

SCHOOL OF ELECTRONICS ENGINEERING

M. Tech Nanotechnology

(M.Tech MNT)

Curriculum

(2022-2023 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OFTECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRONICSENGINEERING

To be a leader by imparting in-depth knowledge in Electronics Engineering, nurturing engineers, technologists and researchers of highest competence, who would engage in sustainable development to cater the global needs of industry and society.

MISSION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

- Create and maintain an environment to excel in teaching, learning and applied research in the fields of electronics, communication engineering and allied disciplines which pioneer for sustainable growth.
- Equip our students with necessary knowledge and skills which enable them to be lifelong learners to solve practical problems and to improve the quality of human life.

M. Tech Nanotechnology

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.

2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.

3. Graduates will function in their profession with social awareness and responsibility.

4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.

5. Graduates will be successful in pursuing higher studies in engineering or management.

6. Graduates will pursue career paths in teaching or research.

M. Tech Nanotechnology

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_07: Having a clear understanding of professional and ethical

responsibility

PO_08: Having a good cognitive load management skills related to project management and finance

M. Tech Nanotechnology

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Nanotechnology) programme, graduates will be able to

PSO1: Evolving crucial understanding of Physics & Chemistry of solids, Quantum physics of nanostructures, Nano-electronics and Nano-photonics.

PSO2: Concentrating on specific skills on Synthesis of nanomaterials, thin film deposition and their characterization.

PSO3: Solve research gaps and provide solutions to socio-economic, and environmental problem.

Master of Technology in Nanotechnology School of Electronics Engineering

Programme	Credit Structure		С	re	dits	Skill Enhancement Courses 05
Discipline C Skill Enhand Discipline E Open Electi	core Courses cement Courses lective Courses ve Courses				24 05 12 03	MENG501PTechnical Report Writing0042MSTS501PQualitative Skills Practice0031.5MSTS502PQuantitative Skills Practice0031.5
Project/ Inte	ernship				26	Discipline Elective Courses 12
Total Grade	d Credit Requirement				70	MNAT601L MEMS to NEMS 3 0 0 3
Discipline C	core Courses	L	т	Р	24 C	MNAT602LNanosensors3003MNAT603LNanophotonics3003MNAT604LLithographic Techniques for Dec.3003
MNAT501L	Semiconductor Device Physics	3	0	0	3	vice Fabrication
MNAT502L MNAT503L	Physics and Chemistry of Solids Quantum Physics for Nanostruc-	3 3	0 0	0 0	3 3	MNA1605L Plasmonics 3 0 0 3 MNAT606L Nanomagnetism- Fundamentals 3 0 0 3 and Applications
ΜΝΑΤΕΩΑΙ	tures Carbon Nanomatorials	3	0	0	3	MNAT607L Energy Technologies 3 0 0 3
MNAT504L	Synthesis of Nanomaterials and Thin Film Deposition	3	0	0	3	MNAT608L Spintronics 3 0 0 3 MNAT609L Nanoelectronic Circuit Design 3 0 0 3
MNAT505P	Synthesis of Nanomaterials and Thin Film Deposition Lab	0	0	2	1	Open Elective Courses 03
MNAT506L	Nanomaterial Characterization Techniques	3	0	0	3	Engineering Disciplines Social Sciences
MNAT506P	Nanomaterial Characterization Techniques Lab	0	0	2	1	Engineering Disciplines Social Sciences
MNAT507L MNAT507P	Nanoelectronics Nanoelectronics Lab	3 0	0 0	0 2	3 1	Project and Internship 26
						MNAT696JStudy Oriented Project02MNAT697JDesign Project02

MNAT698J Internship I/ Dissertation I

MNAT699J Internship II/ Dissertation II

10

12

Course Code	Course Title		L	Т	Ρ	С		
MNAT501L	Semiconductor Device Physics and Technology		3 0 0			3		
Pre-requisite	NIL	Syll	abı	IS V	ersi	on		
				1.0				
Course Objective	es							
The course is aim	ed to:							
1. Make them u	inderstand the physics of semiconductor materials and	devid	ces.					
2. Educate the	2. Educate the working mechanism and design of optoelectronic devices.							
3. I rain them to	3. I rain them to solve bandgap models and design different semiconductor devices.							
Course Outcome	}							
Students will be a	DIE TO:							
1. Develop In-d	epth knowledge in semiconductor physics							
2. Dulla the kno	depth knowledge of formation and properties of PN jun		pic	ces	ses			
4 Develop the	fundamentals of metal-semiconductor junctions	CUON	3					
5. Understand	the physics of optoelectronic devices							
6. Understand t	he fabrication and characteristics of nanoscale MOSFE	ETs						
7. Apply the	concepts and techniques to solve bandgap mod	lel e	qua	tion	s a	nd		
design vario	ussemiconductor devices.							
Module:1 Semi	conductor Physics			10	hοι	ırs		
Semiconductor M	aterials, Basic Crystal Structure, Directions and plane	s in o	crys	stal,	Ba	sic		
Crystal Growth	Fechnique, Formation of Energy Bands, E-k structu	ire, e	effec	ctive	ma	ass		
ellipsoid in Silico	n, Intrinsic Carrier Concentration in thermal Equilibriur	n, Fe	ermi	-Dira	ac a	ind		
Bose-Einstein Di	stribution, phonons in solids, Donors and Acceptors,	Carr	rier	Tra	nspo	ort:		
Carrier Drift, N	lobility and velocity saturation, Carrier Diffusion,	Ge	ener	ation	n a	ind		
Recombination P	rocesses, Einstein Equation, Continuity Equation, Q	uantu	um .	Iun	nelii	ng,		
High-Field Effect	s. Concept of Equilibrium, Non-equilibrium and Ste	ady	stai	е, і	=xce	ess		
Modulo:2 Dovid	allon by radiation, Carrier lifetime, Quasi-termi levels			4	hai	Iro		
Dovice Brocess	stages I: Mathematical models relevant to thermal	diffu		4	not			
implantation and	Appealing Pattern transfer: Optical lithography Phot	oraci	1210 ete	Π a Δlic	nu nm	ont		
and exposure Et	shina	01031	515,		<i>.</i>	ent		
Module:3 Dev	ice Process stages II			4	hoi	irs		
Mathematical mo	dels relevant to Deposition: Physical and chemical	vap	or	den	ositi	n on		
Epitaxy, Process	Integration: Device isolation, contacts metallization.	vup	01	uop	John	JII,		
Module:4 P-N	Junction			8	hοι	ırs		
Diode fabrication	, Device physics: Thermal equilibrium, Internal elect	ro-sta	atic	field	ds a	ind		
potentials, drift-di	ffusion equations. I-V Characteristics: Forward bias, r	evers	se b	oias.	Dic	de		
equation. Avalan	che and Zener Breakdown mechanism. Capacitive e	ffect:	Ju	nctio	on a	ind		
diffusion capacita	nce. DC, AC and transient analysis of Diodes, Linearl	y gra	dec	l jun	ctio	ns,		
Varactor diode.						-		
Module:5 Meta	al-Semiconductor Contacts and Schottky Diodes			4	hou	ırs		
Metal-Semicondu	ctor Junction diode Fabrication, Device Physics: Id	deal	MS	CO	ntac	cts,		
Schottky diode-E	lectrostatics, I-V characteristics, DC, AC and transie	nt ar	naly	sis.	Met	al-		
Semiconductor co	ontacts: Ohmic contacts, Schottky contacts, Tunnel con	tacts	and	d An	nea	led		
and alloyed conta	icts.							
Module:6 Opt	pelectronic Diodes			4	hοι	ırs		
Photodiode Fabri	cation, device Physics of p-n Junction Photodiodes, p	p-i-n	Pho	oto d	diod	es.		
Principle of opera	tion and fabrication technologies of Solar cell, LED and	LASE	ER d	diode	es.			

Module:7	MOSFET				9 hours	
MOS cap	acitor, Band diagrams, C-V c	haracteristics;	Effect of n	netal work functio	on, oxide and	
interface	trapped charges. Threshol	d voltage. M	OSFET d	device fabrication	n, MOSFET	
Physics:	-V characteristics, Sub-thres	hold region, Bo	ody effect	, Capacitive effe	ct, small and	
large sigr	al model. Channel length mo	odulation; Subt	hreshold	current, Quantum	n mechanical	
effects in	MOSFETs, Tunneling curre	nt Short Chan	nel effect	s: Punch throug	h, DIBL, Hot	
electron e	ffect, mobility Degradation m	odels, Leakage	e current.			
Module:8	Contemporary Issues				2 hours	
Total Lecture hours:						
Text Boo	k(s)					
1. Ben Edit	 Ben G. Streetman and Sanjay Banerjee, Solid State Electronic Devices, 2016, 7th Edition, Pearson Ed. 					
2. S. M 201	 Sze and Ming-Kwei Lee John Wiley & Sons. 	, Semiconduc	tor Devic	es Physics and	technology,	
Referenc	e Books					
1. Gru	ndmann and Marius, Physics	of Semicondu	ctors, Spri	inger, 2010		
2. M. 3 200	5. Tyagi, Introduction to semi 8.	conductor mat	erials and	devices, John W	/iley & Sons,	
3. Car Univ	npbell, Stephan, Fabrication /ersity Press, 2008.	Engineering	at the M	icro and Nanos	cale, Oxford	
4. Rot	ert F. Pierret, Semiconductor	[.] Device Funda	mentals, l	Pearson Educatio	on, 2006.	
5. Ricl	nard C. Jaeger, Introduction	to Microelectro	nic Fabric	ation, Prentice H	lall, 2001.	
Mode of E	valuation: Continuous Asses	sment Test, Di	gital Assig	gnment, Quiz and	l Final	
Assessm	ent Test.					
Recomme	ended by Board of Studies	28-07-2022				
Approved	by Academic Council	No. 67	Date	08-08-2022		

Course Code	ourse Code Course Title L T P C								
MNAT502L	Physics and Chemistry of Solids	3 0 0 3							
Pre-requisite	NIL	Syllabus version							
		1.0							
Course Objectiv	/es								
The course is air	ned to:								
1. Provide und	erstanding of properties of materials from an atomistic	view point, and							
to classify so	lids.								
2. Outline the	properties and structure of crystalline materials, va	irious modes of							
bonding in s	olids with appropriate examples.								
3. Render then	3. Render them about thermodynamics and statistical mechanics of solids.								
Octores Outranes									
Course Outcom									
	able lo:								
	knowledge on crystal structure and identity defects								
2. Compare va	arials and analyze their properties.								
3. Classify mat	thermodynamics and elementary statistical machanics								
4. Understand	inerniouynamics and elementary statistical mechanics.								
Module:1 Stru	cture of Matter	8 hours							
Crystal structure	& Bonding- Crystals, Polycrystals, Symmetry, Unit cells	Bravais lattices.							
Crystallographic	directions, Crystallographic planes, Miller indices, Bragg's	law, Single crystal							
and Powder X-ra	y diffraction.	, 3 ,							
Module:2 Impe	erfections in Solids	4 hours							
Imperfections of	crystal structure -point defects, Grain boundaries, p	hase boundaries,							
Dislocations Scre	ew, Edge and Mixed Dislocations	·							
Module:3 Che	mical Bonding	6 hours							
Atomic Structure	e - Types of bond: Metallic, Ionic, Covalent and van	der Waals bond;							
Hybridization; H-	bonding Molecular orbital theory for simple molecules.								
Module:4 Clas	sification of Solid Materials	5 hours							
Metals, Semicor	ductors, and Insulators: Fermi energy, Work function, lo	nization potential,							
Electron affinity,	Energy Band structure, Electronic conductivity and Therma	al Conductivity							
Module:5 Pho	nons	4 hours							
Lattice vibration	, quantization of elastic waves, phonon momentum, a	and phonon heat							
capacity									
Module:6 Mag	netic and Optical properties of solids	8 hours							
Magnetic proper	ies- Different kind of magnetism in nature: Dia, Para, Ferr	o, Antiferro, Ferri,							
Superpara; Opti	cal Properties- Photoconductivity, Optical absorption, t	ransmission, and							
emission, Photoi	uminescence, Fluorescence, Phosphorescence, Electron	uminescence							
Module:7	oduction to Inermodynamics and	8 hours							
Elen	ientary Statistical mechanics	antholour antropy							
and Microstatos	Gibb's free energy Endethermic and Exothermic reactions,	Spontaneous and							
Non-Spontaneou	creations. Classical Statistical systems. Roltzmann st	atistics: Quantum							
etatistical systems. Farmi. Dirac and Roso-Einstein Statistica									
Module:8 Con	temporary issues	2 hours							
		2 110013							
	Total Lecture ho	urs: 45 hours							
	Introduction to Colid State Dhysics, 2010, sighth Edition								
	n, introduction to Solid State Physics, 2019, eighth Edition	i, John Wiley &							
30115, 13BIN-	10.01200/0402								

H. Ibach and H. Lüth, Solid-State Physics: An Introduction to Principles of Material 2. Science 2009, fourth edition, Springer **Reference Books** 1. A.J. Dekker, Macmillan, Solid State Physics, 1969 2. L. H. Van Vlack, Elements of materials science, Pearson Education, 2002 3. Atkins Peter, Paula Julio, Physical Chemistry, Oxford University Press, 2008 4. K. Huang, Chapman and Hall, Introduction to Statistical Physics, CRC, 2009 Stephen Elliott & S. R. Elliott, The Physics and Chemistry of Solids, John Wiley & 5. Sons, 1998. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test. Recommended by Board of Studies 28-07-2022 Approved by Academic Council 08-08-2022 No. 67 Date

