable: Joint Cumulative Distribution Function, Joint Probability Density Function; Computation of Expected Values

Module:2 Random Process and their characteristics

Hours: 7

Random Process Characterization: Densities & Joint densities, Mean, Variance, Expectation of a Random Process; Classification of Random Processes: SSS, WSS, Ergodic, joint stationary; Correlation functions: Autocorrelation, autocovariance, cross-correlation, cross-covariance function; Temporal and Spatial Characteristics; White Noise

Module:3 Parameter Estimation

Hours: 8

Bayes Performance Measure, Statistical Characterizations of Data; Cramer-Rao bounds; Bayes Estimation: Maximum a posteriori (MAP) estimation, Minimum Mean Square Error (MMSE) Estimate: Linear MMSE Estimation, Nonlinear MMSE Estimation; Estimation of Nonrandom Parameters: Maximum Likelihood Estimation

Module:4 | Wiener Estimation

Hours: 6

Optimum Filter Formulation: Prediction of a Random Process, Filtering out Noise, Interpolation for Random Processes; Wiener Hoff Equation; Wiener filter design: FIR Wiener filter, Linear Time-Invariant Noncausal Filter (IIR), Linear Time-Invariant Causal Filter (IIR); Application of Weiner's theory in feedback control system

Module:5 Kalman Estimation

Hours: 6

State Dynamics with Random Excitations, Markov Sequence Model, Observation Model; Kalman Filter estimator: Anatomy and Physiology of the Kalman Filter; Prediction: Fixed lead prediction, sliding window; Steady state equivalence of the Kalman and Wiener filter: Kalman filter formulation, Wiener filter formulation

Module:6 Nonparametric Model Estimation

Hours: 5

Correlation and spectral analysis for non-parametric model identification, obtaining estimates of the plant impulse, step and frequency responses from identification data.

Module:7 Parametric Model Estimation

Hours: 5

Prediction Error Model Structures, parametric estimation using one-step ahead prediction error model structures and estimation techniques for ARX, ARMAX, Box-Jenkins, FIR, Output Error models. Nonlinear model estimation: NAR, NARX, NARMA, NARMAX models

Мо	dule:8	Contemporary Issues				2 hours		
			Total L	_ecture h	ours:	45 hours		
Tex	xt Book	<u> </u>						
1.	1. Ludeman, L. C. (2010). Random processes: filtering, estimation, and detection. John Wiley & Sons, Inc.							
2.	2. Lennart Ljung, (2012). System Identification: A Theory for the User, Prentice-Hall, 2nd edition							
Re	ference	Books						
1.		H., & Woods, J. (2012). R m Variables for Engineers		s. Probab	ility, Sta	tistics, and		
2.	Tangira CRC P	ala, A. K. (2018). Principle Press.	s of system ident	ification: t	theory a	nd practice.		
3.		lis, A., & Pillai, S. U. (2014 ses. Tata McGraw-Hill Ed			ables, a	nd stochastic		
Мо	de of Ev	aluation: Continuous Ass	sessment Tests, (Quizzes, <i>F</i>	Assignm	ent, Final		
Ass	sessmer	nt Test						
Re	commer	nded by Board of Studies	09-07-2022					
Apı	proved b	y Academic Council	No. 67	Date	08-08-	-2022		

	Course Title	L	Т	Р	С
MCOA504L	Smart Sensor Systems	3	0	0	3
Pre-requisite	NIL	Syllab	us v	ersio	on
			1.0		
Course Objectiv	es:				
	wledge on Smart sensing technology and its application	ns.			
2. To introduce	he standards and protocols used for smart sensing.				
Course Outeen					
On the completion	-				
	n of this course the student will be able to: nt sensor for a given application.				
	building blocks for a Smart sensor.				
•	ensators and perform calibration for smart sensors.				
	esize and layout a VLSI sensor and design micro powe	r genera	tion		
systems	,	J			
	tandards and protocols used for the smart sensor desig	gn and a _l	pply :	sma	rt
sensors for H	ealth, Industrial and Home related applications.				
Madalada O	and O and a surface discretions				
	art Sensor Introduction:			ho	urs
	sensors, Architecture of Smart Sensors: Important com				
	nic integrated smart sensor, Hybrid integrated smart ser				rs
Impedance sensi	ng system, Smart temperature sensor, Smart Wind sens	sor, Sma	art Ha	all	
sensor.					
Module:2 Line	earization:	<u> </u>		hoı	
	g shunt resistance, Divider circuit, higher order linearizi	na oiroui			ui s
				c ai	
internalation Pier	rewise linearization. Lookun tahle annroach. Adantive fi				
	cewise linearization, Lookup table approach, Adaptive fi				
interpolation, Piedapproach.	cewise linearization, Lookup table approach, Adaptive fi				
approach.	cewise linearization, Lookup table approach, Adaptive fi		ed	hoı	urs
module:3 Cal Calibration and	bration and Compensation: Self Calibration of smart sensors, Offset compensat	ion, Erro	sed 6 or ar	hou	rif
module:3 Cal Calibration and	bration and Compensation:	ion, Erro	sed 6 or ar	hou	rif
module:3 Cal Calibration and	bration and Compensation: Self Calibration of smart sensors, Offset compensat	ion, Erro	sed 6 or ar	hou)rif
Module:3 Cal Calibration and compensation, Le	Self Calibration of smart sensors, Offset compensate ad wire compensation, Temperature effect and compensation.	ion, Erro	eed 6 or ar Incer	hoi nd C taint)rif
Module:3 Cal Calibration and compensation, Le	Ibration and Compensation: Self Calibration of smart sensors, Offset compensate ad wire compensation, Temperature effect and compensations Si Sensors:	ion, Erro	6 or ar	hou nd D taint	orif ties urs
Module:3 Cal Calibration and compensation, Le Module:4 VLS Analog Numerica	Self Calibration of smart sensors, Offset compensate ad wire compensation, Temperature effect and compensations Sensors: I computation - CORDIC Computation. Adaptive filtering	ion, Erro	6 or ar	hou nd D taint	orifi ties urs
Module:3 Cal Calibration and compensation, Le Module:4 VLS Analog Numerica	Ibration and Compensation: Self Calibration of smart sensors, Offset compensate ad wire compensation, Temperature effect and compensations Si Sensors:	ion, Erro	6 or ar	hou nd D taint	orifi ties urs
Module:3 Cal Calibration and compensation, Le Module:4 VLS Analog Numerica Bit stream multiple	Self Calibration of smart sensors, Offset compensate ad wire compensation, Temperature effect and compensation of Sensors: I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network.	ion, Erro	6 algor	hou nd D taint	oriff ties urs
Module:3 Cal Calibration and compensation, Le Module:4 VLS Analog Numerica Bit stream multiple Module:5 Mice	Self Calibration of smart sensors, Offset compensate ad wire compensation, Temperature effect and compensations SI Sensors: I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network.	ion, Erro sation. U	6 algor	hou hd D taint hou rithm	oriff ties urs
Module:3 Cal Calibration and compensation, Le Module:4 VLS Analog Numerica Bit stream multip Module:5 Mic Introduction, Ene	Self Calibration of smart sensors, Offset compensate and wire compensation, Temperature effect and compensation wire compensation, Temperature effect and compensation Sensors: I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. To-power Generation: Tryy storage system, Thermoelectric energy harvesting,	ion, Erro sation. U	6 algor	hou hd D taint hou rithm	orif ties urs
Module:3 Cal Calibration and compensation, Le Module:4 VLS Analog Numerica Bit stream multipl Module:5 Mic Introduction, Ene Motion energy ha	Self Calibration of smart sensors, Offset compensate ad wire compensation, Temperature effect and compensation of smart sensors, Offset compensation and wire compensation, Temperature effect and compensation of smart sensors. Self Sensors: I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. To-power Generation: Transport of the sensor of smart sensors, Offset compensation of smart sensors, Offset	ion, Erro sation. U	6 algorian	hou back hours	orificies
Module:3 Cal Calibration and compensation, Le Module:4 VLS Analog Numerica Bit stream multipl Module:5 Mic Introduction, Ene Motion energy ha Module:6 Sta	Self Calibration of smart sensors, Offset compensate and wire compensation, Temperature effect and compensation wire compensation, Temperature effect and compensation of Sensors: I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I co-power Generation: I cropower Generation: I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network.	ion, Errosation. U	6 algor	hound Dataint	urs
Module:3 Cal Calibration and compensation, Le Module:4 VLS Analog Numerica Bit stream multipl Module:5 Mic Introduction, Ene Motion energy ha Module:6 Sta Introduction, IEEI	Self Calibration of smart sensors, Offset compensate and wire compensation, Temperature effect and compensation wire compensation, Temperature effect and compensation of smart sensors. Self Calibration of smart sensors, Offset compensation and wire compensation, Temperature effect and compensation of smart sensors. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. To-power Generation: Transport of the smart sensors, Offset compensation of smart sensors. To-power Generation: Transport of smart sensors, Offset compensation of smart sensors, Offset compensation of smart sensors. To-power Generation: Transport of smart sensors, Offset compensation of smart sensors. To-power Generation: Transport of smart sensors, Offset compensation of smart sensors. To-power Generation: Transport of smart sensors, Offset compensation of smart sensors. To-power Generation: Transport of smart sensors of smart sensors. Transport of smart sensors of smart sensors of smart sensors. Transport of smart sensors of smart sensors of smart sensors of smart sensors. Transport of smart sensors of smart senso	ion, Errosation. U	6 algor	hound Dataint	urs
Module:3 Cal Calibration and compensation, Le Module:4 VLS Analog Numerica Bit stream multipl Module:5 Mic Introduction, Ene Motion energy ha Module:6 Sta Introduction, IEEI	Self Calibration of smart sensors, Offset compensate and wire compensation, Temperature effect and compensation wire compensation, Temperature effect and compensation of Sensors: I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I co-power Generation: I cropower Generation: I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network.	ion, Errosation. U	6 algor	hound Dataint	orificies urs
Module:3 Cal Calibration and compensation, Le Module:4 VLS Analog Numerica Bit stream multipl Module:5 Mic Introduction, Ene Motion energy ha Module:6 Sta Introduction, IEEI protocol for smar	Self Calibration of smart sensors, Offset compensate and wire compensation, Temperature effect and compensation of smart sensors, Offset compensation and wire compensation, Temperature effect and compensation of smart sensors. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I computation - CORDIC Computation.	ion, Errosation. U	6 algoriand	hou hou hou hou	orifficies urs n, urs
Module:3 Cal Calibration and compensation, Le Module:4 VLS Analog Numerica Bit stream multip Module:5 Mic Introduction, Ene Motion energy ha Module:6 Sta Introduction, IEEI protocol for smar	Self Calibration of smart sensors, Offset compensate ad wire compensation, Temperature effect and compensation of smart sensors, Offset compensation, Temperature effect and compensation of sensors: I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I co-power Generation: I roy storage system, Thermoelectric energy harvesting, rvesting, Far-Field RF energy harvesting, Photovoltaic. Indards and protocols: I 1451 Standard, Network technologies, LonTalk, CEBL home, J1850 Bus, Plug-n-Play Smart Sensor Protocol. I e Studies:	ion, Erro sation. U	6 algoranda and 5	hound Dataint	urs urs urs
Module:3 Cal Calibration and compensation, Le Module:4 VLS Analog Numerica Bit stream multipl Module:5 Mic Introduction, Ene Motion energy ha Module:6 Sta Introduction, IEEI protocol for smar Module:7 Cas Design and Imple	Self Calibration of smart sensors, Offset compensate and wire compensation, Temperature effect and compensation wire compensation, Temperature effect and compensation wire compensation, Temperature effect and compensation wire compensation. Temperature effect and compensation wire compensation. Adaptive filtering ication. Analog VLSI based Neural Network. To-power Generation: Transport of the standard of the s	ion, Errosation. U	6 algorimunio	hou hou	urs
Module:3 Cal Calibration and compensation, Le Module:4 VLS Analog Numerica Bit stream multipl Module:5 Mic Introduction, Ene Motion energy ha Module:6 Sta Introduction, IEEI protocol for smar Module:7 Cas Design and Imple Smart Bed for He	Self Calibration of smart sensors, Offset compensate ad wire compensation, Temperature effect and compensation of smart sensors, Offset compensation, Temperature effect and compensation of sensors: I computation - CORDIC Computation. Adaptive filtering ication. Analog VLSI based Neural Network. I co-power Generation: I roy storage system, Thermoelectric energy harvesting, rvesting, Far-Field RF energy harvesting, Photovoltaic. Indards and protocols: I 1451 Standard, Network technologies, LonTalk, CEBL home, J1850 Bus, Plug-n-Play Smart Sensor Protocol. I e Studies:	ion, Errosation. U	6 algorimunio	hou hou	urs urs urs

2 hours

sensors, Biosensors and applications.

Module:8

Contemporary Issues

			То	tal Lectu	re hours:	45 hours		
Text B	ook(s	5)			<u>'</u>			
1.	l l	Manabendra Bhuyan, "Intelligent Instrumentation: Principles and Applications", CRC Press, 2011.						
2.	Gerard Meijer, Kofi Makinwa, Michiel Pertijs, "Smart Sensor Systems: Emerging Technologies and Applications", IEEE press, Wiley, 2014.							
Refere	nce E	Books						
1.		Kevin Yallup, Krzysztof Iniewski, "Technologies for Smart Sensors and Sensor Fusion", CRC Press, 2014.						
2.	Krzy	vsztof Iniewski, "Smart Sens	ors for Industrial	Applicatio	ns", CRC F	Press, 2013.		
Mode	of Eva	aluation: CAT / Assignment	t / Quiz / FAT / Pr	oject / Se	minar			
Recom	menc	led by Board of Studies	09-07-2022					
Approv	ed by	Academic Council	No. 67	Date	08-08-202	22		

Course Code	Course Title		L	T	Р	С
MCOA505L	MCOA505L Process Dynamics and control		3	0	0	3
Pre-requisite	NIL	Syllabus versio			on	
			•	1.0		
Course Objectiv	ves:					
1. Introduce the	modelling of various physical processes using first princi	iple				
2. Understand	various control modes and tuning of controller.					
3. Study advanced control strategies based on process model.						

