

SCHOOL OF MECHANICAL ENGINEERING

M.Tech Automotive Engineering

Curriculum & Syllabai (2022-2023 batch onwards)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

• Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- **World class Education**: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- **Cutting edge Research**: An innovation ecosystem to extend knowledge and solve critical problems.
- **Impactful People**: Happy, accountable, caring and effective workforce and students.
- **Rewarding Co-creations**: Active collaboration with national & international industries & universities for productivity and economic development.
- **Service to Society**: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

• To be a leader in imparting world class education in Mechanical Engineering, leading to nurturing of scientists and technologists of highest caliber who would engage in sustainable development of the globe.

MISSION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

- To create and maintain an environment fostering excellence in instruction & learning, Research and Innovation in Mechanical Engineering and Allied Disciplines.
- To equip students with the required knowledge and skills to engage seamlessly in higher educational and employment sectors ensuring that societal demands are met.

M. Tech Automotive Engineering

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment.

PO_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information.

PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice.

PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems.

PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development.

PO_07: Having a clear understanding of professional and ethical responsibility.

PO_08: Having a good cognitive load management skills related to project management and finance.

M. Tech Automotive Engineering

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Automotive Engineering) programme, graduates will be able to

- **PSO_1:** Compute, Design, Simulate & analyse various Automotive engineering systems taken into account the social, economic and environmental implications for the current and future mobility.
 - **PSO_2:** Practice a multidisciplinary approach to solve real-world automotive problems.
 - PSO_3: Independently carry out research / investigation to solve practical problems and write / present a substantial technical report/document

M. Tech Automotive Engineering

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

Agenda Item 67/11

To consider and approve the revised programme credit structure, curriculum and course contents of Master of Technology in Automotive Engineering

ANNEXURE – 15

Master of Technology in Automotive Engineering School of Mechanical Engineering

Programme Credit Structure	Credits	Discipline Elective Courses	12
Discipline Core Courses Skill Enhancement Courses	24 05	MAUE601L Engine Design and Develop- ment	3003
Discipline Elective Courses	12	MAUE602L Battery and Fuel Cell	3003
Open Elective Courses	03	MAUE603L Vehicle and Engine Testing	3003
Project/ Internship	26	MAUE604L Vehicle Maintenance and Diag-	3003
Total Graded Credit Requirement	70	nostics	
		MAUE605L Vehicle Aerodynamics	3003
Discipline Core Courses	24	MAUE606L Vehicle Crashworthiness	3003
	LTPC	MAUE607L Design of Vehicle Drivelines	3003
MMAT502L Advanced Mathematical Meth-	3003	MAUE608L Noise, Vibration and Harshness	3003
ods		MAUE608P Noise, Vibration and Harshness	0 0 2 1
MAUE501L Automotive Body and Chassis Systems	3003	Lab MAUE609L Computational Fluid Flow and Heat Transfer	3003
MAUE502L Engine Combustion and Emis-	3003	MCDM504L Finite Element Methods	3003
sion		MCDM504P Finite Element Methods Lab	0 0 2 1
MAUE502P Engine Combustion and Emis-	0 0 2 1	MAUE611L Vehicle Safety and Lighting	3003
sion Lab		MADEOTTE Venicle Salety and Lighting	3003
MAUE503L Automotive Electrical and Elec- tronics	3003	Open Elective Courses	03
MAUE503P Automotive Electrical and Elec-	0 0 2 1		
tronics Lab		Engineering Disciplines Social Sciences	
MAUE504L Automotive Transmission Sys-	3003		
tem		Project and Internship	26
MAUE505L Vehicle Dynamics	3003		
MAUE505P Vehicle Dynamics Lab	0 0 2 1	MAUE696J Study Oriented Project	02
MAUE506L Hybrid Electric Vehicles	3003	MAUE697J Design Project	02
		MAUE698J Internship I/ Dissertation I	10
Skill Enhancement Courses	05	MAUE699J Internship II/ Dissertation II	12
MENG501P Technical Report Writing	0 0 4 2		
MSTS501P Qualitative Skills Practice	0 0 3 1.5		
MSTS502P Quantitative Skills Practice	0 0 3 1.5		

Course Code	Course Title		LTPC
MAUE501L	Automotive Body and Ch		3 0 0 3
Pre-requisite	Nil	· · · · ·	Syllabus version
			1.0
Course Objectiv	/es		
	vehicle chassis structure		
	automotive suspension systems		
	he importance of conventional and	advanced braking sv	etome
	steering systems	advanced braking sy	3161113
4. TO INITO duoc			
Course Outcom	<u> </u>		
The student shal			
	suggest a suitable chassis layout,	frame and body const	ruction type for
different cars		frame and body const	i dellori type toi
	itable chassis layout for commercia	al vehicles	
	nd analyze various types of steering		
	nalyze a suitable suspension syste		of vehicles
	ntify and Design suitable type of br		
vehicles	they and besign suitable type of bi	aning system for diffe	
101000			
Module:1 Car	Body		7 hours
	convertibles, limousine, estate	car racing and so	
••	er's visibility, tests for visibility, met	•	•
	fety design, safety equipment for		
	e making, initial tests, crash tes		
Instrumentation.			
Module:2 Bus	Body		5 hours
	single decker, double-decker, tw	vo level and articulat	
	ight, engine location, entrance		•
	etails: frame construction, double s		
	is, Conventional and integral type		
dood, rtogalation			
Module:3 Com	mercial Vehicles		5 hours
	flat platform, drop side, fixed	side tipper body t	
	cle body types. Dimensions of driv		
design.	se sedy typee. Dimensione of any		
doolgin			
Module:4 Cha	ssis		7 hours
	s layout, with reference to Power P	lant location and drive	
	acting on vehicle frame, Construction		
	s. Integral construction, Monocoqu		
Module:5 Stee			6 hours
	metry: castor, camber, king pin inc	lination too in condition	
0	Is during steering, steering geo	-	0
	tional details of steering linkages		
	and layouts, turning radius, whee	a wonnie, power assis	sieu sieering. Sieer
by wire	noncion System		6 ha
	pension System		6 hours
	nsion system, types of suspensi		ngs, constructional
	agrariation of loot and and torolog		and a set of the set o
			endent suspension,
rubber suspens	ion, pneumatic suspension, sh		

Мо	dule:7	Braking System			6 hours					
Cla	Classification of brakes, drum brakes and disc brakes, constructional details, theory of									
	braking, concept of dual brake system, Anti-lock braking system, electronic brake force									
			•	n, air	brake system, retarded engine					
		dy retarders, Electronic stal	bility control							
Мо	dule:8	Contemporary Issues			3 hours					
		Tot	tal Lecture hou	ırs:	45 hours					
Tex	kt Book									
1.					Anglin, McGraw Hill Education;					
		dition (1 July 2017); McGra	w Hill Educatior	า						
	ference									
1.		Heisler, "Advanced Vehicle 51318,	e Technology", (2011), Butterworth-Heinemann. ISBN –					
2		notive Technology: A Sy ry 1, 2019)	/stems Approa	ich",	Cengage Learning; 7th edition					
			ut and analysis	" (198	82), Mechanical Engg. Publication					
3	Ltd., Lo		,	`						
4	Newto	n Steeds and Garret, "Moto	or Vehicles" 13th	n Edit	ion, Butterworth, London, 2005.					
5	R.K.Ra	ajput, "A Text–Book o	of Automobile	Engin	neering",(2018),Laxmi Publications					
	Private Limited.									
	Authors, book title, year of publication, edition number, press, place									
Мо	de of Ev	aluation: CAT, Assignment	t, Quiz, FAT							
Re	commer	ided by Board of Studies	27-07-2022							
		y Academic Council	No. 67	Date	08-08-2022					
<u> </u>		-								