Course Code	Course Title	L	Т	Ρ	С
MNAT503L	Quantum Physics for Nanostructures	3	0	0	3
Pre-requisite	NIL	Sylla	bus	vers	sion
			1	.0	
Course Objective:					
The course is ai	med to				
1. Educate va	arious concepts of quantum theory and its importance.				
2. Make ther	n understand the different quantum nanostru	cture	es		
and their	density of states.				
Enable the	nem to apply quantum theory to design nanosca	ale d	evic	es.	
Course Outcomes	:				
Students will be	able to:				
1. Describe	the basic concepts of quantum theory.				
2. Explain	the importance of Schrodinger wave equation	n &	solv	ve t	he
related pi	oblems.				
Apply the	knowledge on quantum confinement effects.				
4. Analyze o	dispersion relation of electron in solids.				
5. Compare	and determine the quantum nanostructur	es,	suc	:h	as
quantum	dots, nanowires and quantum wells with the	eir c	lens	ity	of
States.	the time dependent perturbation and its appli				
	the time-dependent perturbation and its appir	catio	ns.		
Module 1	Introduction		5	۱ ho	ire
Importance of Que	ntum theory, Plackhody Padiation, Photoelectric Effect	Con	nnto	n Ef	foot
Wave-narticles du	ality de-Broglie Wavelengths Wave function Dyna	, con mica		n ∟n hera'	tors
Uncertainty princi	ole. Quantum numbers and Hydrogen atom probl	lem.	Qua	ntiza	ation
Rules Pauli exclusi	on principle.	,			
Module:2	Schrodinger equations and their formulation		8	3 ho	urs
Mathematical Tool	s of Quantum Mechanics, Hilbert Space and Wave	Fund	ction	s, C)irac
Notation, Matrix Re	epresentation of Kets, Bras, and Operators, Matrix Rep	reser	ntatio	on of	the
Eigenvalue Probler	n, Postulates of Quantum Mechanics, Schrodinger time	inde	pend	dent	and
time dependent wa	ve equations.				
Module:3	Potential Well, Potential Barrier and Tunnelling		6	s ho	urs
One-Dimensional I	Potential well, Particle in 1D, 2D and 3D box, The Har	moni	c Os	SCIII	ator,
Rectangular Barrie	er, Concept of Lunneling, Reflectance, transmittanc	e an	d tu	inne -	lling
probability, Scannir	ng tunnelling microscope, Numerical Solution of the Schl	roding	jer E	:qua	tion
woaule:4	I neory of conduction in solids		4		urs
Description of the	theory of Conduction in Solids -Drude model, Nea	arly f	ree	elec	tron
model, Dispersion	relation for electron.				
Module:5	Electronic Band Structure		E E	s no	urs
Periodic lattice, Bri	llouine zones, Periodic potential, Bloch Theorem, Kroni	g-Per	nny I	Pote	ntial
and Electronic ener	rgy bands, direct and indirect gap semiconductors.				
Module:6	Quantum Confinement and Density of States		5	» no	urs
Concept of Quant	um Confinement, Quantum Dots, Quantum Well and	Qua	ntun	n VV	ires,
Density of states in	3D, 2D, 1D and 0D solid, carrier concentration.			<u> </u>	
woaule:/	e:7 Perturbation theory and Applications				
Theory Fire Circle	Perturbation ineory, Nondegenerate and degenerate	ate l	-ertu	irpat	ion
neory, Fine Struct	ciure and the Anomalous Zeeman Effect, Time-depel	nuent Zhoto	. cna	ange mige	ion
due to electronic +	er unte-dependent perturbation, retiffits golden fule, t ransitions. Fermi's golden rule for stimulated estimater	- HULU anciti		11155	
	ranamona, remnia goluen rule for sumulateu optical tr	สมาริเป	0115.		

M	odule:8	Contemporary Issu	es			2 hours			
				Total I	_ecture hours:	`45 hours			
Te	Text Book(s)								
1	1 David J. Griffiths, Introduction to Quantum Mechanics, 2016, Cambridge India.								
2	2 Nouredine Zettili, Quantum Mechanics: Concepts and Applications, 2009, 2nd edition,								
	Wiley.								
Re	eference Book	(S							
1	A. F. J. Levi,	, Applied Quantum N	lechanics,	Second ed	lition, Cambridg	je University			
	Press, 2006.								
2	Richard L. Lib	off, Introductory Quan	tum Mecha	nics, Fourth	n edition, Pearso	on Education			
	Inc, India, 200	3.							
3	A. Ghatak and	S. Lokanathan, Qua	ntum Mecha	anics–Theo	ry & Application	s, Macmillan			
	India Limited, I	New Delhi, 2002.							
M	ode of Evaluat	ion: Continuous Asses	ssment Tes	t, Digital A	ssignment, Quiz	and Final			
As	ssessment Tes	t							
Re	ecommended b	y Board of Studies	28-07-2022	2					
Ap	pproved by Aca	demic Council	No. 67	Date	e 08-08-2	022			

Course Code	Course Title		L	Т	Ρ	С				
MNAT504L	Carbon Nanomaterials		3	0	0	3				
Pre-requisite	NIL	Sylla	abı	IS V	ersi	on				
				1.0						
Course Objective	es									
The course is aim	ed to:									
1. Make the s	tudents understand the importance of carbon bas	ed n	and	ostru	uctur	.eq				
materials.		امما	:	:	_					
2. Study various	s carbon allotropes, their types, structure, properties and	appi	icai	lions	s.	~~				
anofibers n	anodiscs and nanodiamonds	in as		ano	CON	85,				
Course Outcome										
Students will be able to:										
1 Understand t	1 Understand the importance of carbon based nanomaterials									
2. Develop the	knowledge on synthesis, characterization and app	licatic	n	of v	/ario	us				
carbon based	a nanomaterials such as fullerene, carbon nanotubes an	d gra	phe	ene.						
3. Understand t	he functionalization and applications of CNT & Graphen	e.	•							
4. Compare the	properties of other carbon based nanomaterials su	ch as	s n	ano	con	es,				
nanofibers, n	anodiscs and nanodiamonds.									
Module:1 Carbo	on Nanomaterials			2	hοι	ırs				
Introduction to Ca	arbon Nanomaterials, Carbon allotropes and their bondi	ng be	etwe	en	carb	on				
atoms.										
Module:2 Fulle	rene			6	hοι	ırs				
Structure, Synthe	sis, Functionalization of fullerenes, Applications - Sol	ar Ce	ells,	Hy	drog	jen				
storage, Bio-appli	cations.									
Module:3 Carbon nanotubes						ırs				
Types; Structure	; Properties- Electrical, Optical, Mechanical, Vibr	ationa	al	prop	perti	es;				
Nanotube synthe	sis - carbon arc discharge, Laser ablation, Chemical	Vapo	or I	Сер	ositio	on,				
High-pressure CC	process, Purification techniques of carbon nanotube.		-							
Module:4 Func	tionalization and Applications of CNTs			8	hοι	ırs				
Functionalization-	Covalent, non-covalent, and biological; Applications	- En	erg	y s	tora	ge:				
Batteries, Fuel C	ells: H ₂ , Li storage, supercapacitors; Molecular electro	nics-	-Fie	ld e	mitti	ing				
devices and Tran	sistors, drug delivery, CNT based microscopy, Nanotube	e sen	sor	3.						
Module:5 Grap	hene			7	hοι	ırs				
Electronic band	structure, Properties of Graphene: chemical, mechani	ical, e	elec	tror	nic a	Ind				
thermal. Synthes	is of Graphene – Exfoliation, Epitaxial, CVD, Hummer	Meth	od;	Gra	aphe	ene				
Nanoribbon- synt	hesis.		-							
Module:6 Func	tionalization and Applications of Graphene			6	hοι	Jrs				
Functionalization-	Covalent, non-covalent Application of Graphene	e; A	ppli	cati	ons	-				
Graphene MOSF	EI – Opening a Band gap, Spintronics, Solar c	ells,	gas	3 SE	enso	ors,				
supercapacitors.	0		-							
	Carbon based materials			6	nol	ırs				
Carbon Nanocom	posite, Nanocones, Nanotibers, Nanodiscs and Nanodia	amono	JS.		L.					
woaule:8 Cont	emporary issues			2	nol	ırs				
	Total Lecture h	ours:		45	hοι	urs				
						-				
Text Book(s)	· · · · · ·									
1. Yury Gogot	si, Volker Presser, Carbon Nanomaterials, Second e	dition	1. Yury Gogotsi, Volker Presser, Carbon Nanomaterials, Second edition, 2017, CRC							

	Press, Taylor & Francis, United States.								
2	Jamie H. Warner, Franziska	Schaffel,	Mark I	Rummeli, AlicjaBachmatiuk,					
Ζ.	Graphene: Fundamentals and Emergent Applications, 2018, Elseiver Science.								
Ref	ference Books								
1	Zhong Lin Wang, Nanowires ar	nd Nanobelts	s- Mater	rials, Properties and Devices					
1.	Springer, 2006								
2.	Thomas Webbester, Carbon Nano	tube prepara	ation and	d properties, CRC Press, 1997					
3	R Saito, G Dresselhaus, M S Dres	sselhaus, Phy	sical Pro	operties of Carbon Nanotubes,					
5.	^{3.} Imperial college press, 2004								
4.	Yury Gogotsi, Volker Presser, Carl	bon nanomat	erials, Cl	RC Press, 2014					
5	CNR Rao and A Govindaraj, Nanotubes and Nanowires, RCS Nanoscience and								
5.	Nanotechnology series, 2011								
6	Michael J. O'Connell, Carbon Nan	otubes: Prop	erties and	d Applications, CRC Taylor and					
0.	Franci group, 2006.								
7	Mikhail I. Katsnelson, Graphene:	Carbon in t	two dime	ensions, Cambridge University					
1.	Press, 2012								
Q	Fernando Langa, Jean-Franco	ois Nierenga	arten, F	Fullerenes: Principles and					
0.	Applications, RSC Publishing, 200	07							
Mo	de of Evaluation: Continuous Assess	sment Test, D	igital Ass	signment, Quiz and Final					
Ass	sessment Test.								
Rec	commended by Board of Studies 2	28-07-2022							
App	proved by Academic Council	No. 67	Date	08-08-2022					

Course Code Course Title L T P C						С		
MNAT505L	Synthesis of Nanomaterials and Thin Film Deposition	on	3	0	0	3		
Pre-requisite	NII	Svl	abi		ers	ion		
1 to requisito		C y l		1.0	010			
Course Objectiv	es							
The course is air	ned to:							
1 Make them	understand the fabrication of nanostructures for advance	h de	vice	20				
2. Provide and	I train the students about nanomaterial synthesis and th	in filı	m d	epo	sitio	on		
techniques.	· · · · · · · · · · · · · · · · · · ·			-1				
Course Outcome								
Students will be a	ble to:							
1. Identify and	understand various top-down and bottom-up approache	es fo	r na	non	nate	ərial		
synthesis.								
2. Understand	and apply vacuum technology for nanomaterial synthesis							
3. Describe var	ious deposition techniques at the atomic and molecular le	evel.						
4. Develop kno	wledge about structure and properties of thin films.							
5. Understand	he advanced concept in various vapor deposition technic	ques						
Madula:4 Nova	material Curthania Tan Dawn Annaach				. In a			
Nodule: 1 Nand	material Synthesis - Top-Down Approach			ט ה דר		urs		
Physical method	s- inert gas condensation, aerosol method, Arc discl	narge	е, г с Б	≺⊢-µ >~"	nas Nas	ma, ling		
Compution	nique, laser ablation, Gas-phase synthesis, Spray Pyn	olysi	S, C	ball	IVIIII	ing,		
Modulo:2 None	matarial Synthesis – Pottom un annroach			0	ha			
Chamical Math	ada Zara dimensional and dimensional and	tu 0		y ime				
	Nucleation theory Homogeneous and heterogeneous		u Iool	tion	11510 M	Indi		
nanostructures,	aduction Solvothermal/Hydrothermal synthesis Photoc	hom	ical	evr	, ivi hthe			
Flectrochemical	synthesis Thermolysis routes Sonochemical routes Hy	hrid	ma	thor	10	,313, Sol-		
del Micelles and	microemulsions Bio-Synthesis	bria	me	linoc	<i>1</i> 0, 1	001		
Module:3 Vacu	um technology			5	ho	ours		
Concept of differ	ent vacuum pumps - rotary, diffusion, Turbo molecular	pun	מו.	Crv	oae	nic-		
pump. Ti-sublima	tion pump: Concept of different gauges - pirani, penning.	Pres	ssui	re co	ontr	ol.		
Module:4 Wafe	r Growth and Epitaxial Deposition			5	ho	ours		
Crystal Growth -	CZ, Float zone technique; Basic Properties of differe	nt si	ubst	trate	es (e.a.		
semiconductor, g	lass); Wafer cutting; Sources and related effects of vari	ous	con	tam	inat	ion;		
Wafer processing	; Epitaxial growth- Growth kinetics of epitaxy, Doping, Gi	rowth	n mo	odes	s.	-		
Module:5 Strue	ture and properties of thin films			6	i ho	urs		
Definition of thir	n films- Environment (Gas phase and plasma) for th	in fi	lm	dep	osit	ion,		
Deposition param	eters and their effects on film growth; Physical parameter	ers fo	r ev	/alu	atio	n of		
thin films- Surface	e roughness; Density; Stress in thin films; Adhesion; Stoi	chior	neti	ry.				
Module:6 Phys	ical vapor deposition (PVD) techniques			6	i ho	urs		
Evaporation- The	ermal evaporation, resistance evaporation, Electron bea	m ev	/apc	orati	on,	lon		
vapor evaporatio	vapor evaporation and Cathodic arc deposition: Molecular Beam Epitaxy: Sputtering- Glow							
discharge sputtering, Magnetron sputtering, Ion beam sputtering; Atomic layer deposition								
uscharge spulle	ring, Magnetron sputtering, Ion beam sputtering; Atom	ic la	yer	dep	oosi	tion		
(ALD)-Importance	ring, Magnetron sputtering, Ion beam sputtering; Atom e of ALD technique.	ic la	yer	dep	oosi	tion		
(ALD)-Importance Module:7 Cher	ring, Magnetron sputtering, Ion beam sputtering; Atom e of ALD technique. nical vapor deposition techniques	ic la	yer	dep 6	bosi 6 ho	urs		
(ALD)-Importance Module:7 Cher Fundamentals, A	ring, Magnetron sputtering, Ion beam sputtering; Atom e of ALD technique. nical vapor deposition techniques dvantages and limitations of Chemical vapor deposition	ic la	yer D) t	dep 6 ech	bosi 6 ho niqu	ition ours Jes;		
(ALD)-Importance Module:7 Cher Fundamentals, A Different kinds of	ring, Magnetron sputtering, Ion beam sputtering; Atom e of ALD technique. nical vapor deposition techniques dvantages and limitations of Chemical vapor deposition CVD techniques- Metallorganic (MO) CVD, Photoassist	ic la (CVI ed C	yer D) t	dep 6 ech	bosi 6 ho niqu erm	urs ues; ally		
(ALD)-Importance Module:7 Cher Fundamentals, A Different kinds of activated CVD, P	ring, Magnetron sputtering, Ion beam sputtering; Atom e of ALD technique. nical vapor deposition techniques dvantages and limitations of Chemical vapor deposition CVD techniques- Metallorganic (MO) CVD, Photoassiste lasma enhanced (RF, μ-Wave) CVD, Low pressure (LP)	ic la (CV) ed C CVE	yer D) t VD,	der 6 ech , Th	bosi i ho niqu erm sph	urs ues; ally eric		

