

SCHOOL OF ELECTRONICS ENGINEERING

M. Tech VLSI Design

(M.Tech MVD)

Curriculum

(2022-2023 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OFTECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRONICSENGINEERING

To be a leader by imparting in-depth knowledge in Electronics Engineering, nurturing engineers, technologists and researchers of highest competence, who would engage in sustainable development to cater the global needs of industry and society.

MISSION STATEMENT OF THE SCHOOL OF ELECTRONICSENGINEERING

- Create and maintain an environment to excel in teaching, learning and applied research in the fields of electronics, communication engineering and allied disciplines which pioneer for sustainable growth.
- Equip our students with necessary knowledge and skills which enable them to be lifelong learners to solve practical problems and to improve the quality of human life.

M. Tech. VLSI Design

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.

2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.

3. Graduates will function in their profession with social awareness and responsibility.

4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.

5. Graduates will be successful in pursuing higher studies in engineering or management.

6. Graduates will pursue career paths in teaching or research.

M. Tech. VLSI Design

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_07: Having a clear understanding of professional and ethical

responsibility

PO_08: Having a good cognitive load management skills related to project management and finance

M. Tech. VLSI Design PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (VLSI Design) programme, graduates will be able to

PSO1: Apply advanced concepts in Physics of semiconductor devices to design VLSI Systems.

PSO2: Design ASIC and FPGA based systems using industry standard tools.

PSO3: Solve research gaps and provide solutions to socio-economic, and environmental problems.

Master of Technology in VLSI Design School of Electronics Engineering

Programme Credit Structure	Credits	Discipline Elective Courses	12
Discipline Core Courses Skill Enhancement Courses Discipline Elective Courses Open Elective Courses Project/ Internship Total Graded Credit Requirement Discipline Core Courses MVLD501L Physics of VLSI Devices MVLD502L Digital IC Design MVLD503L Digital Design with FPGA MVLD503P Digital Design with FPGA Lab MVLD504L Analog IC Design MVLD504P Analog IC Design Lab	$\begin{array}{c} 24\\ 05\\ 12\\ 03\\ 26\\ 70\\ \end{array}$	 MVLD601L Computer Aided Design for VLSI MVLD602L Low Power IC Design MVLD603L VLSI Verification Methodologies MVLD604L Scripting Languages for VLSI Design Automation MVLD605L Advanced Computer Arithmetic MVLD606L Mixed Signal IC Design MVLD607L RFIC Design MVLD608L VLSI Digital Signal Processing MVLD609L System-on-Chip Design MVLD610L Nanoscale Devices and Circuit Design MVLD611L Advanced Computer Architecture MVLD612L Micro Sensors and Interface Electronics 	3 0 0 3 3 0 0 3
MVLD505LASIC DesignMVLD505PASIC Design LabMVLD506LVLSI Testing and TestabilityMVLD506PVLSI Testing and Testability LabMVLD507LIC Technology	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MVLD613L System Design with FPGA MVLD614L DSP Architectures MVLD615L Memory Design and Testing Open Elective Courses	3 0 0 3 3 0 0 3 3 0 0 3 9 0 3
Skill Enhancement Courses	05	Engineering Disciplines Social Sciences	
MENG501P Technical Report Writing MSTS501P Qualitative Skills Practice MSTS502P Quantitative Skills Practice	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Project and InternshipMVLD696JStudy Oriented ProjectMVLD697JDesign ProjectMVLD698JInternship I/ Dissertation I	26 02 02 10

MVLD699J

Internship II/ Dissertation II

12

Course Code	Course Title	L	T P C
MVLD501L	Physics of VLSI Devices	3	0 0 3
Pre-requisite	NIL	Syllabu	s version
			1.0
Course Objectiv	es:		
The course is aim	ied to		
1. Expound	the fundamentals of intrinsic, extrinsic semicond	uctors w	vith carrier
concentra	tion, Modeling and physics of various carrier current tra	nsport me	echanisms.
2. Introduce	detailed physics and modeling of PN Junction, MC	OS capa	citors, and
MOSFETS	3		
3. Review a	nd discuss in detail the short channel effects and th	ne issues	of UDSM
transistors			
Course Outcome			
	course the student will be able to		
	trinsic semiconductors with specific carrier concentration	ons and, i	understand
	Structure and diagrams of semiconductors.		
	and model the carrier transport mechanism in semicond	Juctors	
	PN- junctions for given specifications		
	d the MOS capacitors		
	d the compact models of MOSFETs		
6. Design of	UDSM transistors to mitigate the short channel effects		
Modulo:1 Somi	conductor Physics		5 hours
	solids - Intrinsic and Extrinsic semiconductors - Direct a	nd Indira	
	- Fermi distribution -Free carrier densities - Boltzmann		
equilibrium.			
	er Transport in Semiconductors		4 hours
	chanisms: Drift current, Diffusion current - Mobility o	f corriors	
	- Continuity equation.		s - Current
Module:3 P-N J			5 hours
	um physics - Energy band diagrams - Space charg	na lavars	
	c fields and Potentials - p-n junction under applied b		
	istics of p-n junctions - Breakdown mechanisms.		
Module:4 MOS			8 hours
	epletion - Strong inversion - Threshold voltage - Contac	t potentia	
	kide and Interface charges - Body effect - C-V character		
	FETs and Compact Models		8 hours
	Saturation voltage - Sub-threshold conduction - Effect	t of date	
	er mobility - Compact models for MOSFET and thei		
	and 3 - MOS model parameters in SPICE.	-	
	ng and Short Channel Effects		6 hours
	- Channel length modulation - Punch-through - Hot c	arrier de	
	own - Drain-induced barrier lowering.	,	•
	M Transistor Design Issues		7 hours
	ect of high-k and low-k dielectrics on the gate leakage a	nd Source	e and drain
	ing effects - Different gate structures in UDSM - In		
challenges in UDS		-	,
	emporary Issues		2 hours
			•
	Total Lecture	e hours:	45 hours
Text Book(s)			
IGVI DOOV(2)			

1.	Ben G. Streetman and S. Banerjee, Solid State Electronic Devices, 2015, Seventh Edition, Pearson Education, U.S.					
2	J.P. Colinge and C. A. Colinge, Physics of Semiconductor Devices, 2017, Kluwer Academic Publishers, U.S.					
Ref	Reference Books					
1.	Y.P. Tsividis and Colin McAndrew, Operation and Modelling of the MOS Transistor,					
	2011, Third Edition, Oxford University	sity Press, U.S		-		
2	M K Achutan and K N Bhatt, Fun	damental of S	emicondu	ctor Devices, 2017, McGraw		
	Hill Education, U.S.					
Мо	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final					
Ass	Assessment Test					
Ree	commended by Board of Studies	28-07-2022				
Арр	proved by Academic Council	No. 67	Date	08-08-2022		

Course Code	Course Title		L	Τ	Ρ	С						
MVLD502L	Digital IC Design		3	0	0	3						
Pre-requisite	NIL	Syl	labu	s ve	ersi	on						
-				1.0								
Course Objective	es											
The course is aim												
1. Apply the	models for state-of-the-art VLSI components, fa	bricati	on s	step	s, a	and						
hierarchica	I design flow and semiconductor business econ	omics	to	jud	ge	the						
manufactu	rability of a design and assess its manufacturing costs	5.			-							
	the systematic analysis and design of basic digital	integr	ated	cire	cuits	; in						
CMOS tec	0,											
	roblem solving and creative circuit design techniques.											
	on the layout design of various digital integrated circ			•								
	the methodologies and design techniques related	to di	gital	inte	egra	ted						
circuits.												
Course Outcome												
	course the student will be able to											
	d design metric and MOS physics											
0,	out for various digital integrated circuits.	~										
	CMOS inverter with optimized power, area and timing	J.										
0	tic and dynamic digital CMOS circuits. d the timing concepts in latch and flip-flops.											
	IOS memory arrays, understand interconnect and clo	- kina i	2010									
	luction	sking i	55UE		ho	ire						
	C Design- Quality Metrics of a Digital Design - MOS T	ranciet	or T			ui S						
	5 Fabrication and Layout	1015151	011		ho	ire						
		or Boc										
	g Euler Theorem, Layout Design Rules		ncar	i iui		113,						
Module:3 The				5	ho	urs						
	rter- Static and Dynamic Behavioural Practices of CM	IOS Ir	nvert									
	ents of Energy and Power – Switching -Short-C											
	hnology scaling and its impact on the inverter metrics											
Devices.												
	c & Dynamic CMOS Design			8	ho	urs						
	using Logical Effort, Complementary CMOS -Ra	tioed	Logi	c (F	Sei	ldo						
	Pass Transistor Logic - Transmission gate logic - D											
Considerations -	Speed and Power Dissipation of Dynamic logic -Sig	nal in	tegri	ty is	ssue	s -						
Domino Logic.												
	S Sequential Logic Circuit			5	ho	urs						
Desi												
	tic Latches and Registers - Dynamic Latches and Reg					sed						
	Amplifier based registers -Latch vs. Register based p	ipeline	e stru									
	gning Memory & Array structures				ho							
	Memory Core - memory peripheral circuitry - Memory	/ reliat	oility	anc	l yie	ld -						
Power dissipation												
module:7 Inter	connects and Timing Issues				ho							
	tive and Inductive Parasitics - Computation of R,			toi								
Resistive, Capaci	interconnects - Buffer Chains - Timing classification of digital systems - Synchronous Design											
Resistive, Capaci interconnects - Bu						- Origins of Clock Skew/Jitter and impact on Performance - Clock Distribution Techniques -						
Resistive, Capaci interconnects - Bu - Origins of Clock	Skew/Jitter and impact on Performance - Clock Dist	ributio	n Te	chn	ique	÷s -						
Resistive, Capaci interconnects - Bu - Origins of Clock Latch based cloc	Skew/Jitter and impact on Performance - Clock Dist king - Synchronizers and Arbiters -Clock Synthesis	ributio	n Te	chn	ique	÷s -						
Resistive, Capaci interconnects - Bu - Origins of Clock	Skew/Jitter and impact on Performance - Clock Dist king - Synchronizers and Arbiters -Clock Synthesis ked Loop.	ributio	n Te	echn hror	ique	ès - ion						

		Tota	I Lecture ho	ours:	45 hours	
Tex	xt Book	(s)				
1.		Rabaey, AnanthaChadrakas Perspective, 2016, Second E		ojeNikolic	, Digital Integrated Circuits: A	
2.	2. Neil.H, E.Weste, David Harris and Ayan Banerjee, CMOS VLSI Design: A Circuit and Systems Perspective, 2011, Fourth Edition, Pearson Education.					
Re	ference	Books				
1.	0	Mo Kang, Yusuf Leblebici, a, 2014, Fourth Edition, McGra	0	al Integra	ated Circuits - Analysis and	
2.	2. Sorab K Gandhi, VLSI Fabrication Principles: Si and GaAs, 2010, Second Edition, John Wiley and Sons.					
	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test.					
Re	commer	nded by Board of Studies	28-07-2022			
		y Academic Council	No. 67	Date	08-08-2022	

Course Code Course Title L T P C							
MVLD503L	Digital Design with FPGA	2 0 0 2					
Pre-requisite	NIL	Syllabus version					
		1.0					
Course Object							
This course is a							
	and the various abstraction level in Verilog HDL.						
	e complex combinational and sequential circuits with Ver						
3. Provide HDL.	in depth understanding of state machine design and mo	deling using verilog					
4. Understand about different FPGA Architecture like Xilinx and ALTERA and RAM and							
	r design.						
Course Outco	ne						
After completion	n of the course the student will be able to:						
	and implement digital circuits using Data Flow & Structura						
0	and develop combinational circuits using data flow approa						
	and implement sequential digital circuits using Behavioral	Modeling.					
	and and develop data-path and controller design						
	and test memory sub-system.						
0. Dulla alg	ital designs using FPGA.						
Module:1 Ver	ilog HDL – Data Flow & Structural Modeling	6 hours					
	tions - Ports and Modules – Data Types - Operators - Ga						
	eling Test Bench.	5					
	sign and Modeling of data path logic	4 hours					
Ripple carry A	dders – Carry look ahead adder – Unsigned binary Multip	liers					
	ilog HDL – Behavioral Modeling	4 hours					
	Modeling- Procedural Assignment Statements- Blocking asks & Functions - System Tasks & Compiler Directives	and Non-Blocking					
Assignments - I	asks & Functions - System Tasks & Complet Directives						
Module:4 Des	sign and Modeling of Sequential Circuits	4 hours					
	of Sequence detector - Serial adder - Vending machine						
<u> </u>	Q						
	sign and Modeling of Datapath and Controller logic	3 hours					
Case Study: Bi	nary Counter - Bus Protocol						
	deling of FIFO and Memory	3 hours					
Synchronous al	nd Asynchronous FIFO – Single port and Dual port ROM						
Module:7 FP	GA Architecture	4 hours					
	immable Logic Devices: PLA, PAL, CPLD - FPGA Archite						
<i>.</i>	echnologies-Chip I/O- Programmable Logic Blocks- Fabri						
• •	x / Intel / Actel FPGA Architecture – Case Study						
Module:8 Co	ntemporary Issues	2 hours					
	Total Lecture ho	ours: 30 hours					
Text Book(s)							
	n, Digital Systems Design and Practice: Using Verilog H						
2015, Seco	nd Edition, Create Space Independent Publishing Platfor	m.					

2.	Michael D Ciletti, Advanced Digital Design with the Verilog HDL, 2011, Second
	Edition, Prentice-Hall.
Ref	ference Books
1.	Wayne Wolf, FPGA Based System Design, 2011, Prentices Hall Modern Semiconductor
	Design Series.
2.	Charles H Roth Jr, Lizy Kurian John and Byeong Kil Lee, Digital Systems Design using
	Verilog, 2016, First Edition, Cengage Learning.

Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test

Recommended by Board of Studies	28-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code Course Title L T P C							
	LD503P		with FPGA Lab		0 0		1
Pre	-requisite	NIL		Syl	labus v	versi	ion
	-				1.0	I	
Co	urse Objective	S					
This	s course is aim						
	1. Model the complex combinational and sequential circuits using Verilog HDL						
	urse Outcome						
Afte		the course the student will be					
	•	d optimize complex combina	ational and sequential of	ligitai	CIrcui	IS US	sing
	Verilog.	the designed digital design us	sing FPGA				
	icative Experi		bing ri OA.				
1.		rinters have six cartridges for	r different colored ink: bla	ack.	4 hou	irs	
		a, yellow, light cyan and light					
		indicates selection of one of					
	Verilog mode	for a decoder for use in	the inkjet printer descri	bed			
		ecoder has three input bits					
		and six output bits, one to					
		the design using test bench					
	it's functionali	blement the design in ALTER.	A DE2-115 Board and Ve	erity			
2.		y. ioral Verilog code to divide tl	ALTERA DE2-115 BC	ard	4 houi		
۷.		cy 50MHz by 40MHZ, 30MH			4 noui	3	
		tput using LEDs available in t	•	Jiay			
3.		nplement a circuit on the DE		s a	4 hou	rs	
		ock. It should display the ho					
		ays HEX7-6, the minute (fro					
		rom 0 to 60) on HEX3-2. U) to			
		r and minute parts of the time					
4.		plement a finite state machin	· · · ·		8 houi	S	
		ences of applied input symbo onsecutive 0s. There is an					
		= 1 or w = 0 for four consecut					
		otherwise, $z = 0$. Overlapping	•				
		or five consecutive clock puls					
		fourth and fifth pulses. Desig					
	using DE2-11	5 Board.					
_					46.1		
5.		vioral Verilog code to desig	gn FIFO with the follow	/ing	10 hoi	Jrs	
	specification	a; 8 bit width is considered					
	•	data; 8 bit width is considered	l.				
	w_en: write e						
	r_en: read en	5					
		ad next enable					
		rite next enable					
		ock; 10 MHz for this design					
		ck; 50 MHz for this design					
		dress pointer; 4 bit to addres					
		dress pointer; 4 bit to address					
	•	ss pointer difference; 4 bit wic O full flag; asserted when FIF					
		FIFO empty flag; asserted when FIF					
		RAM available in ALTERA IF		о. I			
		design using ALTERA DE2-					

	Тс	otal Labo	atory Hours	30 hours	
Mode of Assessment: Continuous Assessment and Final Assessment Test					
Recommended by Board of Studies 28-07-2022					
Approved by Academic Council	No. 67	Date	08-08-2022		

Course Code Course Title L T P C						
MVLD504L	Analog IC Design	3 0 0 3				
Pre-requisite	NIL	Syllabus version				
		1.0				
Course Objectiv						
The course is ain		a na militi a na				
 Analyze and design single-ended and differential IC amplifiers. Understand the relationships between devices, circuits and systems. 						
	the design of practical amplifiers, s					
parameter trade-offs.						
p						
Course Outcom	e					
	course the student will be able to					
•	low-frequency characteristics of single-s	stage amplifiers and differential				
amplifiers						
	high-frequency response and noise of ampl	ifiers.				
	nd the feedback concepts. Ind Design of High Gain Amplifiers.					
	nd stability analysis and frequency comper	sation techniques of amplifiers				
	nd the basic concepts, non-idealities and a					
	ent source and Amplifier design:	8 hours				
	odels, MOS Current Sources and Sinks					
	e current Mirrors. Bandgap references.					
	on Source stage, Common Gate stage, C					
	Differential operation. Basic Differential P					
	uency response and Noise analysis of lifiers:	8 hours				
	quency response of Common Source stag	e Common Gate stage Cascode				
	ential pair. Noise in Amplifiers: Commo					
0	stage, Differential pair. Noise Bandwidth.	3-,				
Module:3 Feed	back Amplifiers:	7 hours				
	quation, Gain sensitivity, Effect of Negativ					
	plifiers. Feedback configurations: voltage-	0				
	current feedback. Practical configurations a					
	rational Amplifier	8 hours				
	Feedback circuits, Op Amp CMRR requires, Effect of loading in Differential stage.	•				
	nse, Noise, Mismatch, Slew rate of casco					
	mps, Common-Mode feedback loop stabilit	U				
Module:5 Stab		4 hours				
	, Instability and the Nyquist Criterion, S	Stability Study for a Frequency-				
	ack Network, Effect of Pole Locations on S					
	uency compensation	4 hours				
	pensation: Concepts and Techniques f					
Dominant pole, Miller Compensation, Compensation of Miller RHP Zero, Nested Miller,						
	Compensation of two stage OP Amps. Module:7 Phase Locked Loops 4 hours					
	acquisition, Phase Detector, Basic PLL					
	effects in PLL: PFD/CL non idealitie					
Applications.		· · · · · · · · · · · · · · · · · · ·				
	emporary Issues	2 hours				
	Total Lecture hours:	45 hours				