Course Outcome:

On the completion of this course the student will be able to:

- 1. Develop mathematical models for dynamic processes
- 2. Select and tune PID controllers for the given systems.
- 3. Choose necessary final control element for a given application.
- 4. Design a control strategy for a process involving multiple variables and constraints.
- 5. Design and Conduct experiments, as well as analyse and interpret data

Module:1 | Process Dynamics:

7 hours

Need for Process Control; objective of modelling: models of level, thermal and flow processes; Integrating and non-integrating systems; Degrees of Freedom; Continuous and batch processes; Self-regulation; Lumped and Distributed parameter models; Linearization of nonlinear systems; P&ID diagram

Module:2 Dynamic and Steady State Behaviour of Process:

4 hours

Dynamic response of a first order process; First order plus dead time process; Second order process; Pure capacitive process; Pure dead time; Higher order process; Inverse response; Pade approximation.

Module:3 | Control Actions:

7 hours

Concept of servo and regulatory problems; Selection of measured, manipulated and controlled variables; Types of controller; Characteristic of on-off controller; proportional, integral and derivative controllers; P+I,P+D and P+I+D control modes; anti-reset windup; bumpless transfer; practical forms of PID control; selection of control modes for different processes.

Module:4 Design of feedback controller:

Evaluation criteria: IAE, ISE, ITAE and ¼ decay ratio; Tuning methods: Process reaction curve method: Continuous cycling method: Direct synthesis

Module:5 | Final Control Elements:

6 hours

I/P converter; Pneumatic and electric actuators; Valve Positioner; Control Valves; Characteristic of Control Valves: Inherent and Installed characteristics; Valve body; Commercial valve bodies; Control valve sizing; Cavitation and flashing; Selection criteria.

Module:6 | Enhancement to single loop regulatory control:

7 hours

Feed forward controller: design with steady state model, design with dynamic model; combination of feed forward-feedback structure; Cascade control: analysis and design; Ratio control; Split range control; Override control; Inferential control.

Module:7 Model based control:

6 hours

IMC structure – development and design - IMC based PID control – MPC: Dynamic matric control, Generalized predictive control; Multi-loop Control: Introduction; Process Interaction; Pairing of Inputs and Outputs; The Relative Gain Array (RGA).

Modul	e:8	Contemporary Issues				2 hours	
			Tot	tal Lectu	re hours:	45 hours	
Text B	ook(s)			1		
1.	Seborg, Dale E., Duncan A. Mellichamp, Thomas F. Edgar, and Francis J. Doyle, "Process dynamics and control", 4 th edition, John Wiley & Sons, 2016.						
2.		Stephanopoulos, George, "Chemical Process Control: An Introduction to Theory and Practice", Pearson India Education Services, 2015					
Refere	ence	Books					
1.		ighanowr, Donald R., and trol", McGraw-Hill, 2009.	Lowell B. Koppe	el, "Proce	ss systems a	nalysis and	
2.	Joh 201	nson, Curtis D, "Process o	control instrumer	ntation ted	chnology", Pr	entice Hall,	
3.	_	ák, Béla G., ed. "Process nemann, 2013.	Control: Instrum	ent Engin	eers' Handbo	ook. Butterworth-	
4.		juette, B.W., "Process Col a, 2010.	ntrol Modeling, D	esign an	d Simulation"	, Prentice Hall of	
Mode of Test	of Ev	aluation: Continuous Asse	essment Test, Qu	uizzes, As	ssignments, F	Final Assessment	
Recom	nmen	ded by Board of Studies	09-07-2022				
Approv	/ed b	y Academic Council	No. 67	Date	08-08-2022	2	

Co	urse Code	Course Title	L	T	Р	C
MC	OA505P	Process Dynamics and Control Lab	0	0	2	1
Pre	-requisite	NIL Syll	abu	s ve	rsic	on
	•			1.0		
Co	urse Objectiv	res				
		quate knowledge on the practical implementation of various c	ontro	ol l		
		for real-time processes				
		nd Implementation of Cascade, Ration, Feed-forward and adv	anc	ed C	ont	rol
	schemes	using the facilities available in the Process Control lab.				
Co	urse Outcom	es				
On	completion of	this course, the students will be able to:				
		various process parameter and design suitable control schem	າes f	or		
		type process.				
	•	eed Forward, Cascade and Multiloop PID controllers for the ty	pica	ıl ind	lusti	ria
	process.					
	icative Exper					
1.		e dynamics of first order, second order, interacting and non-				
_	interacting		4			
2		tal Study of PID controller on Level process station	_			
3.		and Control of Pressure Process station	_			
4.		tal Study of ON-OFF and PID controller on Temperature				
	Process	inherent and installed characteristics of central valves	_			
5. 6.		inherent and installed characteristics of control valves	\dashv			
		tal Study of Cascade / Ratio Control for a Level-Flow Process	<u>'</u>			
7.	MATLAB	ce comparison of PID controller tuning methods using				
8.		of nonlinear processes using MATLAB	_			
9.		ce comparison of single and multi-loop controllers	-			
10		d verification of Feed Forward controller	\dashv			
11		e rejection assessment of IMC-PI controller	\dashv			
		•	_			
12		d implementation of Velocity and Position form of PID Control				
13		using MATLAB of PID controllers using LabVIEW	\dashv			
14		n level control using PID controller in LabVIEW	\dashv			
17	Doner drain	Total Laboratory Hours	۶ ج	30 ho	OUT	
Mo	de of assessm	nent: Continuous assessment, FAT	<u> </u>		Jui	_
	t Book	Term. Committee acceptancing 1741				
1.		E., Duncan A. Mellichamp, Thomas F. Edgar, and Francis J				
'		ess dynamics and control", 4 th edition, John Wiley & Sons, 20				
2.		ulos, George, "Chemical Process Control: An Introduction to 1		rv a	nd	
		earson India Education Services, 2015		. ,		
Ref	erence Book					
1.	Coughanowr	, Donald R., and Lowell B. Koppel, "Process systems analysis	s an	d co	ntro)ľ",
	McGraw-Hill,	• • • • • • • • • • • • • • • • • • • •				,
			Hall			

09-07-2022 No. 67

Date

08-08-2022

Recommended by Board of Studies

Approved by Academic Council

Course Code	Course Title		L	Т	Р	С
MCOA506L	Real Time Embedded systems		2	0	0	2
Pre-requisite	NIL	Sy	llak	us '	vers	ion
				1.0		

- 1. Identify modern embedded systems requirements and its' design constraints
- 2. Acquire hardware and software skills required for the role of embedded system engineer
- 3. Build automated control systems for real world problems using low cost embedded platforms

Course Outcomes:

On the completion of this course the student will be able to:

- 1. Identify a microcontroller based on application specifications.
- 2. Develop embedded software using commercial integrated development environments
- 3. Interface sensors and actuators using suitable communication protocols
- 4. Design data acquisition system for embedded measurement and control applications
- 5. Design and implement real-time embedded control applications

Module:1 Embedded systems

2 hours

Embedded system components; Examples of embedded system; Attributes; Characteristics; Challenges in embedded computing system design; Typical embedded system software operations

Module:2 ARM Cortex-M Architecture

3 hours

CPU core: Architecture, Registers, Operating modes; Memory organization; Instructions: Instruction formats, and addressing modes; Exceptions and Interrupts; Commercial ARM Cortex-M microcontrollers

Module:3 Programming Embedded Systems

3 hours

Embedded C programming: Number systems, Data types, Data structures, Functions, Bitwise operations; Improving responsiveness: Interrupts, Finite state machines; Concurrency; Scheduling; Context switching; Real-time systems; Embedded software development: Host and target, Compiler, Assembler, Linker, and Loader; Hardware and software debugging, In system programming

Module:4 Peripherals and Interfacing

5 hours

Memory mapped IO; GPIO programming: Push-Pull, Open-Drain modes, Pull up and Pull down modes, Input and output devices; Timing generation and measurements: Timers, and PWM, Input capture; ADC, DAC, Analog comparator; Block data transfer using DMA; Real Time Clock (RTC); Power management

Module:5 | Serial Communication Protocols

5 hours

Serial communication protocols: UART, I2C, SPI, and CAN; Architecture; electrical considerations; message formats; message types; transmission and arbitration; Data visualization using logic analysers

Module:6 Data acquisition System Design

5 hours

Analog interfacing and data acquisition; Transducers; Current to voltage circuit, Instrumentation amplifier, isolation, Anti-aliasing filters; Nyquist theory to determine sampling rate; Measurement of voltage, current, and temperature; Analysis of noise; Techniques to reduce noise; Optical encoders for speed and position measurement; Data acquisition case studies

Module:7 | Embedded Control System

5 hours

Closed loop control system: Set-point control and trajectory tracking; Design process for a PID controller; Fixed point vs. Floating point representation, Implementation of PID controller; Implementation of digital filters, Quantization, Overflow and resource issues; Case

stud	dies: Dig	ital power supply design	and motor con	trol			
Mo	dule:8	Contemporary Issues				2 hours	
				Total Le	cture hours:	30 hours	
Tex	t Book((s)					
1.	Alexander G Dean, Embedded Systems Fundamentals with Arm Cortex-M based						
	Microc	ontrollers: A Practical App	roach, ARM E	ducation	Media, 2021.		
2.		an W. Valvano, Embedde		iter Syste	ms: Real Time	Interfacing, Third	
	Edition	, Cengage Learning, 2010	Ο.	-		-	
Ref	erence	Books					
1.	Yifeng	Zhu, Embedded Systems	s with ARM Co	ortex-M M	icrocontrollers	in Assembly	
	Langu	age and C, Third Edition,	2018.				
2.	Marilin	Wolf, Computers as Con	nponents: Prin	ciples of	Embedded Co	mputing Design,	
		<u> Edition, Morgan Kaufmanı</u>	•				
3.	•	amal, Embedded Systems		, Program	ming and Des	ign, Third Edition,	
		aw Hill Education India, 20					
Mo	de of Ev	valuation: CAT, Laborato	ry Assessmen	t/Assignn	nent / Quiz / F	ΑΤ	
Red	commen	ded by Board of Studies	09-07-2022				
App	roved b	y Academic Council	No. 67	Date	08-08-2022		

Course Code	Course Title	L	TP	С
MCOA506P	Real Time Embedded Systems Lab	0	0 2	1
Pre-requisite	NIL	Syllabu	s versio	n
		1	.0	
Course Objective	res			
cycle	rogramming and hardware skills in typical embedded sy ate the different embedded system design conce roller		·	
Course Outcom	AC			
	this course, the students will be able to:			
	ern software and hardware development tools for embe	ddad evet	am dasir	nr
	embedded system to solve real world control and autom			, , ,
Indicative Expe		ation proc	701113	
.	ation of simple C programming concepts in IDE: Bitwise			
	, control blocks and functions			
	ramming: Interfacing input and output devices		1	
	olling and interrupts using a Cortex-M microcontroller		1	
	of PWM signals for the given frequency and duty cycle	using		
timers	To a vivi signals for the given frequency and duty eyeld	using		
	ation of analog interfacing using ADC Programming with			
potentiome		•		
	ent of voltage and current for data acquisition system d	esian		
	ent of process variables: Temperature, level, position a			
speed				
	I2C based 3-axis accelerometer sensor			
	ation of CAN network and analysis using logic analyzer			
	ation of digital FIR filter and FFT in Cortex-M microcont			
11. Design and	d implementation of real-time PID control system for spentrol of motor			
12. Pre-emptive application	e task scheduling using RTOS kernel for mul s	titasking		
	Total Laborator	v Hours	30 hou	rs
Mode of assessn	nent: Continuous assessment, FAT	<i>,</i>	30 HOU	
Text Book				
	Dean, Embedded Systems Fundamentals with Arm Co	rtex-M ba	sed	
	ers: A Practical Approach, ARM Education Media, 2021			
	Valvano, Embedded Microcomputer Systems: Real Tir		cing, Thi	ird
	gage Learning, 2010.			
Reference Book	e			
		ro in Acco	mbly	
•	Embedded Systems with ARM Cortex-M Microcontroller	5 III A556	поту	
	nd C, Third Edition, 2018.	il coroite o	016	
	wn, Discovering the STM32 Microcontroller, Indiana Un	iiversity, 2	U 10.	
iviode of Evaluati	on: Assignment, FAT			
Recommended b	y Board of Studies 09-07-2022			

Course Code	Course Title	L	Т	Р	С
MCOA507L	Industrial Automation	2	0	0	2
Pre-requisite	NIL	Sylla	abus	ver	sion
		1.0			

- 1. Deliver a strong foundation to solve batch process and continuous process control
- 2. Technical competence through hands-on experience with industrial automation tools like PLC, DCS, and SCADA.
- 3. Exposure to various communication protocols used in industrial automation

Course Outcomes:

On the completion of this course the student will be able to:

- 1. Outline the basic concepts of computer-based automation, data communication and Industry 4.0.
- 2. Identify the main parts of PLC and describe their functions.
- 3. Develop a PLC ladder logic and Function block diagram to automate the process.
- 4. Elaborate the requirements of PLC enclosure, noise reduction techniques, proper grounding practices, and troubleshooting procedures.
- 5. Identify the hardware and software components of HMI, SCADA and Distributed Control System and configure a DCS programming.

Module:1 Role of Computers in Automation:

4 hours

Data loggers; Data Acquisition Systems (DAS); Functional block diagram of computer based control system; Sampling considerations; Automation: Definition, Benefits, Examples, Evolution of Automation; Automation Components: Discrete Switches, Analog Sensors, Relays, Actuators, and Automation tools.