Мо	dule:8	Contemporary Issues				2 hours				
				Total	Lecture hours:	45 hours				
Тех	t Book	(s)								
1	Guoz	hong Cao. Ed Nanostruc	tures and Nand	omaterials	: Synthesis, Pro	operties, and				
1.	Applications, 2011, World Scientific Series in Nanoscience and Nanotechnology.									
2	G.A.	Ozin and A.C. Arsei	nault, Nanoch	emistry:	A chemical a	approach to				
۷.	nanor	materials, 2009, 2 nd Edition	, Royal Society	of Chemi	stry.					
Ref	erence	Books								
1.	Bhara	at Bhushan, Handbook of N	lanotechnology,	, Springer	, 2005					
	Hari	Singh Nalwa, Handbo	ok Of Nanc	structure	d Biomaterials	And Their				
2.	Applic	cations In Nanobiotechno	ology, Journal	of Nanos	cience and Nar	notechnology,				
	2005.									
3.	D.M.	Hata, Introduction to Vacu	um Technology,	Prentice	Hall New Jersey,	, 2007.				
4.	K. Jo	usten, Handbook of Vacuur	m Technology, 、	John Wile	y and sons, Weir	nheim, 2008.				
5	S. S	chmidt et al., CFx thin t	films deposited	l by higl	n power impuls	e magnetron				
0.	sputte	ering: synthesis and charac	terization Surf.	Coat.Tech	nol. 2011, 206, p	p. 646-653.				
6.	J. Ge	orge, Preparation of Thin F	ilms, Marcel De	ekker, Inc.	, New York. 2005	5.				
Mo	de of Ev	aluation: Continuous Asse	ssment Test, D	igital Assi	gnment, Quiz an	d Final				
Ass	sessmei	nt Test.								
Red	commer	nded by Board of Studies	28-07-2022							
App	proved b	by Academic Council	No. 67	Date	08-08-2022					

Course C	Code		Course Titl	e			L	Т	Ρ	С	
MNAT50	5P	Synthesis of Nanor	materials and Lab	Thin Fil	m Deposi	tion	0	0	2	1	
Pre-requ	isite	NIL				Syll	yllabus version				
								1.0			
Course C	Objectiv	es									
The cours	se is aim	ned to:									
1. Make	e them u	nderstand the fabricat	ion of nanostr	uctures f	or advance	ed de	vice	s.			
2. Provi	de and t	train the students about	ut nanomateria	al synthe	sis and thi	n film	dep	osi	tion		
techr	nques.										
Course C	Nutaom	<u> </u>									
Studente		e bla ta:									
1 Suuteriis		iule iu. nd donocit nonomatori		mothoda							
T. Oyriu	iesize a	nu uepusit nanomaten	als by various	memous	>						
Indicative	e Exper	iments									
1. Wet	Chemic	al synthesis of Silver (Quantum Dots	- Effect of	of viscositv	on	6 hours				
the	growth a	and its characterization	by UV-Visible	spectros	scopy.					-	
2. Synt	thesis c	of ZnO nanoparticles	by wet chem	nical rout	te and its			6 I	hou	ſS	
optio	cal band	gap calculation.	<u> </u>								
3. Mie	formalis	sm of Optical absorpti	on of Ag and	Au nanc	oparticles			41	nou	ſS	
	SIZE ESTIF	nation.	ballita aiza af N	lonomot	wiele freme			4			
	av diffra	or u-spacing and cryst	lainte size or r	vanomate	enais nom			41	lou	S	
5. Thin	i film d	deposition using Ele	ctroplating te	chnique	and			31	าดม	rs	
mor	pholoav	characterization using	Optical micro	scope.	ana			0.	iou	U	
6. Fab	rication	of thin films using Spin	coating techr	ique.			3 hours			rs	
7. Fab	rication	of metal thin films on s	ilicon/glass su	ubstrate u	ising		4 hours				
Metal evaporation Unit											
			Тс	tal Labo	ratory Ho	urs	30 ł	nou	rs		
Mode of A	Assessm	nent: Continuous Asse	ssment and Fi	nal Asse	ssment Te	st					
Recomme	ended by	y Board of Studies	28-07-2022		1						
Approved	by Aca	demic Council	No. 67	Date	08-08-20)22					

Course Code	Course Title		L	Т	Ρ	С		
MNAT506L	Nanomaterial Characterization Techniques		3	0	0	3		
Pre-requisite	NIL	Syllabus version						
			1	.0				
Course Object	ves							
The course is a	med to:							
1. Make them understand various Nanostructure characterization techniques.								
2. Train the	2. Train the students on state-of-the-art metrology tools such as Scanning Probe							
3 Enable th	s and oplical specifoscopes.	tha	+ or	~ r	oroh	bod		
and measu	red	i uia	a	5 F	JIOL	,eu		
Course Outcor	ne							
Students will be	able to:							
1. Distinguish	the conventional aspects of metrological tools.							
2. Understand	the working of various morphological techniques	and	sele	ectir	ng			
appropriate	tools for their future research.				•			
3. Determine	he applications of various spectroscopic techniques.							
4. Develop the	knowledge of Scanning probe techniques for characteriz	zation						
5. Summarize	the operation of optical and magnetic characterization te	chniq	ues.					
Madula 4	advation to Matualany		-	-	<u>k a i</u>			
Module:1 Intr	douction to metrology			4	nou	Irs		
Concepts of M	etrology- Accuracy, precision and reliability; Types of the	rrors	- 5	yst	ema	JUC		
Errors and Ran	iom Errors, Statistical analysis of errors.		-		<u>k a i</u>			
	roscopy rechniques			ð	nou	Jrs		
Optical microso	opy; Electron microscopy- Scanning Electron Micros	сору,	ΕD	УХ,	VVL	JX;		
	ectron Microscopy, EELS, SPM.		—		hai			
Wodule:3 Spe	ctroscopy rechniques		21	9 9	nou			
onhanced Part	Scopy, Ellipsonielei, AFS, AAS, ARD, Raman Speci	0500	by -	30	JIIa	Je-		
	nning Tunneling Microscopy			Q	hou	Ire		
Basic design of	Scapping Probe Microscopes: Scapping Tuppeling Micro	scone	· Dr	inci	nlos	in S		
operation Qua	ntum Mechanical Tunneling phenomenon in STM [Jifford	nt i	mor	hoe Yoe	of		
operation: STS	Principles of operation applications	Jinere		noc	103	01		
Module:5 Ato	mic Force Microscopy			7	hoi	irs		
Atomic Force M	icroscope - Modes of operation of AEM Advanced Mod	es of		<u> </u>	Fo			
Modulation Cor	ductive AFM EFM MEM SCM	03 01		VI	10	00		
Module:6 Nea	r Field Scanning Optical Microscopy			5	hoi	ırs		
Principles of op	eration. Different modes of operation. Spectroscopic Appli	catior	ns of	NS	SON	1.		
Module:7 Mag	Inetic Characterization			2	hou	Jrs		
Principles, Com	ponents of SQUID systems, Vibrating Sample Magnetom	eter (VSM)				
Module:8 Cor	temporary issues			2	hοι	ırs		
	Total Lecture h	ours:		45	hοι	ırs		
Text Book(s)								
R.W. Cah	n. E.M. Lifshitz. Concise Encyclopedia of Materials	3 Ch	arac	teri	zati	on:		
1. Advances i	Materials Sciences and Engineering.Elsevier. 2016.							
Yang Leng	Materials Characterization: Introduction to Microscopic	and	Spe	ctro	sco	pic		
2. Methods. J	ohn Wiley & Sons. 2013.							
Reference Boo	ks							

1.	Richard Leach, Fundamental Principles of Engineering Nanometrology, Elsevier, 2014.							
2.	Mauro Sardela, Practical Materials Characterization, Springer, 2014.							
с С	Ewen Smith, Geoffrey Dent, Me	odern Raman	Spectros	copy: A Practical Approach,				
5.	John Wiley & Sons, 2013.							
1	Nikodem Tomczak, Kuan Eng	Johnson Goh,	Scannir	ng Probe Microscopy, World				
т.	Scientific, 2011.							
5	Ernst Meyer, Hans J. Hug, Rola	nd Bennewitz,	Scanning	Probe Microscopy: The Lab				
5.	on a Tip, Springer Science & Business Media, 2013.							
6	Vladimir V. Tsukruk, Srikanth Singamaneni, Scanning Probe Microscopy of Soft							
0.	Matter: Fundamentals and Practices, John Wiley & Sons, 2012.							
7	H. Weinstock, SQUID Sensors: Fundamentals, Fabrication and Applications, Springer							
1.	Science & Business Media, 2012.	Science & Business Media, 2012.						
Q	Sam Zhang, Lin Li, Ashok Kumar	, Materials Cha	aracterizat	ion Techniques, CRC Press,				
0.	2008.							
Мо	de of Evaluation: Continuous Asses	sment Test, Di	gital Assię	gnment, Quiz and Final				
Ass	sessment Test.							
Ree	commended by Board of Studies	28-07-2022						
Арр	proved by Academic Council	No. 67	Date	08-08-2022				

Со	urse Code		Course Title	е			L	T	Ρ	С
MN	AT506P	Nanomaterial C	Characterizatio	on Techni	iques Lab)	0	0	2	1
Pre	-requisite	NIL				Sylla	abus	i ve	rsi	on
							1	.0		
Coi	urse Objective	es								
The	e course is aim	ed to:								
	1. Make then	n understand various	Nanostructure	characte	rization te	chniq	ues.			
	2. Train the	students on state-o	of-the-art metro	ology too	ls such a	is Sc	annir	١g	Pro	obe
	Microscop	es and optical spectro	oscopes.							
	3. Enable th	iem to study the n	norphologies a	and prop	erties tha	it are	prc	bec	ה ב	and
	measured	•								
Col	urca Outooma									
Stu	donte will be a	<u>;</u> bla ta:								
Siu		Die IU.	the econole	o with out	tabla taabi	aiauar	_			
	T. Prepare, c	naracterize and analy	/ze the sample	s with sur		iiques	5.			
Ind	icativo Expori	imonts								
1	Determine of	f size and lateral di	mensions of w	arious sa	moles us	ina		4 h		rs
••	optical micros				inpico uo	ing		T 11	oui	5
2.	Operation of	Atomic Force Microsc	ope (AFM).					4 h	our	rs
3.	Operation of	Scanning Tunneling M	Aicroscope (ST	M).				4 h	our	rs
4.	Study of UV-	Vis spectrophotomete	r and Determir	nation of C	Concentrat	ion		4 h	our	rs
	of unknown s	amples using Beer-La	ambert's Law							
5.	Investigation	of nanofluid inter-	- intra molec	ular inte	raction w	vith		4 h	our	ſS
	ultrasonic way	ve using Nanofluid int	terferometer							
6.	Working ope	ration of Electrocher	nical Workstat	ion and t	testing of	an		4 h	our	ſS
	electrolytic ca	apacitor								
7.	Operation of	Raman Spectroscopy	,				3 hours			ſS
8. Study of electrical conductivity of thin film using Hall Effect analysis.							3 h	our	ſS	
Total Laboratory Hours						urs (30 ho	our	S	
Mo	de of Assessm	ent: Continuous Asse	essment and Fi	nal Asses	sment Te	<u>st</u>				
Rec	commended by	y Board of Studies	28-07-2022							
Арр	proved by Acad	demic Council	No. 67	Date	08-08-20	122				