Course Code	Course Title		L	Т	Ρ	С		
MAUE502L Engine Combustion and Emission 3 0 0						3		
Pre-requisite						-		
	1.0							
Course Objective	29							
	n the understanding of engine and its work	cina						
	ne the importance of engine components	g						
	ce fuel supply, cooling and lubrication syst	ems						
	n the importance of air motion and combus		desian					
	ce new engine technology							
Course Outcome)							
At the end	of the course, the student will be able to							
1. Understan	d the combustion phenomena of prem	ixed and diffu	usion c	omb	usti	on		
systems								
	fuel rating and ignition systems							
	table combustion chamber with enhanced	air motion and	better	mixir	ng			
	emission control technologies							
	e engine emission characteristics with BS	norms						
	and measurement of emission analysers							
7. Analysing	the cylinder pressure data to determine va	rious combust	ion para	met	ers			
	<u>-</u> .							
	duction to Engines		·		hou			
	working, Engine operating Cycles-Idea	al and Fuel A	Air Cycle	es, E	=ng	ine		
Classifications	wine Combustion				<u>k</u>			
	gine Combustion	tion Fostone			hou			
	istion, Phases of Ignition, Flame Propaga	tion – Factors	s, Flame	Stri	uctu	re,		
	Cycle to Cycle Variations gine Combustion			0	hou	ire		
	istion, Heat Release Rate analysis, Igniti	ion Dolay E	actors					
	Penetration, Spray angle, Droplet distributi			ruei	spi	ay		
	rmal Combustion		allon	1	hou	ire		
	onation Concepts, Knock types, Surface I	anition Fuel R	Patinas		1101	113		
	es of Nitrogen Emission	grittori, i dei iv	tating 5	6	hou	ire		
	ormation, NO formation in SI Engines,	NOv formation	in Cl	-				
Controlling Techni				Ling	in Ca	, –		
	rned Hydrocarbon and CO Emission			6	hοι	irs		
	Formation, Flame Quenching and Oxidatio	n. HC emission	ns in SI I					
	ism in Diesel Engines – Controlling Technic			•				
	culate Emissions and Exhaust gas				hοι	urs		
Treat	•			-				
SI Engine Particu	lates, Diesel Engine Particulates, Particul	ate Distributior	n, Soot	Forn	natio	on,		
	Condensation Emission Testing Methods							
Traps – DPF, DO	F							
Module:8 Conte	emporary Issues			2	hοι	ırs		
Γ								
	Total Lecture hours:			45	hοι	ırs		
Text Book(s)								
John B Heyv	vood, "Internal Combustion Engine Fund	amentals", (20	018), M	cGra	aw I	Hill		
1. Education.	-	-						
Reference Books								

1.	V. Ganesan, "Internal Combustion Engine", (2017), 4th Edition, McGraw Hill Education.						
2.	Stephen R Turns, "An Introducti		n: Concep	ots and Applications", (2021),			
^{2.} McGraw Hill Education, 4 th Edition.							
3. James D Halderman, "Automotive Fuel and Emissions Control Systems",							
5.	Prentice Hall, 4 th Edition						
4.	Klingenberg H, "Automobile Exha	aust Emission Te	sting", (20	12), Springer.			
Мо	de of Evaluation: CAT, Written as	signment, Quiz a	nd FAT				
Re	Recommended by Board of Studies 27-07-2022						
Ap	Approved by Academic Council No. 67 Date 08-08-2022						