Module:2 Programmable Logic Controller (PLC) : Architecture and basic 4 hours Ladder Instructions

Definition; PLC Architecture: input/output modules, power supplies, and isolators, programming device; Program Scan; IEC61131-3 Standard programming languages and their selection; PLC Basic Instructions; Input and Output Addressing; Ladder Diagram for Boolean Gates; Concept of Latching and Unlatching; Programming Timers and Counters; Applications

Module:3 | Advanced PLC Instructions and Functions

4 hours

Arithmetic functions; Comparison functions; Program control Instructions; Data transfer Instructions; Sequencer functions; Shift register functions; Analog PLC operation; PLC-PID functions; Applications; Networking of PLC; Design of interlocks and Alarm annunciator sequence (ISA 18.1 Standard)

Module:4 PLC Installation and Troubleshooting

4 hours

PLC Enclosure; Electrical Noise; Leaky inputs and outputs; Grounding; Voltage Variations and surges; preventive maintenance; Troubleshooting: Processor Module, I/O Malfunctions, PLC program.

Module:5 | Supervisory Control and Data Acquisition (SCADA)

4 hours

SCADA Components: Human Machine Interface, Supervisory System, Remote Terminal Unit, Controller, Intelligent Electronic Devices; Types of SCADA Architectures; SCADA Communication: IEC61850, Modbus, Distributed Network Protocol (DNP), OPC UA

IEC6254	1 Stand	dard				
Module:	6	Distributed Control S	System (DCS)			4 hours
Evolution	of Dis	tributed Control System	ns ; Generalized	darchited	cture of DCS: Loc	cal Control
unit – D	ata In	put and Output Unit,	Operator Interfa	ace , Er	ngineering interfa	ce ; DCS
	_	and Configuration; Prog	,	-		Selection
of DCS;	Case S	Studies: Thermal power	plant , Water tre	eatment p	olant	
			-			
Module:		Advances in Industri				4 hours
		ation: HART Protocol ; F				
		E 802.11- IEEE 802.15	•	•		andard for
	-	n Industrial revolution Industrial	dustry 4.0 ; Build	ding bloc	ks of	
Industria						
Module:	8	Contemporary Issues	8			2 hours
		<u> </u>		T 4 1		00.1
				lotai	Lecture hours:	30 hours
Text Boo						
1.		D Petruzella, "Program	mable Logic Co	ntrollers"	, McGraw Hill, Ne	w York,
	2016					
2.		: A Boyer, "SCADA: Sup	ervisory Contro	l and Dat	a Acquisition Sys	tems", ISA
		, 2010				
Referen		-				
1.	Lawre		hompson and		Shaw, "Indust	rial Data
2		nunications", 5 th Edition,			ta Camanauniaatia	no for
2.		Park, Steve Mackay, Ed mentation and Control",		actical Da	ita Communicatio	ns ior
3.		air Gilchrist, "Industry 4.		l Internet	of Things" Kindle	Edition
O .		s, New York, 2016	o. The madella	. micrinot	or rinigo randio	Edition,
Mode of		ation: CAT / Assignmen	t / Quiz / FAT			
		_				
		by Board of Studies	09-07-2022			
Approve	d by Ac	ademic Council	No. 67	Date	08-08-2022	

Course Code	ode Course Title				Р	С
MCOA507P	Industrial Automation Lab	Industrial Automation Lab (1
Pre-requisite	NIL	Syllabus versio			on	
				1.0		

- 1. Identify the hardware and software requirements of process and factory automation.
- 2. Configure and construct both PLC and DCS programs to implement process and factory automation.

Course Outcomes

On completion of this course, the students will be able to:

- 1. Develop a ladder program for a given automation application using Timer, counter, and Advanced Function block instructions.
- 2. Configure DCS and create a Function block diagram for the closed-loop process control and Monitoring application.

Indicative Experiments

	•
1.	Create a Ladder program to automate the continuous filling system using
	basic instructions in PLC.
2	Create a Ladder program to implement Alarm annunciator sequence (ISA
	18.1 Standard) using Timer Instructions
3.	Create a Ladder program to design an Automatic Parking System using
	Counter instructions in PLC
4.	Construct a Ladder/Function Block program to design an Automatic
	weighing system
5.	Program a ladder/Function Block program to control traffic in four-way
	Sequencer Output Instruction in PLC
6.	Interface the Analog /Digital Input /Output devices with Industrial type
	Standalone PLC.(Temperature Sensor /Limit Switch/ Photo Sensor/
	Hooter/Light Indicator/Relay)
7.	HMI Configuration and Programming of Discrete Control Sequence
	Process
8.	DCS commissioning and hardware configuration (AI, AO, DI and DO
	Modules).
9.	Construct a DCS functional block programming to design an Interlock
	system
10.	Interfacing Filed devices with DCS and build PID configuration in DCS
11.	SCADA configuration and programming of Level /Temperature process
	control and Monitoring
12.	Realization of various closed loop control schemes of Pilot plant
	(Level/Flow/Temperature/Pressure Process) using DCS
13.	IoT Based Level/Temperature Monitoring System
	· · · · · · · · · · · · · · · · · · ·

Total Laboratory Hours 30 hours

Mode of assessment: Continuous assessment, FAT

Text Book

- 1. Frank D Petruzella, "Programmable Logic Controllers", McGraw Hill, New York, 2016
- Popovic Bhatkar and Vijay P. Bhatkar, "Distributed Computer control for Industrial Automation", Imprint- Routledge, New York, 2017, https://doi.org/10.1201/9781315141404.

Reference Books

1. Hugh Jack, "Automating Manufacturing Systems with PLCs", Lulu.com, 2010, eBook, ISBN-13: 978-0557344253

2.	David Bailey and Edwin Wright "Pr		A for Indu	ustry" IDC Technologies,
	Newness, Imprint of Elsevier, 2003	3.		
Mo	de of Evaluation: Continuous Asses	sments and I	-AT	
Re	commended by Board of Studies	09-07-20	22	
Approved by Academic Council No. 67 Date 08-08-2022				

Course Code Course Title		L	Т	Р	С	
MCOA601L Building Automation				0	0	3
Pre-requisite NIL		Syl	labι	IS V	ersi	on
				1.0		

- 1. To impart knowledge on various systems involved in a building management system.
- 2. To give exposure on factors influencing controller design for building automation

Course Outcome:

On the completion of this course the student will be able to:

- 1. Demonstrate the importance of building automation and design fire alarm system for building automation
- 2. Construct the access control system with enhanced security and examine the various components of HVAC
- 3. Design, implement and evaluate the performance of controllers for BAS to meet various factors.
- 4. Develop and enhance the efficiency of energy management system.
- 5. Formulate a building management system for a given problem.

Module:1 Introduction:

4 hours

Concept and application of Building Management System (BMS) and Automation: requirements and design considerations and its effect on functional efficiency of building automation system, architecture and components of BMS

Module:2 | Fire Alarm System:

6 hours

Fundamentals: Fire modes, History, Components, and Principles of Operation. FAS Components: Different fire sensors, smoke detectors and their types, Fire control panels, design considerations for the FA system. Field Components, Panel Components, Applications. FAS Architectures: Types of Architectures, Examples. FAS loops: Classification of loops, Examples. Fire Standards: FAS Design procedure in brief, NFPA 72A, BS 5839, IS Concept of IP enabled fire & alarm system, design aspects and components of PA system.

Module:3 | Access Control System:

8 hours

CCTV: Camera: Operation & types, Camera Selection Criteria, Camera Applications, DVR Based system, DVM, Network design, Storage design. Components of CCTV system like cameras, types of lenses, typical types of cables, controlling system.

Security Design: Security system design for verticals. Concept of automation in access control system for safety, Physical security system with components, RFID enabled access control with components, Computer system access control – DAC, MAC, RBAC.

Module:4 HVAC system:

8 hours

Fundamentals: Introduction to HVAC, HVAC Fundamentals, Basic Processes (Heating, Cooling etc)

Basic Science: Air Properties, Psychometric Chart, Heat Transfer mechanisms, Examples.

Human Comfort: Human comfort zones, Effect of Heat, Humidity, Heat loss.

Processes: Heating Process & Applications (i.e., Boiler, Heater), Cooling Process & Applications (i.e., Chiller), Ventilation Process & Applications (i.e., Central Fan System, AHU, Exhaust Fans), Unitary Systems (VAV, FCU etc).

Module:5 | Field Control System and Networking Protocols:

5 hours

Instrumentation Basics, Field components & use, DDC, DCS & applications. Control Panel: HVAC Control Panel, MCC Basics, Panel Components Communication: Communication Basics, Networks, BACNet, Modbus, LON **Energy Management System:** Module:6 6 hours ASHRAE Symbols - Energy Management: Energy Savings concept & methods, lighting control, Building Efficiency improvement, Green Building, Concept & Examples. Module:7 **Building Management System:** 6 hours BMS (HVAC, Fire & Security) project cycle, Project steps BMS. Verticals: Advantages & Applications of BMS, Examples Integration: IBMS. Architecture, Normal & Emergency operation. Advantages of BMS Module:8 **Contemporary Issues** 2 hours Total Lecture hours: 45 hours Textbook(s) Gerardus Blokdyk, "Building Management Systems a Complete Guide", Emereo Pty Limited, 2020 Jim Sinopoli, Butterworth-Heinemann, "Smart Buildings", imprint of Elsevier, 2nd 2. ed., 2010. Albert Ting-Pat So, WaiLok Cha, "Intelligent Building Systems", Kluwer Academic 3. publisher, 3rd ed., 2012. **Reference Books** Robert Gagnon, "Design of Special Hazards and Fire Alarm Systems", Jones & Bartlett Learning, 2016. Ronnie J. Auvil, "HVAC Control Systems", American Technical Publishers, 2017 2. Mode of Evaluation: CAT / Assignment / Quiz / FAT Recommended by Board of Studies 09-07-2022 Approved by Academic Council No. 67 Date 08-08-2022

Course Code Course Title			L	Т	Р	С
MCOA602L	Industrial Robotics		3	0	0	3
Pre-requisite	NIL	Syllabus version				
		1.0				
Course Objective	es	•				
1. To unders	tand the importance of robotics in scientific and industria	al dor	mair	ns.		
2 To introdu	ce mathematical aspects of robotics such as spatialtran	sforn	nati	าทร		

- 2. To introduce mathematical aspects of robotics such as spatial transformations. Kinematics and dynamics of the manipulator.
- 3. To develop a controller for tracking a desire trajectory and path planning by a robot.

Course Outcome

At the end of the course, the students will be able to

- 1. Understand the concept of forward and inverse kinematic of robot manipulators.
- 2. Develop the dynamics of the robotic manipulator using Euler Lagrangian approach.
- 3. Demonstrate an ability to generate joint trajectories for motion planning.
- 4. Implement the PD and PID controller for independent joint control.
- 5. Formulate solutions to solve problems related to robotics.

Module:1 Introduction to Robot	tics	5 hours							
Basic definitions- Fundamentals ab									
manipulator, work space, classifica	tion of robots- Industrial F								
Module:2 Kinematics		8 hours							
Position and orientation of links-Co									
variable and position of end effecto									
Module:3 Velocity and static fo		9 hours							
	Translational and rotational velocities-Velocity transformations –Jacobian- Inverse kinematics of velocity-Static force/torque transformations-Recursive equations of motion and static force/torque relationships.								
Module:4 Trajectory generation		5 hours							
Point -to-point vs Continuous r with parabolic blends-Via points-Ca	rtesian paths- Kinematic	control.							
Module:5 Manipulator Dynamic	S	9 hours							
Newton Euler formulation of considerations.	robot dynamics- Actu	ator dynamics- Computational							
Module:6 Robot Positional Con	trol	5 hours							
Independent joint control-Feed forw Computed Torque control-Linear ar									
Module:7 Application of Roboti	CS	2 hours							
Applications of robotics in active peacres.	rception, medical robotic	s- autonomous vehicle and other							
Module:8 Contemporary Issues		2 hours							
Total Lecture hours: 45 hours									
Text Book(s)									
1. John J. Craig, Introduction to F 13: 9780137848744, Pearson		Control, 4th Edition, 2022, ISBN-							
2. Mark W. Spong, Seth Hutchins 2nd edition, ISBN 9781119524	, , , , , , , , , , , , , , , , , , , ,	t Modeling and Control, 2020,							
Reference Books									
A NAD Charles at all leading think	Dalasta, Taalasa la su. Dua								

1. M.P. Groover, et.al., Industrial Robots: Technology, Programming and applications,

	McGraw Hill, 2 nd Indian edition, 2017.								
2.	M O Tokhi, A K M Azad, Flexible robot manipulator :modelling, simulation and control 2 nd Edition, 2017.								
3.	Ashitava Ghosal. Robotic fundamental Concept and Analysis, Oxford University Press 11th Impression 2015.								
Мо	de of Evaluation: Continuous Asse	essment Tests, C	uizzes, A	ssignment, Final Assessment					
Tes	Test								
Red	Recommended by Board of Studies 09-07-2022								
App	Approved by Academic Council No. 67 Date 08-08-2022								