Course Code Course Title L T P						С		
MNAT507L	IAT507L Nanoelectronics				0	3		
Pre-requisite	MNAT503L	Syll	yllabus version					
-				1.0				
Course Objective	es							
The course is aimed to:								
1. Make ther	n understand various advanced concepts in nanoelectr	onics	S.					
2. Explore th	e fundamentals on QED, SED, Molecular electronics a	nd sp	ointi	onic	cs.			
3. Train the	students on state-of-the-art computational tools	for r	nod	ellin	g a	ind		
simulation	ofnanoelectronics devices.							
Course Outcome								
Students will be a	ble to:							
1. Develop t	he concepts of nanoelectronics such as ballistic trans	sport	and	d qu	Janti	JM		
confineme	nt.	~						
2. Understan	d various nanostructures and its applications towards (Juan	tum	Ele	ctro	nic		
2 Build the f	undamentals of Melecular Electronics							
4 Obtain the	howledge of Single Electron Devices and carbon ba	hae	nan	مام	octro	nic		
devices	Rhowledge of ongle Electron Devices and carbon ba	Scu	nan		CIIO	nic		
5. Define the	fundamentals of Spintronics.							
6. Design an	d simulate various advanced nanoelectronic devices.							
Module:1 Intro	duction to Nanoelectronics			6	hοι	ırs		
Limitations of the	conventional MOSFETs at Nanoscales, MOSFET Sca	ling	& in	nplic	atio	ns,		
Constant voltage	and constant field scaling, Moore's law, current trends	s and	ch	aller	nges	in		
scaling, Implication	ons of quantum confinement and tunneling on nanoscale	e dev	ices	5.				
Module:2 Nano	structures and Quantum Electronic Devices			6	hοι	ırs		
Low-dimensional	structures- Quantum wells, Quantum wires and Quantu	um d	ots;	Der	nsity	of		
states in low-din	nensional structures; Quantum heterostructure, High	ı Ele	ctro	n N	√obi	lity		
Transistors, Reso	nant tunneling phenomena and its applications in diodes	s and	tra	nsis	tors.	1		
Module:3 Mole	ecular Electronics			5	hοι	ırs		
Overview & Ba	sics; Fabrication of molecular electronics-based	trans	isto	r d	evice	es;		
Conduction mech	nanism in organic polymers; Self-Assembling Circuits	s, Mo	olec	ular	FE	Γs,		
Organic-LED.								
Module:4 Sing	le Electron Devices			4	hοι	ırs		
Tunnel junctions	, Principle of operation- Single-Electron Effect, C	Coulo	mb	Blo	ocka	de		
Phenomenon; The	eoretical Quantum Dot Transistor - Energy of Quantum	Dot s	yste	em,	Sing	le-		
Electron Quantum	n-Dot Transistor.							
Module:5 Carl	oon Nanoelectronics and 2D Materials Electronics			6	hοι	ırs		
Carbon nanotube	es - SWCNTs and MWCNTs; 1D quantization in nar	notub	es-	var	ו Hc	ve		
singularities; Fab	rication of CNTs; CNT FETs- Device characteristics, C	NT-T	UΒ	FET	, CN	1L-		
SET; and NanoW	/ire FETs; Electronic structure of graphene; Graphene	; FET	S-	GNF	RFE	Γs.		
Transition-metal c	lichalcogenide (TMD) material devices.							
Module:6 Spir	itronics			6	hοι	ırs		
Fundamentals of	Spintronics; Giant Magnetoresistance and Tunneling Ma	ignet	ores	sista	ince	,		
Magnetic Tunnelin	ng Junctions, Spin Transfer Torque and Magnetic memo	ries.						
Module:7 Curi	rent Nanoelectronic Devices			10	hοι	ırs		
Quantum Effects	s in MOSFETs, Strained Silicon Double-Gate MO	OSFE	ET,	Mu	lti-ga	ate		
MOSFETs, FINF	ET, SOI MOSFET Structures, Partially Depleted and F	ully	Dep	lete	d S(JI-		
MOSFETs, Nano	wire and Nanosheet GAA FETs, Non-volatile flash Men	norie	s, C	har	ge tr	ар		
memories, Ballisti	c Transport, Conductance Quantization, Quantum Point	Con	tact	De	vices	3.		

Мо	dule:8	Contemporary Issues				2 hours			
						1			
				Total	Lecture hours:	45 hours			
Тех	t Book	(s)							
1.	1. Shunri Oda, David Ferry, Nanaoscale Silicon Devices, CRC Press, Taylor & Francis Group, 2015.								
2.	Geor	ge W Hanson Fundamentals	s of Nanoelectr	onics Pea	rson India,2009				
Ref	erence	Books							
1.	Suprie	o Datta, Lessons from nand	pelectronics, W	orld Scier	ntific publisher, 2	015.			
2.	Karl (From	Goser, Peter Glosekotter, Transistors to Molecular ar	Jan Dienstuhl Id Quantum De	, Nanoel evices, Sp	ectronics and N pringer-Verlag 20	anosystems- 04.			
3.	C.N.F	R. Rao and A. Govindaraj, N	lanotubes and	nanowire	es, RSC Publishi	ng, 2005.			
4.	Konst proce	antin K. Likharev, Single edings, vol. 87, no. 4, April	e Electron De 1999.p 606- 6	evices ar 32.	nd their Applica	ations, IEEE			
5.	Ziese	and M. J. Thornton Spin E	lectronics, Spr	inger-Verl	ag, 2001.				
6.	Suprig press	/o Datta, Quantum Transp , 2005.	oort-From Ator	n to Trar	nsistor, Cambridg	ge University			
Mo	de of Ev	aluation: Continuous Asses	sment Test, Di	gital Assię	gnment, Quiz and	l Final			
Ass	sessmer	nt Test							
Red	commer	nded by Board of Studies	28-07-2022						
App	proved b	y Academic Council	No. 67	Date	08-08-2022				

Course Code Course Title L							Т	Ρ	С	
MN	IAT507P	N	lanoelectronic	s Lab			0	0	2	1
Pre	-requisite	MNAT503L				Syll	abı	IS V	ersi	on
								1.0		
Co	urse Objectiv	es								
The	e course is aim	ned to:								
1	. Make them u	inderstand various a	dvanced concer	ots in nan	oelectronic	s.				
2.	. Train the stu	idents on state-of-th	e-art computation	onal tools	for mode	lling a	and	sim	nulat	tion
	of nanoelectr	onics devices.	· · · · · · · · · · · · · · · · · ·			3				
Co	urse Outcome	9								
Stu	dents will be a	ble to:								
1	Design and s	simulate various adva	anced nanoelec	tronic dev	rices.					
	r boolgir and c				10001					
Ind	icative Exper	iments								
1.	Write a matla	ab script for solving	time independe	nt Schrod	linaer eau	ation	in	2	hοι	Jrs
	one dimensi	ion and obtain en	eray levels of	electror	confined	d in	1			-
	dimensional	infinite potential w	ell with length	L= 5 r	nm. Plot	energ	av			
	eigenfunction	and probability as	a function of x	for first,	fifth and s	seven	th			
	quantum stat	es.								
2	Write Matlab	script for solving S	elf-consistent S	chroding	er-Poisson	solv	er	4	hοι	Jrs
	for MOS capa	acitor (Si-SiO2) in 1) with p-substra	te with do	ping 5 x 1	0 ¹⁶ ci	m			
	³ , for a surfac	e potential 2φ _f .								
	Plot i) the	Electron charge de	ensity calculate	ed classio	cally as v	vell a	as			
	quantum med	chanically. ii) Electric	field profile and	I the banc	l diagram					
3.	Design and	fabricate below 10	0 nm technolo	gy node	MOSFET	usir	ng	4	hοι	ırs
	various proce	ess steps and extract	t threshold volta	ige and o	n resistand	ce fro	m			
	its I-V chara	cteristics using proc	cess and device	e simulat	ors. Interp	oret th	ne			
	results using	relevant physical me	chanisms.							
4.	Design a 2D	MOSFET structure	in SDE with s	ource an	d drain re	gion	of	4	hοι	ırs
	100nm squar	re, and simulation gi	rid size of 1*2 r	nicro met	er. Source	e, dra	in			
	doping of 1e	19 cm-3 and p-subs	strate doping of	5e16 cn	n-3. Obtair	n Id-∖	/d			
	characteristic	s for this device ar	nd also plot do	ping prot	ile with g	rid ar	nd			
_	simulated cha	arge density for one	set of blasing co	onditions.					-	
5.	Design a Res	sonant Tunnelling Di	ode (RID) with	symmetr		parrie	rs	6	hou	ırs
	of various wi	oths using AlGaAs/C	JaAs heterojuno		erial comb	inatio	n.			
	Plot its trans	smission and I-V C	characteristics.	Interpret	the result	ts wi	th			
6	Design a deu	ical mechanisms.	Opm short shor			high	K	6	hai	Iro
0.	dielectrice D	lot its LV sharastoris	tice and analyz	o ito tropi	re i using	motor	-N	0	nou	112
	Interpret the	roculte using rolovan	t physical moch	e ils ilani onieme	sport para	netei	5.			
7	Design and	Simulato a SONC	s momory de	anisins.	to hottom	ovi		1	hoi	ire
1.	thickness-2	nm Gate silicon	nitride thickne	se-6nm	Gate ton			4	noc	112
	thickness-5n	m Choose suitable		s to obt	ain the nr	oarar	n			
	erase and ret	ention characteristic	s voltage range			ograi	,			
				Total I	aboratory	Нон	rs	30	hou	irs
Mo	de of Assessm	nent: Continuous Ass	essment and Fi	nal Asses	ssment Te	st	. •			
Red	commended by	v Board of Studies	28-07-2022							
Apr	proved by Aca	demic Council	No. 67	Date	08-08-20	22				

Course Code	Course Title		L	Т	Ρ	С
MNAT601L	AT601L MEMS to NEMS				0	3
Pre-requisite	NIL	Syl	labı	IS V	ersi	on
				1.0		
Course Objectiv	es					
The course is ain	ned to:					
1. Make them t	o understand the technology of MEMS and NEMS.					
2. Expose the	m about fabrication processes for development	of	ME	MS/	NEN	/IS
devices and	systems.					
3. Educate abo	ut the potential applications of NEMS.					
Course Outcom						
Students will be a						
1. Develop the	knowledge of mechanisms in MESM/NEMS					
2. Understand	concept in finite element analysis of microsystems					
4 Establish the	knowledge of MEMS fabrication					
5. Develop kno	wledge of guantum effects in MEMS/NEMS					
6. Apply the kn	owledge of system integration in MEMS/NEMS					
7. Design and	simulate micro / nanosensors and actuators.					
Module:1 Intro	duction			4	hοι	ırs
Overview of M	EMS / NEMS and various devices, Scaling geon	netry	, R	ligid	Bo	ody
Dynamics, Force	s, Electron transfer, Fluid mechanics and Heat transfer.			-		-
Module:2 Engi	neering mechanics for Microsystems design			6	hοι	ırs
Static Bending c	f Thin plates, Mechanical vibration, Resonant vibration	ι, De	sigr	n the	eory	of
Accelerometers,	and Thermal analysis, Thermal effects on Mechanical st	reng	th of	f Ma	teria	als,
Creep formation.		_				
Module:3 Finit	e Element Analysis			7	hοι	ırs
Concept of FE	A, Comparison with other methods, Formulation fro	om	the	go۱	/erni	ing
Differential equa	tions, Formulation based on stationary total potential, 7	1-D ;	and	2-D	Fin	nite
Element Analysis	, Examples.					
Module:4 Over	view of Micro - Scale fabrication			5	hou	ırs
Microsystem fa	brication process-Lithography, Dry and wet et	ching	g,	Thir	ו f	ilm
deposition- PVD	CVD,LIGA, Micromolding, Electro-deposition					
Module:5 Quar	ntum effects			8	hοι	ırs
Casimir Force	and its influence in MEMS and NEMS, control	of	casi	mir	for	ce,
Nanotribology- e	xperimental techniques for studying anotribology,	, pł	noni	c f	rictio	on,
electronic frictio	n, static friction, frictional anisotropy, stick-slip dynamics	\$				
Module:6 NEM	S			9	hοι	ırs
Introduction to r	anoscale engineering, theory and characteristics of N	IEWS	S, C)esig	jn a	nd
simulation techni	ques of NEMS – molecular dynamics, Potential energy	mode	els,	Inte	grati	ion
algorithms Molec	ular and Nanostructure Dynamics, Molecular Wires and I	Mole	cula	r Ci	cuit	s
Module:7 Syst	em Integration			4	hou	ırs
System Integration	on and reliability					
Module:8 Cont	emporary Issues			2	hοι	ırs
			_		_	
	Total Lecture he	ours	:	45	hou	ırs
Text Book(s)						
1 Tai-ran Ha	u MEMS and Microsystems: Design Manufacture	 >	h h	Jan		مار
	อน, พ∟พอ สาน พแบบจังจเอากร. ออรเนก, พลกนาสิยเนาย	, ai	u I	Vali	Joud	

	Engineering, 2nd Edition, 2008, John Wiley & Sons, New Jersey, United States						
2	Sergey Edward Lyshevski, MEMS and NEMS: Systems, Devices, and Structures, 2002,						
Ζ.	CRC Press, Florida, USA.						
Re	Reference Books						
1.	P.Seshu, Text Book of Finite Element Analysis, PHI,2006						
2	Sergey Edward Lyshevski, Nano- and Micro-electromechanical Systems, CRC, Press,						
۷.	2000						
3.	Bharath Bhushan, Handbook of M	licro/Nanotribol	ogy, CRC	Press, 1999.			
л	Cornelius T. Leondes, MEMS/NEMS Handbook, Techniques and application, Springer,						
4.	2005.						
Мо	de of Evaluation: Continuous Asse	ssment Test, D	igital Assi	gnment, Quiz and Final			
Ass	sessment Test.						
Re	commended by Board of Studies	28-07-2022					
Approved by Academic Council No. 67 Date 08-08-2022							