Tex	Text Book(s)					
1.	1. Behzad Razavi, Design of Analog CMOS Integrated Circuits, 2017, Second Edition, McGraw-Hill.					
2.	 David Johns and Ken Martin, Analog Integrated Circuit Design, 2012, Second Edition, John Wiley & Sons, Inc. 					
Re	ference Books					
1.	Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design, 2010, Second					
	Edition, Oxford University Press, U	K.	-	_		
2.	R. Jacob Baker, CMOS Circuit I	Design, Layou	t and Sin	nulation, 2010, Third Edition,		
	IEEE Press Series on Microelectro	nic Systems, V	Viley Pub	lications.		
			,			
Мо	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final					
Ass	Assessment Test.					
Re	commended by Board of Studies	28-07-2022				
Ap	proved by Academic Council	No. 67	Date	08-08-2022		

Co	urse Code		Course Titl	9		LTPC
	/LD504P	Δ	nalog IC Desig	-		
	e-requisite	NIL		II Edio	9	Syllabus version
						1.0
Со	urse Objectiv	es				
	e course is aim					
	1. Analyze a	nd design single-end	ded and differen	tial IC am	plifiers.	
		nd the relationships b				
		e the design of p	ractical amplifie	ers, sma	II systems a	and their design
	parameter	r trade-offs.				
_						
	urse Outcome					
At		course students will				
	•	and characterize		oraing t	o design s	specifications in
	industry s	standard EDA tool.				
l in a	liaatiya Eynar	imente				
1.	licative Exper	MOSFET IV Charac	toriation Saaan	d ordor n	oromotoro	2 hours
1. 2.		er - DC, AC, Transie		u order p	arameters	2 hours
2. 3.		d Design of Com		Amplifier	with Diod	
5.		oad and Suggest a C				4 110013
4.		Design of Common				d 4 hours
		ce load. Justify the				
	the circuit.	,		- I	1	
5.	Analysis and	Design of Simple C	Current Mirror ar	nd Sugge	est a circuit te	o 4 hours
		error in the output c				
6.		d Design of Differe	ntial Amplifier	with Act	ive load and	d 4 hours
	Current Sour					
7.		Design of Cascod		Sugges	t a Circuit to	o 4 hours
-		Itage Headroom Lim				
8.		nd Design of Tw	vo-Stage Opa	mp with	Frequenc	y 6 hours
	Compensatio	n.	.		notom / Horr	
Ma	do of Evoluci	on: Mode of Assessn			ratory Hours	
				s Assess	ment and Fir	iai ASSESSIIIEIII
		y Board of Studies	28-07-2022			
	proved by Aca		No. 67	Date	08-08-2022)
ΛP			140.07	Date	00-00-2022	<u> </u>