Course Co	de	Course Title		L	T	Р	C			
MCOA603L		Control of Electric Drives		3	0	0	3			
Pre-requisi	ite	NIL	Sylla			ersic	n			
0 0h	la a4la			1	.0					
1. To provi	•	concepts and basic operation of electric drive system								
2. To Anal	yse the	e solid state control of dc, induction and synchronous no design techniques of drive system	nachin	e dr	ives	;				
Course Ou	tcome	<u> </u>								
On the com	pletion	of this course the student will be able to:								
2. Design	the pha	ed of various, electrical machines, power converters ar ase controlled and chopper controlled DC motor drives. mamic model and control of IM Drives.		rols	syst	ems	3.			
•	•	erformance of permanent magnet machines Drives.								
		nt control algorithms/ techniques for control of electric of	drives.							
Module:1	Intro	duction to Electric Drives			6	hou	ırs			
Review of e	lectric	drive system, electrical machines, power converters ar	nd con	trol,	Dif	fere	nt			
types of loa braking, and		ountered in drive applications, Dynamics of drive systed-control.	ems, st	artir	ng,					
Module:2	Phas	e Controlled DC motor drives:			5	hou	urs			
		wo -quadrant and four quadrant rectifier fed dc separa	ately ex	cite						
• .		p operation of rectifier fed drive, design of controller								
Module:3	Chop	per Controlled DC motor drives:			5	hou	urs			
	Irant, T	wo –quadrant and four quadrant chopper fed dc separ ration of chopper fed drive, design of controller	ately e	xcit	ed	moto	or			
Module:4	Dyna	mic Modelling of Induction Machines			8	hou	urs			
Equivalence	e Gene ence F	nase induction machine, Three phase to two phase translated Model in Arbitrary reference Frames, Electromaterames Model, Rotor Reference Frames Model, Syncton	agnetio	То	rqu	e,				
Module:5	Cont	rol of Induction Motor Drive:			8	hou	ırs			
Drives, Cur	rent So	ontrol, Slip. Energy Recovery Scheme, Voltage-Sou ource Induction Motor Drives, V/f control, need for vect trol of induction motor drives.								
Module:6	Iodule:6 Permanent-Magnet Synchronous and Brushless DC Motor Drives					5 hou				
control of P	ermane	ets and Characteristics, Permanent synchronous motor ent synchronous motor drive, Permanent Magnet Brusl of PMBLDCM Drive.					,S			

Intelligent Control of Electric Drives:

Fuzzy Logic Control of ac and dc Drives, Artificial Neural Network control of ac and dc

6 hours

Module:7

Drives	, Hyb	rid Fuzzy/PI Control of ac	and dc Drives,						
Modul	e:8	Contemporary Issues	rary Issues						
			Tot	tal Lectur	e hours:	45 Hours			
Text B	ook(s)							
Krishnan, Electric Motor Drives: Modelling, Analysis and Control, Pearson Education, 2015									
Refere	nce	Books							
1	Bim 201	al K. Bose, "Modern Powe 5.	er Electronics an	d AC Driv	es", Pears	on Education,			
2	Muhammad H. Rashid , Power Electronics: Circuits, Devices and Applications, Pearson Education , 2014								
3	Orłowska-Kowalska, Teresa, Blaabjerg, Frede, Rodríguez, José, "Advanced and Intelligent Control in Power Electronics and Drives", Springer, 2014								
4	Ned 201	Mohan, "Electrical Machi 1.	nes and Drives:	A First co	urse", Wile	ey Publications,			
5		-Fun Chan, Keli Shi, "Appl ey, 2011	lied Intelligent Co	ontrol of Ir	nduction M	lotor Drives",			
6	G'K 201	.DUBEY , Fundamentals o	of Electric drives	, Narosa	publicatior	ns, second edition,			
Mode	of Eva	aluation: CAT / Assignmer	nt / Quiz / FAT /	Project / S	Seminar				
Recom	nmen	ded by Board of Studies	09-07-2022						
Approv	ed by	y Academic Council	No. 67	Date	08-08-20	22			

Course Code	Course Title		L	Т	Р	С
MCOA604L	Machine Learning		2	0	0	2
Pre-requisite	quisite NIL Syl			us	vers	sion
				1.0)	

- 1. To provide the student with a broad understanding of machine learning algorithms and their applications.
- 2. To Understand and Interpret machine learning concepts, such as to robotic control, data mining, autonomous navigation, bioinformatics, speech recognition, and text and web data processing to the real world applications.

Course Outcome:

At the end of the course, the student will be able to:

- 1. Apply gradient descent approach for regression problems and Instant based learning for Classification problems.
- 2. Analyze and interpret the data using multiple classes and text classification problems.
- 3. Analyze the data using SVM, LDA and PCA
- 4. Apply Reinforcement learning by formulating MDP and computing optimal policy for continuous variables or higher dimension.
- 5. Conduct experiments to design a component or a product applying all the relevant standards with realistic constraints.

Module:1 Introduction, Regression Problem and Gradient Descent 4 hours

Introduction: Prediction, Classification, Forecasting, Filtering, Regression, Clustering. Review of Linear Algebra, Probability and Statistics. Data Exploration and Pre-processing: Data Objects and Attributes; Statistical Measures, Visualization, Data Cleaning and Integration, Linear Regression; Gradient Descent, Batch Gradient Descent, Stochastic Gradient Descent, The Concept of Under fitting and Overfitting.

Module: 2 Classification Problem and Instance Based Learning 4 hours

The Concept of Parametric Algorithms and Non-parametric Algorithms: Locally Weighted Regression, The motivation of Logistic Regression, Logistic Regression and Perceptron Learning Algorithm.

Module:3 Multiple Classes and Text Classification

4 hours

Softmax Regression Discriminative Algorithms, Generative Algorithms, Gaussian Discriminant Analysis (GDA) and Naive Bayes algorithm.

Module:4 | Support Vector Machine Algorithm

4 hours

Intuitions about Support Vector Machine (SVM): Notation for SVM, Functional and Geometric Margins.

Module:5 Dimensionality Reduction

4 hours

Linear Discriminant Analysis (LDA); Principal Component Analysis (PCA); Transform Domain and Statistical Feature Extraction and Reduction.

Module:6 Markov Decision Process and Reinforcement Learning 4 hours

Applications of Reinforcement Learning: Markov Decision Process (MDP); Defining Value & Policy Functions, Value Function and Optimal Value Function.

Module:7 | Computing an Optimal Policy

4 hours

Value Iteration: Policy Iteration; Generalization to Continuous States; Discretization & Curse of Dimensionality and Fitted Value Iteration algorithm.

Modul	e:8	Contemporary Issues			2 hours
		Total Lecture hours:			30 hours
Tavt D	l-(30 110013
Text B		. ,			
1.	Ton	n Mitchell, "Machine Learn	ing", McGraw-H	ill Educat	tion, 2010.
2.	Dau	ıme, H. III, "A Course in M	achine Learning	", 2015;	http://ciml.info/
Refere	nce	Books			
1.	Chr	istopher Bishop, "Pattern l	Recognition and	Machine	Learning", Springer, 2013.
2.	Bala	as K Natarajan, "Machine	Learning", Elsev	ier Scien	ce, 2014.
Mode o	of Ev	aluation: CAT / Assignme	nt / Quiz / FAT /	Lab / Ser	ninar
Recom	men	ded by Board of Studies	09-07-2022		
Approv	ed b	y Academic Council	No. 67	Date	08-08-2022

Com	rse Code	Course Title			Т	Р	С
	A604P	Machine Learning Lab		0	0	2	1
	requisite	NIL	Sv	<u>llabι</u>	_		•
	- oquiono				1.0	<u> </u>	
Cou	rse Objectiv	es					
		d the implementation procedures for the machine	e learning a	algori	thms	SUS	ina
•		Python, Weka.	o rourring (aigoi.			9
2		d modern notions in data analysis-oriented comp	outing and	cond	uct		
		ts to design a component or a product applying				ndar	ds
		tic constraints.					
	rse Outcome						
		this course, the students will be able to:					
		ropriate data sets to the Machine Learning algorit		مد دا دا د			
	•	d apply Machine Learning algorithms to solve rea	ai worid pro	ppiem	าร		
	cative Exper	· · · · · · · · · · · · · · · · · · ·	a lara rithan	:	I		
1.		the non-parametric Locally Weighted Regression data points. Select appropriate data set for your e					
	and draw g		xpennent				
2.		inear regression using python. Select appropriate	e data set t	or			
		ment and plot the graphs.	o data oot i	0.			
3.		gram to construct a Bayesian network considering	g medical				
		nis model to demonstrate the diagnosis of heart p		ng			
	standard He	eart Disease Data Set. You can use Java/Python	ML library				
	classes.						
4.		gram to implement k-Nearest Neighbour algorithr					
		set. Print both correct and wrong predictions. Ja	iva/Python	ML			
5.		ses can be used for this problem. k-means clustering for classification.					
6.		an algorithm to demonstrate the significance of g	onotic				
0.	algorithm	an algorithm to demonstrate the significance of g	CHELIC				
7.		gram to demonstrate the working of the decision	tree based				
		im. Use an appropriate data set for building the					
		nis knowledge to classify a new sample.					
8.	Implement	PCA, LDA for dimensionality reduction using MA	TLAB. Use				
		o demonstrate the diagnosis of Epilepsy patients	using				
		EG Data Set.					
9.		SVM tool for the detection of the Epilepsy		_			
		EG Data Set. Also use standard Heart Diseas leart disease.	e Data Se	ττο			
10.		ition of popular architectures related to CNN, RN	N I STM a	nd			
10.	Auto-encod	• •	14, LOTIVI a	iiu			
11.		tion of Time Series Clustering and alignment alg	orithms				
12.		tion of Reinforcement Learning algorithms.					
	•	Total Labo	oratory Ho	urs	30	hou	rs
	Books						
		"Machine Learning", McGraw-Hill Education, 20	10.				
		, "A Course in Machine Learning", 2015					
	rence Book						
		Sishop, "Pattern Recognition and Machine Learni	<u> </u>	er, 2	013.		
		rajan, "Machine Learning", Elsevier Science, 201	4.				
Mode	e of Evaluation	on: Assignment, FAT					
Reco	mmended by	/ Board of Studies 09-07-2022					
			3-08-2022				
י יאטי	STOU DY AUGI	Joine Journal 140. 07 Date 00	J 00 2022				

Course Code		Course Title			L	T	Р	С
MCOA605L		Advanced Python pro	gramming		1	0	0	1
Pre-requisite	NIL			Syl	labı		ers/	ion
Course Ohio						1.0		
Course Obje 1. Design		gramming constructs in Py	than to salve engi		nar	roh	lom	
•			•	ieen	ngp	טטונ	I C III	5.
2. Apply	embedded prog	gramming features in Pytho	on					
Course Outc	omes:							-
1. Acquir	e programming	skills in python						
2. Perfor	m coding using	loops and conditional exe	cution.					
3. Ability	to create and u	se different data structure	S.					
4. Create	functions, mod	dules and packages to faci	litate reusability of	the c	ode) .		
5. Devel	ping python co	enstructs for control engine	ering applications					
Module:1	Fundamental	s of Python Programmin	g				2 ho	urs
History of pyt		ell- Programming using ID		nmer	nts,	Var	iable	es-
	onversion- Ope	rators-Different forms of A	ssignment-Reserve	ed wo	ords	s- Bi	uilt i	n
functions								
Module:2	Flow controls						2 ho	urs
	•	lse, elif-For loop-For loop (using in range-whil	e loo	p- L	.oop)	
Module:3	using pass, bre Data structur	ak ,continue and else.					2 ho	uro
			oto otruoturos usor	dofi	200			urs
structures	bets-Dictionane	s-Various operations on d	ala Siluciules-usei	uem	ieu	ual	a	
Module:4	Functions an	d Files					2 ho	urs
		function- local and global s	scope of variables-l	amb	da f			
	ead, write, app					J 10		
Module:5	String handli					2	2 ho	urs
Strings -vario	ıs operations o	n strings- Regular express	ions-Matching, rep	lace	, pa	tterr	าร	
Module:6	Modules and						2 ho	urs
Module.0		1						
		odule-in built modules-user	defined modules-O	vervi	 ∋w c		ımp	у,
	le-Importing mo	<u>. </u>	defined modules-O	vervi	ew c		ımp	у,

3 hours

15 hours

Control Engineering using Python

Ramalho, L. (2022). Fluent python. "O'Reilly Media, Inc.".

Mode of evaluation: No separate evaluation for theory

Computing (pp. 19-50). Springer, Cham.

Springer International Publishing.

analysis-state feedback, observer design

Text Book(s)

Reference Books

1.

2.

1. 2.

Time response analysis-Stability analysis-Root locus-Bode plot-PID controller-State space

Total Lecture hours:

Smith, E. (2020). Python, the Fundamentals. In Introduction to the Tools of Scientific

Lynch, S. (2018). *Dynamical systems with applications using python*. Switzerland:

Padmanabhan, T. R. (2016). Programming with python (Vol. 349). Springer.

McGrath, M. (2018). Python in easy steps: Covers Python 3.7. In Easy Steps.