Course Co	Code Course Title L T P									
MNAT602L	L Nanosensors			3	0	0	3			
Pre-requis	ite	NIL	Syll	abı	is v	ersi	on			
					1.0					
Course Ob	Course Objectives									
The course is aimed to:										
1. Offer	1. Offer an overview of basic nanosensor technology with examples drawn from									
existing	g prod	ucts and literatures.								
2. Enable	e ther	n to identify suitable nanosensors and nanodev	ices	tot	Va	ariou	IS			
2 Moke t	ai app	lications.	ontio	امم	nliar	otion				
	tcome	cquaimed with various types of hanosensors and its pot	entia	гар	plica		15			
Students w	ill ha a	z ble to:								
1 Identify	u and i	understand various mice and nano-sensors and their we	rkina							
2. Summ	aries n	naterials properties used for the fabrication of nanosens	ors.	•						
3. Explain	n funda	amentals of packaging and characterization of nanosens	sors							
4. Develo	p the	various types of mechanical, chemical and optical nano-	sens	ing	syst	ems	5.			
5. Apply	various	a nanostructured materials for developing nanobiosenso	rs.	Ŭ	,					
Module:1	Micro	and nano-sensors			3	hou	ırs			
Sensing p	rinciple	es, sensor types and classification – Mechanical, a	acous	stic,	ma	igne	tic,			
thermal, ch	nemica	I, radiation; microsensors; sensors based on surfac	e - a	aco	ustic	; wa	ave			
devices, bio	osensc	r, microfluids								
Module:2	Mate	rials for Nanosensors			8	hou	Jrs			
Shape and	l size	Dependence of Properties at Nanoscale, Surface	Energ	gy (of a	So	lid,			
Core/Shell-	Struc	tured Nanoparticles, Metallic Nanoparticles and	Plas	mor	าร	Opti	cal			
Properties	of Bu	k Metals and Metallic Nanoparticles, Quantum Dots, Ca	ırbon	Na	notu	bes.	•			
Module:3	Pack	aging and characterization of sensors			4	hοι	Jrs			
Design, fab	oricatio	n and characterization, Method of packaging at dye le	evel,	zero) lev	/el a	Ind			
first level.										
Module:4	Mech	anical Nanosensors			8	hοι	ırs			
Mass sens	sing- N	lanogram Mass Sensing by Quartz Crystal Microbala	nce,	ME	:MS/	/NEI	٧S			
Resonators	s; Disp	lacement sensor- Electron Tunneling Displacement Na	nose	nso	r, Co	Sulo	mb			
Blockade E	Electro	meter-Based Displacement Nanosensor, Nanometer-S	Scale	Dis	splac	ceme	ent			
Sensing b	y Sin	gle-Electron Transistor, Magnetomotive Displace	ment	N	anos	sens	or,			
Piezoresist	ive a	nd Piezoelectric Displacement Nanosensors, Op	tical	Dis	splac	ceme	ent			
Nanosenso	or.									
Module:5	Che	mical Nanosensors	<u> </u>		8	nou	Jrs			
Gas Senso	ors Ba	sed on Metallic Nanoparticles, Metal Oxides, Carbon	Nan	otul	be,∣	Porc	ous			
Silicon; Th	in Org	anic Polymer Film-Based Gas Sensors; Electrospun F	olym	ner	Nan	ofib	ers			
as Humidit	y Sens	ors; Nanoelectronic Nose.				hai				
Noble Mete	Optic	al Nanosensors			0	nou	urs Jrs			
		particles with LSPR and UV-Visible Spectroscopy, N	anos	Sens	sors	Bas	sea			
On Sunace	-Enna	inced Raman Scallening, Colloidal SPR Colonimetric	Goid		ano	Jani	cie			
	Nana	hiosonsors			6	hai	Irc			
		UIUSEIISUIS ad Electrophomical Disconnector ONT Deced Electroph	<u></u>		0 Nicci					
Functionali	c-DaS	eu Electrochemical Diosensols, UNT-Daseu Electroch		ai E Dia	NUS	SOLO	л5,			
Modulare		or on to to biosensor, quantum Dot-Daseu Electroche	mical		יטטו ר	be). Jrc			
	Cont	emporary issues			Z	ΠΟΙ	S IL			
				Т						
		Total Lecture h	ours	:	45	hοι	Jrs			

Tex	Text Book(s)						
1	J. Chattopadhyay, N. Srivastava, Application of Nanomaterials in Chemical Sensors						
1.	and Biosensors, CRC press, 2021.						
2	Vinod Kumar Khanna, Nanosens	Vinod Kumar Khanna, Nanosensors: Physical, Chemical, and Biological, CRC press,					
Ζ.	2012						
Re	ference Books						
4	H Chaudhery, K Suresh, Handbook of Nanomaterials for Sensing Applications,						
1.	Elsevier, 2021						
Мо	de of Evaluation: Continuous Asses	sment Test, D	igital Assi	gnment, Quiz and Final			
Ass	sessment Test.						
Re	Recommended by Board of Studies 28-07-2022						
Approved by Academic Council No. 67 Date 08-08-2022							

MNAT603L Nanophotonics 3 0 0 3								
Pre-requisite MNAT503L Syllabus version								
1.0								
Course Objectives								
The course is aimed to:								
1. Expose them to the emerging area of nanophotonics and the phenomena involved in								
such devices.								
 Frovide deep understandings of light – matter interaction at hanoscale. Study different types of nanophotonic crystal based devices and systems 								
Course Outcome								
Students will be able to:								
1. Understand the mathematical synthesis of Maxwell equations for Photonic systems.								
2. Analyze the light-matter interaction								
3. Compare similarity between electrons and Photons.								
4. Understand the knowledge of 1-D, 2-D and 3-D Photonic Crystals.								
5. Apply photonic crystals for different applications.								
6. Onderstand the plasmonics-based photonic circuits.								
Module:1 Maxwell equations for Photonic systems 6 hour								
Permittivity. Susceptibility. Dielectric Constant, Basic Maxwell equations and the								
interpretations, Wave Equations for dielectric.								
Module:2 Light-Matter Interaction 5 hours								
Absorption, Scattering, Interference, Diffraction, Complex refractive index and dielectri								
constant, Dispersion in Materials, Fresnel reflection equations.								
Module:3 Photons and Electrons - Similarities and differences 6 hours								
Photons and Electrons - Similarities and differences, Confinement of Photons and								
Electrons, Co-operative effects for Photons and Electrons, Propagation through Classical								
Forbidden Zone- Tunneling, Concept of Near-Field phenomena in Photonic Crystals and								
Evanescent wave. Master Equations for photonics								
Module:4 Photonic Crystals 8 nour								
1-D, 2-D and 3-D Photonic crystal, Theoretical and mathematical description of Photoni								
Medulo 5 Applications of Photonic Crystals.								
1D. Brogg mirroro Woyaguideo Filtero Fibero Destanio handgon fibero Index Cuidin								
fibers and Bragg fibers, logic-gates								
Module:6 Applications of Photonic Crystals- Pass band 6 hour								
Construction of Equal frequency Surface Superprism Superlens and Supercollimation								
Module:7 PlasmonicsCO6 6 hours								
Fundamentals, wave equations, surface plasmon-polaritons. Plasmonic based photoni								
circuits								
Module:8 Contemporary Issues 2 hours								
Total Lecture hours: 45 hours								
Text Book(s)								
Arthur McGurn, Nanophotonics (Hb 2018)Springer, 1st Edition, 2018, ISBN 9783319770710								
2. John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, Robert D. Meade								

	Crystals: Molding the Flow of Light, second Edition, Princeton University Press, 2008								
Ref	Reference Books								
1	Motoichi Ohtsu, Kiyoshi Kobay	ashi, Tadash	i Kawazo	e, Takashi Yatsui, Makoto					
١.	Naruse, Principles of Nanophotonics, CRC Press, Taylor & Francis Group, 2008.								
2.	Stefan A. Maier, Plasmonics: Fundamentals and Applications, Springer Science, 2007.								
3.	J. R. Lakowicz, Principle of Fluorescence Spectroscopy, third Edition, Kluwer								
	Academic Publisher, Newyork, 2007								
4	Paras Prasad, Nanophotonics, W	iley-Interscien	ce, 2004.						
Mo	de of Evaluation: Continuous Asses	sment Test, Di	gital Assig	gnment, Quiz and Final					
Ass	sessment Test.								
Red	commended by Board of Studies	28-07-2022							
Арр	Approved by Academic Council No. 67 Date 08-08-2022								

Course Code	Course Title		L	Т	Ρ	С			
MNAT604L	T604L Lithographic Techniques for Device Fabrication				0	3			
Pre-requisite	equisite NIL Sylla								
1.0									
Course Objectives									
The course is aim 1. Make conve	ned to: rsant with conventional aspects of lithography, techn on aspects	iques	re	ateo	d an	ıd			
2. Introduce va 3. Study the	 Introduce various existing Lithography techniques. Study the principles, process steps and system components of the various 								
Students will be a	c uble to:								
1. Develop in-d 2. Differentiate as X-ray, Ion 3. Understand	epth knowledge of optical and electron beam lithography the conventional features and resolution of lithograph , SPM based and soft lithography. the importance of plasmonics in lithography	y tech iy tec	niq hniq	ues. ques	s su	ch			
Madulad Onti					<u>k a i</u>				
Module:1 Optic		,		<u>9</u>	nοι	irs			
Process steps in Projection Printir Ultraviolet lithog Lithography.	Process steps involved in the optical lithography; Types - Contact, proximity printing and Projection Printing; Resolution Enhancement techniques for projection systems; Deep Ultraviolet lithography; Extreme Ultraviolet lithography; Scanning Near Field Optical								
Module:2 Elect	ron Beam Lithography			8	hou	ırs			
Interaction of the	e electrons with the substrate; Electron Lithography S	ystem	со	mpc	nen	its;			
Raster scans and Electron Beam Li	d Vector scans; Electron resists and processing techn thography.	ique;	Ap	olica	tion	of			
Module:3 X-ray	/ Lithography			4	hοι	ırs			
X-ray lithography X-ray sources, x-	system components, Resolution enhancement, X-ray ray resists.	mask	CC	onstr	uctio	on,			
Module:4 Ion L	ithography			3	hοι	ırs			
Ion lithography Lithography; Ion	system components; Focused Ion Beam Lithography; Projection Lithography.	Mask	ed	lon l	Beai	m			
Module:5 Scan	ning Probe Lithography			8	hοι	ırs			
Scratching Litho	ography; Anodic Oxidation- Mechanism of Nano-	oxidat	ion	; D	ip-P	en			
Nanolithography	- Mechanism, DPN Types: Parallel DPN, Polymer D	PN,	App	olica	tion	of			
DPN; Nano-shav	ing.								
Module:6 Soft	Lithography			5	hοι	ırs			
Micro-contact p	rinting, Solvent-Assisted Micromoulding, Micromould	ling i	n	capi	llarie	es,			
Module:7 Plas	monic Nanolithography			6	hou	ırs			
Principle of Plas	monic Lithography. Plasmonic Mask. Near-field Plas	monic	: Li	thoc	Irapl	hv.			
Plasmonic Conta	ct Lithography, Plasmonic direct write lithography.				,	,			
Module:8 Cont	emporary Issues			2	hοι	ırs			
					-				
	Total Lecture h	ours:		45	hοι	ırs			
Text Book(s)									
1. M Feldma Nanophotor	n, Nanolithography: The Art of Fabricating N nic	anoel	ecti	onic	; a	nd			

	Devices and Systems, 2014, Woodhead Publishing.								
2.	Stefano Cabrini, Satoshi Kawata, I	Vanofabricatio	on Handb	ook, 2012, CRC Press.					
Ref	ference Books								
1.	Bruce W. Smith, Kazuaki Suzuki, Edition, CRC Press, 2007.	Microlithograp	ohy: Scier	nce and Technology, Second					
2.	D Bucknall, Nanolithography and Patterning Techniques in Microelectronics, Elsevier, 2005.								
3.	Marc J. Madou, Manufacturing Techniques for Microfabrication and Nanotechnology, 3 rd Edition, Vol II, CRC Press, 2011.								
4.	Mark J. Jackson, Micro and Nano 2007.	manufacturing	g, Springe	er Science & Business Media,					
5.	Ampere A. Tseng, Tip-Based Springer Science & Business Med	Nanofabricati ia, 2011.	on: Fund	damentals and Applications,					
6.	Hyongsok T. Soh, Kathryn Wi Lithography, Springer Science & B	lder Guarini, Susiness Medi	Calvin a, 2013.	F. Quate, Scanning Probe					
Mo	de of Evaluation: Continuous Assess	ment Test, Di	gital Assi	gnment, Quiz and Final					
Ass	sessment Test.								
Red	commended by Board of Studies	28-07-2022							
Арр	proved by Academic Council	No. 67	Date	08-08-2022					

Course Code Course Title L						Ρ	С		
MNAT605L	-	Plasmonics		3	0	0	3		
Pre-requis	ite	MNAT503L	Syll	abı	IS V	ersi	on		
					1.0				
Course Ob	jectivo	2S							
The course	is aim	ed to:							
1. Give a	1. Give a clear idea of changes in optical properties of nanostructures.								
2. Enable	2. Enable to understand the fundamentals about surface plasmon polariton and plasmonic waveguides								
3 Make		vegulues. vinted with various types of Spectroscopy and s	ensir	n	tech	nia	IPS		
based on plasmonics.									
Course Outcome									
Students w	ill be a	ble to:							
1. Apply	the kno	wledge of electromagnetics on metallic nanoparticles.							
2. Unders	stand t	he fundamentals of surface plasmon polariton, and LSP	R.						
3. Unders	stand t	he excitation dynamics at nanoscale.							
4. Unders	stand r	anocomposites and its application in the field of optoele	ectror	ics.					
5. Analyz	the r	nanostructured molecular architectures.							
6. Apply	the bas	sics on Surface-Plasmon-Polariton-Based for sensing ar	nd sp	ectr	OSC	ору.			
Module:1	Flect	romagnetics of Metallic Nano-particles			9	hoi	irs		
Metallic Na	ano-pa	rticles Maxwell equation and Electromagnetic wave e	auat	ion	disr	pers	ion		
of the free	elect	ron gas and volume plasmons, real metals and int	rabai	nd	tran	sitio	ns.		
Electromag	entic	field in metals. Local Field Enhancement, Sub-wa	avele	nath	່ລະ	oerti	ure.		
plasmonics	6				. ∽I				
Module:2	Plasn	nonic waveguides			7	hou	urs		
Elements f	or surf	ace plasmon polariton propagation, surface plasmon	polar	iton	bai	nd g	ap		
structures,	metal	nanowires for high confinement guiding and focusing	, g, loc	aliz	ed r	nod	es,		
metal nano	particle	e waveguides							
Module:3	Loca	ized surface plasmons			6	hοι	ırs		
Normal mo	odes c	f sub-wavelength metal particles, Mie theory, Obse	rvatio	ons	of	parti	cle		
plasmons,	couplin	g between localized plasmons, void plasmons and meta	allic n	anc	she	lls			
Module:4	Nano	control of Excitation Dynamics			5	hοι	ırs		
Nanostruct	ure a	nd excited states. Rare earth doped nanostructi	ures	Up∙	-con	verti	ing		
nanophore	s. Pho	ton avalanche. Quantum cutting. Site isolating nanop	articl	es,	pris	m a	Ind		
grating cou	ıpling,	near field excitation.							
Module:5	Nano	composites			6	hοι	ırs		
Nanocomp	osites	as photonic media. Nanocomposite waveguides. Rar	ndom	las	sers	. Lo	cal		
field enha	nceme	nt. Multiphase nanocomposites. Nanocomposites f	or o	ptoe	elect	roni	CS.		
Polymer dis	sperse	d liquid crystals. Nanocomposite metamaterials.		-		<u> </u>			
Module:6	Nano	structured Molecular Architectures			<u> </u>	nou	urs aa		
Dondrimore		eractions. Nanostructured polymenc media. Mo		ar acor	ma mbli	cnine	es.		
Modulo:7	s. Supi	amolecular structures. Monolayer and multilayer molecu	liai a	550	5	bo	ire		
Single Part		nostroscopy and Sensing	ore	Mo	tom	otori			
and Negativ	iui c 3 Va Inde	yeuroscopy, Sunace-riasmon-rolamon-based Sells	015, 011 i+i	IVIE	iaille ranh		ais		
	Cont	morary Issues		l T	2 2	hoi	irs		
	Joint								
		Total Lecture h	ours	•	45	hοι	ırs		