MAUE502P Engine Combustion and Emission Lab 0 0 2 1 Pre-requisite NIL Syllabus version Course Objectives 1.0 1. To broaden the importance of engine components 3. 3. To introduce fuel supply, cooling and lubrication systems 4. 4. To broaden the importance of air motion and combustion chamber design 5. 5. To introduce new engine technology Course Outcome At the end of the course, the student will be able to 1. 1. Understand the combustion phenomena of premixed and diffusion combustion systems 3. 2. Determine fuel rating and ignition systems 3. 3. Design suitable combustion chamber with enhanced air motion and better mixing 4. Adopt new emission control technologies 5. 5. Validate the engine emission characteristics with BS norms 6. Calibration and measurement of emission analyses 7. 7. Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments 1 1. Performance, heat balance and emission analysis of S.I Engine 2. Fuel property testing (Claorific value, Density and Viscosity) 5. 5. Fuel property testing (Calorific value, Density and Viscosity) <th>Cou</th> <th>rse Code</th> <th></th> <th>Course Title</th> <th></th> <th></th> <th>L</th> <th>Т</th> <th>Ρ</th> <th>С</th>	Cou	rse Code		Course Title			L	Т	Ρ	С
Course Objectives 1.0 Course Objectives 1.0 1. To broaden the understanding of engine and its working 2. To underline the importance of engine components 3. To introduce fuel supply, cooling and lubrication systems 4. To broaden the importance of air motion and combustion chamber design 5. To introduce new engine technology Course Outcome At the end of the course, the student will be able to 1. Understand the combustion phenomena of premixed and diffusion combustion systems 2. Determine fuel rating and ignition systems 3. Design suitable combustion chamber with enhanced air motion and better mixing 4. Adopt new emission control technologies 5. Validate the engine emission characteristics with BS norms 6. Calibration and measurement of emission analysis of S.I Engine 1. 7. Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments 1. 1. Performance, heat balance and emission analysis of S.I Engine 3. Dismantling and assembling an automotive diesel engine 4. Fuel property testing (Clash, Fire point, Pour point, Cloud point) 6. Cylinder pressure measurement and Combustion analysis 7. NOx emission control through EGR and Injection retardation 8. NOx emission control through biodiesel blended diesel 10. NOx and HC emission contr	MAU	JE502P	Engine Com	bustion and E	mission	Lab	0	0	2	1
Course Objectives 1. To broaden the understanding of engine and its working 2. To underline the importance of engine components 3. To introduce fuel supply, cooling and lubrication systems 4. To broaden the importance of air motion and combustion chamber design 5. To introduce new engine technology Course Outcome At the end of the course, the student will be able to 1. Understand the combustion phenomena of premixed and diffusion combustion systems 2. Determine fuel rating and ignition systems 3. Design suitable combustion chamber with enhanced air motion and better mixing 4. Adopt new emission control technologies 5. Validate the engine emission characteristics with BS norms 6. Calibration and measurement of emission analysers 7. Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments 1. Performance, heat balance and emission analysis of S.I Engine 2. Petromance, heat balance and emission analysis of S.I Engine 3. Dismantling and assembling an automotive diesel engine 4. 4. Fuel property testing (Calorific value, Density and Viscosity) 5. 5. Fuel property testing (Flash, Fire point, Pour point, Cloud point) 6. 6. Cylinder pressure measu	Pre-requisite NIL						Sylla	abus	vers	ion
 To broaden the understanding of engine and its working To underline the importance of engine components To introduce fuel supply, cooling and lubrication systems To introduce new engine technology Course Outcome At the end of the course, the student will be able to Understand the combustion phenomena of premixed and diffusion combustion systems Determine fuel rating and ignition systems Calibration and measurement of emission analysers Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments Performance, heat balance and emission analysis of C.I Engine Performance, heat balance and emission analysis of C.I Engine Performance, heat balance and emission analysis of C.I Engine Dismatiling and assembling an automotive diesel engine Fuel property testing (Calorific value, Density and Viscosity) Fuel property testing (Calorific value, Density and Viscosity) Nox emission control through EGR and Injection retardation NOx emission control through linjection retardation NOx emission control through biodicels blended diesel Nox and HC emission control through tengene blended diesel Nox and HC emission control through ethanol blended gasoline Total Laboratory Hours 30 hours Text Book(s) V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education.		•						1.0)	
 To underline the importance of engine components To introduce fuel supply, cooling and lubrication systems To broaden the importance of air motion and combustion chamber design To introduce new engine technology Course Outcome At the end of the course, the student will be able to Understand the combustion phenomena of premixed and diffusion combustion systems Determine fuel rating and ignition chamber with enhanced air motion and better mixing Adopt new emission control technologies Validate the engine emission characteristics with BS norms Calibration and measurement of emission analysers Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments Performance, heat balance and emission analysis of S.I. Engine Performance, heat balance and emission analysis of C.I. Engine Dismantling and assembling an automotive diesel engine Fuel property testing (Claohfic value, Density and Viscosity) Fuel property testing (Claohfic value, Density and Viscosity) Fuel property testing (Flash, Fire point, Pour point, Cloud point) Ox emission control through EGR and Injection retardation NOx emission control through biodiesel blended diesel Nox and HC emission control through biodiesel blended diesel Nox and HC emission control through tengine Fundamentals", (2018), McGraw Hill Education. Reference Books V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. Keference Books V. Ganesan, "Internal Combustion Engine", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT	Cou	rse Objective	es							
 To introduce fuel supply, cooling and lubrication systems To broaden the importance of air motion and combustion chamber design To introduce new engine technology Course Outcome At the end of the course, the student will be able to Understand the combustion phenomena of premixed and diffusion combustion systems Determine fuel rating and ignition systems Design suitable combustion chamber with enhanced air motion and better mixing Adopt new emission control technologies Validate the engine emission characteristics with BS norms Calibration and measurement of emission analysers Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments Performance, heat balance and emission analysis of S.I Engine Performance, heat balance and emission analysis of C.I Engine Dismantling and assembling an automotive diesel engine Fuel property testing (Calorific value, Density and Viscosity) Fuel property testing (Calorific value, Density and Viscosity) Fuel property testing (Flash, Fire point, Pour point, Cloud point) Cylinder pressure measurement and Combustion natalysis NOx emission control through EGR and Injection retardation NOx emission control through bideisel blended diesel NOx emission control through bideisel blended diesel NOx emission control through EGR and Injection retardation Smoke emission control through Bideisel blended diesel NOx emission control through bideisel blended diesel NOx emission control through bideisel blended diesel NOx emission control through bideises blended diesel Total Laboratory Hours 30 hours Text Book(s) John B Heywood, "Internal Combustion Engine Fundamentals"	1	I. To broade	n the understanding	of engine and	its worki	ng				
 4. To broaden the importance of air motion and combustion chamber design 5. To introduce new engine technology Course Outcome At the end of the course, the student will be able to 1. Understand the combustion phenomena of premixed and diffusion combustion systems 2. Determine fuel rating and ignition systems 3. Design suitable combustion chamber with enhanced air motion and better mixing 4. Adopt new emission control technologies 5. Validate the engine emission characteristics with BS norms 6. Calibration and measurement of emission analysers 7. Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments 1. Performance, heat balance and emission analysis of S.I Engine 2. Performance, heat balance and emission analysis of S.I Engine 3. Dismantling and assembling an automotive diesel engine 4. Fuel property testing (Calorific value, Density and Viscosity) 5. Fuel property testing (Flash, Fire point, Pour point, Cloud point) 6. Cylinder pressure measurement and Combustion analysis 7. NOx emission control through EGR and Injection retardation 8. Nox emission control through biodiesel blended diesel 10. Nox and HC emission control through biodiesel blended diesel 10. Nox and HC emission control through biodiesel blended diesel 11. John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. Reference Books 1. V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition 4. Klingenberg H, "Automobile Exhaust Emission Tes	2	2. To underli	ne the importance of	f engine compo	onents	-				
 To introduce new engine technology Course Outcome At the end of the course, the student will be able to Understand the combustion phenomena of premixed and diffusion combustion systems Determine fuel rating and ignition systems Design suitable combustion chamber with enhanced air motion and better mixing Adopt new emission control technologies Validate the engine emission characteristics with BS norms Calibration and measurement of emission analysers Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments Performance, heat balance and emission analysis of S.I Engine Performance, heat balance and emission analysis of S.I Engine Performance, heat balance and emission analysis of C.I Engine Piel property testing (Calorific value, Density and Viscosity) Fuel property testing (Calorific value, Density and Viscosity) Cylinder pressure measurement and Combustion retardation NOx emission control through EGR and Injection retardation NOx emission control through EGR and Injection retardation Smoke emission control through EGR and Injection retardation NOx and HC emission control through tenano blended gasoline	3	3. To introdu	ce fuel supply, coolir	ng and lubricat	ion syste	ms				
Course Outcome At the end of the course, the student will be able to 1. Understand the combustion phenomena of premixed and diffusion combustion systems 2. Determine fuel rating and ignition systems 3. Design suitable combustion chamber with enhanced air motion and better mixing 4. Adopt new emission control technologies 5. Validate the engine emission characteristics with BS norms 6. Calibration and measurement of emission analysers 7. Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments 1. Performance, heat balance and emission analysis of S.I Engine 2. Performance, heat balance and emission analysis of C.I Engine 3. Dismantling and assembling an automotive diesel engine 4. Fuel property testing (Claorific value, Density and Viscosity) 5. Fuel property testing (Flash, Fire point, Pour point, Cloud point) 6. Cylinder pressure measurement and Combustion analysis 7. NOx emission control through EGR and Injection retardation 8. NOx aremission control through bidiesel blended diesel 10. NOx and HC emission control through bidiesel blended diesel 11. John B Heywood, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 7. V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 7. V. Gan					combust	ion chambe	r desig	gn		
At the end of the course, the student will be able to 1. Understand the combustion phenomena of premixed and diffusion combustion systems 2. Determine fuel rating and ignition systems 3. Design suitable combustion chamber with enhanced air motion and better mixing 4. Adopt new emission control technologies 5. Validate the engine emission characteristics with BS norms 6. Calibration and measurement of emission analysers 7. Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments 1. Performance, heat balance and emission analysis of S.I Engine 2. Performance, heat balance and emission analysis of S.I Engine 3. Dismantling and assembling an automotive diesel engine 4. Fuel property testing (Clash, Fire point, Pour point, Cloud point) 6. Cylinder pressure measurement and Combustion analysis 7. NOx emission control through EGR and Injection retardation 8. NOx emission control through biodiesel blended diesel 10. NOx and HC emission control through biodiesel blended diesel 10. NOx and HC emission control through biodiesel blended diesel 11. John B Heywood, "Internal Combustion En	5	5. To introdu	ce new engine techr	nology						
At the end of the course, the student will be able to 1. Understand the combustion phenomena of premixed and diffusion combustion systems 2. Determine fuel rating and ignition systems 3. Design suitable combustion chamber with enhanced air motion and better mixing 4. Adopt new emission control technologies 5. Validate the engine emission characteristics with BS norms 6. Calibration and measurement of emission analysers 7. Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments 1. Performance, heat balance and emission analysis of S.I Engine 2. Performance, heat balance and emission analysis of S.I Engine 3. Dismantling and assembling an automotive diesel engine 4. Fuel property testing (Clash, Fire point, Pour point, Cloud point) 6. Cylinder pressure measurement and Combustion analysis 7. NOx emission control through EGR and Injection retardation 8. NOx emission control through biodiesel blended diesel 10. NOx and HC emission control through biodiesel blended diesel 10. NOx and HC emission control through biodiesel blended diesel 11. John B Heywood, "Internal Combustion En	•	0.1								
 Understand the combustion phenomena of premixed and diffusion combustion systems Determine fuel rating and ignition systems Design suitable combustion chamber with enhanced air motion and better mixing Adopt new emission control technologies Validate the engine emission characteristics with BS norms Calibration and measurement of emission analysers Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments Indicative Experiments Image: Calibration and systems Performance, heat balance and emission analysis of S.I Engine Dismantling and assembling an automotive diesel engine Fuel property testing (Calorific value, Density and Viscosity) Fuel property testing (Calorific value, Density and Viscosity) Fuel property testing (Calorific value, Density and Viscosity) Simantling and assembling an automotive diesel engine NOx emission control through EGR and Injection retardation Simoke emission control through Injection retardation Simoke emission control through hiodiesel blended diesel 30 hours Text Book(s) Total Laboratory Hours 30 hours Reference Books V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4 th Edition Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer.	Cou			••••••••••••••••••••••••••••••••••••••						
 systems 2. Determine fuel rating and ignition systems 3. Design suitable combustion chamber with enhanced air motion and better mixing 4. Adopt new emission control technologies 5. Validate the engine emission characteristics with BS norms 6. Calibration and measurement of emission analysers 7. Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments 1. Performance, heat balance and emission analysis of S.I Engine 2. Performance, heat balance and emission analysis of C.I Engine 3. Dismantling and assembling an automotive diesel engine 4. Fuel property testing (Calorific value, Density and Viscosity) 5. Fuel property testing (Flash, Fire point, Pour point, Cloud point) 6. Cylinder pressure measurement and Combustion retardation 8. NOx emission control through EGR and Injection retardation 9. Smoke emission control through biodiesel blended diesel 10. NOx and HC emission control through biodiesel blended diesel 11. John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. 7. Reference Books 11. V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. 			-			المعرمامي	 :		. . 4	
 Determine fuel rating and ignition systems Design suitable combustion chamber with enhanced air motion and better mixing Adopt new emission control technologies Validate the engine emission characteristics with BS norms Calibration and measurement of emission analysers Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments Performance, heat balance and emission analysis of S.I Engine Performance, heat balance and emission analysis of C.I Engine Performance, heat balance and emission analysis of C.I Engine Dismantling and assembling an automotive diesel engine Fuel property testing (Calorific value, Density and Viscosity) Fuel property testing (Flash, Fire point, Pour point, Cloud point) Cylinder pressure measurement and Combustion analysis NOx emission control through EGR and Injection retardation NOx emission control through biodiesel blended diesel NOx and HC emission control through belanded diesel NOx and HC emission control through belanded diesel NOx and HC emission control through tengine Fundamentals", (2018), McGraw Hill Education. Reference Books V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. 			a the compustion	pnenomena o	or premix	ked and di	itusion	i com	ibust	ion
 Design suitable combustion chamber with enhanced air motion and better mixing Adopt new emission control technologies Validate the engine emission characteristics with BS norms Calibration and measurement of emission analysers Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments 1. Performance, heat balance and emission analysis of S.I Engine 2. Performance, heat balance and emission analysis of S.I Engine 3. Dismantling and assembling an automotive diesel engine 4. Fuel property testing (Calorific value, Density and Viscosity) 5. Fuel property testing (Claorific value, Density and Viscosity) 6. Cylinder pressure measurement and Combustion analysis 7. NOx emission control through EGR and Injection retardation 8. NOx emission control through biodiesel blended diesel 10. NOx and HC emission control through belaned gasoline Total Laboratory Hours 30 hours Text Book(s) 1. V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), P	~		fuel reting and igniti	ion avatama						
 4. Adopt new emission control technologies 5. Validate the engine emission characteristics with BS norms 6. Calibration and measurement of emission analysers 7. Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments Performance, heat balance and emission analysis of S.I Engine Performance, heat balance and emission analysis of C.I Engine Dismantling and assembling an automotive diesel engine Fuel property testing (Calorific value, Density and Viscosity) Fuel property testing (Calorific value, Density and Viscosity) Fuel property testing (Calorific value, Density and Viscosity) Fuel property testing (Flash, Fire point, Pour point, Cloud point) Cylinder pressure measurement and Combustion analysis NOx emission control through EGR and Injection retardation NOx emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diesel NOx and HC emission control through ethanol blended gasoline Total Laboratory Hours 30 hours Text Book(s) John B Heywood, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4 th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022					hanced	ir motion or	nd hot	tor mi	vina	
 5. Validate the engine emission characteristics with BS norms 6. Calibration and measurement of emission analysers 7. Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments Performance, heat balance and emission analysis of S.I Engine Performance, heat balance and emission analysis of C.I Engine Dismantling and assembling an automotive diesel engine Fuel property testing (Calorific value, Density and Viscosity) Fuel property testing (Calorific value, Density and Viscosity) Fuel property testing (Calorific value, Density and Viscosity) Fuel property testing (Flash, Fire point, Pour point, Cloud point) Cylinder pressure measurement and Combustion analysis NOx emission control through EGR and Injection retardation NOx emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diesel John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. Reference Books V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4 th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer.							iu peli		лну	
 6. Calibration and measurement of emission analysers 7. Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments Performance, heat balance and emission analysis of S.I Engine Performance, heat balance and emission analysis of C.I Engine 3. Dismantling and assembling an automotive diesel engine Fuel property testing (Calorific value, Density and Viscosity) 5. Fuel property testing (Flash, Fire point, Pour point, Cloud point) Cylinder pressure measurement and Combustion analysis 7. NOx emission control through EGR and Injection retardation 8. NOx emission control through biodiesel blended diesel 10. NOx and HC emission control through biodiesel blended diesel 10. NOx and HC emission control through biodiesel blended diesel 10. NOx and HC emission control through biodiesel blended diesel 10. NOx and HC emission control through biodiesel blended diesel 10. NOx and HC emission control through biodiesel blended diesel 11. John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. Reference Books 1. V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. 				v	with BS r	orme				
7. Analysing the cylinder pressure data to determine various combustion parameters Indicative Experiments 1. Performance, heat balance and emission analysis of S.I Engine 2. Performance, heat balance and emission analysis of S.I Engine 3. Dismantling and assembling an automotive diesel engine 4. Fuel property testing (Calorific value, Density and Viscosity) 5. Fuel property testing (Flash, Fire point, Pour point, Cloud point) 6. Cylinder pressure measurement and Combustion analysis 7. NOx emission control through EGR and Injection retardation 8. NOx emission control through biodiesel blended diesel 10. NOx and HC emission control through biodiesel blended diesel 11. John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4 th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4 th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022			•			101113				
Indicative Experiments 1. Performance, heat balance and emission analysis of S.I Engine 2. Performance, heat balance and emission analysis of C.I Engine 3. Dismantling and assembling an automotive diesel engine 4. Fuel property testing (Calorific value, Density and Viscosity) 5. Fuel property testing (Flash, Fire point, Pour point, Cloud point) 6. Cylinder pressure measurement and Combustion analysis 7. NOx emission control through EGR and Injection retardation 8. NOx emission control through biodiesel blended diesel 10. NOx and HC emission control through biodiesel blended digasoline Total Laboratory Hours 30 hours Text Book(s) 1. John B Heywood, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022 <td></td> <td></td> <td></td> <th></th> <th>•</th> <td>ious combu</td> <td>stion r</td> <th>aram</th> <th>otore</th> <td>•</td>					•	ious combu	stion r	aram	otore	•
 Performance, heat balance and emission analysis of S.I Engine Performance, heat balance and emission analysis of C.I Engine Dismantling and assembling an automotive diesel engine Fuel property testing (Calorific value, Density and Viscosity) Fuel property testing (Flash, Fire point, Pour point, Cloud point) Cylinder pressure measurement and Combustion analysis NOx emission control through EGR and Injection retardation NOx emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diasoline Total Laboratory Hours John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 		. Analysing					suorip	aram	CICIS	-
 Performance, heat balance and emission analysis of S.I Engine Performance, heat balance and emission analysis of C.I Engine Dismantling and assembling an automotive diesel engine Fuel property testing (Calorific value, Density and Viscosity) Fuel property testing (Flash, Fire point, Pour point, Cloud point) Cylinder pressure measurement and Combustion analysis NOx emission control through EGR and Injection retardation NOx emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diagaoline Total Laboratory Hours 30 hours Text Book(s) John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. 	Indi	cative Experi	ments							
 Performance, heat balance and emission analysis of C.I Engine Dismantling and assembling an automotive diesel engine Fuel property testing (Calorific value, Density and Viscosity) Fuel property testing (Flash, Fire point, Pour point, Cloud point) Cylinder pressure measurement and Combustion analysis NOx emission control through EGR and Injection retardation NOx emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diesel NOx and HC emission control through biodiesel blended diesel NOx and HC emission control through ethanol blended gasoline Text Book(s) John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. 				emission anal	sis of S.I	Engine				
 3. Dismantling and assembling an automotive diesel engine 4. Fuel property testing (Calorific value, Density and Viscosity) 5. Fuel property testing (Flash, Fire point, Pour point, Cloud point) 6. Cylinder pressure measurement and Combustion analysis 7. NOx emission control through EGR and Injection retardation 8. NOx emission control through Injection retardation 9. Smoke emission control through biodiesel blended diesel 10. NOx and HC emission control through ethanol blended gasoline Total Laboratory Hours 30 hours Text Book(s) 1. John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. Reference Books 1. V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. 	2.									
 4. Fuel property testing (Calorific value, Density and Viscosity) 5. Fuel property testing (Flash, Fire point, Pour point, Cloud point) 6. Cylinder pressure measurement and Combustion analysis 7. NOx emission control through EGR and Injection retardation 8. NOx emission control through Injection retardation 9. Smoke emission control through biodiesel blended diesel 10. NOx and HC emission control through ethanol blended gasoline Total Laboratory Hours 30 hours Text Book(s) 1. John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. Reference Books 1. V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. 										
 5. Fuel property testing (Flash, Fire point, Pour point, Cloud point) 6. Cylinder pressure measurement and Combustion analysis 7. NOx emission control through EGR and Injection retardation 8. NOx emission control through Injection retardation 9. Smoke emission control through biodiesel blended diesel 10. NOx and HC emission control through ethanol blended gasoline Total Laboratory Hours 30 hours Text Book(s) 1. John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. Reference Books 1. V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. 										
 6. Cylinder pressure measurement and Combustion analysis 7. NOx emission control through EGR and Injection retardation 8. NOx emission control through Injection retardation 9. Smoke emission control through biodiesel blended diesel 10. NOx and HC emission control through ethanol blended gasoline Total Laboratory Hours 30 hours Text Book(s) 1. John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. Reference Books 1. V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. 										
 7. NOx emission control through EGR and Injection retardation 8. NOx emission control through Injection retardation 9. Smoke emission control through biodiesel blended diesel 10. NOx and HC emission control through ethanol blended gasoline Total Laboratory Hours 30 hours Text Book(s) 1. John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. Reference Books 1. V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022 										
 8. NOx emission control through Injection retardation 9. Smoke emission control through biodiesel blended diesel 10. NOx and HC emission control through ethanol blended gasoline Total Laboratory Hours 30 hours Text Book(s) 1. John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. Reference Books V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT										
 9. Smoke emission control through biodiesel blended diesel 10. NOx and HC emission control through ethanol blended gasoline Total Laboratory Hours 30 hours Text Book(s) John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. Reference Books V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies										
 10. NOx and HC emission control through ethanol blended gasoline Total Laboratory Hours 30 hours Text Book(s) John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. Reference Books V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022 	9.		¥ ;			el				
Total Laboratory Hours 30 hours Text Book(s) . 1. John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. Reference Books . 1. V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4 th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4 th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022			9							
Text Book(s) 1. John B Heywood, "Internal Combustion Engine Fundamentals", (2018), McGraw Hill Education. Reference Books 1. V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4 th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4 th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022										
Education. Reference Books 1. V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4 th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4 th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022	Text									
Reference Books 1. V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. 2. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4 th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4 th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022	1.	John B Heyv	wood, "Internal Com	bustion Engine	e Fundam	nentals", (20)18), N	/lcGra	w Hi	1
 V. Ganesan, "Internal Combustion Engine", (2012), 4th Edition, McGraw Hill Education. Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022 										
 Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4th Edition. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022 										
 McGraw Hill Education, 4th Edition. 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022 										
 3. James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022 	2.				ion: Con	cepts and A	pplica	tions"	, (20	21),
Prentice Hall, 4 th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022		McGraw Hill	Education, 4 th Edition	on.						
Prentice Hall, 4 th Edition 4. Klingenberg H, "Automobile Exhaust Emission Testing", (2012), Springer. Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022	3	lames D L	lalderman "Automo	tive Fuel and	Emiseir	one Control	Svet	eme"	(20	15)
Mode of assessment: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022	5.						Gyst	ems ,	(20	15),
Recommended by Board of Studies 27-07-2022	4.	Klingenberg	H, "Automobile Exha	aust Emission	Testing",	(2012), Spr	inger.			
	Mod	e of assessm	ent: CAT, Written as	signment, Qui	z and FA	Т				
Approved by Academic Council No. 67 Date 08-08-2022	Reco	ommended by	/ Board of Studies	27-07-2022						
	Аррі	roved by Acad	demic Council	No. 67	Date	08-08-202	22			