3	Gowrishankar, S., & Veena, A. (2018). <i>Introduction to python programming</i> . CRC Press.						
4	Sharma, V. K., Kumar, V., Shar Practical Approach. Chapman a		k, S. (202	11). Python Programming: A			
Мо	de of Evaluation : No separate ev	aluation for theo	ry class				
Red	commended by Board of Studies	09-07-2022					
App	proved by Academic Council	No. 67	Date	08-08-2022			

Cou	ırse Code		se Title		L	T	Р	С
MC	OA605P	Advanced Pytho	n Programmin	g Lab	0	0	4	2
Pre	-requisite	NIL			Syllab	us v	ersi	on
						1.0		
Cou	ırse Objectiv	S						
	1. Apply embe	dded programming features	in Python to so	lve engineeri	ng prol	olem	s.	
	urse Outcom							
On		this course, the students will	be able to:					
		ogramming skills in python		_				
		d analysis of control theory a	pplications usin	g python				
	icative Exper					1		
1.		gram to perform various athe		on two numb	oers			
2		gram to find simple and comp						
3.		gram to find the prime number						
4.	•	gram to calculate distance be	tween two carte	esian coordin	ates			
_	by taking in	outs from user				-		
5.		gram to find whether the give		en or oaa				
6.		gram to generate Fibonacci s		file				
7.		gram to count number of cha		ı a ille				
8.		gram to find the factorial of a						
9. 10		ction two find roots of a quad						
		nction to compute gcd and lo		n a liat				
11		gram to detect and remove re						
12	•	gram to find union and interse			-t			
13 14	•	gram to separate positive and		bers from a li	St			
15		gram to map lists into a diction gram to capitalize a specific v						
16		gram to capitalize a specific v			ch			
17		gram to find a value in list usi gram to sort a list using selec						
18		gram to soft a list using select			5 3011			
19		gram to detect substrings in a	<u> </u>	illiaronie				
20		nse analysis of first order sys	<u> </u>					
21	•	alysis using root locus				-		
22		alysis using bode plot				-		
23		state feedback controller						
		Tata resultation solutions	Total	Laboratory I	Hours	60	hou	ırs
Mod	de of assessm	ent: Continuous assessment		3. a. ,		1		
	t Book							
1.	Smith, E. (20	20). Python, the Fundamenta	ls. In Introducti	on to the Too	ols of S	cient	ific	
		p. 19-50). Springer, Cham.						
2.	<u> </u>	18). Dynamical systems with	applications us	ing python. S	Switzer	land:		
	Springer Inte	national Publishing.	- •					
Ref	erence Book							
1.	Sharma, V. k	., Kumar, V., Sharma, S., & F	Pathak, S. (202	1). Python Pr	ogram	ming	: A	
		roach. Chapman and Hall/CF	•	- -	-	•		
2.		r, S., & Veena, A. (2018). <i>Inti</i>		hon program	ming. (CRC	Pre	SS.
		n: Assignment, FAT	1-7-	, 5				
		Board of Studies 09-07-2						
1 nn	roved by Aca	demic Council No. 67	Date	08-08-202	2			

Course Code	Course Title		L	Т	Р	С
MCOA606L	Optimal Control Systems		3	0	0	3
Pre-requisite	NIL	Syl	labı	ıs v	ersi	on
				1.0		

The course is designed to enable the students to

- 1. Understand the optimal control theory fundamentals and apply the dynamic programming method for finding the optimal control law
- 2. Use the variational approach for solving the constrained optimal problem and
- 3. Compare the different iterative methods used for solving the optimal control problems

Course Outcome

At the end of the course, the student will be able to

- 1. Formulate the optimal control problem and find an optimal solution for the functionals with boundary conditions.
- 2. Determine an optimal control law using dynamic programming technique for a practical dynamic system.
- 3. Solve the optimal control problems using variational approach and determine a control law for optimal tracking and regulatory problems.
- 4. Design a controller for achieving the desired output in minimum time and with optimal control effort.
- 5. Determine an optimal control using different numerical techniques with MATLAB tool.

Module:1Introduction6 hoursOptimal Problem formulation: Mathematical model, Physical constraints, Performance
measure – Form of optimal control – Performance measures for optimal control problem –
Selecting a performance measure.Selecting a performance measure.Module:2Calculus of Variations8 hours

Basic concepts: Function and functionals, Increment, Differential and variation – Functionals of a single function – Functionals involving several independent functions – Piecewise–smooth extremals – Constrained extrema: Direct method, Lagrange multiplier method.

Module:3 Dynamic Programming 7 hours Optimal control law – Principle of optimality – Dynamic programming: Computational procedure, Interpolation – Recurrence relation of dynamic programming – Characteristics of dynamic programming solution.

Module:4 Variational Approach

Hamilton–Jacobi–Bellman equation – Continuous linear regulator problems – Variational approach to optimal control problems: Necessary conditions for optimal control.

Module:5 Linear Quadratic Optimal Control Systems 6 hours
Finite time linear regulator problems – Finite time Linear tracking problems – Solution of general continuous time optimal control problem – Continuous time Linear Quadratic Regulator

design – Riccati equation – Pontryagin's minimum principle – state inequality constraints.

Module:6 | Constrained Optimal Control Systems | 5 hours

Time optimal control of LTI system – Fuel optimal control systems – Energy optimal control systems – Singular intervals in optimal control problems.

 Module:7
 Iterative Numerical Techniques
 6 hours

 Two point boundary-value problems - Method of steepest decent - variation of extremals - Quasilinearization - Gradient projection algorithm - Case studies.

 Module:8
 Contemporary Topics
 2 hours

		•	Total Lecture ho	urs:	45 hours				
Tex	kt Book	(s)							
1.	Donald E. Kirk (2004). Optimal Control Theory: An Introduction, Dover Publications.								
2.	Desine	eni Subbaram Naidu (2009). Optimal Contro	I Systems	s , CRC Press.				
Ref	ference	Books							
1.		Lewis, Draguna L. Vrabie, Viley & Sons, Inc., Hoboke		os (2012).	Optimal Control, 3 rd edition,				
2.		T Aschepkov, Dmitriy V Dal Control, Springer.	olgy, Taekyun K	im and Ra	avi P Agarwal (2016).				
3.		n P. Sethi (2019). Optimal conomics, 3 rd Edition, Sprir		Application	ns to Management Science				
Мо	de of Ev	aluation: Continuous Ass	essment Tests, C	Quizzes, A	ssignment, Final				
Ass	sessmer	nt Test							
Red	commer	ded by Board of Studies	09-07-2022						
App	oroved b	y Academic Council	No. 67	Date	08-08-2022				

Course Code	Course Title		L	T	Р	С
MCOA607L	Adaptive and Robust Control		3	0	0	3
Pre-requisite	MCOA502L, MCOA502P	Sy	llak	us v	/ers	ion
				1.0		

- 1. Expose to techniques of system identifications for time varying systems
- 2. Design of Adaptive Control Systems
- 3. Analyze uncertain systems and design robust control systems.

Course Outcome:

On the completion of this course the student will be able to:

- 1. Estimate system parameters and design self-tuning regulators
- 2. Apply Lyapunov theory and MIT rule to design Model-Reference Adaptive Control schemes
- 3. Utilize vector fields to analyze variable structured systems and design sliding mode control law
- 4. Analyze the stability of systems with unstructured uncertainty and design robust control loops satisfying system norms
- 5. Utilize simulation tools to design, implement and test adaptive and robust control strategies

Module:1 | Adaptive Control Approach

6 hours

Background: Linear feedback, Effects of process variations, Adaptive control schemes; Estimation: Parameter estimation, Least squares and Regression models; Estimating Parameters in Dynamical Systems; Recursive least squares (RLS) estimate

Module:2 | Self-Tuning Regulators (STR)

6 hours

Controller design: Minimum degree pole placement (MDPP) design; Direct and Indirect self-tuning regulators; Continuous-time self-tuners; Stochastic self-tuning regulators; Minimum variance controller design, Minimum average controller design; Linear Quadratic STR, Adaptive Predictive Control

Module:3 | Model-Reference Adaptive Control (MRAC)

6 hours

Series and Parallel MRAC schemes; The MIT Rule, Determination of adaptation gain; Lyapunov Theory: Design of MRAC Using Lyapunov Theory; Bounded-Input Bounded-Output Stability; Applications to Adaptive Control, MRAC via Output Feedback; Relations between MRAS and STR.

Module:4 | Gain Scheduling Control

7 hours

Principle; Design approach: Linearization of nonlinear actuators, Measurement of auxiliary variable, Time scaling based on production rate, Nonlinear transformation of the system dynamics; Application of gain scheduling controllers; Case studies: Industrial adaptive controllers, ship steering

Module:5 | Sliding Mode Control

6 hours

Variable structure systems, Vector field; Sliding surfaces; Continuous approximations of switching control laws; Modeling and Performance Trade-Offs; Relay control for multi-input systems

Module:6 | Model Uncertainty

6 hours

Unstructured uncertainty and system model; Stability under unstructured uncertainties; Robust stability criteria; Robust performance analysis: Small gain theorem, μ - Analysis and Synthesis, Lyapunov approach

Modul	e:7	H₂ and H∞ Control				6 hours
Norms	: Cor	nputation of H₂ and H∞ norms;	Standard L	QR, LQG	control proble	m; Robust
		olem as H₂ and H∞ Control; H₂			•	
		ase study on aircraft hovering		•	·	•
Modul	e:8	Contemporary Issues				2 hours
			То	tal Lecti	ure hours:	45 hours
Text B	ook(s)				
1.	Astı	om, K. J., & Wittenmark, B. (2	2013). Adapt	ive contr	ol. Courier Corp	ooration.
2.	Liu,	K. Z., & Yao, Y. (2016). Robu	st control: th	eory and	applications.	John Wiley &
	Son					
Refere	nce l	Books				
1.		try, S. & Bodson, M., & Bartra				ability,
	con	vergence, and robustness. Do	ver Publicat	ions, Ne	w York	
2.	Pet	os A Ioannou and Jing Sun. (2	2013). Robu	st adapt	ive control. Dov	er Publications.
3.	Mad	kenroth, U. (2013). Robust co	ontrol system	s: theory	and case stud	lies. Springer
		ence & Business Media.				
Mode	of Ev	raluation: CAT, Assignment, C	Quiz, FAT			
Recom	men	ded by Board of Studies	09-07-2022			
		y Academic Council	No. 67	Date	08-08-2022	

Course Code	!	Course Title L	. T	Р	С			
MCOA608L		Discrete Control Systems 3		0	3			
Pre-requisite	•	NIL	Syllab		rsion			
				1.0				
Course Objec								
		-depth knowledge of control theory, design of di	fferent	contro	ollers,			
		ete systems by state space analysis.						
2. To analyz	e the co	oncepts of realizing discrete systems.						
0 0 1								
Course Outo								
On the comple	etion of	this course the student will be able to:						
1 Apolyzo o	licarata	time eyetems by using the z transform						
•		time systems by using the z-transform. lel and analyze the response and stability of system	e in die	croto				
domain.	ine mod	let and analyze the response and stability of system	s III uis	CICLO				
	nd realiz	ze digital controllers.						
•		sis of discrete systems using state space approach						
		tical implementation of discrete systems and associ		nstrai	nts			
Module:1	Introd	luction to Discrete Control System:		6 hou	rs			
	Module:1 Introduction to Discrete Control System:							
ntroduction-	continu	ous versus digital control- sampling process- effe	ct of sa	amplin	ng			
		stem representation-Z-transform-Mapping of s-pla						
				•				
Module:2	•	ete Time System Modelling and Response:		houi	rs			
Module:2 Pulse transf	Discr		6	hou				
Pulse transf	Discr er fun	ete Time System Modelling and Response:	6	houi	Bilinea			
Pulse transf transformation	Discr er fun	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury	6	houi	Bilinea			
Pulse transf transformation system	Discreter fun n-Time	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response	State of se	hour bility-E econd	Bilinea orde			
Pulse transf transformation system Module:3	Discreter fun n-Time	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller:	State of se	hour bility-E econd	Bilinea orde			
Pulse transf transformation system Module:3 Discretization	Discreter fun n-Time Design of con	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using	Stable of se	houi bility-E econd houi	Bilinea orde rs ion			
Pulse transformationsystem Module:3 Discretization techniques-Z-	Discreter fun n-Time Design of con-	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital P	Stable of se	houi bility-E econd houi	Bilinea orde rs			
Pulse transformationsystem Module:3 Discretizationsechniques-Z-	Discreter fun n-Time Design of con-	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using	Stable of se	houi bility-E econd houi	Bilinea orde rs			
Pulse transformationsystem Module:3 Discretization techniques-Zopeat controlle	Discreter fun n-Time Design of con- plane	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Pin's controller- Root Locus design.	y State of see	hour bility-Becond brown brow brown brown brown brown brown brown brown brown brown brown brow brown b	Bilinea orde rs ion -dead			
Pulse transformationsystem Module:3 Discretization techniques-Zueat controlle	Discreter funden-Time Design of control plane er-Dahlin	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Pin's controller- Root Locus design. ete state space model:	y State of set o	hour bility-Becond hour brmati roller-	rs ion -dead			
Pulse transformationsystem Module:3 Discretization techniques-Zepeat controlle Module:4 Introduction to	Discreter fundamental Design of configure plane probability of state	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Pin's controller- Root Locus design. ete state space model: space-state equation-solutions-conversion of state	y State of set o	hour bility-Becond hour brmati roller-	rs ion -dead			
Pulse transformationsystem Module:3 Discretization techniques-Zepeat controlle Module:4 Introduction to	Discreter fundamental Design of configure plane probability of state	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Pin's controller- Root Locus design. ete state space model:	y State of set o	hour bility-Becond hour brmati roller-	rs ion -dead			
Pulse transformationsystem Module:3 Discretization techniques-Zebeat controlle Module:4 Introduction to function-state	Discreter fundamental processing	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Pin's controller- Root Locus design. ete state space model: space-state equation-solutions-conversion of state modeling-solution to discrete state equation.	y State of see of see ID continued to space	6 hour bility-Becond 6 hour brmati roller- 7 hour e to tr	rs ion -dead			
Pulse transformationsystem Module:3 Discretization techniques-Zebeat controlle Module:4 Introduction to function-state	Discreter fundamental Designation of control Discrete Space	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Plan's controller- Root Locus design. ete state space model: space-state equation-solutions-conversion of state modeling-solution to discrete state equation. In via State space:	y State of set transformed to contract the space of the s	hour bility-Eecond hour brmati roller- hour e to tr	rs ion -dead rs ransfe			
Pulse transformationsystem Module:3 Discretization techniques-Zocat controlle Module:4 Introduction to function-state Module:5 Controllability-	Discreter fundamental de la complemental de la comp	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Plan's controller- Root Locus design. ete state space model: space-state equation-solutions-conversion of state modeling-solution to discrete state equation. n via State space: ability- stability-Pole placement by state fee	y State of see of see ID continued to space	hour bility-Eecond hour brmati roller- hour e to tr	rs ion -dead rs ransfe			
Pulse transformationsystem Module:3 Discretization techniques-Zocat controlle Module:4 Introduction to function-state Module:5 Controllability-	Discreter fundamental de la completa del completa del completa de la completa de la completa de la completa del completa d	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Plan's controller- Root Locus design. ete state space model: space-state equation-solutions-conversion of state modeling-solution to discrete state equation. In via State space:	y State of set transformed to contract the space of the s	hour bility-Eecond hour brmati roller- hour e to tr	rs ion -dead rs ransfe			
Pulse transformationsystem Module:3 Discretization techniques-Zebeat controlle Module:4 Introduction tefunction-state Module:5 Controllability-observer designate	Discreter fundamental processing	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Prois controller- Root Locus design. ete state space model: space-state equation-solutions-conversion of state modeling-solution to discrete state equation. n via State space: ability- stability-Pole placement by state feuced order observer design.	y State of seedback	hour bility-Eecond hour brmati roller- hour e to tr	rs ion -dead rs ransfe			
Pulse transformations system Module:3 Discretization techniques-Zoeat controlle Module:4 Introduction to function-state Module:5 Controllability-observer designates	Discreter funder-Design of configuration of configuration of state expace Design Observinger Red	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Plan's controller- Root Locus design. ete state space model: space-state equation-solutions-conversion of state modeling-solution to discrete state equation. n via State space: ability- stability-Pole placement by state feuced order observer design. tization effects:	y State of see transform of the space spac	hour brmati croller- hour Full	rs ion -dead rs orde			
Pulse transformations transformation system Module:3 Discretization techniques-Zebeat controlle Module:4 Introduction to function-state Module:5 Controllability-observer designation	Discreter fun n-Time Design of con- plane er-Dahlin Discrete space Design Observer of Red Quan effects-	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Plan's controller- Root Locus design. ete state space model: space-state equation-solutions-conversion of state modeling-solution to discrete state equation. n via State space: ability- stability-Pole placement by state fe uced order observer design. tization effects: Truncation and Rounding off error – SNR- Limit	y State of see transform of the space spac	hour brmati croller- hour Full	rs ion -dead rs orde			
Pulse transformationsystem Module:3 Discretization techniques-Zebeat controlle Module:4 Introduction to function-state Module:5 Controllability-observer designates	Discreter fun n-Time Design of con- plane er-Dahlin Discrete space Design Observer of Red Quan effects-	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Plan's controller- Root Locus design. ete state space model: space-state equation-solutions-conversion of state modeling-solution to discrete state equation. n via State space: ability- stability-Pole placement by state fe uced order observer design. tization effects: Truncation and Rounding off error – SNR- Limit	y State of see transform of the space spac	hour brmati croller- hour Full	rs ion -dead rs orde			
Pulse transformations transformation system Module:3 Discretization techniques-Zebeat controlle Module:4 Introduction to function-state Module:5 Controllability-observer designation sample rate resignation	Discreter fundamental procession of conference of conference of conference of state of state of space of conference of conferenc	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response in of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Plan's controller- Root Locus design. ete state space model: space-state equation-solutions-conversion of state modeling-solution to discrete state equation. In via State space: ability- stability-Pole placement by state featured order observer design. tization effects: Truncation and Rounding off error – SNR- Limit in.	y State of see transform of the space of see space of see space of see space of the	hour hour and a	rs ion -dead rs orde			
Pulse transformationsystem Module:3 Discretization techniques-Zebeat controlle Module:4 Introduction to function-state Module:5 Controllability-observer designment of the control of the controllability-observer designment of the control of the controllability-observer designment of the control of the c	Discreter fun n-Time Design of con- plane er-Dahlin Discrete space Design Observer of Red Quanter design Red Realize	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Pin's controller- Root Locus design. ete state space model: space-state equation-solutions-conversion of state modeling-solution to discrete state equation. n via State space: ability- stability-Pole placement by state fe uced order observer design. tization effects: -Truncation and Rounding off error – SNR- Limit n. ation of discrete controllers	y State of see transform of the space of see the space of see the space of the spac	hour and a hour and a	rs ion dead rs rs rs orde			
Pulse transformations transformation system Module:3 Discretization techniques-Zebeat controlled introduction to function-state Module:5 Controllability-observer designment of the podule:6 Quantization Sample rate results in Module:7 Mechanization	Discreter fundamental process of constate expace Designoservon-Red Quanter effects eduction Realization of constant process of	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Plan's controller- Root Locus design. ete state space model: space-state equation-solutions-conversion of state modeling-solution to discrete state equation. n via State space: ability- stability-Pole placement by state feauced order observer design. tization effects: -Truncation and Rounding off error – SNR- Limit in. ation of discrete controllers trol algorithms- Iterative computation via parallel, direction of discrete controllers	y State of see transfold control of the space of see the space of see the space of	hour and a hour and a hour and a	rs ion dead rs orde rs dither			
Pulse transformations transformation system Module:3 Discretization techniques-Zebeat controlled introduction to function-state Module:5 Controllability-observer designment of the podule:6 Quantization Sample rate results in Module:7 Mechanization	Discreter fundamental process of constate expace Designoservon-Red Quanter effects eduction Realization of constant process of	ete Time System Modelling and Response: ction-Signal flow graph-Stability analysis-Jury Response-Transient and steady state response n of Digital Controller: tinuous transfer functions-Controller design using specifications-Design in the w domain- Digital Pin's controller- Root Locus design. ete state space model: space-state equation-solutions-conversion of state modeling-solution to discrete state equation. n via State space: ability- stability-Pole placement by state fe uced order observer design. tization effects: -Truncation and Rounding off error – SNR- Limit n. ation of discrete controllers	y State of see transfold control of the space of see the space of see the space of	hour and a hour and a hour and a	rs ion dead rs orde rs dither			