Тех	t Book(s)				
1.	Stefan Alexender Maier, Plasmor	nics – Fundame	ental and	Applications, Springer, 2007.	
2.	Paras Prasad, Nanophotonics, W	iley-Interscien	ce, 2004.		
Ref	erence Books				
1	Mark L. Brongersma and Pieter	G. Kik, Surfa	ice Plasm	on Nanophotonics, Springer,	
1.	2007.				
2.	Ralf B. Wehrspohn, Heinz-Siegfried Kitzerow, and Kurt Busch, Nanophotonic				
۷.	Materials: Photonic Crystals, Plasmonics, and Metamaterials, Wiley-VCH, 2008)				
3	Matthew Pelton, Garnett W. Bryant, Introduction to Metal-Nanoparticle Plasmonics,				
5.	A Wiley–Science Wise Co–Public	ation, 2013			
Mo	de of Evaluation: Continuous Asses	sment Test, Di	igital Assig	gnment, Quiz and Final	
Ass	sessment Test.			-	
Red	commended by Board of Studies	28-07-2022			
App	proved by Academic Council	No. 67	Date	08-08-2022	

Course Code Course Title L											
MNAT606L	Nanomagnetism- Fundamentals and Applicatio	ns	3	0	0	3					
Pre-requisite	MNAT503L	Sylla	abu	s ve	ersic	on					
-			1	0.1							
Course Objective	es										
The course is aim	ed to:										
1. Make them u	nderstand the fundamentals of nanomagnetism and th	eir app	lica	tion	s.						
2. Study the ma	gnetism at macro- and nanoscale and their potential e	ffects.									
3. Enable stu	idents to apply the concepts of magnetic nanoma	aterials	in	the	field	of					
energy stora	ge, biomedicine and environmental applications.										
Course Outcome	; bla ta:										
Students will be a	DIE TO:										
1. Explain the c	oncepts of magnetism at macro and nanoscale.	on the	ato	m							
3 Relate the fi	indamentals of ferromagnetism antiferromagnetism	and of	her	ma ma	ane	tic					
order.				me	gno						
4. Classify and	understand the concepts of micro- and nanoscale mag	netism									
5. Interpret the	e concepts of magnetism and apply to magnetic	nanc	oma	teria	als	for					
magnetic rec	ording, energy storage, biomedicine and environmenta	l applic	catio	ons.							
Module:1 Magr	etostatics			3	hοι	ırs					
Introduction - Hi	story - Magnetism and hysteresis, Magnetic dipole	mom	ent,	Ma	agne	etic					
fields, Maxwell's e	equations, Magnetostatic energy and forces.										
Module:2 Magr	etism of electrons			8	hοι	ırs					
Orbital and spi	n moments, Magnetic field effects – Zeeman	effect	, -	The	ory	of					
electronic magnet	ism, Magnetism of electrons in solids.			electronic magnetism, Magnetism of electrons in solids.							
Module:3Magnetism of localized electrons on the atom8 hours											
Module:3 Magr	etism of localized electrons on the atom			8	hοι	ırs					
The hydrogenic a	atom and angular momentum, The many-electron atom	om, Pa	aran	8 nagr	hou netis	urs m,					
The hydrogenic a lons in solids; cry	atom and angular momentum, The many-electron atom stal-field interactions.	om, Pa	iran	8 nagr	hοι netis	urs sm,					
The hydrogenic a lons in solids; cry Module:4 Ferro	atom and angular momentum, The many-electron atom stal-field interactions. magnetism and Exchange	om, Pa	iran	8 nagr 8	hοι netis hοι	urs m, urs					
Module:SMagrThe hydrogenic alons in solids; cryModule:4FerroMean field theo	atom and angular momentum, The many-electron atom stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Co	om, Pa	aran	8 nagr 8 excit	hou netis hou ation	urs sm, urs ns,					
The hydrogenic a lons in solids; cry Module:4 Ferro Mean field theo Anisotropy, Ferro	atom and angular momentum, The many-electron atom stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Co magnetic phenomena.	om, Pa	aran e e	8 nagr 8 excit	hοι netis hοι atior	urs sm, urs ns,					
Module:SMagrThe hydrogenic aIons in solids; cryModule:4FerroMean field theoAnisotropy, FerroModule:5Antife	atom and angular momentum, The many-electron atom stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Co magnetic phenomena. erromagnetism and other magnetic order	om, Pa	aran e e	8 nagr 8 excit	hou netis hou ation	urs im, urs ns, urs					
Module:3MagrThe hydrogenic alons in solids; cryModule:4FerroMean field theoAnisotropy, FerroModule:5AntifeMolecular field	atom and angular momentum, The many-electron atom stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Co magnetic phenomena. Erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frus	om, Pa	aran e e	8 nagr 8 excit 4	hou netis hou ation hou rpho	urs m, urs ns, urs ous					
Module:3 Magr The hydrogenic a lons in solids; cry Module:4 Ferro Mean field theo Anisotropy, Ferro Module:5 Antife Molecular field magnets, Spin gla	atom and angular momentum, The many-electron atom stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Co magnetic phenomena. erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frus asses, Magnetic models.	om, Pa	aran e e	8 nagr 8 excit 4 \mo	hou netis hou ation hou rpho	urs m, urs ns, urs ous					
Module:SMagrThe hydrogenic alons in solids; cryModule:4FerroMean field theoAnisotropy, FerroModule:5AntifeMolecular fieldmagnets, Spin glaModule:6Micro	atom and angular momentum, The many-electron atom stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Co magnetic phenomena. erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frus asses, Magnetic models. magnetism and Nanoscale magnetism	om, Pa	aran e e	8 nagr 8 excit 4 Amo 7	hou netis hou ation hou rpho	urs im, urs ns, urs ous urs					
Module:3MagrThe hydrogenic alons in solids; cryModule:4FerroMean field theoAnisotropy, FerroModule:5AntifeMolecular fieldmagnets, Spin glaModule:6Micromagnetic	atom and angular momentum, The many-electron atom stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Co magnetic phenomena. erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frus asses, Magnetic models. magnetism and Nanoscale magnetism nergy, Domain theory, Reversal, Pinning and Nucle	om, Pa	aran	8 nagr 8 excit 4 Amo 7 arac	hou netis hou ation hou rpho hou	urs sm, urs ns, urs ous urs stic					
Module:3MagrThe hydrogenic alons in solids; cryModule:4FerroMean field theoAnisotropy, FerroModule:5AntifeMolecular fieldmagnets, Spin glaModule:6MicroMicromagnetic enlength scales, S	atom and angular momentum, The many-electron atom stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Co magnetic phenomena. erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frus asses, Magnetic models. omagnetism and Nanoscale magnetism hergy, Domain theory, Reversal, Pinning and Nucle uperparamagnetism, Thin films, Thin-film heterostr	om, Pa	iran	8 nagr 8 excit 4 Amo 7 arac Wire	hou netis hou ation hou rpho hou eteris	urs m, urs ns, urs ous urs stic und					
Module:SMagrThe hydrogenic aIons in solids; cryModule:4FerroMean field theoAnisotropy, FerroModule:5AntifeMolecular fieldmagnets, Spin glaModule:6MicroMicromagnetic enlength scales, Sneedles, Small p	atom and angular momentum, The many-electron atom stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Comagnetic phenomena. erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frustasses, Magnetic models. magnetism and Nanoscale magnetism hergy, Domain theory, Reversal, Pinning and Nucle uperparamagnetism, Thin films, Thin-film heterostri- barticles, Bulk nanostructures, Novel methods for sy	om, Pa	Liran	8 nagr 8 excit 4 Amo 7 arac Wire f ma	hou netis hou ation hou rpho hou tteris s a agne	urs m, urs ns, urs ous urs stic und etic					
Module:3 Magr The hydrogenic a Ions in solids; cry Module:4 Ferro Mean field theo Anisotropy, Ferro Module:5 Antife Molecular field magnets, Spin gla Module:6 Micromagnetic en length scales, S needles, Small p nanoparticles, Magnetic en National p	atom and angular momentum, The many-electron atom atom and angular momentum, The many-electron ato stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Co magnetic phenomena. erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frus- asses, Magnetic models. magnetism and Nanoscale magnetism hergy, Domain theory, Reversal, Pinning and Nucle uperparamagnetism, Thin films, Thin-film heterostri- barticles, Bulk nanostructures, Novel methods for sy agnetic interactions: a tool to modify the magnetic pro- trialed	om, Pa	iran e e , / Chi s, N s of	8 magr 8 excit 4 Amo 7 arac Vire f ma f ma	hou netis hou ation hou rpho hou teris as a agne ateris	urs m, urs ns, urs ous urs ous urs ous urs als					
Module:3 Magr The hydrogenic a Ions in solids; cry Module:4 Ferro Mean field theo Anisotropy, Ferro Module:5 Antifu Molecular field magnets, Spin gla Module:6 Micro Micromagnetic en length scales, S needles, Small p nanoparticles, Ma based on nanopa Module:7	atom and angular momentum, The many-electron atom atom and angular momentum, The many-electron ato stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Co magnetic phenomena. erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frus- asses, Magnetic models. omagnetism and Nanoscale magnetism hergy, Domain theory, Reversal, Pinning and Nucle uperparamagnetism, Thin films, Thin-film heterostr varticles, Bulk nanostructures, Novel methods for sy agnetic interactions: a tool to modify the magnetic pro- rticles.	om, Pa	iran Peeee Chars, V Ss of Ss o	8 nagr 8 excit 4 Amo 7 arac Vire f ma f ma	hou netis hou ation hou rpho hou teris s a agne ateria	urs m, urs ns, urs ous urs atic atic als					
Module:3MagrThe hydrogenic alons in solids; cryModule:4FerroMean field theoAnisotropy, FerroModule:5AntifeMolecular fieldmagnets, Spin glaModule:6MicroMicromagnetic enlength scales, Sneedles, Small pnanoparticles, Mabased on nanopaModule:7Appli	atom and angular momentum, The many-electron atom atom and angular momentum, The many-electron ator stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Co- magnetic phenomena. erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frus- asses, Magnetic models. magnetism and Nanoscale magnetism hergy, Domain theory, Reversal, Pinning and Nucle uperparamagnetism, Thin films, Thin-film heterostr articles, Bulk nanostructures, Novel methods for sy agnetic interactions: a tool to modify the magnetic pro- rticles. cations of nanomagnetism	om, Pa		8 magr 8 excit 4 Amo 7 arac Vire f ma f ma 5 5	hou netis hou ation hou rpho hou teris as a agne ateria hou rofu	urs m, urs ns, urs ous urs ous urs als urs urs					
Module:3MagrThe hydrogenic alons in solids; cryModule:4FerroMean field theoAnisotropy, FerroModule:5AntifuMolecular fieldmagnets, Spin glaModule:6MicroMicromagnetic enlength scales, Sneedles, Small pnanoparticles, Mabased on nanopaModule:7AppliMagnetic storagePiacepager	atom and angular momentum, The many-electron atom atom and angular momentum, The many-electron ator stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Co- magnetic phenomena. erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frus- asses, Magnetic models. magnetism and Nanoscale magnetism nergy, Domain theory, Reversal, Pinning and Nucle uperparamagnetism, Thin films, Thin-film heterostru- articles, Bulk nanostructures, Novel methods for sy agnetic interactions: a tool to modify the magnetic pro- rticles. cations of nanomagnetism and recording, Magnetic resonance Imaging, Hyper-	om, Pa ollective stration, ation, uctures opertie	iran iran iran iran iran iran iran	8 magr 8 excit 4 Amo 7 arac Wire f ma f ma f ma 5 Fer	hou netis hou ation hou rpho hou teris as a agne ateria hou roflu	urs m, urs ns, urs ous stic als etic als urs uid,					
Module:3 Magr The hydrogenic a Ions in solids; cry Module:4 Ferro Mean field theo Anisotropy, Ferro Module:5 Antifu Molecular field magnets, Spin gla Module:6 Micro Micromagnetic en length scales, S needles, Small p nanoparticles, Ma based on nanopa Module:7 Module:7 Appli Magnetic storage Biosensors.	atom and angular momentum, The many-electron atom atom and angular momentum, The many-electron ator stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Co- magnetic phenomena. erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frus- asses, Magnetic models. magnetism and Nanoscale magnetism hergy, Domain theory, Reversal, Pinning and Nucle uperparamagnetism, Thin films, Thin-film heterostri- articles, Bulk nanostructures, Novel methods for sy agnetic interactions: a tool to modify the magnetic pro- riticles. cations of nanomagnetism and recording, Magnetic resonance Imaging, Hype	om, Pa ollective stration, ation, uctures opertie	Iran	8 magr 8 excit 4 Amo 7 arac Vire f ma f ma f ma f ma f Fer 2	hou netis hou ation hou rpho hou teris s a agne ateria hou roflu	IIS m, IIS ns, IIS OUS IIS OUS IIS IIS IIS IIS IIS					
Module:3MagrThe hydrogenic alons in solids; cryModule:4FerroMean field theoAnisotropy, FerroModule:5AntifeMolecular fieldmagnets, Spin glaModule:6MicroMicromagnetic enlength scales, Sneedles, Small pnanoparticles, Mabased on nanopaModule:7AppliMagnetic storageBiosensors.Module:8Conto	atom and angular momentum, The many-electron atom atom and angular momentum, The many-electron atom stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Co- magnetic phenomena. erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frus- asses, Magnetic models. magnetism and Nanoscale magnetism nergy, Domain theory, Reversal, Pinning and Nucle uperparamagnetism, Thin films, Thin-film heterostri- articles, Bulk nanostructures, Novel methods for sy agnetic interactions: a tool to modify the magnetic pro- rticles. cations of nanomagnetism and recording, Magnetic resonance Imaging, Hyper emporary Issues	om, Pa ollective stration, ation, uctures opertie	International content of the second s	8 magr 8 excit 4 Amo 7 arac Vire f ma f ma f ma f ma f Fer 2	hou netis hou ation hou rpho hou teris as a agne ateris hou roflu hou	urs ms, urs ous urs als urs uid, urs					
Module:3 Magr The hydrogenic a lons in solids; cry Module:4 Ferro Mean field theo Anisotropy, Ferro Module:5 Antifu Molecular field magnets, Spin gla Module:6 Micro Micromagnetic er length scales, S needles, Small p nanoparticles, Ma based on nanopa Module:7 Module:8 Conto	atom and angular momentum, The many-electron atom atom and angular momentum, The many-electron atom stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Comagnetic phenomena. erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frust asses, Magnetic models. magnetism and Nanoscale magnetism hergy, Domain theory, Reversal, Pinning and Nucle uperparamagnetism, Thin films, Thin-film heterostri- articles, Bulk nanostructures, Novel methods for sy agnetic interactions: a tool to modify the magnetic pri- rticles. cations of nanomagnetism and recording, Magnetic resonance Imaging, Hype emporary Issues	om, Pa	aran	8 magr 8 excit 4 Amo 7 arac Wire f ma f ma f ma f ma f Fer 2	hou netis hou ation hou rpho hou teris s a agne ateria hou roflu hou	urs ms, urs ous urs als urs iid, urs					
Module:3 Magr The hydrogenic a Ions in solids; cry Module:4 Ferro Mean field theo Anisotropy, Ferro Module:5 Antife Molecular field magnets, Spin gla Module:6 Micro Micromagnetic en length scales, S needles, Small p nanoparticles, Ma based on nanopa Module:7 Module:8 Conto	atom and angular momentum, The many-electron atom atom and angular momentum, The many-electron atom atom and angular momentum, The many-electron atom stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Com magnetic phenomena. erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frustasses, Magnetic models. omagnetism and Nanoscale magnetism nergy, Domain theory, Reversal, Pinning and Nucleu uperparamagnetism, Thin films, Thin-film heterostrus ations of nanomagnetism and recording, Magnetic resonance Imaging, Hype emporary Issues Total Lecture	om, Pa	International content of the second s	8 magr 8 excit 4 Amo 7 arac Vire f ma f ma f ma f Fer 2 45	hou netis hou ation hou rpho hou teris as a agne ateris hou hou hou	urs m, urs ns, urs ous stic als urs iid, urs					
Module:3 Magr The hydrogenic a lons in solids; cry Module:4 Ferro Mean field theo Anisotropy, Ferro Module:5 Antifu Molecular field magnets, Spin gla Module:6 Micro Micromagnetic en length scales, S needles, Small p nanoparticles, Ma based on nanopa Module:7 Module:8 Conto	actism of localized electrons on the atom atom and angular momentum, The many-electron atom atom and angular momentum, The many-electron atom stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Comagnetic phenomena. erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frustasses, Magnetic models. omagnetism and Nanoscale magnetism hergy, Domain theory, Reversal, Pinning and Nucleu uperparamagnetism, Thin films, Thin-film heterostraticles, Bulk nanostructures, Novel methods for sy agnetic interactions: a tool to modify the magnetic protecticles. cations of nanomagnetism and recording, Magnetic resonance Imaging, Hype emporary Issues	om, Pa	aran	8 magr 8 excit 4 Amo 7 aracc Wire f ma f ma f ma 5 Fer 2 45	hou netis hou ation hou rpho hou rpho hou roflu hou hou hou	Irs m, Irs ns, Irs ous Irs als Irs id, Irs Irs					
Module:3 Magr The hydrogenic a lons in solids; cry Module:4 Ferro Mean field theo Anisotropy, Ferro Module:5 Antife Molecular field magnets, Spin gla Module:6 Micro Micromagnetic en length scales, S needles, Small p nanoparticles, Ma based on nanopa Module:7 Module:8 Conto Text Book(s) B	Action and angular momentum, The many-electron atorestal-field interactions. Imagnetism and Exchange Dry, Exchange interactions, Band magnetism, Comagnetic phenomena. Action and Exchange Dry, Exchange interactions, Band magnetism, Comagnetic phenomena. Action and Exchange Dry, Exchange interactions, Band magnetism, Comagnetic phenomena. Action and Exchange Dry, Exchange interactions, Band magnetism, Comagnetic phenomena. Action and Statematic order Theory of antiferromagnetism, Ferrimagnets, Frustasses, Magnetic models. Demagnetism and Nanoscale magnetism hergy, Domain theory, Reversal, Pinning and Nucleuperparamagnetism, Thin films, Thin-film heterostructures, Bulk nanostructures, Novel methods for sy agnetic interactions: a tool to modify the magnetic protections. Cations of nanomagnetism and recording, Magnetic resonance Imaging, Hype Actionary Issues Total Lecture	om, Pa	International content of the second s	8 nagr 8 excit 4 Amo 7 arac Wire f ma f ma f ma f ma f ma f ma f arac Vire f 4 5 Fer 2 45	hou netis hou ation hou rpho hou teris agne agne ateria hou hou hou	Irs ms, Irs ous Irs ous Irs als Irs iid, Irs Irs					
Module:3 Magr The hydrogenic a lons in solids; cry Module:4 Ferro Mean field theo Anisotropy, Ferro Module:5 Antifu Molecular field magnets, Spin gla Module:6 Micromagnetic en length scales, S needles, Small p nanoparticles, Magnetic storage Biosensors. Module:7 Appli Magnetic storage Biosensors. Module:8 Control Text Book(s) 1. B. D. Cullity Inc. 2009	atom and angular momentum, The many-electron atom stal-field interactions. magnetism and Exchange ory, Exchange interactions, Band magnetism, Comagnetic phenomena. erromagnetism and other magnetic order theory of antiferromagnetism, Ferrimagnets, Frustasses, Magnetic models. omagnetism and Nanoscale magnetism hergy, Domain theory, Reversal, Pinning and Nucleuperparamagnetism, Thin films, Thin-film heterostruarticles, Bulk nanostructures, Novel methods for sy agnetic interactions: a tool to modify the magnetic protections. cations of nanomagnetism and recording, Magnetic resonance Imaging, Hype emporary Issues or, C. D. Graham, Introduction to Magnetic Materials,	om, Pa	Aran	8 magr 8 excit 4 Amo 7 arac Wire f ma f ma f ma f ma f ma f ma ey &	hou netis hou ation hou rpho hou rpho hou roflu hou hou Son	Irs m, Irs ns, Irs ous Irs id, Irs Irs ns,					