Item 67/21 - Annexure - 25

			Item 67	/21 -	Anr	iexu	ire -	25
Pre-requisite NIL Syllabus ver Course Objectives 1.0 Course Objectives 1.0 Course aimed to 1.0 1. Understanding of HDL coding guidelines and synthesizable HDL constructs. 2. 2. Understand the RTL synthesis Flow with respect to different cost functions. 3. Analyse Static Timing requirements for ASIC design. 4. Discuss the guidelines at each abstraction level in physical design 5. Course Outcome 4. At the end of the course the student will be able to 1. 1. Design digital systems by adhering to synthesizable HDL constructs. 2. 2. Synthesize the given design by considering various constraints and to optimize same. 3. 3. Understand various timing parameters and perform Static Timing Analysis for <i>i</i> design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 4. 6. Understand the importance of physical design verification. 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based Dotte dettody of year based implementation approaches - Traditional and Physical Corr based ASIC Flow. 8 h Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies			Course Title		L		Ρ	С
1.0 Course Objectives The course aimed to 1. Understanding of HDL coding guidelines and synthesizable HDL constructs. 2. Understand the RTL synthesis Flow with respect to different cost functions. 3. Analyse Static Timing requirements for ASIC design. 4. Discuss the guidelines at each abstraction level in physical design 5. Understand the importance of physical design verification Course Outcome At the end of the course the student will be able to 1. Design digital systems by adhering to synthesizable HDL constructs. 2. Synthesize the given design by considering various constraints and to optimize same. 3. Understand various timing parameters and perform Static Timing Analysis for <i>J</i> design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based Dc 5 h Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Co 5 k RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of					-		0	3
Course Objectives The course aimed to 1. Understanding of HDL coding guidelines and synthesizable HDL constructs. 2. Understand the RTL synthesis Flow with respect to different cost functions. 3. Analyse Static Timing requirements for ASIC design. 4. Discuss the guidelines at each abstraction level in physical design 5. Understand the importance of physical design verification Course Outcome At the end of the course the student will be able to 1. Design digital systems by adhering to synthesizable HDL constructs. 2. Synthesize the given design by considering various constraints and to optimize same. 3. Understand various timing parameters and perform Static Timing Analysis for <i>i</i> design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based Deside Ables C Flow. 8 h Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style of synthesis Design Environment & Constraints – Architecture of I Synthesis. Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesis: Pore 9 h	Pre-re	quisite	NIL	Syl			ersi	on
The course aimed to 1. Understand the RTL synthesis Flow with respect to different cost functions. 3. Analyse Static Timing requirements for ASIC design. 4. Discuss the guidelines at each abstraction level in physical design 5. Understand the importance of physical design verification Course Outcome At the end of the course the student will be able to 1. Design digital systems by adhering to synthesizable HDL constructs. 2. Synthesize the given design by considering various constraints and to optimize same. 3. Understand various timing parameters and perform Static Timing Analysis for <i>i</i> design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based Design. Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style - Guidelines and Recomponents of Technology Library – Synthesis. HDL Coding style for Datapath and Constrol Logic Design. 6 h Module:3 RTL Synthesis For 7 h Synthesis.Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesis – Low Power Synthesis – Formal Verification. 6 h						1.0		
1. Understanding of HDL coding guidelines and synthesizable HDL constructs. 2. Understand the RTL synthesis Flow with respect to different cost functions. 3. Analyse Static Timing requirements for ASIC design. 4. Discuss the guidelines at each abstraction level in physical design 5. Understand the importance of physical design verification Course Outcome At the end of the course the student will be able to 1. Design digital systems by adhering to synthesizable HDL constructs. 2. Synthesize the given design by considering various constraints and to optimize same. 3. Understand various timing parameters and perform Static Timing Analysis for <i>I</i> design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based De Methodology - Array based implementation approaches - Traditional and Physical Corr based ASIC Flow. Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style for Datapath and Control Logic Design. Module:3 Module:3 Rtt Synthesis Design Environment & Constraints – Architecture of IS synthesis – Low Power Synthesis - Formal Verification. 6 h								
2. Understand the RTL synthesis Flow with respect to different cost functions. 3. Analyse Static Timing requirements for ASIC design. 4. Discuss the guidelines at each abstraction level in physical design 5. Understand the importance of physical design verification Course Outcome At the end of the course the student will be able to 1. Design digital systems by adhering to synthesizable HDL constructs. 2. Synthesize the given design by considering various constraints and to optimize same. 3. Understand various timing parameters and perform Static Timing Analysis for a design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4. Maging Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based De Methodology - Array based implementation approaches - Traditional and Physical Corr based ASIC Flow. 8 h Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style - Guidelines and Recommendation - FSM Coding Guideline and Cc Synthesis. HDL Coding style for Datapath and Control Logic Design. Module:3 R						_		
3. Analyse Static Timing requirements for ASIC design. 4. Discuss the guidelines at each abstraction level in physical design 5. Understand the importance of physical design verification Course Outcome At the end of the course the student will be able to 1. Design digital systems by adhering to synthesizable HDL constructs. 2. Synthesize the given design by considering various constraints and to optimize same. 3. Understand various timing parameters and perform Static Timing Analysis for <i>J</i> design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based De Methodology - Array based implementation approaches - Traditional and Physical Corr based ASIC Flow. 8 h Module:2 Verilog HDL Coding Style for Synthesis 8 h Module:3 RTL Synthesis Design Environment & Constraints – Architecture of I Synthesis Flow – Synthesis Design Environment & Constraints – Architecture of Synthesis - Low Power Synthesis - Formal Verification. 6 h Module:3 RTL Synthesis E Pow – Synthesis Design Environment & Constraints – Architecture of I Synthesize - Technology Library Basics- Components of Technology Library -Synth Optimization – Technology Independent and Tech								
4. Discuss the guidelines at each abstraction level in physical design 5. Understand the importance of physical design verification Course Outcome At the end of the course the student will be able to 1. Design digital systems by adhering to synthesizable HDL constructs. 2. Synthesize the given design by considering various constraints and to optimize same. 3. Understand various timing parameters and perform Static Timing Analysis for <i>i</i> design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based De Methodology - Array based implementation approaches - Traditional and Physical Corr based ASIC Flow. 8 h HDL Coding style - Guidelines and Recommendation - FSM Coding Guideline and Cot Style for Synthesis. HDL Coding Style for Datapath and Control Logic Design. 6 h RTL synthesis Flow - Synthesis Design Environment & Constraints - Architecture of I Synthesize - Components of Technology Library -Synth Optimization - Technology Library Basics- Components of Technology Library -Synth Optimization - Technology Independent and Technology dependent synthesis. 7 h Timing Parameter Definition - Setup Timing Check- Hold Timing Check- Multicycle P. Half-Cycle Paths - False Paths 7 h				uncti	ons.			
5. Understand the importance of physical design verification Course Outcome At the end of the course the student will be able to 1. 1. Design digital systems by adhering to synthesizable HDL constructs. 2. Synthesize the given design by considering various constraints and to optimize same. 3. Understand various timing parameters and perform Static Timing Analysis for A design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICS: Custom IC Design- Cell-based De Methodology - Array based implementation approaches - Traditional and Physical Com based ASIC Flow. 8 h HDL Coding style - Guidelines and Recommendation - FSM Coding Guideline and Cs Style for Synthesis. HDL Coding Style for Synthesis 8 h HDL Coding style - Guidelines and Recommendation of Technology Library - Synthesis Plow - Synthesis Design Environment & Constraints - Architecture of I Synthesis - Iow - Synthesis - Formal Verification. 6 h RTL synthesis Flow - Synthesis - Formal Verification. 7 h Module:4 Basic Timing Analysis 7 h		•	0 1 0					
Course Outcome At the end of the course the student will be able to 1. Design digital systems by adhering to synthesizable HDL constructs. 2. Synthesize the given design by considering various constraints and to optimize same. 3. Understand various timing parameters and perform Static Timing Analysis for <i>i</i> design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based Deside ASIC Flow. 4 h Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style - Guidelines and Recommendation - FSM Coding Guideline and Cc Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. 6 h Module:3 RTL Synthesis 6 h RTL synthesis Flow - Synthesis Design Environment & Constraints - Architecture of I Synthesis - Low Power Synthesis - Formal Verification. 7 h Module:3 RTL Synthesis - Setup Timing Check- Hold Timing Check- Multicycle P 1 Half-Cycle Paths- False Paths 7 h Module:5 Advanced Timing Analysis 7 h Clok skew optimization -								
At the end of the course the student will be able to 1. Design digital systems by adhering to synthesizable HDL constructs. 2. Synthesize the given design by considering various constraints and to optimize same. 3. Understand various timing parameters and perform Static Timing Analysis for <i>i</i> design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based Desed Methodology - Array based implementation approaches - Traditional and Physical Com based ASIC Flow. 8 h Module:2 Verling HDL Coding Style for Synthesis 8 h HDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Cc Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. 6 h RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesis – Low Power Synthesis - Formal Verification. 7 h Module:3 RTL Synthesis - Formal Verification. 7 h Module:4 Basic Timing Analysis 7 h Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle P: Half-Cycle Paths- False Paths. 5 h Module:5 Advanced Timing Analysis	5.	Understan	d the importance of physical design verification					
At the end of the course the student will be able to 1. Design digital systems by adhering to synthesizable HDL constructs. 2. Synthesize the given design by considering various constraints and to optimize same. 3. Understand various timing parameters and perform Static Timing Analysis for <i>i</i> design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based Desed Methodology - Array based implementation approaches - Traditional and Physical Combased ASIC Flow. 8 h Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Co Styte for Synthesis. HDL Coding style for Datapath and Control Logic Design. Module:3 RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesizer - Technology Library Basics- Components of Technology Library –Syntl Optimization- Technology Library Basics - Formal Verification. 7 h Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle P: Half-Cycle Paths- False Paths Module:5 Advanced Timing Analysis 5 h Clock skew optimization – On-Chip Variatio	Cours	e Outcome						
2. Synthesize the given design by considering various constraints and to optimize same. 3. Understand various timing parameters and perform Static Timing Analysis for a design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based De Methodology - Array based implementation approaches - Traditional and Physical Corr based ASIC Flow. Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style - Guidelines and Recommendation - FSM Coding Guideline and Cc Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. 6 h RTL synthesis 6 h 7 h Synthesize - Technology Library Basics- Components of Technology Library -Synth Optimization- Technology Library Basics - Components of Technology Library -Synth Optimization- Technology Library Basics - Components of Technology Library -Synth Optimization - Technology Library Basics - Formal Verification. 7 h Timing Parameter Definition - Setup Timing Check- Hold Timing Check- Multicycle P: Half-Cycle Paths - False Paths 6 h Module:6 Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing- ECO flow - Signal Integrity Issues. 8 h Module:7 Physical Design Flow- Guidelines for Floor								
2. Synthesize the given design by considering various constraints and to optimize same. 3. Understand various timing parameters and perform Static Timing Analysis for a design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based De Methodology - Array based implementation approaches - Traditional and Physical Corr based ASIC Flow. Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style or Guidelines and Recommendation - FSM Coding Guideline and Cc Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. 6 h RTL synthesis Flow - Synthesis Design Environment & Constraints - Architecture of I Synthesizer - Technology Library Basics- Components of Technology Library -Synth Optimization- Technology Library Basics - Components of Technology Library -Synth Optimization. 7 h Timing Parameter Definition - Setup Timing Check- Hold Timing Check- Multicycle P: Half-Cycle Paths - False Paths 8 h Module:6 Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing- ECO flow - Signal Integrity Issues. 8 h Module:6 Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing- ECO flow - Signal Integrity Issues. 8 h Module:7 <td></td> <td></td> <td></td> <td>ts.</td> <td></td> <td></td> <td></td> <td></td>				ts.				
3. Understand various timing parameters and perform Static Timing Analysis for A design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based De Methodology - Array based implementation approaches - Traditional and Physical Corn based ASIC Flow. 8 h Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style - Guidelines and Recommendation - FSM Coding Guideline and Cc Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. 6 h RTL synthesis Flow - Synthesis Design Environment & Constraints - Architecture of I Synthesis - Low Power Synthesis - Components of Technology Library -Synth Optimization - Technology independent and Technology dependent synthesis - Data Synthesis - Low Power Synthesis - Formal Verification. 7 h Module:4 Basic Timing Analysis 7 h Timing Parameter Definition - Setup Timing Check- Hold Timing Check- Multicycle P: Half-Cycle Paths - False Paths 8 h Module:5 Advanced Timing Analysis 5 h Clock skew optimization - On-Chip Variations- AOCV-POCV-Time Borrowing- Setup Hold Violation Fixing. 8 h Module:6 Physical Design Flow- Guidel		Synthesize			to op	otimi	ize	the
design 4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based Demote Methodology - Array based implementation approaches - Traditional and Physical Combased ASIC Flow. 8 h Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Cc Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. Module:3 RTL Synthesis 6 h RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesizer - Technology Library Basics– Components of Technology Library –Synth Optimization- Technology independent and Technology dependent synthesis- Data Synthesis – Low Power Synthesis - Formal Verification. Module:4 Basic Timing Analysis 7 h Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle PL Half-Cycle Paths- False Paths Module:5 Advanced Timing Analysis 5 h Clock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup Hold Violation Fixing. 8 h Module:7 Physical	2		d various timing parameters and parform Static Timing	۰ <u>۸</u> ۵۰	alvei	e fo	r A(ະເດ
4. Compare OCV modelling techniques. 5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based Defection assed ASIC Flow. 4 h Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Cot Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. 6 h Module:3 RTL Synthesis Design Environment & Constraints – Architecture of I Synthesis Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesis – Technology Library Basics– Components of Technology Library –Synth Optimization- Technology independent and Technology dependent synthesis- Data Synthesis – Low Power Synthesis - Formal Verification. Module:4 Basic Timing Analysis 7 h Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle P. Half-Cycle Paths- False Paths 5 h Clock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup Hold Violation Fixing. 8 h Module:5 Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing – ECO flow – Signal Integrity Issues. 8 h Detailed steps in Physical Design Verification 5 h Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Ana Electro-Migration Analysis and ESD Analy	З.		u various unning parameters and perform Static mining	Alla	arysi	5 10	I A	
5. Perform physical design by adhering to guidelines. 6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based Design Active Strategies for Digital ICs: Custom IC Design- Cell-based Design Active Style For Synthesis 8 h Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Cot Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. 6 h Module:3 RTL Synthesis 6 h RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesizer - Technology Library Basics– Components of Technology Library –Synth Optimization- Technology independent and Technology dependent synthesis- Data Synthesis – Low Power Synthesis - Formal Verification. Module:4 Basic Timing Analysis 7 h Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle P: Half-Cycle Paths- False Paths 5 h Olcock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup Hold Violation Fixing. 8 h Module:7 Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing - ECO flow – Signal Integrity Issues. 6 h Module:8 Contemporary Issues 2 h	Δ		CV modelling techniques					
6. Understand the importance of physical design verification. Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based Desiged ASIC Flow. Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Cc Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. 6 h Module:3 RTL Synthesis 6 h RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesis = Low Power Synthesis - Components of Technology Library –Synth Optimization- Technology Library Basics– Components of Technology Library –Synth Optimization- Technology independent and Technology dependent synthesis- Data Synthesis – Low Power Synthesis - Formal Verification. 7 h Module:4 Basic Timing Analysis 7 h Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle Pethalf-Cycle Paths - False Paths 5 h Module:5 Advanced Timing Analysis 5 h Clock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup Hold Violation Fixing. 8 h Module:6 Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing - ECO flow – Signal Integrity Issues. 8 h Module:7 Physical Design Verification – Signoff DRC and LVS, ERC, IR Drop Ana Electro-Migration Ana		•	o 1					
Module:1 ASIC Design Methodology & Design Flow 4 h Implementation Strategies for Digital ICs: Custom IC Design- Cell-based De Methodology - Array based implementation approaches - Traditional and Physical Com based ASIC Flow. Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Cc Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. Module:3 RTL synthesis 6 h RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesizer - Technology Library Basics– Components of Technology Library –Synti Optimization- Technology independent and Technology dependent synthesis- Data Synthesis – Low Power Synthesis - Formal Verification. 7 h Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle Paths- 7 h Module:5 Advanced Timing Analysis 5 h Clock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup 8 h Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS 8 h Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS 5 h Timing Sign-off, Physical Design Verification 5 h Timin								
Implementation Strategies for Digital ICs: Custom IC Design- Cell-based Detect Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Co Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. Module:3 RTL Synthesis 6 h RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesizer - Technology Library Basics– Components of Technology Library –Synth Optimization – Technology Library Basics – Components of Technology Library –Synth Optimization – Setup Timing Check-Hold Timing Check- Multicycle Paths- False Paths Module:4 Basic Timing Analysis 7 h Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle Paths- False Paths 5 h Clock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup 8 h Module:6 Physical Design 8 h Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS 5 h Timing Sign-off, Physical Design Verification 5 h Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Ana Electro-Migration Analysis and ESD Analysis. Module:8 Contemporary Issues<	0.	Understan						
Implementation Strategies for Digital ICs: Custom IC Design- Cell-based Detect Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Co Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. Module:3 RTL Synthesis 6 h RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesizer - Technology Library Basics– Components of Technology Library –Synth Optimization – Technology Library Basics – Components of Technology Library –Synth Optimization – Setup Timing Check-Hold Timing Check- Multicycle Paths- False Paths Module:4 Basic Timing Analysis 7 h Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle Paths- False Paths 5 h Clock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup 8 h Module:6 Physical Design 8 h Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS 5 h Timing Sign-off, Physical Design Verification 5 h Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Ana Electro-Migration Analysis and ESD Analysis. Module:8 Contemporary Issues<	Modu	le:1 ASIC	Design Methodology & Design Flow			4	ho	urs
Methodology - Array based implementation approaches - Traditional and Physical Combased ASIC Flow. 8 h Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style - Guidelines and Recommendation - FSM Coding Guideline and CC Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. 6 h Module:3 RTL Synthesis 6 h RTL synthesis Flow - Synthesis Design Environment & Constraints - Architecture of I Synthesizer - Technology Library Basics- Components of Technology Library -Synth Optimization- Technology independent and Technology dependent synthesis- Data Synthesis - Low Power Synthesis - Formal Verification. 7 h Module:4 Basic Timing Analysis 7 h Timing Parameter Definition - Setup Timing Check- Hold Timing Check- Multicycle P 9 h Half-Cycle Paths- False Paths 8 h Module:5 Advanced Timing Analysis 5 h Clock skew optimization - On-Chip Variations- AOCV-POCV-Time Borrowing- Setup Hold Violation Fixing. 8 h Module:6 Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing- ECO flow - Signal Integrity Issues. 5 h Module:7 Physical Design Verification - Signoff DRC and LVS, ERC, IR Drop Ana Electro-Migration Analysis and ESD Analysis. 2 h Module:8 Contemporary Issues 2 h				Cell-t	base			
based ASIC Flow. Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Co Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. 6 h Module:3 RTL Synthesis 6 h RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesizer - Technology Library Basics– Components of Technology Library –Synth Optimization- Technology independent and Technology dependent synthesis - Data Synthesis – Low Power Synthesis - Formal Verification. Module:4 Basic Timing Analysis 7 h Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle P Half-Cycle Paths- False Paths Module:5 Advanced Timing Analysis 5 h Clock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup Hold Violation Fixing. Module:6 Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing – ECO flow – Signal Integrity Issues. Module:7 Physical Design Verification – Signoff DRC and LVS, ERC, IR Drop Ana Electro-Migration Analysis and ESD Analysis. 2 h Module:8 Contemporary Issues 2 h								
Module:2 Verilog HDL Coding Style for Synthesis 8 h HDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Co Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. Module:3 RTL Synthesis 6 h RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesis – Technology Library Basics – Components of Technology Library –Synth Optimization - Technology independent and Technology dependent synthesis – Low Power Synthesis - Formal Verification. 7 h Module:4 Basic Timing Analysis 7 h Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle P Half-Cycle Paths- False Paths Module:5 Advanced Timing Analysis 5 h Clock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup Hold Violation Fixing. Module:6 Physical Design Flow- Guidelines for Floor plan, Placement, CTS not signal Integrity Issues. Module:7 Physical Design Verification 5 h Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Ana Electro-Migration Analysis and ESD Analysis. Module:8 Contemporary Issues 2 h		•••	• • •	,	0.00			
HDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Co Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. Module:3 RTL Synthesis 6 h RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesizer - Technology Library Basics– Components of Technology Library –Synth Optimization- Technology independent and Technology dependent synthesis- Data Synthesis – Low Power Synthesis - Formal Verification. 7 h Module:4 Basic Timing Analysis 7 h Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle P 7 Half-Cycle Paths- False Paths 5 h Clock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup 6 h Module:6 Physical Design 8 h Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS 5 h Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Anal 5 h Module:8 Contemporary Issues 2 h						8	ho	urs
Style for Synthesis. HDL Coding style for Datapath and Control Logic Design. Module:3 RTL Synthesis 6 h RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesizer - Technology Library Basics– Components of Technology Library –Synth Optimization- Technology independent and Technology dependent synthesis- Data Synthesis – Low Power Synthesis - Formal Verification. Module:4 Module:4 Basic Timing Analysis 7 h Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle P Half-Cycle Paths- False Paths Module:5 Advanced Timing Analysis 5 h Clock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup Hold Violation Fixing. Module:6 Physical Design 8 h Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing– ECO flow – Signal Integrity Issues. 5 h Module:7 Physical Verification – Signoff DRC and LVS, ERC, IR Drop Anal Electro-Migration Analysis and ESD Analysis. 2 h Module:8 Contemporary Issues 2 h				idelir	ne a			
Module:3RTL Synthesis6 hRTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of ISynthesizer - Technology Library Basics– Components of Technology Library –SynthOptimization- Technology independent and Technology dependent synthesis- DataSynthesis – Low Power Synthesis - Formal Verification.Module:4Basic Timing AnalysisTiming Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle Paths-Half-Cycle Paths- False PathsModule:5Advanced Timing AnalysisModule:6Physical DesignModule:6Physical Design Flow- Guidelines for Floor plan, Placement, CTSrouting ECO flow – Signal Integrity Issues.ShModule:7Physical Design Verification – Signoff DRC and LVS, ERC, IR Drop AnaElectro-Migration Analysis and ESD Analysis.2 hModule:8Contemporary Issues22 h								
RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of I Synthesizer - Technology Library Basics– Components of Technology Library –Synth Optimization- Technology independent and Technology dependent synthesis- Data Synthesis – Low Power Synthesis - Formal Verification. Module:4 Basic Timing Analysis Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle P Half-Cycle Paths- False Paths Module:5 Advanced Timing Analysis Solock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup Hold Violation Fixing. 8 h Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing– ECO flow – Signal Integrity Issues. Module:7 Physical Design Verification – Signoff DRC and LVS, ERC, IR Drop Ana Electro-Migration Analysis and ESD Analysis. 2 h Module:8 Contemporary Issues 2 h				<u>.</u>		6	ho	urs
Synthesizer - Technology Library Basics- Components of Technology Library -Synth Optimization- Technology independent and Technology dependent synthesis- Data Synthesis - Low Power Synthesis - Formal Verification. Module:4 Basic Timing Analysis Timing Parameter Definition - Setup Timing Check- Hold Timing Check- Multicycle Paths-False Paths Module:5 Advanced Timing Analysis Module:6 Physical Design Module:6 Physical Design Basic Timing Sign-off, Physical Design Verification 5 h Timing Sign-off, Physical Verification - Signoff DRC and LVS, ERC, IR Drop Analelectro-Migration Analysis and ESD Analysis. 2 h Module:8 Contemporary Issues 2 h				rchite	ectu			
Optimization-Technology independent and Technology dependent synthesis-DataSynthesis - Low Power Synthesis - Formal Verification.Module:4Basic Timing Analysis7 hModule:4Basic Timing Analysis7 hTiming Parameter Definition - Setup Timing Check- Hold Timing Check- Multicycle Paths-False PathsModule:5Advanced Timing Analysis5 hClock skew optimization - On-Chip Variations- AOCV-POCV-Time Borrowing- SetupHold Violation Fixing.Module:6Physical Design8 hDetailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTSTouting- ECO flow - Signal Integrity Issues.Module:7Physical Design Verification5 hTiming Sign-off, Physical Verification - Signoff DRC and LVS, ERC, IR Drop Ana2 hModule:8Contemporary Issues2 hModule:8Contemporary Issues45 h								
Synthesis – Low Power Synthesis - Formal Verification. Module:4 Basic Timing Analysis 7 h Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle Paths-False Paths Timing Check- Hold Timing Check- Multicycle Paths-False Paths Module:5 Advanced Timing Analysis 5 h Clock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup Hold Violation Fixing. Module:6 Physical Design 8 h Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing– ECO flow – Signal Integrity Issues. Module:7 Physical Design Verification 5 h Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Anal Electro-Migration Analysis and ESD Analysis. 2 h Module:8 Contemporary Issues 2 h								
Module:4Basic Timing Analysis7 hTiming Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle Paths-False PathsTiming Check- Hold Timing Check- Multicycle Paths-False PathsModule:5Advanced Timing Analysis5 hClock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- SetupHold Violation Fixing.8 hDetailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTSrouting – ECO flow – Signal Integrity Issues.Module:7Physical Design VerificationTiming Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop AnalElectro-Migration Analysis and ESD Analysis.Module:8Contemporary Issues2 hTotal Lecture hours:45 h					0.0	Dat	ς γ	a
Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle Paths-False Paths Module:5 Advanced Timing Analysis 5 h Clock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup Hold Violation Fixing. 8 h Module:6 Physical Design 8 h Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing– ECO flow – Signal Integrity Issues. 5 h Module:7 Physical Design Verification 5 h Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Anal Electro-Migration Analysis and ESD Analysis. 2 h Module:8 Contemporary Issues 2 h						7	ho	urs
Half-Cycle Paths- False Paths Module:5 Advanced Timing Analysis 5 h Clock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup Hold Violation Fixing. Module:6 Physical Design 8 h Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing– ECO flow – Signal Integrity Issues. Module:7 Physical Design Verification 5 h Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Anal Electro-Migration Analysis and ESD Analysis. 2 h Module:8 Contemporary Issues 2 h				- Μι	ulticy			
Clock skew optimization – On-Chip Variations- AOCV-POCV-Time Borrowing- Setup Hold Violation Fixing. Module:6 Physical Design Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing– ECO flow – Signal Integrity Issues. Module:7 Physical Design Verification Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Anal Electro-Migration Analysis and ESD Analysis. Module:8 Contemporary Issues 2 h								
Hold Violation Fixing. 8 h Module:6 Physical Design 8 h Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing– ECO flow – Signal Integrity Issues. 8 Module:7 Physical Design Verification 5 h Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Analelectro-Migration Analysis and ESD Analysis. 2 h Module:8 Contemporary Issues 2 h Total Lecture hours: 45 h								
Hold Violation Fixing. 8 h Module:6 Physical Design 8 h Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing– ECO flow – Signal Integrity Issues. 8 Module:7 Physical Design Verification 5 h Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Analelectro-Migration Analysis and ESD Analysis. 2 h Module:8 Contemporary Issues 2 h Total Lecture hours: 45 h	Clock	skew optir	nization – On-Chip Variations- AOCV-POCV-Time Born	rowi	ng-	Setu	JD 8	and
Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing– ECO flow – Signal Integrity Issues. Module:7 Physical Design Verification 5 h Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Anal Electro-Migration Analysis and ESD Analysis. 2 h Module:8 Contemporary Issues 2 h Total Lecture hours:	Hold V	iolation Fix	ing.		-			
Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS routing– ECO flow – Signal Integrity Issues. Module:7 Physical Design Verification 5 h Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Anal Electro-Migration Analysis and ESD Analysis. 2 h Module:8 Contemporary Issues 2 h Total Lecture hours:	Modu	le:6 Phys	ical Design			8	ho	urs
routing – ECO flow – Signal Integrity Issues. Module:7 Physical Design Verification 5 h Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Analelectro-Migration Analysis and ESD Analysis. Total Lecture hours: 2 h Module:8 Contemporary Issues 2 h Total Lecture hours: 45 h	Detaile	ed steps in	Physical Design Flow- Guidelines for Floor plan, Pla	acem	nent,			
Module:7Physical Design Verification5 hTiming Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Analelectro-Migration Analysis and ESD Analysis.Nodule:8Contemporary Issues2 hModule:8Contemporary Issues2 h45 h					,			
Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Anales Electro-Migration Analysis and ESD Analysis. Module:8 Contemporary Issues 2 h Total Lecture hours: 45 h						5	ho	urs
Electro-Migration Analysis and ESD Analysis. Module:8 Contemporary Issues 2 h Total Lecture hours: 45 h				IR [Drop			
Module:8 Contemporary Issues 2 h Total Lecture hours: 45 h					- 1		J	
Total Lecture hours: 45 h						2	ho	urs
			Total Lecture bours:			45	ho	urs
Text Book(s)						τJ		шι
	Text E	Book(s)						
1. Vaibbhav Taraate, ASIC Design and Synthesis RTL Design Using Verilog, 2021, Fir			aate, ASIC Design and Synthesis RTL Design Using Ver	riloa	, 202	21. F	Firs	t
Edition, Springer, Singapore.				- 9	,	, •	2.	
2. J. Bhasker and Rakesh Chadha, Static Timing Analysis for Nanometer Design				met	er D	Jesi	ans	

	2010, First Edition, Springer, USA	۱.						
Re	ference Books							
1.	Khosrow Golshan, PHYSICAL DI		TIALS An	ASIC Design Implementation				
	Perspective, 2010, First Edition, S	Springer.						
2.	Michael John Sebastian Smith,	Application-Sp	ecific Inte	egrated Circuits, 2002, First				
	Edition, Addison Wesley.							
	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test							
Re	Recommended by Board of Studies 28-07-2022							
Ар	Approved by Academic Council No. 67 Date 08-08-2022							

									- 25
Course Code		Course Titl	e			L	Т	Ρ	С
MVLD505P		ASIC Design Lab 0 0 2						2	1
Pre-requisite	NIL				Sylla	abu	s ve	ersi	on
						1	1.0		
Course Objectiv	es								
The course is aim	ned to								
 To apply t 	heoretical knowledge	e gained in the A	ASIC Des	sign course	e and	get l	han	ds-a	on
experienc	e of the topics.	-				-			
Course Outcom	e								
At the end of the	course the student w	/ill be able to							
1. Design, si	mulate and synthesiz	ze complex digit	al syster	n					
2. Analyse a	nd fix the timing viola	ations							
3. Design AS	SIC based digital sys	tems using indu	stry stan	dard EDA	tools.				
Indicative Exper	iments								
1. Design of Dig	gital Architecture for	given specificati	on			6 hc	ours	i	
2. Logical Synth	nesis of Digital Archit	ecture				6 hc	ours	i	
3. Netlist Optim	ization, GLS and For	rmal Verification				6 hc	ours	i	
4. Physical Syn	thesis of Digital Arch	nesis of Digital Architecture 6 hours							
5. Physical Veri	Physical Verification of Digital Architecture 6 hours								
Total Laboratory Hours 30 hours									
Mode of Assessn	nent: Continuous Ass	sessment and F	nal Asse	ssment Te	est				
Recommended b	y Board of Studies	28-07-2022							
Approved by Aca	demic Council	No. 67	Date	08-08-20	022				