Course Code Course Title L T P C							
MAUE503L	Automotive Electrical and Electronics	3 0 0 3					
Pre-requisite	Syllabus version						
	Nil	1.0					
Course Object	ives:	1.0					
	art basic knowledge of vehicle electrical and electronic sys	tems to the student					
	elop an understanding on the power generation, stor						
	es involved in the vehicle.	age and unization					
	g an understanding on the communication and netv	working among the					
	al and electronic systems in the vehicle.	working among the					
	ble the students to investigate and design the sen	sing and actuation					
	es involved in the vehicle.	sing and dotation					
p100000							
Course Outco	me:						
1. Gain the	e knowledge of construction and working of batteries						
	and the working of charging and starting systems						
	e knowledge and skills of the automotive wiring design and	d ignition system					
	g the sensing technique and working of automotive sense						
	and the working of engine management system and other						
	ne vehicle						
6. Gain the	e skills on the recent development in the area of automotiv	ve electronic and					
electrica	al systems						
7. Underst	and the real-time of working of the various sensors with its	s characteristic					
features)						
	ttery	6 hours					
	iple and construction of Lead Acid Battery, Choice of ba						
	haracteristics of Battery, Battery Rating, Capacity and Effi						
	arting and Charging System and Electric Drives	6 hours					
	of Starter Motor, Starter Motor types, construction and ch						
	sms, Starter Switches and Solenoids Charging sy						
	d Alternators, types, construction and Characteristics, V	/oltage and Current					
	t –out relays and regulators.						
	ring and Lighting System	6 hours					
	ring Harnesses, Insulated and Earth Return System, Po	•					
	, Connectors and its types, Head Lamp and Indicator Lar						
-	, focusing of head lamps, Anti–Dazzling and Dipper Detail						
	nsors and Actuators	6 hours					
•	s and actuator: Manifold Absolute Pressure sensor, kno						
	gas temperature, Exhaust Oxygen level sensor, Throt						
	dal position sensor and crankshaft position sensor, Air	mass flow sensor.					
	per motors and relays, piezo actuators.						
	ering wheel angle sensor, Vibration and acceleration	sensors, Pressure					
sensors, Speed and RPM sensors, torque sensors.							
	ectronic Engine Management System	6 hours					
	r And Microcomputer controlled devices in automobiles						
	c engine control: Input, output devices, electronic fuel con						
•	ng modes, electronic ignition systems, and Spark	advance correction					
schemes.							
	ectric Management System and Dash Board	6 hours					
	strumentation						
	system, Antilock braking system, traction control	•					
	stem, electronic steering control, transmission control						
avoluing syster	m, low tire pressure warning system. Warning system	i, ariver information					