2	R. C. O'Handley, Modern Mag	gnetic Materia	als: Princi	ples and	Applications,	John				
Ζ.	Wiley & Sons, Inc, 2000.									
Re	ference Books									
1.	J. M. D. Coey, Magnetism and Magnetic Materials, Pearson Education, 2010.									
2.	C Binns, Nanomagnetism: Fundamentals and Applications, Elsevier, 2014.									
3	David Jiles, Introduction to Magnetism and Magnetic Materials, Chapman and Hall,									
З.	1991.									
Мо	de of Evaluation: Continuous Asses	sment Test, D	igital Assi	gnment, C	Quiz and Final					
Ass	sessment Test.									
Re	commended by Board of Studies	28-07-2022								
Ар	Approved by Academic Council No. 67 Date 08-08-2022									

Course Code Course Title L T P								
MNAT607L	Energy Technologies		3	0	0	3		
Pre-requisite	MNAT502L	Syll	abu	s ve	ersio	n		
				1.0				
Course Objectiv	es			-				
The course is aim	ned to:							
1. To expos	e the students about various energy sources an	d the	ро	ssib	ility	of		
harvesting	energy with nanomaterials		•		,			
Course Outcom	9							
Students will be able to:								
1. Understand the various renewable energy sources.								
2. Apply the	knowledge on different energy harvesting methods.							
Understar	nd thermodynamics and kinetics of fuel cell process with	n nanc	ma	teria	ls.			
Explain ar	nd choose suitable nanomaterials and nanostructures for	or pho	tovo	oltaic	s.			
Distinguis	h different types and performance of solar collectors.							
6. Develop t	ne knowledge of electrochemical energy storage syster	ns.						
7. Understar	nd the process and design issues in magnetic energy si	orage	sys	tem	s.			
Medule:1 Dens	wakla Franzy Courses			-	h a 1			
Nodule:1 Rene	wable Energy Sources			4	ποι	irs		
Basics and Types	s of Renewable energy sources.				1			
Module:2 Ener	gy Harvesting		_	5	nou	irs		
Sources, Types	and mechanism – Solar, Thermoelectric, Piezoelectri	c; Ele	ctro	dyn	amı	cal		
and Biological;	nergy harvesting devices and applications. Nanor	nateria	als	for	enei	·gу		
harvesting.	• • •							
Module:3 Ener	gy Conversion I			7	hou	irs		
Energy convers	ion – Types and mechanism; Electrochemical	energ	y c	:onv	ersi	on,		
thermodynamics;	Hydrogen Technology; Fuel Cells - fundamen	tais,	cias	SITIC	atio	ns,		
Operating princip	les and design considerations, thermodynamics and	KINET	CS	of fu	iei c	:ell		
process, perform	ance evaluation of fuel cell, Fuel cell applications	. Nar	om	ateri	ais	as		
electrode materia	lis for fuel cells.				1			
Module:4 Ener	gy Conversion II	-		1	nou	Irs		
Solar energy:	Photovoltaic fundamentals, Solar cell technologi	es, I	ype	s -	- D	ye		
sensitized, Quar	itum dot, Copper indium gallium selenide (CIGS), I	Hybrid	0	rgan	ic a	nd		
Plasmonic solar	cells etc,. Performance and parameter analys	SIS O	S	olar	ce	lls.		
Nanomaterials ar	nd Nanostructures for photovoltaics.							
Module:5 Ener	gy Conversion III			7	hοι	irs		
Photothermal sy	stems: Types and performance of solar collectors -	Flat	Plat	e, ⊢	ot /	۸ir,		
Evacuated Tube,	Parabolic, Compound Parabolic and Fresnel Solar Co	ncentr	ator	s, T	hern	nal		
Analysis and per	formance of Solar Collectors, Current and future scope	of sol	ar e	nerg	<u>y</u> .			
Module:6 Ener	gy storage l			7	hοι	irs		
Electrochemical	energy storage systems: Supercapacitors - Dir	fferend	ces	be	twee	en		
capacitors, super	capacitors and batteries, classifications of superca	apacito	rs.	Bat	terie	s:		
Primary, Second	ary, Lithium, Solid-state and molten solvent batteries;	Lead a	acid	bat	terie	s;		
Nickel Cadmium	Batteries; Sodium ion and Aluminum Batteries. Nanost	ructur	ed a	nd I	Hybr	id		
materials as elect	rodes for batteries and capacitors.							
Module:7 Ener	gy storage II			6	hοι	ırs		
Magnetic energy	storage systems (SMES); Thermal energy storage	syste	ms	- T	hern	nal		
energy storage n	naterials – Types, thermo physical properties, Phase	chang	e m	ater	ials	for		
heating and cooli	ng applications. Heat transfer fluids – Properties and m	echan	ism	•				
Module:8 Cont	emporary Issues			2	hοι	ırs		

				Total	Lecture hours:	45 hours		
Tex	kt Book	(s)						
1.	Cheta Applio	an Singh Solanki, Solar Ph cations, 2015, PHI Learning R	notovoltatics - Private limited	- Fundan	nentals, Technol	ogies and		
2.	Ru-Shi Liu, Jiujun Zhang, Hansan Liu, Andy Sun, Zhang Lei, Electrochemical technologies for energy storage and conversion, 2012, Wiley publications.							
Ref	ference	Books						
1.	Caye McGr	M. Drapcho, Nghiem Phu I aw- Hill Companies, 2008	Nhuan and T	erry H. W	/alker, Biofuels E	Engineering,		
2.	Viswa Unive	nathan, B and M Aulice straities Press ,2006	Scibioh, Fuel	Cells –	Principles and	Applications,		
3.	Schae Rene	effer, John, Real Goods S wable Energy Technologies	Solar Living Sand Sustainat	Sourceboo ble Living,	ok: The Comple Gaiam,2007	te Guide to		
4.	Frank Energ	: Kreith and D.Yogi Goswam gy, CRC Press, 2007	ni, Handbook	of Energy	/ Efficiency and I	Renewable		
5.	John 2006	Twidell and Tony Weir, Rer	newable Ener	gy Resou	rces, Taylor & F	rancis, USA,		
Мо	de of Ev	aluation: Continuous Assess	sment Test, Di	igital Assi	gnment, Quiz and	l Final		
Ass	sessmer	nt Test.	1					
Ree	commer	nded by Board of Studies	28-07-2022		P			
Арр	proved b	by Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title		L	Τ	Ρ	С				
MNAT608L	Spintronics		3	0	0	3				
Pre-requisite	MNAT503L	Syll	abı	IS Ve	ersi	on				
				1.0						
Course Objectiv	/es									
The course is ain	ned to:									
1. To make the	e students understand the spin based electronics.	ootio	`							
2. TO study the	a	catio	1							
Students will be	Sector: Se									
1. Classify the	1. Classify the different magnetic materials.									
2. Develop the knowledge of micromagnetic concepts										
3. Apply the ph	enomena of transport in magnetic systems									
4. Analyze the	magnetic characterization tools									
Apply Spintr	onics concepts to design futuristic products.									
Madula 4 De	Madala 4 Danama matiana anatiana									
Module:1 Para	magnetism& diamagnetism			6	nol	irs				
Magnetically orde	ered state, itinerant-electron magnetism, Localized Magn	ietic a	Syst	ems	bai					
Mognotion of c	ingle domain systems. Domain Walls, Exchange F	Diag	and	0 Mc	nou	IIS tio				
Anisotropy	single domain systems, Domain Walls, Exchange E	blas	anu	IVIC	gne	tic				
Module:3 Mar	nnetic Materials			6	hoi	ire				
High-density rec	ording materials Soft Magnetic Materials (Ferrites) Mi	adne	tic 7	- U Thin	Filn	ns				
Dilute Magnetic s	emiconductors, Hemsler Allovs, SQUID Magnetome	eter.	Hid	nlv	S	oin				
Polarized System	ns. Molecule-based magnets. Single-molecule magneters.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<i></i> ,	0					
Module:4 Ele	ctron Transport in Magnetic Systems			6	hοι	ırs				
Degree of Sp	in Polarization, Idea of Tunneling, Magnetoresis	tance	, <i>1</i>	Anis	otro	pic				
Magnetoresistan	се									
(AMR), Hall Effe	ct (Planar & Anomalous) and Spin Polarized states.									
Module:5 Cha	aracterization of Magnetic Materials			6	hou	ırs				
Magnetometry,	SQUID, VSM, Torque, Faraday Balance, Kerr Effec	ct, M	agn	etic	For	rce				
Microscopy, Spir	Polarized STM.									
Module:6 Spi	ntronic Devices			8	hou	ırs				
Spintronics- Orig	jins of Spin, Spin Mechanics, Origins of Spintronics,	, Spi	n c	urrei	nt a	nd				
Magnetoresistan	ce, Giant Magnetoresistance (GMR), Colossal Magneto	oresis	tand	;e, E	Ballis	stic				
Magnetoresistan	ce, Tunneling Magnetoresistance. Two-terminal de	vices	-Sp	in v	valve	es,				
	evices, Magnetic Field sensors, Read- Heads, MRAI	MS,	Inre	e-te	ermi	nal				
Devices- Spin FE	rtropic Device fabrication Techniques			5	hou	irc				
Advanced device	fabrication methods. Growth of multilayer Structures Lit	thoar	anh	J v an		alf_				
Assembly		lingi	apri	y an	u 00	511-				
Module:8 Cont	emporary Issues			2	hoi	irs				
				-						
	Total Lecture h	ours	•	45	hou	ırs				
Text Book(s)										
1. Hirota, Saka 2002.	kima, and Inomata, "Giant Magneto-Resistive Devices	s", S	prin	ger	Ver	lag				
2. D. Awschald	m, D. Loss, and N.Samarth, "Semiconductor Spintro	nics	and	Qu	anti	um				
Computation	", Nano Science Technology series, Springer, 2002.									