45 hours

Total Lecture hours:

Tex	kt Book(s)				
1.	Jacquot, R.G., 2019. Modern digit				
2	Nise, N. S. (2020). Control systems engineering. John Wiley & Sons.				
Ref	ference Books				
Rabbath, C. A., & Léchevin, N. (2013). Discrete-time control system design with					
١.	applications. Springer Science & E	Business Me	edia.		
2.	Gopal, M. (2012). Digital cont & st	ate var met	Tata Mo	Graw-Hill Education.	
Мо	de of Evaluation: Continuous Ass	essment Te	sts, Quiz	zes, Assignment, Final	
Ass	sessment Test			-	
Re	commended by Board of Studies	09-07-202	2		
App	proved by Academic Council	No. 67	Date	08-08-2022	

Course Code		Course Ti	itle			L	T	Р	С
MCOA609L	Mı	ultivariable Conf		tem		3	0	0	3
Pre-requisite	NIL				Syl	labu	IS VE	ersi	on
						1	.0		
Course Objective	es								
 To describ 	e the fundamenta	als of multivariab	le contro	ol design.					
To demon	strate the perform	nance of state fee	edback a	and output fee	edbac	k coı	ntrol		
techniques									
3. To analyze	e the effects of de	ecentralized contr	ol and d	lecoupling sch	neme	S.			
Course Outcome									
At the end of the	•								
•	nathematical mod		•						
	nultivariable system			l schemes					
	entralized control								
	IIMO systems using Introllers for MIMC			tion tochnique	00				
J. Design co	THORETS FOR TVIIIVIC	o systems using t	optiiriiza	iion technique	50				
Module:1 Intro	duction to Multiv	variable Control					6	hoı	ıre
Multivariable syst				 s	ntal lir	mitat			
sensitivity – Limita							.10113	OII	
Module:2 Linea			11 -20103		iistiai	1113	7	hoı	ırs
Linear system tin			s – gain	– frequency	resn	onse			
internal structure									
problem: variable	_							JOI 11	0
hierarchical contro			o aog.o.			,			
Module:3 Dece	ntralized Contro	l:					6	hoı	ırs
Introduction - Pla	nt decomposition	, grouping of vari	ables –	Multi-loop cor	ntrol a	nd I	parir	ng	
selection: relative									
application.									
Module:4 Deco	•							hοι	ırs
Decoupling schen					ops w	ith M	1IMC)	
techniques: casca			al desigr	and tuning.					
Module:5 Cent								hοι	
State feedback –	output feedback -	 rejection of determine 	erministi	c unmeasural	ble di	sturb	anc	es -	-
case study.				T					
Module:6 Optin								hοι	ırs
Optimal state feed optimal disturband	3back – optimal o	utput feedback –	predicti	ve control – C	ener	alise	a		
	gning for	Robustness	and				6	hou	ıre
	ementation:	Nobustiless	and				U		3
Uncertainty and fe		offs and design o	uidelines	ı s — rohustnes	s ana	lvsis			
methodologies -				lementation		-		ntati	οn
technologies - Co									٠
	emporary Issues		,			<i>y</i>		hou	ırs
Module:8 Cont	<u> </u>			<u>I</u>					
Module:8 Cont								L a .	ırs
Module:8 Cont		Total Lecture	hours:				45	noı	
Module:8 Cont		Total Lecture	hours:				45	nou	
Module:8 Cont		Total Lecture	hours:				45	nou	_
Text Book(s)	Iro, Antonio Sala,			vstems: An Er	ngine	ering		not	
Text Book(s) Albertos, Ped	Iro, Antonio Sala, pringer, 2010.			vstems: An Er	ngine	ering		not	
Text Book(s) Albertos, Ped Approach", S		"Multivariable Co	ontrol Sy					nou	

Reference Books						
1.	Bhattacharyya, Shankar P., and Lee H. Keel. Linear Multivariable Control Systems.					
١.	Cambridge University Press, 2022.					
2.	Gu, Da-Wei, Petko Petkov, and Mihail M. Konstantinov. Robust control design with					
	MATLAB, 2 nd Edition, Springer, 2013.					
3.	W.M. Wonham, "Linear Multivariable Control: A Geometric Approach", Springer, 2013					
Мо	Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final					
Assessment Test						
Red	Recommended by Board of Studies 09-07-2022					
App	Approved by Academic Council No. 67 Date 08-08-2022					

Course Code Course Title			L	Т	Р	С
MCOA610L Industrial Data Networks			3	0	0	3
Pre-requisite	NIL	Syl	lab	us v	ers	ion
1.0						

- 1. To describe the different network topologies and protocols
- 2. To identify the requirements of data communications including encoding, synchronization and protocols.
- 3. To analyze the features and operations of Modbus, HART and ProfiBus.

Course Outcome

At the end of this course, the student will be able to:

- 1. Describe the rudiments of how industrial devices communicate.
- 2. Infer the standards in network design and ensure the best practice followed in installing and commissioning data networks
- 3. Analyze Industrial Ethernet protocol for interfacing higher layer devices in automation pyramid.
- 4. Explain master-slave functioning of Modbus and implement for networking devices like smart meters.
- 5. Interpret HART handheld controller for calibration of field devices and interface field level devices using Fieldbus protocol.

Module:1	Introduction to Networks:	6 hours				
Network to	pology -Classification of networks: LANs, MANs,	WANs, GANs- OSI Model-				
	ns of OSI Model. Protocol – Standards.					
Module:2	Physical Interface Standards:	5 hours				
EIA 232 ov	verview, EIA 485 overview, EIA 484 Installation, n	oise problems, current loop &				
EIA convei						
Module:3	Industrial Ethernet:	7 hours				
Introductio	n-IEEE Standards-Ethernet MAC layer-IEEE 802	2.2 and Ethernet SNAP- OSI and				
	3 standard. Ethernet transceivers, Ethernet type:					
	rnet, 100 Mbps Ethernet, Gigabit Ethernet. TCP /	IP Overview- Internet Layer				
Protocols-	Host-to-Host layer					
Module:4	Modbus:	7 hours				
Overview-F	Protocol Structure-Example Function codes. Mod	bus Plus protocol- Overview,				
	g Modbus plus. Data Highway Plus/DH485 Overv	iew, AS – interface Overview-				
	perating Characteristics.					
Module:5	HART Overview:	5 hours				
Introductio	n to HART and smart instrumentation, HART Pro	tocol, Physical layer, Data link				
layer, and	application layer, Application in SCADA					
	ProfiBus overview:	6 hours				
	n, ProfiBus protocol stack, ProfiBus communication					
	rformance, system operation, ProfiBus in Automa					
	Foundation Fieldbus overview:	7 hours				
	n to Foundation Fieldbus- Architecture- physical I	ayer and wiring rules, data link				
layer, application layer and user layer.						
Module:8	Contemporary Issues	2 hours				
	Total Lecture hours:	45 hours				
Text Book(s)						
Behro	Behrouz A. Forouzan "Data Communications and Networking". Tata McGraw-Hill. 5 th					
1 1	ı, 2017.	3 .				

	O O'(1/ F'-1-II	Nie terra aleba ar ba. Da	A t	ti ODO Da Ond			
2.	Sen, Sunit Kumar. Fieldbus and	Networking in Pro	ocess Aut	omation. CRC Press, 2 rd			
۷.	Edition, 2021.						
Ref	ference Books						
1.	Steve Mackay, Edwin Wright, Deon Reynders, John Park, Practical Industrial Data						
1.	Networks, Design, Installation an	d Troubleshootin	ig, Newne	s, Elsevier, 2004.			
2.	Bela G. Liptak, "Instrument Engir			Software and Digital			
۷.	Networks", Third Volume, 4 th Edition, CRC Press, 2011.						
3.	Theodore S. Rappaport, "Wireless Communications: Principles and Practice", 2nd						
٥.	edition, Pearson, 2009.						
4.	Axelsson, Björn, and Geoff Easto	on, eds. Industria	l networks	s: a new view of reality.			
4.	Routledge, 2016.						
Мо	Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final						
Ass	Assessment Test						
Red	Recommended by Board of Studies 09-07-2022						
App	Approved by Academic Council No. 67 Date 08-08-2022						

Course Code Course Title			L	Т	Р	С
MCOA611L	MCOA611L Data Acquisition and Hardware Interfaces		3	0	0	3
Pre-requisite	re-requisite NIL		/llab	ous '	vers	ion
				1.0		

- 1. To impart an in-depth knowledge in data acquisition, and analysis.
- 2. To provide a comprehensive coverage of data acquisition methods and hardware interface cards available commercially
- 3. To provides knowledge of different data acquisition systems used in industry.