	nstrument cluster ECU, types o							
	communication, Horns, wiper system and its types, keyless entry system.							
Module:	7 Ignition System			6 hours				
Spark Pl	ugs, Constructional details and	Types, Battery Coil a	nd Magne	to–Ignition System				
Circuit d	etails and Components, non-Co	ontact-type Ignition T	riggering c	levices, Capacitive				
Discharc	e Ignition, Distributor–less Ignit	ion System.						
Module:	8 Contemporary Issues	•		3 hours				
	, , ,							
		Total Lectur	e hours:	45 hours				
Text Bo	ok(s)							
	Denton, Automobile Electric	al and Electronic sv	vstems (2	017), 5 th Edition				
	etedge, Taylor & Francis Group			- /) -)				
	ce Books							
1. Willi	am B.Ribben, Understanding /	Automotive Electronic	cs (2017).	8 th edition. Elsevier				
Scie			(,	,				
2. Boso	h Automotive Electrics and Au	tomotive Electronics.	2014, ISE	N: 978-3-658-01783-				
5		,						
3. J. D								
	on., Pearson/Prentice Hall.							
Laid								
Mode of	Evaluation: CAT, Written assigi	nment, Quiz and FAT						
	· · · · · · · · · · · · · · · · · · ·							
Recomm	ended by Board of Studies	27-07-2022						
Approve	by Academic Council	No. 67	Date	08-08-2022				
• •								