	Course Title	L T P C
MVLD506L	VLSI Testing and Testability	
Pre-requisite	NIL	Syllabus Version
		1.0
Course Objecti		
The course is int		m, to otion
	ne concept of modeling and simulation of logic and memo	
	different design for testability techniques for improvi	ing the yield of it
design.		
Course Outcon	1965 ·	
	of the course students will be able to	
•	the Fault Models and generate test patterns for digital ci	rcuits
	techniques viz. scan based testing, BIST and boundary	
testability	teeninguee viz. coan baced teeting, bier and beandary	
•	vector compression and test response compaction tec	hniques to reduce
	d memory storage	
	ose and repair memory faults in SoC	
_	· · · · ·	
Module:1 VLS	I Testing and Fault Modelling	6 hours
Importance of T	esting - Testing during the VLSI Lifecycle - Challenges in	the VLSI Testing:
	- Fault Models – Levels of Abstraction in VLSI Testing -	
	chnology - Fault Equivalence - Fault Dominance - Fault (Collapsing - Check
point Theorem.		
Module:2 Fau	t Simulation and Test Generation	5 hours
Fault Simulatior	a: Serial, Parallel, Deductive, Concurrent, Fault sampling	ng - Combinational
	s -ATPG for Combinational Circuits - D-Algorithm – Class	ification of faults.
Module:3 Des	ign for Testability	7 hours
	vsis: SCOAP measures for Combinational Circuits - Des	
Basics - Ad Hoc	Approach - Structured Approach - Scan Cell Designs - S	Scan Architectures
Basics - Ád Hoc - Scan Design R	Approach - Structured Approach - Scan Cell Designs - Sules - Scan Design Flow – Special Purpose Scan Design	Scan Architectures
Basics - Ád Hoc - Scan Design R Module:4 Log	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test	Scan Architectures s 7 hours
Basics - Ád Hoc <u>- Scan Design R</u> Module:4 Log BIST Design R	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test sules - Test Pattern Generation: Exhaustive Testing,	Scan Architectures s 7 hours Pseudo-Random
Basics - Ad Hoc - <u>Scan Design R</u> Module:4 Log BIST Design R Testing, Pseudo	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test cules - Test Pattern Generation: Exhaustive Testing, p-Exhaustive Testing, Delay Fault Testing - Output Re	Scan Architectures s 7 hours Pseudo-Random
Basics - Ad Hoc - Scan Design R Module:4 Log BIST Design R Testing, Pseudo Logic BIST Arch	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test cules - Test Pattern Generation: Exhaustive Testing, p-Exhaustive Testing, Delay Fault Testing - Output Re itectures	Scan Architectures s 7 hours Pseudo-Random sponse Analysis -
Basics - Ad Hoc - Scan Design R Module:4 Log BIST Design R Testing, Pseudo Logic BIST Arch Module:5 Tes	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test cules - Test Pattern Generation: Exhaustive Testing, p-Exhaustive Testing, Delay Fault Testing - Output Re itectures st Compression and Boundary scan	Scan Architectures s 7 hours Pseudo-Random sponse Analysis - 6 hours
Basics - Ad Hoc - Scan Design R Module:4 Log BIST Design R Testing, Pseudo Logic BIST Arch Module:5 Test	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test cules - Test Pattern Generation: Exhaustive Testing, p-Exhaustive Testing, Delay Fault Testing - Output Re itectures st Compression and Boundary scan Compression Techniques: Linear-Decompression-Ba	Scan Architectures s 7 hours Pseudo-Random sponse Analysis - 6 hours ased Schemes -
Basics - Ad Hoc - Scan Design R Module:4 Log BIST Design R Testing, Pseudo Logic BIST Arch Module:5 Test Test Stimulus Broadcast base	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test cules - Test Pattern Generation: Exhaustive Testing, o-Exhaustive Testing, Delay Fault Testing - Output Re itectures st Compression and Boundary scan Compression Techniques: Linear-Decompression-Ba d compression schemes. Test Response Compaction	Scan Architectures s 7 hours Pseudo-Random sponse Analysis - 6 hours ased Schemes - - Digital Boundary
Basics - Ad Hoc - Scan Design R Module:4 Log BIST Design R Testing, Pseudo Logic BIST Arch Module:5 Test Test Stimulus Broadcast base Scan (IEEE Sto	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test ules - Test Pattern Generation: Exhaustive Testing, o-Exhaustive Testing, Delay Fault Testing - Output Re itectures itectures itectures itector itectures itectures itector itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures itectures 	Scan Architectures s 7 hours Pseudo-Random sponse Analysis - 6 hours ased Schemes - - Digital Boundary Test Support with
Basics - Ad Hoc - Scan Design R Module:4 Log BIST Design R Testing, Pseudo Logic BIST Arch Module:5 Test Test Stimulus Broadcast base Scan (IEEE Sto Boundary Scan	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test cules - Test Pattern Generation: Exhaustive Testing, o-Exhaustive Testing, Delay Fault Testing - Output Re itectures st Compression and Boundary scan Compression Techniques: Linear-Decompression-Ba d compression schemes. Test Response Compaction	Scan Architectures s 7 hours Pseudo-Random sponse Analysis - 6 hours ased Schemes - - Digital Boundary Test Support with
Basics - Ad Hoc - Scan Design R Module:4 Log BIST Design R Testing, Pseudo Logic BIST Arch Module:5 Test Test Stimulus Broadcast base Scan (IEEE Sto Boundary Scan architectures.	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test cules - Test Pattern Generation: Exhaustive Testing, p-Exhaustive Testing, Delay Fault Testing - Output Re itectures itectures itectures itector itectures itectures itector itectures itector itectures itector itectures itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector itector i	Scan Architectures Scan Architectures Pseudo-Random sponse Analysis - 6 hours ased Schemes - - Digital Boundary Test Support with hitectures - IJTAG
Basics - Ad Hoc - Scan Design R Module:4 Log BIST Design R Testing, Pseudo Logic BIST Arch Module:5 Tes Test Stimulus Broadcast base Scan (IEEE Sto Boundary Scan architectures.	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test cules - Test Pattern Generation: Exhaustive Testing, p-Exhaustive Testing, Delay Fault Testing - Output Re itectures at Compression and Boundary scan Compression Techniques: Linear-Decompression-Ba d compression schemes. Test Response Compaction I. 1149.1): Test Architecture and Operations - On-Chip - Board and System-Level Boundary-Scan Control Arc emory Testing and Built-In Self-Test	Scan Architectures Scan Architectures Pseudo-Random sponse Analysis - 6 hours ased Schemes - - Digital Boundary Test Support with hitectures - IJTAG 6 hours
Basics - Ad Hoc - Scan Design R Module:4 Log BIST Design R Testing, Pseudo Logic BIST Arch Module:5 Tes Test Stimulus Broadcast base Scan (IEEE Sto Boundary Scan architectures. Module:6 Me RAM Functiona	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test sules - Test Pattern Generation: Exhaustive Testing, p-Exhaustive Testing, Delay Fault Testing - Output Re itectures itectures compression and Boundary scan Compression Techniques: Linear-Decompression-Ba d compression schemes. Test Response Compaction 1. 1149.1): Test Architecture and Operations - On-Chip - Board and System-Level Boundary-Scan Control Arc mory Testing and Built-In Self-Test I Fault Models and Test Algorithms - RAM Fault Si	Scan Architectures Scan Architectures Pseudo-Random sponse Analysis - 6 hours ased Schemes - - Digital Boundary Test Support with hitectures - IJTAG 6 hours
Basics - Ad Hoc - Scan Design R Module:4 Log BIST Design R Testing, Pseudo Logic BIST Arch Module:5 Test Test Stimulus Broadcast base Scan (IEEE Sto Boundary Scan architectures. Module:6 Mo RAM Functiona Algorithm Gener	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test cules - Test Pattern Generation: Exhaustive Testing, o-Exhaustive Testing, Delay Fault Testing - Output Re itectures it Compression and Boundary scan Compression Techniques: Linear-Decompression-Ba d compression schemes. Test Response Compaction I. 1149.1): Test Architecture and Operations - On-Chip - Board and System-Level Boundary-Scan Control Arc emory Testing and Built-In Self-Test I Fault Models and Test Algorithms - RAM Fault Si ation - Memory Built-In Self-Test	Scan Architectures Scan Architectures Pseudo-Random sponse Analysis - 6 hours ased Schemes - - Digital Boundary Test Support with hitectures - IJTAG 6 hours
Basics - Ad Hoc - Scan Design R Module:4 Log BIST Design R Testing, Pseudo Logic BIST Arch Module:5 Test Broadcast base Scan (IEEE Sto Boundary Scan architectures. Module:6 Mo RAM Functiona Algorithm Gener Module:7 Mo	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test sules - Test Pattern Generation: Exhaustive Testing, p-Exhaustive Testing, Delay Fault Testing - Output Re itectures itectures at Compression and Boundary scan Compression Techniques: Linear-Decompression-Ba d compression schemes. Test Response Compaction I. 1149.1): Test Architecture and Operations - On-Chip - Board and System-Level Boundary-Scan Control Arc emory Testing and Built-In Self-Test I Fault Models and Test Algorithms - RAM Fault Si ation - Memory Built-In Self-Test emory Diagnosis and Built-In Self-Repair	Scan Architectures Scan Architectures Pseudo-Random sponse Analysis - 6 hours ased Schemes - - Digital Boundary Test Support with hitectures - IJTAG 6 hours mulation and Test 6 hours
Basics - Ad Hoc - Scan Design R Module:4 Log BIST Design R Testing, Pseudo Logic BIST Arch Module:5 Test Broadcast base Scan (IEEE Sto Boundary Scan architectures. Module:6 Mo RAM Functiona Algorithm Gener Module:7 Mo	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test cules - Test Pattern Generation: Exhaustive Testing, o-Exhaustive Testing, Delay Fault Testing - Output Re itectures it Compression and Boundary scan Compression Techniques: Linear-Decompression-Ba d compression schemes. Test Response Compaction I. 1149.1): Test Architecture and Operations - On-Chip - Board and System-Level Boundary-Scan Control Arc emory Testing and Built-In Self-Test I Fault Models and Test Algorithms - RAM Fault Si ation - Memory Built-In Self-Test	Scan Architectures Scan Architectures Pseudo-Random sponse Analysis - 6 hours ased Schemes - - Digital Boundary Test Support with hitectures - IJTAG 6 hours mulation and Test 6 hours
Basics - Ad Hoc - Scan Design R Module:4 Log BIST Design R Testing, Pseudo Logic BIST Arch Module:5 Test Broadcast base Scan (IEEE Sto Boundary Scan architectures. Module:6 Mo RAM Functiona Algorithm Gener Module:7 Mo BIST with Diagr Repair	Approach - Structured Approach - Scan Cell Designs - S ules - Scan Design Flow – Special Purpose Scan Design ic Built-in Self-Test sules - Test Pattern Generation: Exhaustive Testing, p-Exhaustive Testing, Delay Fault Testing - Output Re itectures itectures at Compression and Boundary scan Compression Techniques: Linear-Decompression-Ba d compression schemes. Test Response Compaction I. 1149.1): Test Architecture and Operations - On-Chip - Board and System-Level Boundary-Scan Control Arc emory Testing and Built-In Self-Test I Fault Models and Test Algorithms - RAM Fault Si ation - Memory Built-In Self-Test emory Diagnosis and Built-In Self-Repair	Scan Architectures Scan Architectures Pseudo-Random sponse Analysis - 6 hours ased Schemes - - Digital Boundary Test Support with hitectures - IJTAG 6 hours mulation and Test 6 hours

		Total Lect	ure hours:	45 hours				
Тех	t Book(s)							
1.	Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqi Architectures, 2013, The Morgan Kaufmann.	ng Wen, VLSI ⁻	Fest Principl	es and				
2.	M. Bushnell, Vishwani Agrawal - Essentials of and Mixed-Signal VLSI Circuits, 2006, Springer.	Electronic Test	ing for Digit	al, Memory,				
Ref	erence Books							
1.	Laung-Terng Wang, Charles E. Stroud, Nur Architectures: Nanometer Design for Testability",		•	•				
	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test							
Rec	ommended by Board of Studies 28-07-2	2022						
Арр	roved by Academic Council No. 67	Date	08-08-2022					

Со	urse Code		Course Tit	е			L	Т	Ρ	С
ΜV	LD506P	VLSI Tes	esting and Testability Lab 0 0						2	1
Pre	e-requisite	NIL				Syll	labı	is v	ersi	on
								1.0		
Со	urse Objectiv	es								
The	e course is inte	ended to								
1.	Introduce the	concept of modeling a	nd simulation	of logic a	and memory	y test	ing			
2.	Familiarize dif	ferent design for testa	bility techniqu	ues for in	nproving the	e yiel	ld of	f IC	des	ign
	using industry	standard EDA tools				-				-
Со	urse Outcome	S :								
Afte	er completion o	of the course the stude	nt will be able	e to:						
4	Conorata toot	nottorno and norfarm	foult aimulatia	n for diai	tal lagia an	dma	mor			
		patterns and perform								
Ζ.	testability usin	chniques viz. scan ba	sed testing, i		boundary	scan		IIII	prov	ing
Ind	icative Experi	iments								
1.		ion and Test generatio	n for combina	ation circu	uits		4 ho	ours	3	
2.		set rule check at RTL					4 h	ours	\$	
3.		nsertion, DRC and ATI	PG				2 h	ours	\$	
4.		terns and On-Chip Clo		s (LoS ar	nd LoC)		4 ho	ours	3	
5.	Advanced fau				/		2 ho	ours	\$	
6.	SDF annotate	ed simulation					4 ho	ours	5	
7.	Boundary sca	Boundary scan test 4 hours								
8.										
	Total Laboratory Hours 30 hours									
Мо	Mode of Assessment: Continuous Assessment and Final Assessment Test									
Re	Recommended by Board of Studies 28-07-2022									
Ар	proved by Acad	demic Council	No. 67	Date	08-08-20	22				

Course Code	Course Title	L T P C
MVLD507L	IC Technology	3 0 0 3
Pre-requisite	NIL	Syllabus version
<u> </u>		1.0
Course Objectiv		
The course inten		
	the process involved in semiconductor	manufacturing, lithography and
fabricatio		dela Cara anno anno anno de tha anno anno
	e oxidation growth rate & to understand or	•
	on and to expound the Ion Implantation pro	
•	he thin film deposition process and review	the difference between MOS and
Bipolar P	rocess Integration.	
Course Outcom		
	course the student will be able to	
	nd the process involved in semiconductor r	nanufacturing lithography and
fabricatio		nandracturing, innography and
	nd the various lithography techniques used	for pattern transfer
	dels for understanding the oxidation growth	•
	nd the diffusion mechanism in semiconduc	
	nd the process involved in thin film deposit	
	he difference between MOS and Biploar P	
	•	
Module:1 Crys	stal Growth	5 hours
	Semiconductor Manufacturing and fabri	cation, Clean Room types and
Standards, Phys	ics of the Crystal growth, wafer fabricatic	n and basic properties of silicor
wafers.		
Module:2 Lith		7 hours
	raphic Process, Photomask Fabrication, C	
negative photore	esists, Exposure Systems, Characteristics	of Exposure Systems, E-beam
Lithography, X- r		
	rmal Oxidation of Silicon	6 hours
	Process, Modeling Oxidation, Masking	Properties of Silicon Dioxide
	xidation, Si-SiO ₂ Interface	
	usion and Ion Implantation	7 hours
	Process, Mathematical Model for Diffu	, ,
,	ccessive Diffusions, Diffusion System	
	lodel for Ion Implantation, Selective In	nplantation, Channeling, Lattice
	nealing, Shallow Implantations.	Zhour
	film deposition, contacts, packaging yield	7 hours
	Deposition, Physical Vapor Deposition, Ep	itaxy Metal Interconnections and
	ogy, Silicides and Multilayer-Contact Tech	
	cesses, Wafer Thinning and Die Separatior	0, 11
Packages, Yield		
	S Process Integration	5 hours
	evice Considerations, MOS Transisto	
	MOS (CMOS) Technology	
	blar Process Integration	6 hours
	ues in BJT fabrication, Advanced Bipolar	
	eep Submicron Processes, Low-Volta	•
	re Trends and Directions of CMOS/BiCMOS	
F10003305. 1 ulu		
	temporary Issues	2 hours

		Т	otal Lecture ho	ours:	45 hours					
Tex	Text Book(s)									
1.	S.M. S	ze, VLSI technology, 2017	, Second Editior	n, Tata Mo	Graw-Hill.					
2.	R.C. J Hall.	aeger, Introduction to micr	oelectronic fabr	ication, 20	013, Second Edition, Prentice					
Re	ference	Books								
1.		Campbell, The science ar d Edition, Oxford University		of micro	electronics fabrication, 2012,					
2.	Simon	M. Sze, Gary S. May, Fun	damentals of Se	emiconduc	ctor Fabrication, 2011,Wiley.					
Мо	de of E	Evaluation: Continuous As	ssessment Test	, Digital	Assignment, Quiz and Final					
Ass	Assessment Test									
Re	Recommended by Board of Studies 28-07-2022									
Ар	proved b	y Academic Council	No. 67	Date	08-08-2022					

Course Code	Course Title		L T P C
MVLD601L	Computer Aided Design fo	or VLSI	3 0 0 3
Pre-requisite	NIL		Syllabus version
			1.0
Course Objective	es		
The course is aim			
	e fundamentals of graphs, the relevance a	and, their appli	cations to VLSI
design aut			
	the students with relevant examples the e		mputational
	and the general classes of computationa		
	ith relevant examples and algorithms dem		
planning, a	area routing, clock routing and pin assignr	ment of physica	al design flow
0			
Course Outcome	course students will be able to		
	ne graphs for the given problems; and analyse the computational complexit	ty of physical d	osian algorithms:
	partition for a given design.	ty of physical u	esign algonums,
	and change the floorplans in an absti	ract manner a	and use computer
	to make large and optimized floorplans		
	timized placements on the silicon chip ar	nd perform cor	nolex routing using
	and computer codes.		inpress routing doing
	ock trees to distribute the clock signals or	n the chip while	e satisfving various
	s like clock skew and wire length.		
Module:1 Intro	duction to graph theory		5 hours
	design top down flow- Review of graph th	heory: complete	e graph, connected
	isomorphism, bi partite graph tree.	, i	0 1 2
	outational complexity of algorithms		4 hours
Big-O notation- C	ass P- class NP -NP-hard- NP-complete.		
	ioning		6 hours
	on- Group Migration Algorithm: Kernigha	an-Lin Simulate	ed annealing based
Partitioning.			
Module:4 Floor			6 hours
	rithm- Wong-Liu algorithm (Normalized p	oolish expressi	on)- Integer Linear
	P) based floor planning.	1	
	ssignment and Placement		7 hours
	Concentric circle mapping, Topological pi		
0	nt: Wire length estimation models for pl	lacement - Qu	adratic placement-
Sequence pair teo		1	0 h a
Module:6 Rout			8 hours
	ing- Maze routing- Line Probe algorithms	•	
	ectilinear routing(spanning tree, steiner tr		
	ng: Problem formulation- Two layer chan		
	et Merge channel router - Three-layer cha	anner routing -	
Introduction to sw			7 hours
	king Tree Topologies ologies: H-tree, Xtree- Method of Means	and Mediana	
	ologies. Intrae, Alleet Method of Means		(wilvilvi)- recursive
Clocking tree top	ng. Elmore delay model to calculate eko	W. KIITTAI INCOV	tion in clock trace
Clocking tree top geometric matchi	ng- Elmore delay model to calculate ske		
Clocking tree top geometric matchi Exact Zero skew	ng- Elmore delay model to calculate ske clock routing algorithm. Clock mesh top		
Clocking tree top geometric matchi Exact Zero skew mesh.	• •		