Course Outcome:

On the completion of this course the student will be able to:

- 1. Interpret the elements of data acquisition techniques.
- 2. Comprehend the function of signal conditioning for various sensor and grounding for data acquisition system
- 3. Design and simulate Virtual Instrumentation using Lab view and different NI DAQ card
- 4. Comprehend the functioning of different communication interface for data acquisition system
- 5. Design Hardware in loop using Lab view and MATLAB DSPACE

Module:1 Fundamentals of Data acquisition:

6 hours

Generalized instrumentation system, PC-Based instrumentation system, Principles of data acquisition, Generalized data acquisition system, S/H circuits, and Multi-channel data acquisition systems.

Module:2 | Signal conditioners for Data acquisition:

6 hours

Signal conditioners- voltage conditioners-integrated signal conditioners for temperature sensors, strain gages, piezoelectric sensors and linear position sensors. Signal conditioning modules for plug-in board, two-wire transmitter, and high speed digital transmitter. Field wiring and signal measurement-grounded and floated signal source-single ended and differential ended measurements. Ground loop and system isolation-noise and interference-shielding.

Module:3 Basic Virtual Instrumentation:

7 hours

LabVIEW - Graphical user interfaces - Controls and Indicators - 'G' programming - Data type, Format, Precision and representation - Data flow programming - Debugging and Running Virtual instrument - Functions and Libraries. FOR loops, WHILE loops, CASE structure, formula nodes -Math script -Sequence structures, , Real-Time System, VISA Field Point I/O, Compact RIO I/O and Intelligent Real-Time Embedded Controller. PCI or PXI R Series device,

Module:4 Common interface standards for data acquisition systems:

6 hours

RS232C, RS485, GPIB standard IEEE488.2, Distributed and standalone data loggersstorage and retrieval- USB, HART Protocol, Foundation Fieldbus, Device net, Profibus, Control net, and Industrial, Ethernet, Sigsbee, Bluetooth & Internal Calibration

Module:5 | NI DAQ cards for Data acquisition systems :

hours

Data acquisition systems using USB DAQ card, MiRIO, PCI or PXI R Series device, CDAQ, MyRIO, CRIO, NI ELVIS.

Module:6 Real Time Hardware interface implementation using

6 hours

		Lab VIEW and NI DAQ O	card:					
Real T	ime l	Hardware Interface using L	.abVIEW. H	-Hardware	in the loop (HIL) for temperature		
		ent, DC motor speed contro				ased solar PV		
based	based system, Electric vehicle. System, Robotics control							
Modul	Module:7 Real Time Hardware interface implementation using 6 hours							
MATLAB/SIMULINK and DSPACE DAQ CARD:								
Real T	ime I	Hardware Interface using N	//ATLAB/S	SIMULINK	K, Hardware in th	ne loop (HIL) for		
		e measurement, DC motor						
solar P	PV ba	sed system, Electric vehic	cle. System	n, Robotio	cs control			
Modul	le:8	Contemporary Issues				2 hours		
				Total L	ecture hours:	45 hours		
Text B	Rook(e)						
		io Di Paolo Emilio, "Data A	Acquisition	eveteme.	from fundamen	tals to Applied		
		ı", Springer, 2013.	roquisition	Systems-	iloin lundamen	tais to Applied		
Refere		<u> </u>						
		H King, "Introduction to D	oto Apguio	ition with	Lab\/IE\A/" MaC	Provi Hill Ond		
1		•	ata Acquis	ilion with	Labview, ivide	Fraw mill, Znu		
		, 2012.	manta Ina	"I ab\/I	EVV Ctudent Edit	tion" Dronting Hall		
		H. Bishop, National Instru	ments, inc	., Labvi	Evv Student Edi	lion , Prentice Hall,		
	2014.							
6. Karel Perutka, MATLAB for Engineers - Applications in Control, Electrical Engineering,								
IT and Robotics, 2011, EBOOK (PDF) ISBN978-953-51-5591-1, Intech publishers								
Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final								
Assessment Test								
	Recommended by Board of Studies 09-07-2022							
Approv	ved b	y Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title	L	T	Р	С
MCOA696J	Study Oriented Project				02
Pre-requisite NIL		Syll	abus	vers	sion
			1.	0	

- 1. The student will be able to analyse and interpret published literature for information pertaining to niche areas.
- 2. Scrutinize technical literature and arrive at conclusions.
- 3. Use insight and creativity for a better understanding of the domain of interest.

Course Outcome:

- 1. Retrieve, analyse, and interpret published literature/books providing information related to niche areas/focused domains.
- 2. Examine technical literature, resolve ambiguity, and develop conclusions.
- 3. Synthesize knowledge and use insight and creativity to better understand the domain of interest.
- 4. Publish the findings in the peer reviewed journals / National / International Conferences.

Module Content	(Project duration: One semester)

This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty.

Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science, Engineering Technology.

Recommended by Board of Studies	09-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	L	Т	Р	С
MCOA697J	Design Project				02
Pre-requisite	NIL	Sylla	abus	vers	ion
		1.0			

- 1. Students will be able to design a prototype or process or experiments.
- 2. Describe and demonstrate the techniques and skills necessary for the project.
- 3. Acquire knowledge and better understanding of design systems.

Course Outcome:

- 1. Develop new skills and demonstrate the ability to upgrade a prototype to a design prototype or working model or process or experiments.
- 2. Utilize the techniques, skills, and modern tools necessary for the project.
- 3. Synthesize knowledge and use insight and creativity to better understand and improve design systems.
- 4. Publish the findings in the peer reviewed journals / National / International Conferences.

Module Content	(Project duration: One semester)

Students are expected to develop new skills and demonstrate the ability to develop prototypes to design prototype or working models related to an engineering product or a process.

Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science, Engineering Technology.

Recommended by Board of Studies	09-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	L	Т	Р	С
MCOA698J	Internship I/ Dissertation I				10
Pre-requisite	NIL	Syll	abus	vers	ion
			1.0)	

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field and also to give research orientation.

Course Outcome:

- 1. Considerably more in-depth knowledge of the major subject/field of study, including deeper insight into current research and development work.
- 2. The capability to use a holistic view to critically, independently and creatively identify, formulate and deal with complex issues.
- 3. A consciousness of the ethical aspects of research and development work.
- 4. Publications in the peer reviewed journals / International Conferences will be an added advantage.

Module Content (Project duration: one semester)

- 1. Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.
- 2. Dissertation should be individual work.
- 3. Carried out inside or outside the university, in any relevant industry or research institution.
- 4. Publications in the peer reviewed journals / International Conferences will be an added advantage.

Mode of Evaluation: Assessment on the project - Dissertation report to be submitted, presentation, project reviews and Final Oral Viva Examination.

Recommended by Board of Studies	09-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	L	Т	Р	С
MCOA699J	Internship II/ Dissertation II				12
Pre-requisite	NIL	Syll	abus	vers	ion
			1.0)	

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field.

Course Outcome:

Upon successful completion of this course students will be able to

- 1. Formulate specific problem statements for ill-defined real life problems with reasonable assumptions and constraints.
- 2. Perform literature search and / or patent search in the area of interest.
- Conduct experiments / Design and Analysis / solution iterations and document the results.
- 4. Perform error analysis / benchmarking / costing.
- 5. Synthesize the results and arrive at scientific conclusions / products / solution.
- 6. Document the results in the form of technical report / presentation.

Module Content (Project duration: one semester)

- 1. Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.
- 2. Dissertation should be individual work.
- 3. Carried out inside or outside the university, in any relevant industry or research institution.
- 4. Publications in the peer reviewed journals / International Conferences will be an added advantage.

Mode of Evaluation: Assessment on the project - Dissertation report to be submitted, presentation, project reviews and Final Oral Viva Examination.

Recommended by Board of Studies	09-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course Course Title		L	Τ	Р	С
MGER501L	Deutsch für Anfänger	3	0	0	3
Pre-requisite	NIL	Sy	/llak	ous ve	rsion
		1.0			

- 1. Demonstrate competency in reading, writing and speaking in Basic German.
- 2. Achieve proficiency in German culture oriented view point.
- Develop basic vocabulary in the technical field.

Course Outcome

At the end of the course, the student will be able to

- 1. Communicate in German language in their daily life communicative situations.
- 2. Apply the German language skill in writing corresponding letters, E-Mailsetc.
- 3. Create the talent of translating passages from English-German and vice versa and to

frame simple dialogues based on given situations.

 Understand and demonstrate the comprehension of some particular new range of unseen written materials.

5. Develop a general understanding of German culture and society.

Module:1 Die erste Begegnung

6 hours

Einleitung, Begrüssungs formen, Länder und Sprachen, Alphabet, Buchstabieren, Personalpronomen, Zahlen (1-100), Telefonnummer und E-Mail Addressenennen W-fragen, Aussagesätze, Nomen – Singular und Plural und Artikel

Lernziel:

Verständnisvon Deutsch, Genus- Artikelwörter

Module:2 Hobbys und Berufe

6 hours

Über Hobbyssprechen, Wochentage, Jahreszeiten, und Monatenennen, Uhrzeitensagen, über Arbeit, Berufe und Arbeitszeitensprechen, Zahlen (Hundertbiseine Million) Aritel (bestimmter, unbestimmter), Plural der Substantive, Konjugation der Verben (regelmässig /unregelmässig), Ja-/Nein- Frage, Imperativmit Sie.

Lernziel:

Sätzeschreiben, über Hobbyserzählen, über Berufesprechenusw.

Module:3 Alltag und Familie

7 hours

Über die Familiesprechen, eine Wohnungbeschreiben, Tagesablaufschreiben, Mahlzeiten, Lebensmittel, Getränke Possessivpronomen, Negation, Kasus- Akkusatitv und Dativ (bestimmter, unbestimmter Artikel), trennnbareverben, Modalverben, Adjektive, Präpositionen Lernziel:

Sätzemit Modalverben, Verwendung von Artikel, über Familiesprechen, eine Wohnungbeschreiben.

Module:4 Situations gespräche

6 hours

Dialoge:

- a) Gespräche mit Familienmitgliedern, am Bahnhof,
- b) Gespräche beim Einkaufen, in einem Supermarkt, in einer Buchhandlung
- c) Gespräche in einem Hotel/ in einem Restaurant, Treffen im Cáfe, Termin beim Arzt.

Module:5 Korrespondenz

6 hours

Leseverständnis, Mindmapmachen, Korrespondenz- Briefe, Postkarten, E-Mail

Lernziel:

Wortschatzbildung und aktiverSprachgebrauch

Module:6 Aufsatzschreiben

6 hours

Aufsätze :

Meine Universität, Das Essen, mein Freund odermeine Freundin, meine Familie, einFest in Deutschlandusw.

Module:7 Übersetzungen

6 hours

Übersetzungen : (Deutsch – Englisch / Englisch –Deutsch)

Lernziel:

Grammatik – Wortschatz – Übung								
Modu	ule:8	Trainierung den Sprach	fähigkeiten			2 hours		
				Total L	ecture hours:	45 hours		
Text	Text Book(s)							
4	Netzw	erk A1, Stefanie Dengler, F	Paul Rusch,	Helen Sc	hmitz, Tanja Sie	eber, Ernst Klett		
1.	Sprac	hen GmbH, Stuttgart, 2017						
Refe	rence E	Books						
1.	Studio	d A1 Deutsch als Fremds	orache, Hern	nann Fun	k, Christina Kul	nn, Silke		
	Demme: Heuber Verlag, Muenchen, 2012.							
2.		e ,Hartmut Aufderstrasse,						
3.	Deuts	che SprachlehrefürAusländ	ler, Heinz Gr	iesbach,	Dora Schulz, 20	011, Berlin		
4.		en Aktuell 1, Hartmurt Aufd elmut Müller, 2010, Muenc	•	eiko Bocl	k, MechthildGer	des, Jutta Müller		
	www.g	goethe.de						
	wirtsc	naftsdeutsch.de						
	hueber.de, klett-sprachen.de							
www.deutschtraning.org								
Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final								
Asse	Assessment Test							
Reco	Recommended by Board of Studies 19-05-2022							
Approved by Academic Council No.66 Date				Date	16-06-2022			

Course code	Course Title		L	T	Р	С
MFRE501L	Français Fonctionnel		3	0	0	3
Pre-requisite	NIL	Syl	labı	ıs v	ers	ion
			1	.0		

- 1. Demonstrate competence in reading, writing, and speaking basic French, including knowledge of vocabulary (related to profession, emotions, food, workplace, sports/hobbies, classroom and family).
- 2. Achieve proficiency in French culture oriented view point.

Course Outcome

At the end of the course, the student will be able to

- 1. Remember the daily life communicative situations via personal pronouns, emphatic pronouns, salutations, negations, interrogations etc.
- 2. Create communicative skill effectively in French language via regular / irregular verbs.
- 3. Demonstrate comprehension of the spoken / written language in translating simple sentences.
- 4. Understand and demonstrate the comprehension of some particular new range of unseen written materials.
- 5. Demonstrate a clear understanding of the French culture through the language studied.

Saluer, Se présenter, Etablir des contacts. Compétences en lecture - consulter un dictionnaire, appliquer des stratégies de lecture, lire pour comprendre.

Les nombres cardinaux- Les 7 jours de la semaine-Les 12 mois de l'année- La date-Les saisons-Les Pronoms personnels sujets-Les Pronoms Toniques- La conjugaison des verbes réguliers- er / - ir /-re verbes (Le présent)- La conjugaison des verbes irréguliers- avoir /être / aller / venir / faire /vouloir /pouvoir etc.

Savoir-faire pour: saluer, et se présenter – épeler en français – communiquer en classe – utiliser des stratégies pour comprendre un texte en français.

Module:2Présenter quelqu'un, Chercher un(e) correspondant(e),
Demander des nouvelles d'une personne.7 hoursLa conjugaison des verbes Pronominaux (s'appeler/ s'amuser/ se promener)- La Négation-

L'interrogation avec 'Est-ce que ou sans Est-ce que'- Répondez négativement.