Cou	rse Code	C	ourse Title			L	Т	Ρ	С
MAL	JE503P	Automotive Elec	utomotive Electrical and Electronics Lab				0	2	1
Pre-	requisite	Nil				Syll	abus	versi	on
							1.0)	
Cou	rse Objectiv	/es							
1	. The impo	rtance of learning auton	notive electr	ical and	electronics s	systen	าร		
2		ose of various electronic	sensor and	d actuato	r systems in	i any r	noder	n	
	automotiv	/e.							
0		_							
	rse Outcom			na hu maa	aitarina thai				
		e proper operation of va ne purpose of passive re			nitoring thei	rsigna	ais.		
2		le puipose of passive re	straint syste	51115					
India	cative Exper	riments							
1.		dvanced Diagnostic Too	ols						
2.		ire Measurement-Thern		nermister	RTD IR				
3.		and Force Measurement			,,				
4.	Strain Mea								
5.	Speed Mea								
6.	Vibration N	leasurement							
7.	Humidity M	leasurement							
8.	Light Inten	sity Measurement							
9.		oller based stepper and		or control					
10.	Basic Auto	motive Electrical Wiring							
			To	tal Labo	ratory Hour	rs 30) hour	S	
	Book(s)			-					
1.		k, Barry. Today's Tec				and	Electro	onics,	,
Defe		and Shop Manual Pac	k. Cengage	Learning	, 2014.				
	erence Book		and actuator	a. aantra	l ovetene in	otrumo	ontatio		
1.	Press, 200	Clarence W. Sensors a	and actuator	s. contro	n system in	strum	entallo	л. C	Rυ
2.		onald K. "Automotive ele	otronice ha	ndhook "	(1000) 2 nd	Edition			
۷.				IUDUUK.	(1999)2 [1.		
Mod	e of assessn	nent: CAT, Written assig	gnment, Qui	z and FA	Т				
Reco	ommended b	y Board of Studies	27-07-202	2					
		idemic Council	No. 67	Date	08-08-202	22			
· '۳ P'	2.34 8,7100			2010	100 00 201				

Course Code	Course Title		L	Т	Ρ	С
MAUE504L	Automotive Transmission System		3	0	0	3
Pre-requisite	Sylla	abus	versi	on		
•				1.0		
Course Objectiv	/es					
-	e the students with sufficient background to un	derstand	the ne	ed for	r vari	ous
	rivelines and their components.					
	e the students to understand different types of o	clutches a	nd ae	arbox	es.	
	he students design the car and truck gearboxes					
I	5 5					
Course Outcom	6					
	Completion of this course, students will be abl	e to				
	nd also select a suitable clutch for a given vehi					
	and design of the gearbox for any given vehicle					
	the knowledge of various special purpose vehic		ission	svste	ems	
	he need and function of a semi and fully automatic					
	end and also develop new transmission system		meere	n oyot		
	nd the latest technology in transmission system		na hvi	orid el	ectric	;
vehicles.		io, moladi	ing ing.		ooune	
Vollioloo.						
Module:1 Clut	ch				7 ho	urs
	cessity of clutch in an automobile, types of	clutches	Sinale			
	h, cone clutch, centrifugal clutch, hydraulic					
	Clutch - adjustment, Clutch troubles and the					
	aterial, clutch lining.		, roqu			'nu
Module:2 Fluid					4 ho	urs
	dvantages and limitations, construction detail	s torque	canac			
	erformance characteristics. Means used to					
coupling.			nug t	orquo		ara
	ctive Performance				7 ho	urs
	nces to Motion of the Automobile, Traction,	tractive	effort	Perf		
	ion grade ability, drawbar pull.		onon	1 011	onna	100
Module:4 Gear					6 ho	urs
	ansmissions, Necessity of gearbox, Construct	ional deta	aile of	Slidir		
	ant-mesh gearbox, Synchromesh gear. Desirat				•	
•	sfer case, overdrive.		51 050		, 49bi	u
Module:5 Drive					5 ho	urs
	thrust and torque reaction. Hotchkiss drive. T	orque tub	e drive	radi		
9	Universal joints. Final drives – different types					
	axle. Rear axle construction – full floating, three					
	nents. Differential – conventional type, non-slip					
	omatic transmission	type. Din	CICILI		<u>6 ho</u>	urs
	rive - Torque Converter: Principal of torque co	nversion	single	mult		
	torque converters, performance characte					
	ils of typical hydraulic transmission drives. Le					
drives.		sylaria, vv		iyuro	lorqu	10
	nission: Planetary gearboxes - Ford T-model,	Cotal an	d Wile	on G	ear h	NUX.
	ssion, hydrostatic transmission, continuously v					
	dal - Relative merits and demerits when					
transmission.		oompare		0011	Critic	nai
	i-automatic transmission				8 ho	lire
	s: advantages and disadvantages, principles	of hydroc	tatic c			
•	•	•			-	
construction and	working of typical hydrostatic drives, Janney	nyurost	auc u	ive. E		ical

drives: advantages and limitations, principles of Ward Leonard system of control Modern electric drive for buses and performance characteristics. Semi automatic transmissions – Dual clutch transmission, Direct shift gearbox, Multimode manual transmission, Tiptronic transmission, Paddle shift gearbox.

Module:8Contemporary Issues2 hours

Total Lecture hours:

45 hours

	Tex	xt Book(s)					
	1.	Robert fisher, Kücükay, F., Jürgens, G., Najork, R., Pollak, B, "The Automotive					
		Transmission book", 2015, Springer- ISBN 978-3-319-05263-2.					
Г							

Reference Books

- 1. Song M., Automotive Transmissions Design Theory And Applications 2021, Springer-9789811567056.
- 2 Naunheimer, H., Bertsche, B., Ryborz, J., Novak, W. "Automotive Transmissions-Fundamentals, Selection, Design and Application", 2011,Springer-ISBN 978-3-642-16214-5.