		То	tal Lecture ho	ours:	45 hours			
Tex	kt Book	(S)						
1.		v B. Kahng, Jens Lienig, Partitioning to Timing Closu			VLSI Physical Design: From			
2.	Sung k India.	Kyu Lim, Practical Problems	in VLSI Physic	cal Desigr	n Automation, 2011, Springer,			
Re	ference	Books						
1.		h M.Magar, Swati R.Maury Fechnical Publications.	/a Rajesh K.M	laurya, G	araph Theory & Applications,			
2.		Christian and Tom Griffiths Decisions, 2017, William C	. 0	o Live By	y: The Computer Science of			
Мо	de of E	valuation: Continuous Ass	essment Test	, Digital	Assignment, Quiz and Final			
Ass	Assessment Test.							
Re	Recommended by Board of Studies 28-07-2022							
Ар	proved b	y Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title	L T P C
MVLD602L	Low Power IC Design	
Pre-requisite	MVLD502L	Syllabus version
i ie-iequisite		1.0
Course Objecti	ves:	1.0
The course is ai	med to	
	nd the concept of VLSI circuit with low power consumption	า
	rious circuits for optimum power consumption.	
	a broad insight into the methods used to confront the low	v power issue from
lower level (circuit level) to higher levels (system level) of abstraction.	
4. To develop	a system with multiple supply and threshold voltages	applicable for low
power DSP a	applications	
Functional Course		
Expected Cours	e course the student will be able to:	
	need for low power VLSI circuits	
	power consumed in the circuits	
	power at algorithmic and architectural level.	
	power at RTL level	
	techniques to optimize the power consumption.	
	explore the usage of sleep transistors, IP design for low	power and inspect
	levices for low power	
	oduction to Low Power Design Methods	4 hours
	text and Objectives-Sources of Power dissipation in Ultr	
	- Static, Dynamic and Short circuit components Effects of	
	ow power design flow- Normalized Figure of Merit – PDP8	k EDP- Overview of
	on at various levels.	Chaura
Module:2 Pow		6 hours
	kground – Calculation of Steady state probability, Trabability, Trabability, Trabability, Trabability of correlated inputs,	
	vitching activity, Estimation of glitching power.	Transmon density,
	prithmic and Architecture Level Optimization	7 hours
	metic techniques for low power. Software level p	
	llel Processing and retiming approaches for power mi	
	or low powerMVS,DVS.AVS, DFVS, Optimal drivers	
power ICs,		5 1
Module:4 Reg	ister Transfer Level Optimization	7 hours
Low power clo	ck-Interconnect and layout designs- Low power memo	ry design and low
	chitectures- Clock gating, Data gating Bus Encoding tech	, 0
for low power.		1 / 5 5
	ic Level and Circuit Level Optimization	6 hours
	ale re-ordering for power reduction, are computation. Les	N DOWOR librory coll
	ble re-ordering for power reduction, pre-computation, Lov Circuit techniques for reducing power consumption in <i>i</i>	
Synthesis of FSI		Auders, Munipilers.
-		
	kage Power Reduction	8 hours
	reduction techniques-stacking techniques, sleepy keepe	
	/TCMOS, MTCMOS, DTCMOS- energy constrained and	
	Design- switch efficiency, area efficiency, IR drop, norm	-
	ent and current latency. Power gating –course grain and t down and wake up methods.	nne grain. Isolation,
Module:7 IP D	esign for low power	5 hours

Architecture and partitioning, power controller design for the USB OTG- Issues in designing portable power controllers- clocks and resets- Packaging IP for reuse with power intent.								
Мо	dule:8	Contemporary Issues			•	2 hours		
	Total Lecture hours: 45 hours							
Tex	xt Book	(s)						
1.		k Roy, Sharat Prasad, Low , John Wiley and Sons Inc.	Power CMOS	VLSI circuit	design, 2	010, Second		
2.		, Low Power VLSI circuits and	Systems, 2014	4, First Editio	on, Springe	er, India,		
Re	ference		•					
1.	Gary k US.	XYeap, Practical Low Power	Digital VLSI De	esign, 2010,	First Editi	on, Springer,		
2.		.Rabaey, Massoud Pedram, , Springer, US.	Low power D	Design meth	nodologies	, 2014, First		
3.		s, Dimitrios, Christrian Pignet, 2011, First Edition, Springer, I		s, Designing	CMOS ci	rcuits for low		
4.								
	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test.							
Re	Recommended by Board of Studies 28-07-2022							
Ар	Approved by Academic Council No. 67 Date 08-08-2022							

	Item	67/21 -	- Ann	exure	- 25				
Course Code	Course Title		L	ТР	С				
MVLD603L	VLSI Verification Methodologies		-	0 0	3				
Pre-requisite	NIL	Syll		s vers	ion				
			1	.0					
Course Objectives									
	The course is aimed to								
	 To introduce various verification techniques. 								
	Festbench using System Verilog.								
3. To devel	op UVM test bench environment								
Course Outcon									
	course students will be able to								
	rate the VLSI verification techniques.								
	asses and create objects.								
	design using system verilog								
	erification environment using System Verilog								
	the UVM Verification environment.								
6. Create re	usable verification environment using UVM.								
Madelard	firstion Techniques			~ '					
	fication Techniques				ours				
	erification - Testing Vs Verification - Verification Techno								
	le coverage – Functional coverage. Testbench – Linea				near				
	nch - Self-checking Testbench – Regression - RTL Form	nal ve	rifica						
Module:2 Bas					ours				
	gy, Creating Object, object deallocation, copying obje	ects, s	tatic	variat	oles,				
	Inheritance, Polymorphism								
-	em Verilog – Data Types & Procedural			/ no	ours				
	ements								
	System Verilog – Literal values-data Types – Arrays								
	bes with typedef – user defined structures – Enumerate								
	pressions - Procedural statements and control flow - F		ses	in Sys	stem				
	nd functions – Routine arguments – Returning from a ro	utine		0.1.					
	necting Testbench and Design				burs				
	ce, Stimulus timing, Module interactions, Connecting to								
	test environment – Generator, Transactor, Driver	, ivion	litor,	Cheo	скег,				
Scoreboard	demination Accortion and			7 6					
	domization, Assertion and			7 NG	ours				
	erage		0. /0 r/		over				
groups, Assertio	n system Verilog, Constraints, Functional coverage, cr	055 0	overa	age, c	over				
	versal Verification Methodology			6 h/	ours				
	VM - Verification components - Transaction level model	ina		0 110	Juis				
	I – Verification Environments	ing		6 h/	ours				
		ononte	<u>~ Г</u>						
	able verification components - Using Verification comp tion environment – Register classes.	onents	5 – L	Jeveio	ping				
	temporary issues			2 6					
Wodule.o Con	Total Lecture hours:			45 ho	ours				
	Total Lecture nours:			45 NG	Jurs				
Text Book(s)									
1. Vanessa R.	Copper, "Getting started with UVM: A Beginner's G lab Publishing.	uide",	201	3, Firs	st				
2. Christian B	Spear, "System Verilog for Verification: A guide to learn atures", 2012, Third Edition, Springer publications.	ing the	e Tes	stbenc	h				
Reference Boo									
	eron, "Writing Testbenches using System Verilog" 2	006. 3	Syno	psvs	Inc.				
Springer Pu		,			,				

3.	Ray Salmei, "The UVM Primer: A Step-by-Step Introduction to the Universal Verification							
	Methodology" 2013, First Edition, Boston Light Press.							
Mo	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final							
	sessment Test.		, U	0 <i>i</i>				
Ree	Recommended by Board of Studies 28-07-2022							
Арр	proved by Academic Council	Date	08-08-2022					

Course Code	Course Title				тΓ	P	С
MVLD604L	Scripting Languages for VLSI Desig	n Automatio	on	3	-	0	3
Pre-requisite	NIL	<u>III Aatomati</u>		abus			-
			- Oyn		.0		
Course Objectiv	es:						
The course is aim							
	cripts in the LINUX environment.						
	he principles of Scripting Languages like F	Perl. TCL and	l Pvtho	on.			
	he scripts for automation using the language				vtho	on.	
		, , , , , , , , , , , , , , , , , , ,					-
Course Outcom	es:						
At the end of the	course the student will be able to						
1. Explain ar	nd apply commands in LINUX environment	t.					
•	nd execute the Perl scripts.						
•	nd Handle files, directories and manage pl	rocesses usir	ng Per	rl scri	pts.		
	scripts for automation.		0		•		
5. Build TCL	scripts to Handle files, directories and ma	nage process	s.				
Develop F	ython scripts to interpret files and director	ies.					
Module:1 LINU						hοι	
	inux, File System of Linux, General us.						
	x users and group, Permissions for file,	directory and	luser	s, Se	earc	hing	յa
	zipping and unzipping concepts.						
Module:2 PERI						hοι	
	cepts of PERL - Scalar Data - Arrays and						
	I/O - Regular Expressions – Functions - N	Miscellaneou	s cont	rol st	ruc	ture	s -
Formats.							
	anced Topics in PERL					hοι	
•	- File and Directory manipulation - Proce	ess Managem	nent -	Pack	age	es a	nd
Modules.	D						
Module:4 TCL		·				hou	
	TCL and Tk -Tcl Language syntax – Va			sions	-	List	5 -
	cedures - Errors and exceptions - String n	nanipulations					
	anced Topics in TCL				6	hοι	irs
	Processes. Applications - Controlling Tools	S - Basics of	IK.		~	<u>k a i</u>	
Module:6 Pyth			المعمل			hou	
	thon – Using Python interpreter – Brief t	our on stand	ard II	brary	- (on	roi
	structures – Regular Expressions.				6	hai	
	anced Topics in Python				0	hοι	irs
	– Errors and Exceptions – Classes – Moc emperative sectors	lules			2	hai	
	emporary Issues				2	hοι	IIS
	Total Lecture hours:				A F	hοι	ire
					43	not	115
Taxt Beak(a)							
Text Book(s)	Tom Christiansen, John Orwant, "Progra		or " o	010	Fai	مالامرر	
			KL, 20	012,	FOU	unn	
	ly Publications. sterhout, Ken Jones, "Tcl and the Tk To		6000	nd r	드신:+:	ion	
2. John K. Ous Pearson Edu		ΟΟΙΚΙΙ , 2010,	, Seco		zult	ion,	
	ossum Fred L. Drake, Jr., editor, "Python	Tutorial Pala		1 2 2"	20	12	
	are Foundation.		ase 3	o.∠.3	, 20	<i>'</i> 1∠,	
Reference Book							
	s chwartz, Brian D Foy, Tom Phoenix, "Le	arning Dorl	, <u>)</u> 00	1 0+	h ⊑	diti	20
O'Reilly Medi		carning rell	, 202	i, ol		aiti	ווכ,
	u, mo.						

2. Mark Lutz, "Learning Python", 2013, 5th Edition, O'Reilly Media, Inc.							
Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final							
Assessment Test	Assessment Test						
Recommended by Board of Studies 28-07-2022							
Approved by Academic Council No. 67 Date 08-08-2022							

Course Code	Course Title		L T P C				
MVLD605L	Advanced Computer Arith	metic	3 0 0 3				
Pre-requisite	NIL	S	yllabus version				
			1.0				
Course Objective							
The course is aim							
1. Introduce the representation of the numbers using redundant and residue number							
system.							
2. Introduce various integer arithmetic algorithms, FFT and modular arithmetic							
algorithms							
	e floating-point arithmetic algorithms and	its impacts on re	sulting error and				
	ve methods. ORDIC algorithm for calculating various fu	nations of comm	on interact				
	e implementation aspects of high through						
arithmetic		iput, iow power a					
anumetic							
Course Outcome	2						
	course students will be able to						
	nd represent the numbers using redundar	nt and residue nu	mber system				
	ous integer arithmetic algorithms.						
	and apply various FFT and modular arithm	netic algorithms.					
	pating-point arithmetic algorithms, apply it,		acts of resulting				
	ts corrective methods.		C C				
5. Evaluate (CORDIC algorithm for calculating various f	unctions of comm	non interest.				
Develop h	igh throughput, low power and fault tolera	nt arithmetic circu	uits.				
	duction to computer Arithmetic		5 hours				
	ers and arithmetic. Redundant number sys	tems. Residue n					
Module:2 Integ			7 hours				
	traction. Multiplication. Division. Roots. Gr		Division. Base				
	dratic Algorithms, Sub quadratic Algorithm	S.					
	and Modular Arithmetic		6 hours				
	Classical Representation, Montgomery's F						
	gorithms, Link with Polynomials. Additio m, Montgomery's Multiplication, McLaug						
	on Over GF (2)[x]. Division and Inve						
Remainder Theor							
	ting Point Arithmetic		7 hours				
	resentation. Floating point operation. Erro	ors and Error con					
certifiable arithme							
	tion Evaluation		7 hours				
Square-Rooting N	lethods. The CORDIC Algorithms. Variation	ons in Function E	valuation.				
Arithmetic by Tab							
Module:6 Impl			5 hours				
High throughput a	arithmetic, Low power arithmetic, fault tole	ant arithmetic					
Module:7 Error			6 hours				
	Relative Error, Significant Digits. Uncert	ainty in Data. C	hopping off and				
<u> </u>	ncation Error. Loss of Significance.						
Module:8 Cont	emporary Issues		2 hours				
1	T A D D A A		45 1				
	Total Lecture hours:		45 hours				
Text Book(s)							
	hami, "Computer Arithmetic: Algorithms	and Hardware D	esign", 2015,				
Second Edition	on, Oxford University Press.						

2.	Richard P Brent and Paul Zimr	nerman, "Mo	dern Co	mputer Arithmetic", 2010,			
	Cambridge University Press.						
Re	Reference Books						
1.	Mircea Vladutiu, "Computer Arith	metic: Algorit	thms and	Hardware Implementation",			
	2012, Springer.	-					
2.	Ulrich W. Kulisch "Computer Arit	hmetic and	Validity:	Theory, Implementation, and			
	Applications", 2012, second edition		-				
Мо	de of Evaluation: Continuous						
As	Assessment Test, Digital Assignment, Quiz and Final Assessment Test.						
Re	Recommended by Board of Studies 28-07-2022						
Ар	Approved by Academic Council No. 67 Date 08-08-2022						

Course Code	Course Title	L	TI	D C
MVLD606L	Mixed Signal IC Design	3	0 () 3
Pre-requisite	uisite MVLD504L Syllabu			rsion
-			1.0	
Course Objective	es:			
The course is aim	ed to			
1. Introduce the	design aspects of dynamic analog circuits and analog-digit	tal inte	rface	
electronics in	CMOS technology.			
2. Specify design	n implementation of ADC & DAC.			
Course Outcome	9S:			
At the end of the	course the student will be able to			
1. Understand th	e theory of discrete-time signal processing and its impleme	entatic	n usi	ng
analog technic	ques.			-
2. Design Sampl	e and Hold Circuits using MOS by considering the non-ide	alities		
3. Analyze CMO	S based Switched Capacitor Circuits.			
4. Understanding	basics of Data Converters.			
5. Analyze the a	rchitectures of ADCs and DAC.			
6. Understand th	e oversampling converter architecture.			
Module:1 Samp				nours
Introduction – sar	mpling - Spectral properties of sampled signals - Oversam	- 1pling	- Ant	i-alias
filter design. Time	e Interleaved Sampling - Ping-Pong Sampling System - A	Analys	is of	offset
and gain errors in	Time Interleaved Sample and Hold.			
Module:2 Samp				nours
	- Distortion due to switch - Charge injection - Thermal nois			
	plate sampling - Gate bootstrapped switch -Nakagome	e cha	rge p	oump.
	mple and hold - Choice of input frequency.			
	hed Capacitor Circuits:			nours
	or (SC) circuits- Parasitic Insensitive Switched Capacitor			
	Amplifiers – Finite gain - DC offset - Gain Bandwidt	h Pro	duct.	Fully
	cuits - DC negative feedback in SC circuits.			
Module:4 A/D a	nd D/A Converters Fundamentals:		5 ł	nours
Data converter	fundamentals: Offset and gain Error - Linearity er	rors -	· Dyi	namic
	SQNR - Quantization noise spectrum.			
Module:5 Analo	og to Digital Converter Architectures:		7 ł	nours
Flash ADC - Reg	enerative latch - Preamp offset correction - Preamp Desi	ign - n	ecess	sity of
	nd hold for good dynamic performance. Folding ADC - Mu	ultiple-F	Bit Pij	oeline
ADCs and SAR A				
	al to Analog Converter Architectures:			nours
	pulse shapes - NRZ vs RZ DACs. DAC Architectures: E			
Thermometer DA	C - Current steering DAC - Current cell design in curren	nt steer	ring [DAC -
Charge Scaling D	AC - Pipeline DAC.			
	sampling Converter:			nours
	ampling -Oversampling with Noise Shaping - Signal and			
	and Second Order Delta-Sigma Converters. Introduction to			
	ulators - time-scaling - inherent antialiasing property - Exc			
	mp non idealities - Effect of Op-amp non idealities - finite	gain b	andw	/idth -
	I DAC non idealities - Effect of Clock jitter.			
Module:8 Cont	emporary Issues		2 ł	nours
T		1		
	Total Lecture ho	ours:	45 h	ours
Text Book(s)				
	user, Analog-Digital Converters for Industrial Applications	s Inclu	Idina	an
	,		3	-