Module:3 | Situer un objet ou un lieu, Poser des questions

6 hours

Les articles (défini/ indéfini)- Les prépositions (à/en/au/aux/sur/dans/avec etc.)- L'article contracté- L'heure- La Nationalité du Pays- Les professions- L'adjectif (La Couleur, l'adjectif possessif, l'adjectif démonstratif, l'adjectif interrogatif (quel/quelle/quelle/quelles)-

L'interrogation avec Comment/ Combien / Où etc., Pronoms relatifs simples (qui/que/dont/où).

Module:4	Comprendre et traduire un texte court, Demander et indiquer le chemin.	5 hours
La traduction	on simple d'un texte/ dialogue :(français-anglais / anglais –françai	s)
Module:5	Trouver les questions, Répondre aux questions générales en français, Écouter des vidéos (site internet, YouTube) qui aident à améliorer leur prononciation/ vocabulaire et leurs compétences orales	6 hours

L'article Partitif (du/ de la / de l'/ des) -Faites une phrase avec les mots donnés- Mettez les phrases en ordre, masculin/féminin ; singulier/pluriel- Associez les phrases- les adverbes de temps (ensuite/hier/puis....)

		leurs idées)				
I		Famille -La Maison -L'unive	rsité -Les Loisirs	s-La Vie q	uotidienne-	La ville natale-
Un p	personna	age célèbre				
		Comment écrire un dialog	ue			5 hours
	ogue					
, ,		un billet de train				
		x amis qui se rencontrent au	u caté			
,		membres de la famille				
		atient et le médecin professeur et l'étudiant(e)				
	dule:8	Contemporary Topics				2 hours
IVIOC	Jule.o	Contemporary Topics				2 110013
			Tot	tal Lectur	re hours:	45 hours
Text	t Book(s	3)			<u> </u>	
_	Adoma	nia 1, Méthode de frança	is, CelineHimbe	r, Corina	Brillant, Sor	ohie Erlich.
1.	Publish	er HACHETTE, February 20	016.			
2.	Enchai	nté 1 !, Méthode de français,	, Rachana Saga	r Private L	_imited, Jan	2017.
Refe	erence I	Books				
1.		çais pour vous 1, Méthode o ublishing, Jan 2019.	de français, Vino	odSikri, Ar	na Gabriel	Koshy,
2.						
3.	Apprer 2019	ons le français 1 Méthode d	le français, Mah	itha Ranjit	t & Monica	Singh, Jan
Mod	leof Eva	uation: Continuous Assess	ment Tests, Qui	zzes, Ass	ignment, Fi	nal
Asse	essment	Test				
Rec	ommend	led by Board of Studies	19-05-2022			
App	roved by	Academic Council	No. 66	Date	16-06-202	2

Course code	Course Title	L	Т	Р	С
MENG501P	Technical Report Writing	0	0	4	2
Pre-requisite	Nil	Syllabus version		sion	
		1.0			

- 1. To develop writing skills for preparing technical reports.
- 2. To analyze and evaluate general and complex technical information.
- 3. To enable proficiency in drafting and presenting reports.

Course Outcome

At the end of the course, the student will be able to

- 1. Construct error free sentences using appropriate grammar, vocabulary and style.
- 2. Apply the advanced rules of grammar for proofreading reports.
- 3. Interpret information and concepts in preparing reports.
- 4. Demonstrate the structure and function of technical reports.
- 5. Improve the ability of presenting technical reports.

5. lm	prove the ability of presenting technical reports.				
Indic	cative Experiments				
	Basics of Technical Communication				
1.	General and Technical communication,				
	Process of communication, Levels of communication				
	Vocabulary& Editing				
2.	Word usage: confusing words, Phrasal verbs				
	Punctuation and Proof reading				
	Advanced Grammar				
3.	Shifts: Voice, Tense, Person, Number				
	Clarity: Pronoun reference, Misplace and unclear modifiers				
_	Elements of Technical writing				
4.	Developing paragraphs, Eliminating unnecessary words, Avoiding clichés and slang				
	Sentence clarity and combining				
_	The Art of condensation				
5.	Steps to effective precis writing,				
	Paraphrasing and summarizing				
6.	Technical Reports: Meaning, Objectives, Characteristics and Categories				
7.	Formats of reports and Prewriting: purpose, audience, sources of information, organizing the material				
	Data Visualization				
8.	Interpreting Data - Graphs - Tables – Charts - Imagery - Info graphics				
	Systematization of Information: Preparing Questionnaire				
9.	Techniques to Converge Objective-Oriented data in Diverse Technical Reports				
	Research and Analyses: Writing introduction and literature review, Reference styles,				
10.	Synchronize Technical Details from Magazines, Articles and e-content				
	Structure of Reports				
11	Title – Preface – Acknowledgement - Abstract/Summary – Introduction - Materials and				
	Methods – Results – Discussion - Conclusion - Suggestions/Recommendations				
	Writing the Report: First draft, Revising,				
12.	Thesis statement, Developing unity and coherence				
40	Writing scientific abstracts: Parts of the abstract, Revising the abstract				
13.	Avoiding Plagiarism, Best practices for writers				
1.1	Supplementary Texts				
14.	Appendix – Index – Glossary – References – Bibliography - Notes				
15	Presentation				

	Presenting Technical Reports	antation of ra	n o uto		
	Planning, creating anddigital pres		-		
		lota	al Labora	tory hours :	60 hours
Text	Book(s)				
1.	Raman, Meenakshi and Sangeet Principles and Practice, Third edi				
Refe	rence Books				
1.	Aruna, Koneru, (2020). Englis Education, Noida.	h Language	Skills f	or Engineers.	McGraw Hill
2.	Rizvi,M. Ashraf (2018)Effective T Hill Education, Chennai.	echnical Com	nmunicati	on Second Edi	tion. McGraw
3.	Kumar, Sanjay and Pushpalatha, for Engineers, Oxford University I		sh Langu	iage and Comi	munication Skills
4.	.				s of Technical
Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final Assessment Test				Final	
Reco	ommended by Board of Studies	19-05-2022			
Appr	oved by Academic Council	No. 66	Date	16-06-2022	

Course Title	L	Т	Р	С
Qualitative Skills Practice	0	0	3	1.5
Nil	Syll	abu	s ver	sion
		1	.0	
	Qualitative Skills Practice	Qualitative Skills Practice 0	Qualitative Skills Practice 0 0 Nil Syllabus	Qualitative Skills Practice 0 0 3

- 1. To develop the quantitative ability for solving basic level problems.
- 2. To improve the verbal and professional communication skills.

Course Outcome:

At the end of the course, the student will be able to

- 1. Execute appropriate analytical skills.
- 2. Solve problems pertaining to quantitative and reasoning ability.
- 3. Learn better vocabulary for workplace communication.
- 4. Demonstrate appropriate behavior in an organized environment.

	Business Etiquette: Social and Cultural Etiquette; Writing	
Module:1	Company Blogs; Internal Communications and Planning:	9 hours
	Writing press release and meeting notes	

Value, Manners- Netiquette, Customs, Language, Tradition, Building a blog, Developing brand message, FAQs', Assessing Competition, Open and objective Communication, Two way dialogue, Understanding the audience, Identifying, Gathering Information,. Analysis, Determining, Selecting plan, Progress check, Types of planning, Write a short, catchy headline, Get to the Point –summarize your subject in the first paragraph., Body– Make it relevant to your audience.

Module:2 Time management skills 3 hours

Prioritization, Procrastination, Scheduling, Multitasking, Monitoring, Working under pressure and adhering to deadlines

	Presentation skills – Preparing presentation; Organizing	
Module:3	materials; Maintaining and preparing visual aids; Dealing	7 hours
	with questions	

10 Tips to prepare PowerPoint presentation, Outlining the content, Passing the Elevator Test, Blue sky thinking, Introduction, body and conclusion, Use of Font, Use of Color, Strategic presentation, Importance and types of visual aids, Animation to captivate your audience, Design of posters, Setting out the ground rules, Dealing with interruptions, Staying in control of the questions, Handling difficult questions.

Module:4	QuantitativeAbility-L1-Numberproperties; Averages;	11 hours
Module.4	Progressions; Percentages; Ratios	11 Hours

Number of factors, Factorials, Remainder Theorem, Unit digit position, Tens digit position, Averages, Weighted Average, Arithmetic Progression, Geometric Progression, Harmonic Progression, increase and Decrease or Successive increase, Types of ratios and proportions.

Module:5Reasoning Ability - L1 - Analytical Reasoning8 hoursData Arrangement (Linear and circular & Cross Variable Relationship), Blood Relations,Ordering / ranking / grouping, Puzzle test, Selection Decision table.

Module:6 | Verbal Ability -L1 – Vocabulary Building

7 hours

	Synonyms & Antonyms, One word substitutes, Word Pairs, Spellings, Idioms, Sentence completion, Analogies.					
	· · · · · · · · · · · · · · · · · · ·					
	Total Lecture hours: 45 hours					
Ref	erence Books					
1.	Kerry Patterson, Joseph Grenny, Ron McMillan and Al Switzler, (2017).2 nd Edition, Crucial Conversations: Tools for Talking when Stakesare High .McGraw-Hill Contemporary, Bangalore.					
2.	Dale Carnegie,(2016). How to Win Friends and Influence People. Gallery Books, New York.					
3.	Scott Peck. M, (2003). Road Less Travelled. Bantam Press, New York City.					
4.	SMART, (2018). Place Mentor, 1 st edition. Oxford University Press, Chennai.					
5.	FACE, (2016). Aptipedia Aptitude Encyclopedia. Wiley publications, Delhi.					
6.	ETHNUS, (2013). Aptimithra. McGraw – Hill Education Pvt .Ltd, Bangalore.					
Web	osites:					
1.	www.chalkstreet.com					
2.	www.skillsyouneed.com					
3.	www.mindtools.com					
4.	www.thebalance.com					
5.	www.equru.ooo					
Mod	Node of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final Assessment est					
	commended by Board of Studies 19-05-2022					
App	roved by Academic Council No.66 Date 16-06-2022					

Course Code	Course Title	L	Т	Р	С
MSTS502P	Quantitative Skills Practice	0	0	3	1.5
Pre-requisite	Nil	Sy	/llabu	s ver	sion
			1.0		

- 1. To develop the students' advanced problem solving skills.
- 2. To enhance critical thinking and innovative skills.

Course Outcome:

At the end of the course, the student will be able to

- 1. Create positive impression during official conversations and interviews.
- 2. Demonstrate comprehending skills of various texts.
- 3. Improve advanced level thinking ability in general aptitude.
- 4. Develop emotional stability to tackle difficult circumstances.

Madulaid	Resume skills – Resume Template; Use of power verbs;	2 haura
Module:1	Types of resume; Customizing resume	2 hours

Structure of a standard resume, Content, color, font, Introduction to Power verbs and Write up, Quiz on types of resume, Frequent mistakes in customizing resume, Layout-Understanding different company's requirement, Digitizing career portfolio.

Module:2	Interview skills – Types of interview; Techniques to face	3 hours
	remote interviews and Mock Interview	

Structured and unstructured interview orientation, Closed questions and hypothetical questions, Interviewers' perspective, Questions to ask/not ask during an interview, Video interview, Recorded feedback, Phone interview preparation, Tips to customize preparation for personal interview, Practice rounds.

Module:3 Emotional Intelligence - L1 – Transactional Analysis; Brain storming; Psychometric Analysis; SWOT analysis

Introduction, Contracting, ego states, Life positions, Individual Brainstorming, Group Brainstorming, Stepladder Technique, Brain writing, Crawford's Slip writing approach, Reverse brainstorming, Star bursting, Charlette procedure, Round robin brainstorming, Skill Test, Personality Test, More than one answer, Unique ways, SWOT analysis.

Module:4	Quantitative Ability - L3-Permutation - Combinations; Probability; Geometry and menstruation; Trigonometry; Logarithms; Functions; Quadratic Equations; Set Theory	14 hours
----------	--	----------

Counting, Grouping, Linear Arrangement, Circular Arrangements, Conditional Probability, Independent and Dependent Events, Properties of Polygon, 2D & 3D Figures, Area & Volumes, Heights and distances, Simple trigonometric functions, Introduction to logarithms, Basic rules of logarithms, Introduction to functions, Basic rules of functions, Understanding Quadratic Equations, Rules & probabilities of Quadratic Equations, Basic concepts of Venn Diagram.

Module:5	Reasoning ability - L3 – Logical reasoning; Data Analysis	7 hours	l
	and Interpretation		ı

,	Syllogisms, Binary logic, Sequential output tracing, Crypto arithmetic, Data Sufficiency, Data Interpretation-Advanced, Interpretation tables, pie charts & bar chats.				
Modu		Verbal Ability - L3 – Comprehension and Critical reasoning	7 hours		
	Reading comprehension, Para Jumbles, Critical Reasoning (a) Premise and Conc				
(b) As	ssump	tion & Inference, (c) Strengthening & Weakening an Argument.			
		Total Lecture hours:	45 hours		
Refe	rence	Books			
1 1		el Farra and JIST Editors,(2011).Quick Resume & Cover Letter Book: se an Effective Resume in Just One Day. Jist Works, Saint Paul, Minr			
\sim	•	Daniel E, (2003). The Art of Questioning: An Introduction to Critical ng. Pearson, London.			
1 2		Allen, (2015).Getting Things done: The Art of Stress-Free productivity in Books, New York City.	/.		
4.	SMAR	T, (2018). Place Mentor 1 st edition. Oxford University Press, Chennai			
5.	FACE	, (2016). Aptipedia Aptitude Encyclopedia. Wileypublications, Delhi.			
6.	ETHN	US, (2013).Aptimithra. McGraw-Hill Education Pvt Ltd, Bangalore.			
Webs	sites:				
1.	www.c	chalkstreet.com			
2.	www.s	skillsyouneed.com			
3.	www.r	mindtools.com			
4.	www.t	hebalance.com			
5.	www.e	eguru.ooo			
Asse	Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final Assessment Test				
	Recommended by Board of Studies 19-05- 2022				
Appro	oved b	y Academic Council No.66 Date 16-06-2022			