Mode of Evaluation: CAT, Written assignment, Quiz and FAT

Recommended by Board of Studies	27-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	L	Т	P	C
MAUE505L	Vehicle Dynamics	3	0	0	3
Pre-requisite	Nil	Syll	abus		or
			1.(J	
Course Objectiv		un al ita			f -
vehicle dy	students to understand the role of tire characteristics a	ind its	mecha	anics	10
5	the students to understand vehicle performance, hand	ling an	d ride	•	
	nd the issues involved in it such as braking, traction, ro				э
control an	· · · · · · · · · · · · · · · · · · ·				
	e the students to understand significance of steering ar ms for vehicle dynamics.	nd susp	pensic	on	
	strate how to apply fundamentals of vibrations and aco	ustics	for ve	hicle	
	pective along with importance of modal analysis and tra				sis
Course Outcom	9:				
On completion of	this course, the student will be able to				
	e necessary forces and moments during tire/road intera	iction t	hroug	h	
	e models for vehicle dynamic simulations.		£ 41		
•	maximum traction, optimum braking distribution and sta I three axle vehicles	adility c	of the	venic	e
	ate the application of fundamental governing equations	for lor	aitudi	nal.	
	l vertical dynamics and able to use state space approa		5	,	
	steady state and transient response of vehicle during c	ornerin	g.		
	e role of suspension in roll over stability.	م م م م ا		ماطنه	~
	he role of suspension for vibration isolation, rattle spac ropriate mathematical models.	e anu i	oau r	Iolain	y
	e current literature and the necessity of modern tools for	or vehic	cle		
developm					
Module:1 Tyre	Mechanics			9 ho	ur
	ehicle Dynamics- Vehicle and Tyre co-ordinate syste				
	forces and moments-Tyre-slip & skid phenomen				
	ring properties of tyres- Tyre models- Julien's tyre king effort, Temple & Von Schippe approach of ty				
	Friction Ellipse concept, Magic Formula tyre model for				
Tyre performance	on wet surfaces-Ride properties of tyres.				
	itudinal Dynamics			<u>6 ho</u>	
	aracteristics-Maximum tractive effort-Power plant Braking performance-Study of tractor-semitrailer-Anti				
Traction control s		IUUK L	nare	39310	211
				6 ho	ur
	al Dynamics				~
Module:3 Late	ork and governing equations for vehicle in space-Nece		assum	ption	
Module:3 Later General frame wo deducing govern	ork and governing equations for vehicle in space-Nece ng equations for ground vehicles. Bicycle Model-Low	speed	assum d turn	ption ing-H	ig
Module:3 Later General frame wo deducing govern speed cornering-	ork and governing equations for vehicle in space-Nece ng equations for ground vehicles. Bicycle Model-Low State space approach-Steaty state handling charac	speed	assum d turn s of t	iption ing-H wo a	ig xl
Module:3 Later General frame we deducing govern speed cornering- vehicle- neutral s	ork and governing equations for vehicle in space-Nece ng equations for ground vehicles. Bicycle Model-Low State space approach-Steaty state handling charac steer-understeer-oversteer. Steady state gains from E	speed	assum d turn s of t	iption ing-H wo a	ig xl
Module:3 Later General frame we deducing govern speed cornering- vehicle- neutral s	ork and governing equations for vehicle in space-Nece ng equations for ground vehicles. Bicycle Model-Low State space approach-Steaty state handling charac	speed	assum d turn s of t	iption ing-H wo a	ig xl
Module:3 Later General frame we deducing govern speed cornering- vehicle- neutral s pure cornering. V	ork and governing equations for vehicle in space-Nece ng equations for ground vehicles. Bicycle Model-Low State space approach-Steaty state handling charac steer-understeer-oversteer. Steady state gains from E	speed	assum d turn s of t Mode	iption ing-H wo a	ig xl rn

Yaw plane stability and steering conditions-Understeer gradient - Handling response of a vehicle- Lateral transient response-Mimuro plot-Roll over stability analysis. Module:5 Steering and Suspension Mechanisms 6 hours Steering geometry and mechanism, steering mechanism optimization- Four wheel steering-Solid Axle suspension-Independent suspension-Roll center and Roll axis-Roll mement distribution-Car tyre relative angles-Caster theory- Role of suspension and nonlinearity of tyres on vehicle roll and its effect on Understeer co-efficient Module:6 Vertical Dynamics 6 hours Vehicle ride characteristics-Human response to vibration-Vehicle ride models-Quarter car pitch and bounce model- Suspension performance for ride-vibration modelisolation, suspension travel, Road holding. Active and Semi-active suspensions. Introduction to random vibration. ISO road roughness and road profiles-RMS acceleration of sprung mass of vehicle for random road excitation. Module:7 | Introduction to Noise, Vibration and Harshness 6 hours Fundamentals of Acoustics, Noise and Vibrations. Frequency response functions-Modal analysis- Transfer path analysis- Single reference- Multi reference analysis. Module:8 **Contemporary issues:** 2 hours Total Lecture hours 45 hours Text Book(s) J. Y. Wong (2008), "Theory of Ground Vehicles", 4th Edition, John Wiley and Sons 1. Inc., New York, 2008 Thomas D Gillespie, Fundamentals of Vehicle Dynamics, 2nd Revised Edition, SAE 2. International, Warrendale, 2021 **Reference Books** Reza N Jazar "Vehicle Dynamics: Theory and Application", 3rd Edition, Springer 1. International Publishing AG, Switzerland, 2017 Katsuhiko Ogata, "Modern Control Engineering", 5th Edition, Prentice Hall, Pearson, 2015. 2 C. Sujatha, "Vibration and Acoustics: Measurements and Signal Analysis", McGraw Hill 3. Education (India) Private limited, 2017. Mode of Evaluation: CAT, Written assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022 Approved by Academic Council No. 67 Date 08-08-2022

Cou	rse Code		Course Title			L	Т	Ρ	С
MAU	JE505P	Vehicle Dynamics Lab 0					0	2	1
Pre-	requisite	Nil				Syll	abus	versi	on
							1.0)	
	rse Objective								
То	prepare stude	ents to carry out	real-time and v	irtual exp	erimental	mea	surem	ents	for
vehi	cular system a	and its subsystems.	•						
	rse Outcome								
Upo	n Successful	Completion of this L	_ab course, Stud	ents will b	e able to				
		nd use the measure					/stem,	vario	ous
t	ypes of excite	ers, accelerometers	, microphones in	real time	experimer	nts.			
	0				·				
		al testing using CA	RSIN software to	o quantify	its perforn	nance	e, nano	aling	
ć	and ride qualit	<u>y.</u>							
Indi	active Challe	nging Experimen	to						
1.		of test set up for sp					31	hours	
2.		Il Modal Analysis a						hours	
<u>2</u> . 3.		n of structural trans		IVH study	ofa			hours	
5.	passenger c			wir Study	ora		51	iou s	
4.		n of Vibro-acoustic	transfer function	for NVH	study of a		31	hours	
т.	passenger c				study of a		01	louis	
5.		of test set up for sig	nature testing				31	hours	
6.		e measurement in a		durina diffe	erent			nours	
	operating co		· · · · · · · · · · · · · · · · · · ·						
7.	V	vibration measuren	nent of an occup	ant in a pa	assenger o	car	31	hours	
8.		al modelling of ride i					31	nours	
	using Matlab		·	•					
9.		le testing & stability	analysis using C	CARSIM			31	hours	
10.		tic analysis of a con			D		31	hours	
	-	· · · · ·		otal Labo		urs	30	hour	S
Mod	e of assessm	ent: CAT, Written a							
			-						
		/ Board of Studies	27-07-2022						
App	roved by Acad	demic Council	No. 67	Date	08-08-20)22			