	Introduction to Digital-Analog Converters, 2015, First Edition, Springer Publishers.						
2.	David Johns and Ken Martin, Analog Integrated Circuit Design, 2012, Second Edition						
	John Wiley & Sons Inc.						
Ref	Reference Books						
1.	1. Ahmed M.A.Ali, High Speed Data Converters, 2016, First Edition, IET Materials, Circuits						
	& Devices.						
2.	S.Pavan, R. Schreier and Gabo	r.C.Temes, l	Jnderstan	ding Delta – Sigma Data			
	Converters, 2017, First Edition, IEE	EE Press.					
	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test						
Red	commended by Board of Studies	28-07-2022					
App	proved by Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title	L	Т	Ρ	С
MVLD607L	RFIC Design	3	0	0	3
Pre-requisite	MVLD504L Sy	/llabu	ls v	ersi	on
			1.0		
Course Objectiv					
The course is aim					
	th the design of integrated radio frequency front-end circuits	5.			
2. Design RF Pc	wer amplifiers and LNA.				
Course Outcome					
	course the student will be able to				
	e concepts of RF IC Design.				
	e High Frequency model of MOS and importance of Imped	ance	iviat	cnin	g.
	arious transceiver and radio architectures.				
	oise amplifiers and Mixers with specifications.			~:~~	
0	and Frequency synthesizers and their applications to trans-	ceive	r ae	sign	
6. Classify and c	comprehend the design of Power Amplifiers.				
Module:1 Intro	duction to RF & Wireless Technology:		5	hou	re
	n and applications - Choice of Technology - Basic concept	s in l			
	ne Variance - Intersymbol Interference - random proc				
	sitivity - dynamic range -conversion Gain and Distortion.	0000	0	1101	
	Frequency Model of RF Transistors and Matching		5	hou	irs
Netw			•		
MOSFET behavi	or at RF frequencies - Noise performance and limitation	on of	de	vice	3 -
	ing networks - transformers and baluns.				
	og& Digital Modulation for RF Circuits:		5	hou	irs
	on coherent detection - Mobile RF Communication system	s an	d ba	sics	of
	techniques - Receiver and Transmitter Architectures				
Heterodyne -Ho	modyne, Image-reject, Direct-IF and subsampled rece	eivers	s -	Dir	ect
	vo steps transmitters.				
	Noise Amplifiers and Mixers			hou	
	fiers: Common Source LNA - Common Gate LNA -Casco	de LN	IA.	Mixe	rs:
	and Passive Mixers.		1		
	ge Controlled Oscillators and Frequency Synthesizers:			hou	
	c topologies VCO and definition of phase noise. Noise-				
	CO design - Quadrature and single-sideband generators - R	ladio	Fre	quer	ю
Synthesizers: PLI			_		
	ower Amplifiers:			hοι	irs
	amplifiers - Class D, E, F amplifiers - RF Power amplifier of	lesigi			
	o architectures:		4	hou	irs
	ectures, CDMA, UMTS radio architectures.		0		
Module:8 Cont	emporary Issues		2	hοι	irs
	T . (11) . ()	lire.	45	hou	ire
Γ		a. J.			
	Total Lecture ho				
Text Book(s)					
1. B.Razavi, RF	Microelectronics, 2013, Second Edition, Pearson Educatio		ited		
1. B.Razavi, RF 2. Hooman Da	Microelectronics, 2013, Second Edition, Pearson Educatio rabi, Radio-Frequency Integrated Circuits and Systems,		ited		
 B.Razavi, RF Hooman Date Edition Camb 	Microelectronics, 2013, Second Edition, Pearson Educatio rabi, Radio-Frequency Integrated Circuits and Systems, ridge University Press.		ited		
 B.Razavi, RF Hooman Date Edition Camb Reference Book 	Microelectronics, 2013, Second Edition, Pearson Educatio rabi, Radio-Frequency Integrated Circuits and Systems, pridge University Press. s	201	ited 5,	First	
 B.Razavi, RF Hooman Date Edition Camb Reference Books Gu, Qizheng 	Microelectronics, 2013, Second Edition, Pearson Educatio rabi, Radio-Frequency Integrated Circuits and Systems, ridge University Press.	201	ited 5,	First	
 B.Razavi, RF Hooman Date Edition Camb Reference Books Gu, Qizheng Springer. 	Microelectronics, 2013, Second Edition, Pearson Educatio rabi, Radio-Frequency Integrated Circuits and Systems, pridge University Press. s	201 nicati	iited 5, ons	First , 20	

Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test

Recommended by Board of Studies	28-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

	Course Title		L	Т	Ρ	С
MVLD608L	VLSI Digital Signal Processing		3	0	0	3
Pre-requisite	NIL	Syl	labı	is v	ersi	on
				1.0		
Course Objective	es:					
The course is aim	ed to					
1. Familiarise va	rious representation methods of DSP algorithms, unders	tand	l the	9		
	the iteration bound and to calculate the same for a given				Э	
and/or multi-ra	ate DFG.		•			
2. Understand an	nd apply the architectural transformation techniques such	n as	retir	ning	q,	
unfolding and	folding on a given DFG.			-	-	
3. Introduce the	algorithmic and numerical strength reduction methods for	r pei	forr	nan	се	
improvement.						
	lculate the effects of scaling and round-off noise for a giv	/en d	digit	al fi	lter	
with limited wo	ord length.					
-						
Course Outcome						
	course the student will be able to					
	ous representation methods of DSP algorithms.					
	bound of a given single and/or multi-rate DFG.					
	nd transform the given DFG using retiming with constrain	nts.				
	g and folding transformations on the given DFG.	-	_			
	nd apply algorithmic and numerical strength reduction me					_
	nd calculate scaling and round-off noise of the given digit	tal fil	ter v	with	limi	ted
word length.						
Module:1 Intro	duction to Digital Signal Processing				hou	
	prithms - DSP Application Demands and Scaled CMC)S	ech	nol	ogie	s -
	of DSP Algorithms - Data-Flow Graph Representations.					
Module:2 Iterat					<u>ho</u>	
	p Bound and Iteration Bound - Algorithms for Computin					
0	rix and Multiple Cycle Mean algorithms - Iteration Bound	d of	Muli	I-ra	te D	ata
Flow Graphs.						
	ining, Parallel processing and Retiming				<u>ho</u>	
	arallel Processing - Introduction to Retiming - Definition					
.	of Inequalities - The Bellman-Ford Algorithm - Th	ie ⊢	loyc	1 V	/ars	nall
Algorithm- Retimi						
Module:4 Unfo			- (]-		ho	
	Algorithm for Unfolding, Properties of Unfolding, Critica	al Pa	ath,	Un	τοιαι	ng,
	plications of Unfolding.					
Module:5 Foldi					<u>ho</u>	
	Iding Transformation, Register Minimization Tech	nniqu	les,	F	Regis	ster
	olded Architectures.			7 4		
	ithmic & Numerical Strength Reduction	rota	4 0		nour	
	gorithmic Strength Reduction, Cook-Toom Algorithm, Ite					
-	on, Discrete Cosine Transform. Introduction to Nu					•
	nic Signed Digit Arithmetic, Sub-expression Elimination,	IVIU	mple	90	UNST	ant
	p-expression Sharing in Digital Filters.				ha	
				6	i ho	
Module:7 Scali	· · ·	~ t		4-1	E.34	
Module:7 Scali	ling and Rounding Noise, State Variable Description		-		Filte	ers,
Module:7 Scali	ling and Rounding Noise, State Variable Description ding Noise Computation, Rounding Noise in Pipelined III		-	•	Filte	-

			Tot	tal Lecture hours:	45 hours
Тех	xt Book(s)				
1.	Keshab. K.Parhi, VLSI Digital Si	gnal Processing	g Systems	s: Design and Imple	ementation,
	2014, Reprint, Wiley.		-		
Ref	ference Books				
1.	John G. Proakis, Dimitris K Man	olakis, Digital S	ignal Pro	cessing: Principles,	Algorithms
	and Applications, 2015, Fourth E	dition, Prentice	Hall.		•
2.	Mohammed Ismail and Terri Fi	ez, Analog VL	SI Signal	I and Information F	Processing,
	2014, McGraw-Hill.	, C	Ū		0
3.	S.Y. Kung, H.J. White House, T	. Kailath, VLSI	and Mod	dern Signal Proces	sing, 2010,
	PHI.			Ū	0
4.	S. K. Mitra, Digital Signal Proce	essing – A Cor	nputer B	ased Approach, 20	10, Fourth
	Edition, McGraw-Hill.	0	•		
Mo	de of Evaluation: Continuous As	ssessment Tes	t, Digital	Assignment, Quiz	and Final
	sessment Test		U U	U	
Red	commended by Board of Studies	28-07-2022			
App	proved by Academic Council	No. 67	Date	08-08-2022	

MVLD609L	Course Tilte	L	T	P	<u>C</u>
	System-on-Chip Design	3	0	0	3
Pre-requisite	NIL	Syllab			ion
			1.0		
Course Objectiv					
The course is air		on o (hin		
	g design, optimization, and programing a modern System- SoC design with on-chip memories and communication				
interfacing				٢5,	I/C
•	em understand about signal integrity aware SoC desigr	n and	Sch	edu	linc
algorithms			001	louu	mię
aigonaina	··				
Course Outcom	es:				
At the end of the	course the student will be able to				
1. Understar	nd an ability to identify, formulate and treat complex issu	ues in	the	field	d of
	n-chip from a holistic perspective.				
	he performance of SoC based design by various advance	d tech	niqu	les.	
	tem C for system design.				
	erconnection structures in a SoC / NoC based system des	sign.			
	ic timing analysis for a SoC based design.	nol in	loar		
scheduling	the cause and eliminate the issues relevant to sign	nai in	legi	ity a	ano
Module:1 Intro			3	hou	re
	he present-day SoC - Design issues of SoC- Hardware-So	oftware			
- Core Libraries -		Jitwart	, 00	ucc	igi
	gn Methodology for Logic, Memory and Analog Core	s	6	hou	rs
	w – guidelines for design reuse – Introduction- Efficien				
	e- Target architectures for HW/SW partitioning -Sys				
	ories - Design methodology for embedded memories -				
analog cores.					
	duction to System C for SoC Design		7	hou	rs
•	System Partitioning- Co-simulation, Co-synthesis & Co-ve	erificati		-	
SystemC and Co	-specification and Co-simulation.	erificati	on -		
SystemC and Co Module:4 SoC	-specification and Co-simulation. and NoC Interconnection Structures		on - 7	' ho	
SystemC and Co Module:4 SoC SoC Interconnect	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Networ	rk on C	on - 7 Chip	' ho	
SystemC and Co Module:4 SoC SoC Interconnect Interconnection S	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Networ Structures-Topologies- routing- flow control- network compo	rk on C	on - 7 Chip	' ho	
SystemC and Co Module:4 SoC SoC Interconnect Interconnection S (router/switch, ne	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Networ Structures-Topologies- routing- flow control- network compo- twork interface, Links).	rk on C	on - 7 Chip	' ho -No	С
SystemC and Co Module:4 SoC SoC Interconnect Interconnection S (router/switch, ne Module:5 STA	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Networ Structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design	rk on C onents	on - 7 hip 7	'ho -No	C rs
SystemC and Co Module:4 SoC SoC Interconnection S (router/switch, ne Module:5 STA Timing paths an	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Networ Structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design d its Timing Optimization- Slow to High and High to low	rk on C onents	on - 7 hip 7 ency	<mark>′ ho</mark> -No hou / tim	C I rs
SystemC and Co Module:4 SoC SoC Interconnect Interconnection S (router/switch, ne Module:5 STA Timing paths an path- Half cycle	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Networ Structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design d its Timing Optimization- Slow to High and High to low timing path- Latch time borrowing- Interface Logic M	rk on C onents	on - 7 hip 7 ency	<mark>′ ho</mark> -No hou / tim	C I rs
SystemC and Co Module:4 SoC SoC Interconnect Interconnection S (router/switch, ne Module:5 STA Timing paths an path- Half cycle analysis for SoC	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Networ Structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design d its Timing Optimization- Slow to High and High to low timing path- Latch time borrowing- Interface Logic M design.	rk on C onents	ion - 7 hip 7 ency desi	<mark>′ ho</mark> -No hou / tim gn ;	C ing and
SystemC and Co Module:4 SoC SoC Interconnection S (router/switch, ne Module:5 STA Timing paths an path- Half cycle analysis for SoC Module:6 Sign	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Networ Structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design d its Timing Optimization- Slow to High and High to low timing path- Latch time borrowing- Interface Logic M design. al Integrity Aware SoC design	rk on C onents freque lodel d	on - 7 hip 7 ency desi 7	<mark>′ ho</mark> -No hou / tim gn ;	rs and
SystemC and Co Module:4 SoC SoC Interconnection S (router/switch, ne Module:5 STA Timing paths an path- Half cycle analysis for SoC Module:6 Sign Signal Integrity or	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Networ structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design d its Timing Optimization- Slow to High and High to low timing path- Latch time borrowing- Interface Logic M design. al Integrity Aware SoC design verview- EMI (Electro Magnetic Interference) and its protect	rk on C onents freque lodel o	ion - 7 chip 7 ency desi 7 SD	<mark>/ ho</mark> -No hou / tim gn a	rs and rs d its
SystemC and Co Module:4 SoC SoC Interconnection S (router/switch, ne Module:5 STA Timing paths an path- Half cycle analysis for SoC Module:6 Sign Signal Integrity ov Protection- Delay and Glitch ana	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Network structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design d its Timing Optimization- Slow to High and High to low timing path- Latch time borrowing- Interface Logic M design. al Integrity Aware SoC design verview- EMI (Electro Magnetic Interference) and its protect - Noise- glitches and its protection- Transmission lines- alysis-Types of Glitches- Glitch Threshold and pro-	rk on Conents	response for the second	<mark>hou</mark> -No <u>hou</u> / tim gn a hou) and ross No	C ing and rs d its talk
SystemC and Co Module:4 SoC SoC Interconnection S (router/switch, ne Module:5 STA Timing paths an path- Half cycle analysis for SoC Module:6 Sign Signal Integrity of Protection- Delay and Glitch and Accumulation without the solution of the so	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Network structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design d its Timing Optimization- Slow to High and High to low timing path- Latch time borrowing- Interface Logic M design. al Integrity Aware SoC design verview- EMI (Electro Magnetic Interference) and its protector- Noise- glitches and its protection- Transmission lines- alysis-Types of Glitches- Glitch Threshold and pro- th Multiple aggressor- Aggressor timing correlation-	rk on Conents	r T T T T T T T T T T T T T T T T T T T	<mark>'ho</mark> -No hou / tim gn : hou) and ross No De	C ing ing and rs talk bise elay
SystemC and Co Module:4 SoC SoC Interconnection S (router/switch, ne Module:5 STA Timing paths an path- Half cycle analysis for SoC Module:6 Sign Signal Integrity or Protection- Delay and Glitch ana Accumulation wi analysis -Timing	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Network structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design d its Timing Optimization- Slow to High and High to low timing path- Latch time borrowing- Interface Logic M design. al Integrity Aware SoC design verview- EMI (Electro Magnetic Interference) and its protector- Noise- glitches and its protection- Transmission lines- alysis-Types of Glitches- Glitch Threshold and pro- th Multiple aggressor- Aggressor timing correlation- g Verification using crosstalk delay-Positive and Ne	rk on Conents	r T T T T T T T T T T T T T T T T T T T	<mark>'ho</mark> -No hou / tim gn : hou) and ross No De	C ing ing and rs talk bise elay
SystemC and Co Module:4 SoC SoC Interconnection S (router/switch, ne Module:5 STA Timing paths an path- Half cycle analysis for SoC Module:6 Sign Signal Integrity of Protection- Delay and Glitch ana Accumulation wi analysis -Timing aggressor victim	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Network structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design d its Timing Optimization- Slow to High and High to low timing path- Latch time borrowing- Interface Logic M design. al Integrity Aware SoC design verview- EMI (Electro Magnetic Interference) and its protect - Noise- glitches and its protection- Transmission lines- alysis-Types of Glitches- Glitch Threshold and pro th Multiple aggressor- Aggressor timing correlation- g Verification using crosstalk delay-Positive and Ne timing correlation- aggressor victim functional correlation.	rk on Conents	rency desi 7 ESD 2. C fon- stalk cr	' ho -No hou / tim gn a hou ross No cosst	rs ling and tall bise elay alk
SystemC and Co Module:4 SoC SoC Interconnection S (router/switch, ne Module:5 STA Timing paths an path- Half cycle analysis for SoC Module:6 Sign Signal Integrity of Protection- Delay and Glitch and Accumulation wa analysis -Timing aggressor victim Module:7 Sche	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Network structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design d its Timing Optimization- Slow to High and High to low timing path- Latch time borrowing- Interface Logic M design. al Integrity Aware SoC design verview- EMI (Electro Magnetic Interference) and its protect - Noise- glitches and its protection- Transmission lines- alysis-Types of Glitches- Glitch Threshold and pro- th Multiple aggressor- Aggressor timing correlation- y Verification using crosstalk delay-Positive and Ne timing correlation- aggressor victim functional correlation. eduling	rk on Conents	r chip 7 ency desi 7 SD 2 SD 2 C con- stalk cr 6	hou -No hou / tim gn () hou) and rosss No cosst hou	C ing ing and tall bise elay alk
SystemC and Co Module:4 SoC SoC Interconnection S (router/switch, ne Module:5 STA Timing paths an path- Half cycle analysis for SoC Module:6 Sign Signal Integrity of Protection- Delay and Glitch and Accumulation wi analysis -Timing aggressor victim Module:7 Sche Introduction and	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Network structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design d its Timing Optimization- Slow to High and High to low timing path- Latch time borrowing- Interface Logic M design. al Integrity Aware SoC design verview- EMI (Electro Magnetic Interference) and its protect /- Noise- glitches and its protection- Transmission lines- alysis-Types of Glitches- Glitch Threshold and pro- th Multiple aggressor- Aggressor timing correlation- g Verification using crosstalk delay-Positive and Ne timing correlation- aggressor victim functional correlation. eduling need for HLS- Major steps-Scheduling and Allocation- Bind	rk on Conents	r chip 7 ency desi 7 SD 2 SD 2 C con- stalk cr 6	hou -No hou / tim gn () hou) and rosss No cosst hou	C ing ing and tall bise elay alk
SystemC and Co Module:4 SoC SoC Interconnection S (router/switch, ne Module:5 STA Timing paths an path- Half cycle analysis for SoC Module:6 Sign Signal Integrity or Protection- Delay and Glitch ana Accumulation wi analysis -Timing aggressor victim Module:7 Sche Introduction and Concept of Sche	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Network structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design d its Timing Optimization- Slow to High and High to low timing path- Latch time borrowing- Interface Logic M design. al Integrity Aware SoC design verview- EMI (Electro Magnetic Interference) and its protect - Noise- glitches and its protection- Transmission lines- alysis-Types of Glitches- Glitch Threshold and pro- tith Multiple aggressor- Aggressor timing correlation- y Verification using crosstalk delay-Positive and Ne timing correlation- aggressor victim functional correlation. eduling heed for HLS- Major steps-Scheduling and Allocation- Bind duling, Heuristic Scheduling Algorithm.	rk on Conents	r chip 7 ency desi 7 SSD 9. C stalk cri 6 ssig	hou / tim gn a hou / tim gn a hou / tim noss No osst	rs ing and its tall bise elay alk irs nt-
SystemC and Co Module:4 SoC SoC Interconnection S (router/switch, ne Module:5 STA Timing paths an path- Half cycle analysis for SoC Module:6 Sign Signal Integrity or Protection- Delay and Glitch ana Accumulation wi analysis -Timing aggressor victim Module:7 Sche Introduction and Concept of Sche	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Network structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design d its Timing Optimization- Slow to High and High to low timing path- Latch time borrowing- Interface Logic M design. al Integrity Aware SoC design verview- EMI (Electro Magnetic Interference) and its protect /- Noise- glitches and its protection- Transmission lines- alysis-Types of Glitches- Glitch Threshold and pro- th Multiple aggressor- Aggressor timing correlation- g Verification using crosstalk delay-Positive and Ne timing correlation- aggressor victim functional correlation. eduling need for HLS- Major steps-Scheduling and Allocation- Bind	rk on Conents	r chip 7 ency desi 7 SSD 9. C stalk cri 6 ssig	hou -No hou / tim gn () hou) and rosss No cosst hou	rs ing and its tall bise elay alk irs nt-
SystemC and Co Module:4 SoC SoC Interconnection S (router/switch, ne Module:5 STA Timing paths an path- Half cycle analysis for SoC Module:6 Sign Signal Integrity or Protection- Delay and Glitch ana Accumulation wi analysis -Timing aggressor victim Module:7 Sche Introduction and Concept of Sche	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Network structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design d its Timing Optimization- Slow to High and High to low timing path- Latch time borrowing- Interface Logic M design. al Integrity Aware SoC design verview- EMI (Electro Magnetic Interference) and its protect - Noise- glitches and its protection- Transmission lines- alysis-Types of Glitches- Glitch Threshold and pro- tith Multiple aggressor- Aggressor timing correlation- y Verification using crosstalk delay-Positive and Ne timing correlation- aggressor victim functional correlation. eduling heed for HLS- Major steps-Scheduling and Allocation- Bind duling, Heuristic Scheduling Algorithm.	rk on Conents	r chip 7 ency desi 7 SSD 9. C stalk cri 6 ssig	hou / tim gn a hou / tim gn a hou / tim noss No osst	rs inc inc inc inc inc inc inc inc inc inc
SystemC and Co Module:4 SoC SoC Interconnection S (router/switch, ne Module:5 STA Timing paths an path- Half cycle analysis for SoC Module:6 Sign Signal Integrity or Protection- Delay and Glitch ana Accumulation wi analysis -Timing aggressor victim Module:7 Sche Introduction and Concept of Sche	-specification and Co-simulation. and NoC Interconnection Structures tion Structures- Bus-based Structures- AMBA Bus. Network structures-Topologies- routing- flow control- network compo- twork interface, Links). for SoC Design d its Timing Optimization- Slow to High and High to low timing path- Latch time borrowing- Interface Logic M design. al Integrity Aware SoC design verview- EMI (Electro Magnetic Interference) and its protect - Noise- glitches and its protection- Transmission lines- alysis-Types of Glitches- Glitch Threshold and pro- tith Multiple aggressor- Aggressor timing correlation- y Verification using crosstalk delay-Positive and Ne timing correlation- aggressor victim functional correlation. eduling heed for HLS- Major steps-Scheduling and Allocation- Bind duling, Heuristic Scheduling Algorithm.	rk on Conents	r chip 7 ency desi 7 SSD 9. C con- stalk cr 6 ssig 2	hou / tim gn a hou / tim gn a hou / tim noss No osst	rs ing and and and ing and ing and ing and ing and ing and ing and ing and ing and and and and and and and and and and