Re	ference Books						
1.	Stefan Visnovsky, "Optics in Magnetic	Multi-layers and	Nanostruc	tures", CRC Publishers, 2006.			
2.	D.L. Mills, J. A.C. Brand "Nanomagnetis	sm", Elsevier Sci	ience and T	Fechnology, 2006.			
3.	M. Ziese, M. J. Thornton "Spin Electronics", Lecture Notes in Physics, Springer, 2001.						
4.	Gersten and Smith, "The Physics and C	Chemistry of Mate	erials", Wile	ey, 2001.			
5.	Buschow and De Boer, "Physics of Magnetism and Magnetic Materials", Springer 2003.						
6.	R. L. Carlin, "Magnetochemistry", Sprin	nger-Verlag, Ber	lin, 1986.				
7	U. N.Hartmann, "Magnetic Multi-layers and Giant Magnetoresistance: Fundamentals and						
1.	Industrial Applications", Springer, 2000.						
8.	M. Ziese, M. J. Thornton "Spin Electror	nics", Lecture No	otes in Phys	sics, Springer, 2001.			
Мо	de of Evaluation: Continuous Asses	sment Test, Di	igital Assig	gnment, Quiz and Final			
Ass	sessment Test.						
Re	commended by Board of Studies	28-07-2022					
Ар	proved by Academic Council	No. 67	Date	08-08-2022			

Course Co	de	Course Title		L	Τ	Ρ	С	
MNAT609L	-	Nanoelectronic Circuit Design		3	0	0	3	
Pre-requis	ite	MNAT507L	Syl	abı	IS V	ersi	on	
Course Ok	leathu				1.0			
		ed to:						
	introd	eu io.	in	vori	0110	no	14/	
nan	otechn	ologies, for device and circuits		van	ous	ne	vv	
2. To	bridge	e the existing gap between nanoelectronic devi	ice	rese	arc	h a	and	
nan	osyste	ms design.						
Course Outcome								
Students w	ill be a	ble to:						
1. Obt	ain the	knowledge on advanced Nanoscale devices						
2. Und	lerstan	d the operation and design FinFET based circuits.	-1-					
3. Des	sign rei	able circuits using nanowire anays and CNT interconne	ects.					
5 Unc	lerstan	d the design aspects of application specific Nanoscale I	Cs					
6. Mod	del the	circuits of Fin-FETs, CNT-FETs, GNR-FETs, RTDs	and	qu	antı	um (dot	
dev	ices us	ing various SPICE versions.		•				
Module:1	Intro	duction to advanced nanoelectronic devices			2	hou	ırs	
New devic	e struc	tures for next generation nanotechnology - carbon n	anoti	ibe	field	1-eff	ect	
transistors		Is), FINFEIS, nanowire FEIS, III/V compound-based	devi	ces,	gra	aphe	ene	
nanoribbon		es, resonant tunneling diodes and quantum dot devices.			0	<u> </u>		
Module:2 FINFET circuit and SRAM design 8 hours								
Principle of		A Independent-Gale FINFETS, Logic Design Using SG	/IG-IV /IC-N	loue			15, Te	
Precharge	Evalua	te Logic Circuits FinEET SRAM Design Physics Theo	ng-in inv ai	nd N	n i s Inda	li ∟ ⊇linc	is, iof	
FinFFT De	vices f	or SRAM Applications: Low-Power, High-Performance	90-n	m [)G-I	-inF	FT	
SRAM Des	ign.		001					
Modulo:2	Reli	able Circuits Design with Nanowire Arrays and CNT			7	hai	Irc	
Module.5	Inte	rconnects			1	not	112	
Nanowire	Fabric	ation Techniques, Crossbar Technologies, Architec	cture	of	Na	now	/ire	
Crossbars,	Deco	oder Logic Design. Emerging interconnect techno	ologi	es:	Stu	ıdy	of	
Performance	ces of	Low-k Cu, CNTs, and Optical Interconnects; Local I	nterc	onr	ects	s: C	NT	
Bundles Ve	ersus C	u and Global and Semi-global Interconnects.				<u> </u>		
Module:4	Circ	uit Design with Quantum Cellular Automata			7	hou	Jrs	
QCA Fu	ndame	ntals, Basic Logic Gates and Interconnect, Lo	ogic	De	sigr	N N	/ith	
QCA and	Fabric	cation Technology and Challenges.			6	hai		
	Nan	Disclie Application-Specific Integrated Circuits			0		JIS aio	
Styles NA	niaing SIC Ar	BIOCKS: Nanowires and XnwFETS, NASIC Circuit St	yies,	INP	310	LO	gic	
Otyles, NA	Circ	uit Design with Carbon Nanotube FFTs & Resonant						
Module:6	Tun	neling Diodes			8	hοι	ırs	
Mis-Positio	ned ar	d Immune CNT Logic Design, Metallic-CNT-Immun	e C	NFE	ТС	ircu	its.	
Metallic-CN	IT-Imm	une CNFET Circuits. Bistable Logic Using RTDs, Nois	e Ma	rgir	is of	RT	D–	
HBT Three	shold L	ogic Gates, Monostable-Bistable Logic Elements and	d Cir	cuit	Exa	amp	les	
for RTD-Ba	sed De	evices.						
Module:7	Circ	uit design with Graphene based Transistors	<i>.</i>		5	hοι	ırs	
Recent dev	velopm	ents in Graphene Transistors, Analog Circuits, Digital	Circ	uits	: Gl	٩RF	ΕT	

Dig	Digital Circuits, Ambipolar Logic Circuits.								
Мо	dule:8	Contemporary Issues				2 hours			
				Total	Lecture hours:	45 hours			
Tex	kt Book	(s)							
1.	K. Go Publica	oser, P. Glosekotter, Na ations.	noelectronics	and Na	nosystems, 201	5, Springer			
2.	Niraj K. Jha and Deming Chen, Nanoelectronic Circuit Design, 2011, Springer publications.								
Re	ference	Books							
1.	Yuan Unive	Taur and TakNing, Fur rsity Press, Newyark, 1998.	ndamentals of	Modern	VLSI Devices,	Cambridge			
2.	Karl From	Goser, Peter Glosekotter, Transistors to Molecular an	Jan Dienstuh d Quantum De	l, Nanoel vices, Spi	ectronics and N ringer-Verlag, 200	anosystems-)4.			
3.	John 2002.	P. Uyemura, Introduction to	VLSI Circuits	and Syst	ems, John Wiley	& Sons, Inc,			
Мо	de of Ev	aluation: Continuous Asses	sment Test, Di	gital Assi	gnment, Quiz and	l Final			
Ass	sessmer	nt Test.	1						
Re	commer	nded by Board of Studies	28-07-2022						
Ар	proved b	oy Academic Council	No. 67	Date	08-08-2022				

Course Code	Co	urse Title			L	Т	Р	С		
MNAT696J	Study O	riented Pro	ject					02		
Pre-requisite	NIL				Syll	abus	vers	sion		
				1.0						
Course Objective	es:									
1. The student will be able to analyse and interpret published literature for information										
2. Scrutinize	technical literature and a	arrive at con	clusions.							
3. Use insigh	t and creativity for a bett	er understa	nding of tl	ne domain	of int	terest				
Course Outcome):									
related to 2. Examine to 3. Synthesize of interest 4. Publish th Conference	niche areas/focused dom echnical literature, resolve knowledge and use ins ne findings in the pea res.	nains. /e ambiguity sight and cre er reviewed	v, and dev eativity to d journals	elop concl better und s / Natio	lusion erstai nal /	ns. nd the	e don rnatio	nain onal		
Module Content			(Proje	ect duration	on: O	ne se	emes	ster)		
This is oriented focussed domains	towards reading publish s under the guidance of a	ned literatur a faculty.	e or bool	ks related	to n	iche	area	s or		
Mode of Evaluation student has register and project review Engineering Tech	Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science, Engineering Technology.									
Recommended by	Board of Studies	28-07-202	2							
Approved by Acad	demic Council	No. 67	Date	08-08-20	022					

Course Code	Course Title			L	Т	Р	С			
MNAT697J	Design Project					02				
Pre-requisite	NIL				Sylla	abus	vers	ion		
						1.0	0			
Course Objectiv	Course Objectives:									
1. Students v	vill be able to design a pr	ototype or	process o	r experime	ents.					
2. Describe a	and demonstrate the tech	niques and	l skills neo	essary fo	r the p	orojec	t.			
3. Acquire kr	nowledge and better unde	erstanding	of design :	systems.						
Course Outcome	9:									
 Develop new skills and demonstrate the ability to upgrade a prototype to a design prototype or working model or process or experiments. Utilize the techniques, skills, and modern tools necessary for the project. Synthesize knowledge and use insight and creativity to better understand and improve design systems. Publish the findings in the peer reviewed journals / National / International Conferences. 										
Module Content		(Project duration: One semester)								
Students are expected to develop new skills and demonstrate the ability to develop prototypes to design prototype or working models related to an engineering product or a process.										
Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science, Engineering Technology.										
Recommended by	y Board of Studies	28-07-202	2							
Approved by Aca	demic Council	No. 67	Date	08-08-20)22					

Course Code		Course Title				L	Т	Р	С	
MNAT698J		Internship I/ Dissertation I						10		
Pre-rec	quisite	NIL				Syll	abus	vers	ion	
						1.0				
Course	Objective	es:								
To prov analysis field an	To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field and also to give research orientation.									
Course	Course Outcome:									
 Considerably more in-depth knowledge of the major subject/field of study, including deeper insight into current research and development work. The capability to use a holistic view to critically, independently and creatively identify, formulate and deal with complex issues. A consciousness of the ethical aspects of research and development work. Publications in the peer reviewed journals / International Conferences will be an added advantage. 										
Module	Module Content (Project duration: o					one semester)				
1. 2. 3.	 Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities. Dissertation should be individual work. Carried out inside or outside the university, in any relevant industry or research 									
institution.4. Publications in the peer reviewed journals / International Conferences will be an added advantage.										
Mode of present	of Evalua	tion: Assessment or ect reviews and Final	n the project Oral Viva Exa 28-07-2022	- Disserta mination.	ition repo	ort to	be si	ubmit	ted,	
Recom	mended by	/ Duard of Studies		Data	00.00.00	100				
Approve	ed by Acad	demic Council	INO. 67	Date	08-08-20	JZZ				

Course Code		Course Title				L	Т	Ρ	С	
MNAT699J		Internship II/ Dissertation II							12	
Pre-re	equisite	NIL				Syll	abus	vers	ion	
						1.0				
Cours	se Objectivo	es:								
To pro analys field.	ovide sufficionsis of suitable	ent hands-on learning le product / process s	g experience r so as to enhan	elated to ce the tec	the desigr hnical skill	n, dev I sets	elopn in the	nent e cho	and sen	
Cours	Course Outcome:									
Upon	successful o	completion of this cou	rse students w	ill be able	to					
1.	1. Formulate specific problem statements for ill-defined real life problems with reasonable assumptions and constraints.									
2.	Perform literature search and / or patent search in the area of interest.									
3.	Conduct experiments / Design and Analysis / solution iterations and document the results.									
4.	Perform error analysis / benchmarking / costing.									
5.	Synthesize	synthesize the results and arrive at scientific conclusions / products / solution.								
6.	Document	the results in the form	n of technical r	eport / pre	esentation.	•				
Modu	le Content			(Project duration: one semester					ter)	
 Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities. Dissertation should be individual work. Carried out inside or outside the university, in any relevant industry or research institution. Publications in the peer reviewed journals / International Conferences will be an added advantage. 								in & s of arch an		
Mode preser	of Evalua	tion: Assessment or ect reviews and Final	n the project Oral Viva Exa	- Disserta mination.	ition repoi	rt to	be sı	ıbmit	ted,	
Recor	Recommended by Board of Studies 28-07-2022									
Appro	ved by Acad	demic Council	No. 67	Date	08-08-20	8-2022				