Tex	kt Book(s)
1.	Michael J. Flynn, Wayne Luk, Computer System Design: System on chip, 2011, First
	Edition, Wiley-Blackwell.
2	J. Bhasker, Rakesh Chadha, STA for Nanometer design – A practical approach, 2010
	First Edition, Springer.
Ret	ference Books
1.	Jose L. Ayala, Communication Architectures for Systems-on-Chip, 2011, First Edition
	CRC Press.
2	Laung-Terng Wang, Charles E. Stroud, Nur A. Touba, System-on-Chip Tes
	Architectures: Nanometer Design for Testability, 2010, First Edition, Morgan Kaufmann.
3	Ahmed Jerraya and Wayne Wolf, Multiprocessor Systems-on-Chips (Systems of
	Silicon Series), 2010, First Edition, Morgan Kaufmann.
Мо	de of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina
Ass	sessment Test
Re	commended by Board of Studies 28-07-2022
Ap	proved by Academic Council No. 67 Date 08-08-2022

Course Code	Course Title		I	Т	Ρ	С
MVLD610L	Nanoscale Devices and Circuit Design		3	0	0	3
Pre-requisite	MVLD501L	Sylla	-		-	-
						•
			1	.0		
Course Objectiv						
The course is aim						
	d the CMOS scaling.					
	f digital, analog circuits using multigate devices, n	nateria	ais	anc	i th	eir
	used for designing Microsensors.		,			
	nd the concepts of Microsystem technologies u	sea	tor	re	alizi	ing
	ors and actuators.	! 4	f = 1			
	d the working principles of Interface Electronic Cir	CUITS	TOF	res	SISTI	ve,
capacitive	and temperature sensors.					
Course Outcome	<u>9</u> 8.					
	course the students will be able to					
	d the CMOS scaling issues					
	e need of novel MOSFET					
	e physics of multigate MOS system					
4. Model nar						
5. Design dig	gital and analog circuit using multigate devices.					
6. Understar	d the physics of CNTFET					
	S Scaling Issues and Solutions				<u>hοι</u>	
	y, short channel effects, quantum effects, volume ir					
	engineering, source/drain engineering, high-k dielectric,	strair	i en	gine	erii	ng,
	ogy mobility, gate stack. duction to Novel MOSFETs			1	hοι	
	nultigate transistors, single gate, double gate, triple gate	ato c	urro			
Silicon Nanowire		al e , 5	uno	unc	i ya	ц с ,
	ics of Multi-gate MOS System			6	hοι	irs
	cs, 1D, 2D MOS electrostatics, ultimate limits, double	nate	MO	-		_
	ct, semiconductor thickness effect, asymmetry effect, ox					
• •	current, two dimensional confinement, scattering.					
Module:4 Nano				6	hοι	ırs
	MOSFETs, evaluation of I-V characteristics, I-V char	acteri	stics			
	er statistics, I-V characteristics for degenerate carrier s					
conduction in mol	ecules, general model for ballistic nano transistors, CNT	-FET	s.			
Module:5 Digita	al Circuit Design using Multi-gate Devices			7	hοι	ırs
Digital circuits des	sign, impact of device performance on digital circuits, lea	akage	e pe	rfori	mar	nce
	devices and circuits, SRAM design.	-				
	og Circuit Design using Multi-gate Devices				hοι	
0	sign, trans-conductance, intrinsic gain, flicker noise, self		••••		-	
	e, operational amplifier, comparator designs, mixed	signa	ıl, s	ucc	ess	ive
approximation DA						
	on Nanotube FET				nou	
	nemories, CNT based switches, logic gates, CNT base	d RF	dev	ices	s, Cl	NT
	TFET based applications.		-			
Module:8 Cont	emporary Issues			2 h	our	S
	Total Lecture h	ours	:	45	hou	ırs
				-		
Text Book(s)						
1. J P Colinge.	FINFETs and other Multi-gate Transistors, 2010, Springe	er Ge	rma	nv		

2.	B.G.Park, S.W. Hwang &Y.J.Park, Nanoelectronic Devices, 2012, Pan Stanford
	Publisher, Singapore.
Re	ference Books
1.	N. Collaert, CMOS Nanoelectronics: Innovative Devices, Architectures and Applications,
	2012, Reprint Pan Stanford publisher, Singapore.
2.	Niraj K. Jha, Deming Chen, Nanoelectronic Circuit Design, 2011, First Edition, Springer
	London.
Мо	de of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final
Δ	

Assessment Test Recommended by Board of Studies 28-07-2022

commended by Doard of Studie	20-01-2022			
proved by Academic Council	No. 67	Date	08-08-2022	

Course Code	Course Title		L	Τ	Ρ	С			
MVLD611L	Advanced Computer Archite	ecture	3	0	0	3			
-	-								
Pre-requisite	NIL		Syllab		ersi	on			
Course Objectiv				1.0					
Course Objectiv									
	advanced concepts of computer architectu	Iro							
	2. Acquire knowledge on various interconnect topology for multiprocessor system and								
different pipelining techniques.									
	3. Understanding different memory hierarchy for multiprocessor and multicomputer								
	systems.								
0,0101101									
Course Outcome	9								
At the end of the	course the student will be able to:								
1. Understar	nd the architecture of the various multiproce	essors and mu	ulticomp	uter					
	ossible parallel execution at hardware and								
	e the required static or dynamic interconn	ect network for	or a mul	tipro	oces	sor			
system.	, . .								
	erent pipelining techniques to reduce comp								
	ne various memory design for multiprocess		omputer.						
6. Design sc	alable parallel architecture for multiprocess	sor system.							
Module 1 Para	llel computer models			3	3 ho	urs			
	omputing - Classification of parallel co	mouters - M	ultiproce						
	Multi-vector and SIMD computers.	inputoro in	anipiooe		10 (and			
	ram and network properties			7	' ho	urs			
	arallelism - Data and resource Depende	nces - Hard	ware an	d s	oftw	are			
	gram partitioning and scheduling - Grain								
	ontrol flow v/s data flow - Data flow Archited	ctures.	-						
	em Interconnect Architectures				' ho				
	es and routing - Static interconnection Net								
	processor system Interconnects - Hiera		ystems	- C	ross	bar			
switch and multip	ort memory - Multistage and combining ne	twork.							
Module:4 Pipel		la star stille a	a la a lla		'ho				
	processor - nonlinear pipeline processor instruction pipelining - Dynamic instructio								
	ch prediction - Arithmetic Pipeline Design.	in scheduling	- Dranc	пп	anu	iing			
	ory Hierarchy Design			6	6 ho	ure			
	cache performance - reducing miss rate an	d miss nenalt	v - multi						
	memory organizations - design of memor		y - man		i ca	SILC			
	ed Memory Architectures	y moraronnoor		7	' ho	urs			
	d memory architectures - distributed share	ed memory ar	chitectu						
	cols - scalable cache coherence - direc								
	s - cache based directory protocols.	5							
	processor Architectures			6	6 ho	urs			
	odels - An Argument for parallel Architectu	res - Scalabilit	ty of Par	allel					
	enchmark Performances.								
Module:8 Cont	emporary Issues			2	2 ho	urs			
1									
	Total Lecture hours:			45	i ho	urs			
Text Book(s)									
1. Kai Hwang,	NareshJotwani, Advanced Computer Arch	nitecture: Para	allelism,	Sca	alabi	lity,			

Programmability, 2011, Second Edition, Tata McGraw Hill Education Pvt. Ltd., India. **Reference Books** John L. Hennessy, David A. Patterson, Computer Architecture: A Quantitative 1. Approach, 2011, Fifth Edition, Morgan Kaufmann. DezsoSima, Terence Fountain, Peterr Karsuk, Advanced computer Architectures - A 2. Design Space Approach, 2014, Pearson. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test. Recommended by Board of Studies 28-07-2022 Approved by Academic Council No. 67 Date 08-08-2022

Course Code	Course Title	LT	P C
MVLD612L	Micro Sensors and Interface Electronics	3 0	_
Pre-requisite	NIL	Syllabus v	
		1.0	
Course Objectiv	es '	1.0	
The course is aim			
	various types of Microsensors & micro actuators corre	espondina r	naterials
to fabricat		-p	
	n Understand the concepts of Microsystem technologie	s used for	realizinc
	ors and actuators.		
Explore th	e working principles of interface electronics circuits for r	esistive, ca	pacitive
and tempe	erature sensors.		-
Course Outcome			
	ion of the course, students will be able to:		
	nd the Micro-Smart Systems and the analysis of MEMS s	structural de	esign.
	ne MEMS materials and Properties.		
	nd the fabrication process flow for Microsystems.		
	nd Comprehend different types of Sensors and Actuators	s.	
	bout the wide applications of Microsensors.		
6. Understar	d the basic Interface Circuits.		
Modulo:1 Micro	Smart System and MEMS Structural Analysis		8 hours
	o-Smart System and MEMS Structural Analysis nd scaling law, MEMS & Micro machines, Evolution		
	n-silicon Micro and Smart Systems. Micro-scale		
	prces, States of matter, Continuum assumption, Go		
	ions. Analysis of MEMS structural design: Hooke's		
	s, plate theory, spring (folded flexure) design, matrix and		liteory
	osystem Materials and Properties		5 hours
	n, Silicon oxide and nitride, Thin Metal films (Cu, Cr, J		
	PMMA, PDMS), Glass and Quartz.		, ,
Important materi	al properties-Young modulus, Poisson's ratio, den	sity, piezo	resistive
	, Thermal Conductivity, Material Structure.		
	osystem Fabrication Technology		5 hours
	ilicon Growth, Wafer Cleaning, Oxidation, Diffusion		
	troplating, Lithography, Bulk Micromachining, Surfac	e Microma	chining
LIGA,Bonding ar			
	duction to Sensors and Actuators		8 hours
	zoelectric, Piezoresistive, Electromagnetic, Thermo		
	nermoelectric, Optical: SPR and SERS - Resonant and		
	ications of Micro Devices		8 hours
	Automotive Applications: Pressure Sensors, Acc		
	sensors, Gyroscopes, Micro mixer, Micro Valve, M	licro Pump), IVIICIC
· · ·	rinter heads and Micro-mirror TV Projector.	tia aammu	nightion
	ion Applications: Imaging and Displays, Fiber opt ical Applications: Micro & Nano Cantilevers, Glucos		
	nostics. RF Applications – Switches, Phase Shifters		
Varactors.	gnostios. Ni Applications – Owitches, Fliase Shillers	, itesolial	
Module:6 Inter	ace Circuits		5 hours
	for Resistive, Capacitive and Temperature Sensors.		<u></u>
	ge and Current - Mode Approach in Sensor Interface	es	4 hours
Desig	• • • • • • • • • • • • • • • • • • • •		
	pproach in Sensor Interfaces Design: DC & AC exc	itation for	resistive
• .	ve sensor interfacing and temperature sensor interface		-
	Approach in Sensor Interfaces Design: AC-Excit		age for
			<u> </u>

Re	Resistive/ Capacitive Sensors and DC-Excited Resistive Sensor Interface.							
Мо	dule:8	Contemporary Issues				2 hours		
				Tota	al Lecture hours:	45 hours		
Tex	kt Book	(s)						
1.		dou, Fundamentals of Mic	crofabrication	and Nand	otechnology, 2011	, Third		
		, CRC Press.						
2.		a De Marcellis, Giuseppe				age-mode		
		rrent-mode sensor interfaci	ng applications	s, 2011, S	Springer.			
Ref	ference							
1.		aluf, K Williams, An			electromechanical	Systems		
		ering, 2004, Second Edition						
2.		turia, Microsystem Design,						
3.		ngBao, Analysis and Des	ign Principles	of MEN	AS Devices, 2005	5, Elsevier		
	Scienc							
4.		acs, Micromachined Transo		-	•			
5.		B.J., Micro- and Nanoscale		nics: Tran	sport in Microfluidi	c Devices,		
2010, Cambridge University Press.								
	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final							
Assessment Test								
		ded by Board of Studies	28-07-2022					
Арр	proved b	y Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title		L	Т	Ρ	С
MVLD613L	System Design with FPGA		3	0	0	3
Prerequisite	NIL	Syl	labu			on
		- ,		.0		-
Course Objecti	ves :					
This course is ain	ned to					
	n overview of FPGA architectures and expound on the		core	an	d ha	ard
	essors in association with hardware and software co-de	•				
	d the specification and operation of Programming for	peripł	neral	Int	erfa	ces
	onnect Fabrics.					
3. Implemen	t digital system and IP blocks for various DSP algorithm	ns.				
Course Outcome						
	of the course the student will be able to:					
	nd and get an idea about SoC and FPGA architectures nd the NIOS II soft core processor architecture.	5 .				
	he working of hardware and software co-design flow.					
	the usage of various peripheral interfaces for system d	esian.				
	a system by choosing suitable interconnect fabrics.	ee.g.				
	ne system using NIOS II soft core processor, model the	e syst	em t	by ι	ising	g IF
block and	I design and develop embedded synthesis using FPGA	۱.				
Module:1 SoC	Architecture		6 h	ou	rs	
An Overview of	System on Design – FPGA SoC Architecture – Case	e Stud	ly: X	(ilin)	x / I	nte
FPGA						
	Core and Hard Core Processor		8 h			
	r – Configurability Features – Processor Architecture-I	nstruc	tion	set	– A	RN
cortex A9 archite	Iware – Software Co-design Flow		4 h		rs	
	n Flow – Software Design Flow - EDA Tool Hardware	and S				siar
flow			•••••			.9.
Module:4 Prog	gramming for peripheral Interfaces		5 h	ou	rs	
	32, SDRAM, SRAM Controller, VGA, Audio and Video	o, PIC				Bus
bridge, and IrDA						
	connect Fabrics		4 h	ou	rs	
Avalon Switch		nctior	IS-	Int	egra	atec
Design Environn			0 6			
Module:6 Syst	roller, Real Time Clock - Interfacing using FPGA: VGA		8 h			
	lock Implementation	, LOD	, Ca 8 h			
	algorithm- Image edge detection in FPGA using SOE					ion
	ection Algorithm, Colour and Brightness Enhancement					
	ing RGB to HSV algorithm based on FPGA	aigoi				
	temporary Issues		2 h	ou	rs	
	Total Lecture h	ours	45	ho	urs	
Text Book(s)						
1. Zainalabedini Ltd.	Navabi, "Embedded Core Design with FPGAs", 2011,	, TAT	ΑM	cG	raw	Hil
	u, Embedded SoPC Design with NIOS II Proces	sor :	and	VF	RII	0
examples", 20	•			۷L		
, , , , , , , , , , , , , , , , , , , ,						

Re	Reference Books						
1	Donald G. Bailey," Design for Embedded Image Processing on FPGAs", 2012, Wiley.						
2	Paul J. Deitel, Harvey M. Deitel, "C:	How to Prog	ram",2012, P	earson Education.			
3	Joseph Yu, System-on-Chip Des Education Media.	ign with Arı	n Cortex-M	Processors, 2019, ARM			
	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test.						
Re	Recommended by Board of Studies 28-07-2022						
Ар	proved by Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title		LTPC		
MVLD614L	DSP Architectures		3 0 0 3		
Pre-requisite	NIL		Syllabus version		
			1.0		
Course Objectiv	es				
The course intend	ded to				
 Explore di 	fferent Digital Signal Processor (DSP) arc	hitectures an	d to design systems		
using prog	grammable DSPs.				
Improve s	ystem performance using different pipelini	ng technique	s, processor array		
and systol					
	of memory and peripherals to a DSP; and	acquire know	ledge on different		
codec imp	elemented on DSP.				
Course Outcome					
	course the student will be able to				
	nd use specific Digital Signal Processor for	r various app	ications.		
	system using programmable DSP.	norformonoo			
	t pipelining techniques to improve system tapplications using processor array and s				
4. Implemen performan		ystolic arrays			
	volving memory and other interfaces to DS	P			
0	various codecs on target DSPs.	<i>.</i>			
0. Doolgii ol					
Module:1 DSP	Integrated Circuits and VLSI		4 hours		
	nologies				
Standard digital s	signal processors - Application specific IC	's for DSP -	DSP systems - DSP		
	ntegrated circuit design.				
	itectures for programmable DSP		6 hours		
Basic Architectur	al Features - DSP Computational Buildir	ng Blocks - E	Bus Architecture and		
Memory - Data A	Addressing Capabilities - Address Gener	ation Unit - I	Programmability and		
Program Execution	on - Features for External Interfacing.				
	ution Control and Pipelining		6 hours		
	J – Interrupts – Stacks - Relative Branch set				
	peline Depth – Interlocking - Branching eff	ects - Interru	ot effects - Pipeline		
Programming mo					
	hesis of DSP Architectures		8 hours		
	ach to DSP LSI - Circuit Synthesis - High F				
	Algorithms and Architectures - Hierarchic		Processor Arrays -		
	Stack Filters - Wave-front Array Processor	S.			
	facing Memory and I/O to DSP		7 hours		
	essors				
	facing signals - Memory interface - Parall				
	I/O -Direct memory access (DMA) A I	viullichannei	bullered senal port		
(McBSP) -McBSF			5 hours		
Module:6Interfacing CODEC5 hoursCODEC interface circuit - CODEC programming - A CODEC-DSP interface example.					
	7 hours				
	Iultiprocessors-Performance comparison of emporary Issues		2 hours		
			2 110013		
	Total Lecture hours:		45 hours		
Text Book(s)					
	nmer, DSP Integrated Circuits, 2011, Acad	demic press.	New York.		
1		•			

2. Avtar Singh and S. Srinivasan, Digital Signal Processing, 2012, Thomson Publications. **Reference Books**

1. Phil Lapsley, Jeff Bier, Amit Shoham, Edward A. Lee, DSP Processor Fundamentals, Architectures & Features, 2011, First Edition, Wiley-IEEE Press.

2. Peter Pirsch, Architectures for Digital signal processing, 2010, Wiley, India.

Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test

Recommended by Board of Studies	28-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title		L	Т	Ρ	С	
MVLD615L	Memory Design and Testing		3	0	0	3	
Pre-requisite	NIL	Sylla	abu	s ve	ersio	on	
1.0							
Course Objectiv							
The course is aim							
	ng the basics and detailed architecture of SRAMs and D						
	e memory fault and introduce the basic and advance	ed m	emo	ory	test	ing	
patterns.							
	the reliability and radiation effect issues of semicondu	uctor	men	lorie	es a	and	
•	ethods for radiation hardening.	a du ca		يمر ام		·	
	nd discuss high performance memory subsystems,	auva	nce	חנ	iem	ory	
technolog	ies and contemporary issues						
Course Outcome	as:						
	course the student should be able to						
	RAMs and DRAMs.						
0	/RAMs and Flash Memories.						
3. Model me	mory faults, select suitable testing patterns and develop	o testir	ng p	atte	rns.		
Incorporat	e DFT and BIST techniques for semiconductor memory	' testir	ng.				
	he reliability of semiconductor memories, simulate a	ind m	ode	l ra	diat	ion	
	d, perform radiation hardening.						
	e to the development of high performance memory s	ubsys	tem	s ar	nd l	lse	
advanced	memory technologies.						
Module:1 Volat	ile memories			5 h	our	'e	
	Cell structures, MOS SRAM Architecture, MOS SRAM		and				
	SOI technology, Advanced SRAM architectures and tec						
	Application specific SRAMs, DRAM – DRAM techn						
	RAM cell theory and advanced cell structures, BICMC						
	Advanced DRAM design and architecture, Application s					-	
	volatile memories				ho	urs	
	High density ROM, PROM, Bipolar ROM, CMOS						
Floating gate E	PROM cell, One time programmable EPROM, El	EPRC	РМ,	EΕ	PR	DM	
•••	architecture, Non-volatile SRAM, Flash Memories (EP	ROM	or E	EEP	RO	M),	
	nemory architecture						
	ory Testing and Patterns				ho		
	odeling – Read Disturb Fault Model – Precharge Fault						
	etention Faults – Decoder Faults. Megabit DRAM						
	g and Testing-IDDQ Fault Modeling and Testing						
	 Zero/one Pattern – Exhaustive Test Patterns – Wa do Random Pattern – CAM pattern. 	iking,	Ivia	.Criii	ig a	unu	
	gn For Test and BIST			4	ho	Irs	
	f – Test (BIST)-Weak Write Test mode – Bit Line Co	ontact	Re				
	dow Write and Shadow Read.	5111001	1.0	0.010	ano	,	
	bility and Radiation Effects			7	ho	urs	
	ity Issues-RAM Failure Modes and Mechanism-N	lonvo	latile				
	n for Reliability Radiation Effects-Single Event Pl					•	
	ing Techniques Radiation Hardening Process and Desi						
Hardened Memor							
	Performance Subsystem Memories				ho		
	mory Systems, Memory-Subsystem Technologies,	Higł	n-Pe	rfor	mar	nce	
	, Embedded Memories.		<u> </u>		<u> </u>		
	nced Memory Technologies				ho		
Hign-Density Me	mory Packaging Technologies, Ferroelectric Random	I ACC	ess	IVIE	mor	ies	

(FRAMs)- Analog Memories-Magneto-resistive Random Access Memories (MRAMs)-Experimental Memory Devices Memory Hybrids and MCMs (2D)- Memory Stacks and MCMs (3D)-Memory MCM Testing and Reliability. Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book(s) A. K.Sharma, Advanced Semiconductor Memories: Architecture, Design and 1. Applications, 2014, John Wiley. Roberto Gastaldi and Giovanni Campardo In Search of the Next Memory: Inside the 2. Circuitry from the Oldest to the Emerging Non-Volatile Memories, 2017, Springer. **Reference Books** Alberto Bosio, Luigi Dilillo, Patrick Girard, Serge Pravossoudovitch, Arnaud Virazel, 1. Advanced Test Methods for SRAMs: Effective Solutions for Dynamic Fault Detection in Nanoscaled Technologies, 2010, Springer, Hao Yu and YuhaoWang, Design Exploration of Emerging Nano-scale Non-volatile 2. Memory, 2014, Springer. Takayuki Kawahara (Editor), Hiroyuki Mizuno (Editor), Green Computing with Emerging 3. Memory: Low-Power Computation for Social Innovation, 2012, Springer. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test Recommended by Board of Studies 28-07-2022 Approved by Academic Council Date 08-08-2022 No. 67

	Co	Course Title			Т	Ρ	С
MVLD696J	Study Oriented Project						02
Pre-requisite	NIL			Syll	labus	vers	sion
					1.	0	
Course Objectiv	es:						
pertaining 2. Scrutinize	ent will be able to analys to niche areas. technical literature and a nt and creativity for a bett	arrive at conclusions					tion
Course Outcome	e:						
	niche areas/focused don						
 Synthesiz of interest 	he findings in the pe	sight and creativity to	better und	ersta	nd the		
 Synthesiz of interest Publish t 	e knowledge and use ins he findings in the perces.	sight and creativity to	better und	ersta nal /	nd the	rnatio	onal
 Synthesiz of interest Publish t Conference Module Content This is oriented 	e knowledge and use ins he findings in the perces.	sight and creativity to er reviewed journa (Pro ned literature or boo	better und Is / Natio ject duratio	ersta nal / on: O	nd the ′Inte)ne se	rnatio	onal
 Synthesiz of interest of interest Publish t Conference Module Content This is oriented focussed domains Mode of Evalua student has regis 	e knowledge and use ins he findings in the per- ces. towards reading publish s under the guidance of a tion: Evaluation involve stered. Assessment on t ws – Presentation in the	sight and creativity to er reviewed journa (Pro ned literature or boo a faculty. es periodic reviews he project – Report	better und ls / Natio ject duration bks related by the fact to be subr	ersta nal / on: O to n ulty w nitted	nd the / Inte One se iiche //ith w	rnatio	ter)
 Synthesiz of interest of interest Publish t Conference Module Content This is oriented focussed domains Mode of Evalua student has regis and project revie Engineering Tech 	e knowledge and use ins he findings in the per- ces. towards reading publish s under the guidance of a tion: Evaluation involve stered. Assessment on t ws – Presentation in the	sight and creativity to er reviewed journa (Pro ned literature or boo a faculty. es periodic reviews he project – Report	better und ls / Natio ject duration bks related by the fact to be subr	ersta nal / on: O to n ulty w nitted	nd the / Inte One se iiche //ith w	rnatio	ter)

Course Code	Course Title	L	Т	Р	С		
MVLD697J	Design Project				02		
Pre-requisite	Pre-requisite NIL		abus	vers	ion		
1.0							
Course Objectives:							

Course Objectives:

- 1. Students will be able to design a prototype or process or experiments.
- 2. Describe and demonstrate the techniques and skills necessary for the project.
- 3. Acquire knowledge and better understanding of design systems.

Course Outcome:

- 1. Develop new skills and demonstrate the ability to upgrade a prototype to a design prototype or working model or process or experiments.
- 2. Utilize the techniques, skills, and modern tools necessary for the project.
- 3. Synthesize knowledge and use insight and creativity to better understand and improve design systems.
- 4. Publish the findings in the peer reviewed journals / National / International Conferences.

Module Content	(Project duration: One semester)

Students are expected to develop new skills and demonstrate the ability to develop prototypes to design prototype or working models related to an engineering product or a process.

Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science, Engineering Technology.

Recommended by Board of Studies	28-07-202	2	
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	L	Т	Р	С
MVLD698J	Internship I/ Dissertation I				10
Pre-requisite N	NIL	Syll	abus	vers	ion
	1.0)		

Course Objectives:

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field and also to give research orientation.

Course Outcome:

- 1. Considerably more in-depth knowledge of the major subject/field of study, including deeper insight into current research and development work.
- 2. The capability to use a holistic view to critically, independently and creatively identify, formulate and deal with complex issues.
- 3. A consciousness of the ethical aspects of research and development work.
- 4. Publications in the peer reviewed journals / International Conferences will be an added advantage.

Modu	le Content	(F	(Project duration: one semester)					
 Dissertation may be a theoretical analysis, modeling & simulation, experimentation analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities. 								
2.	Dissertation should be individua	l work.						
3.	 Carried out inside or outside the university, in any relevant industry or research institution. 							
4.	4. Publications in the peer reviewed journals / International Conferences will be an added advantage.							
Mode of Evaluation: Assessment on the project - Dissertation report to be submitted, presentation, project reviews and Final Oral Viva Examination.								
Recon	nmended by Board of Studies	28-07-2022						
Approv	ved by Academic Council	No. 67	Date	08-08-2022				

Cours	se Code		Course Title			L	Т	Ρ	С
MVLC)699J	Internst	nip II/ Dissert	ation II					12
Pre-requisite		NIL		Syllabus vers			ion		
							1.0)	
Cours	se Objectiv	'es:							
-		ient hands-on learning le product / process s			-		-		
	se Outcom	e: completion of this cou							
	reasonab	e assumptions and co	onstraints.			-			
2. 3. 4. 5. 6.	Perform li Conduct o results. Perform e Synthesiz	terature search and / o experiments / Design rror analysis / benchm e the results and arrive t the results in the forn	and Analysis narking / costir e at scientific	/ solution ng. conclusior	iterations	and ts / so			the
3. 4. 5. 6.	Perform li Conduct o results. Perform e Synthesiz	experiments / Design rror analysis / benchm e the results and arrive t the results in the form	and Analysis narking / costir e at scientific	/ solution ng. conclusion report / pro	iterations	and ts / so	olutior).	
3. 4. 5. 6.	Perform li Conduct o results. Perform e Synthesiz Documen Ie Content Dissertation analysis, data, softw Dissertation Carried o institution	experiments / Design rror analysis / benchm e the results and arrive t the results in the form on may be a theoretic prototype design, fabr vare development, app on should be individua ut inside or outside ns in the peer review	and Analysis marking / costin e at scientific n of technical al analysis, m rication of new plied research al work. the university	/ solution ng. conclusion report / pro (Proj odeling & v equipme and any o r, in any i	iterations is / product esentation ject durat simulation nt, correlate other relate relevant ir	and ts / so ion: o , expe tion a ed action ndustr	olutior one se erimer ind an ivities. y or	n. e mes ntatic alysi resea	ter) on & s of arch
3. 4. 5. 6. Modu 1. 2. 3. 4. Mode	Perform li Conduct of results. Perform e Synthesiz Documen Ie Content Dissertation analysis, data, softw Dissertation Carried of institution Publication added adw	experiments / Design rror analysis / benchm e the results and arrive t the results in the form on may be a theoretic prototype design, fabr vare development, app on should be individua ut inside or outside ns in the peer review	and Analysis harking / costin e at scientific n of technical al analysis, m rication of nev blied research al work. the university wed journals n the project Oral Viva Exa	/ solution ng. conclusion report / pro (Proj odeling & v equipme and any o v, in any i / Internati	iterations is / product esentation ject durat simulation nt, correlate other relate relevant ir	and ts / so ion: o , expe tion a ed acti ndustr	olutior one se erimen ind an ivities y or ces wi	n. e mes ntatic alysi resea ill be	ter) n & s of arch an
3. 4. 5. 6. Modu 1. 2. 3. 4. Mode prese	Perform li Conduct of results. Perform e Synthesiz Documen Ie Content Dissertation analysis, data, softw Dissertation Carried of institution Publication added adw	experiments / Design rror analysis / benchm e the results and arrive t the results in the form on may be a theoretic prototype design, fabr vare development, app on should be individua ut inside or outside ns in the peer review rantage.	and Analysis narking / costin e at scientific n of technical al analysis, m rication of new olied research al work. the university wed journals	/ solution ng. conclusion report / pro (Proj odeling & v equipme and any o v, in any i / Internati	iterations is / product esentation ject durat simulation nt, correlate other relate relevant ir	and ts / so ion: o , expe tion a ed acti ndustr	olutior one se erimen ind an ivities y or ces wi	n. e mes ntatic alysi resea ill be	ter) n & s of arch an