Course Code	Course Title	L	Т	Р	С
MAUE506L	Hybrid Electric Vehicles	3	0	0	3
Pre-requisite	Nil	Syll	abus	versi	on
•			1.0		
Course Objectiv	res				
1. To provid	e the students with sufficient knowledge on series, paral	lel and	d full ł	nybrid	
architectu	res of automobile vehicles.				
2. To enable	e the students to understand the concept of electric drive	trains	s, hyb	rid	
	res and hybrid power plant specifications.				
	ne students to understand the concept of sizing the drive			ergy	
	nd their alternatives, energy management and control sy				
	he various power electronics implemented in the electric				
5. To introdu	ice the concepts of various controllers and charging sys	tem in	EV.		
Course Outcom	0				
	e he knowledge of series, parallel, plug-in and full hybrid v	ehicle	<u>د</u>		
architectu					
	analyze, configure and control of DC, induction, permane	ent ma	anet.	switc	:h
	e motor drives and compute their efficiency.		. <u>.</u> ,		
Explain the	e requirements and outline the working of power electro	nics ir	า EV ร	syster	ns
4. Understa	nd about working principle and features of EV battery sy	stem			
5. Describe	the latest technologies present in a charging system for	EV			
	id vehicle architectures			<u>5 ho</u>	
	architectures – range extender and full hybrid system				
	ıg-in hybrid architectures – Commercially available				
	configuration locomotive drives – series parallel switch				
	e transmission parallel and combined configurations –	ivilia n	ybria	– pov	ver
	te power split – power split with shift gy management and control for HEV			6 ho	ure
	 Engine dominant blended strategy – Electric domina 	nt stra	ateav		
	rategies – Introduction to energy management strategie				
	nent strategies – rule based and optimization strategies				
0, 0	ement system in HEV				
	tric vehicle architectures			6 ho	urs
Basic concept o	electric traction - introduction to various electric driv	e-trair	n topo	logie	s –
	rol in electric drive-train topologies - fuel efficiency				
Propulsion unit	- Introduction to electric components used in o	electri	c vel	nicles	_
Transmission typ	bes for EV – Power Flow Control in Electric Drivetra	ain –	Positi	oning	of
	Performance – Tractive Effort				
	tric Motors in EV			7 ho	
	s in EV – Characteristics features of EV motors				
	Construction and operating principle – DC Motor – Br				
	ntrol – Switched Reluctance Motor – AC Induction – P	MSM	– Adv	/antag	jes
	of motors – Drive system Efficiency – EV Motor Cooling				
	er Electronics in EV			<u>6 ho</u>	
	Components – Introduction to Power electronic cor				
	nes DC Drives – DC Regulation and Voltage Convers				
	ameters of DC-DC conversion – Step-up and step-dowr				
	g mode regulators – Comparison of converters – In				101
	ation – Three phase inverters – Voltage control of three j	Juase	niver		
	tric Vehicle batteries Battery types (Lithium ion, Metal air, etc) – Battery pa	aromo	toro	7 ho	
	Dattery types (Lithium ion, Metal air, etc) – Battery pa DC, SOH,DOC, etc) – Construction of Lithium ion (Li) I				•
	\sim ,	Julio	, - vv	SUMI	ษ —

Ter	Characteristics features – Battery Pack – Traction Battery Pack design – Battery Temperature, Heating and Cooling Needs – Thermal Management of Batteries – Types –								
					ent System (BMS) – Architecture of				
	BMS – Design Consideration of BMS Battery State Estimation Methods								
-	Module:7 Electric Vehicle Charging 6 hours								
					Fundamental principle of wireless				
					between Conductive and Inductive				
-	<u> </u>	chemes of EV – Wireless cha	arging method	ds for	EVs.				
Мо	dule:8	Contemporary Issues			2 hours				
		Tota	I Lecture ho	urs:	45 hours				
Tex	kt Book	(s)							
1.	Tom D	enton, (2020) Electric and H	ybrid Vehicle	s. Roi	utledge Publication.				
2.	Ehsan	, M., Gao, Y., Longo, S., 8	Ebrahimi, K	С. М.	(2018). Modern electric, hybrid				
		c, and fuel cell vehicles. CRC							
Ret	ference		•						
1.	Patel,	N., Bhoi, A. K., Padmanaba	an, S., & Holi	m-Nie	elsen, J. B. (Eds.). (2021). Electric				
	-	s: modern technologies and							
2.					nd simulations. BoD–Books on				
	Demar			Ŭ					
Mo	Mode of Evaluation: CAT, Written assignment, Quiz and FAT								
Re	commer	nded by Board of Studies	27-07-2022						
		y Academic Council	No. 67	Date	e 08-08-2022				
· · · ·		•							

Course Code		Course Title	L	Т	Р	С
MMAT502L		Advanced Mathematical Methods	3	0	0	3
Pre-requisite	1	Nil	Syll	abus	vers	sion
				1.	0	
Course Objec						
		students with sufficient exposure to advanced mather	natica	l met	hods	and
		elevant to engineering research.		_		
		computational skills of students by giving sufficient kno				
		techniques useful for solving problems arising in Mech				
		knowledge of real time applications of Autonomous		ns, N	ion-li	near
systems of		nary differential equations and partial differential equa	mons.			
Course Outco	omo:					
		d analyse a variety of tools for solving linear s	vstem	s an	d fin	dina
		these systems.	yotom	5 an	u	ung
		the numerical techniques needed for the solution of	a dive	en en	ainee	erina
problems		· ··· · ······························	- 3		3	
3. Understan	าd an	d correlate the analytical and numerical methods				
		neir ability to write coherent mathematical proofs and			rgum	ents
		municate the results obtained from differential equation				
		he understanding of how physical phenomena are	mode	lled b	ру ра	artial
differential	l equ	ations				
		nvalue Problems		Vinala		ours
		lue problems–Eigenvalues and Eigenvectors–Gerscho ser method, Power method, Inverse Power method.	gorin C		s	
Ineorem-Rulis	snaus					
Module:2	lterat	tion Methods			6 h	ours
		acobi method, Given's method, Householder method,	Deflat	tion. I		
method.	,			,		
		ulus of Variations				ours
0 0	je's	equation –Isoperimetric problems, Rayleigh–Ritz	metho	od -	Gale	ərkin
method.						
Module:4 S	Syste	em of First Order Ordinary Differential			6 h	ours
	-	tions				
		Homogeneous linear systems with constant coeffic			onon	nous
systems - Phas	ase P	lane Phenomena - Critical Points - Stability for linear	system	IS.		
Module:5 N	Nonli	inear systems			6 ho	ours
		ts of nonlinear systems-Stability by Liapunov's metho	d –			
	-					
	wech	anics: Conservative systems.				
	_					
		al Differential Equations				ours
		cond-Order Partial Differential Equations, Significance			eristi	С
curves, Canoni	ical F	Form, Sturm–Liouville problems and Eigen function ex	pansio	ons.		
Module:7 V	Wave	equation 6 ho	urs			
		l long string – a long string under its weight – a bar wit	th pres	cribe	d for	се

on one end – free vibrations of a string. Method of Separation of variables, Solution by	
method of Laplace transforms	

Module:8 Contemporary Issues

2 hours

		Total Lecture ho	ours:			45 hours	
Tex	t Book(s						
1		tial Equations: Theory, Techniq GrawHill Publishing, 2012. (Top			-		
2	York, 20	ts of Partial differential equation 006. (Topics from Chapters 3, 5)					
3	lyengar	cal Methods for Scientific and E , R. K. Jain, New Age Internation from Chapter 3, 7)					
4		story Methods of Numerical Ana Ihi, 2015. (Topics from Chapter ²		S. S. Sa	astr	y, PHI Pvt. Ltd., 5th Edition,	
5	The Ca 4, 5)	lculus of Variations, Bruce van E	Brunt, S	springer,	20	04. (Topics from Chapters 2,	
Ref	erence E	Books					
1	Differei Verlag,	ntial Equations and Dynamical 2001.	System	ns, Lawr	enc	e Perko, 3rd ed., Springer-	
2		oduction to Ordinary Differentia ity Press, New York, 2008 (4th p		tions, Ja	ame	es C. Robinson, Cambridge	
3		tary Applied Partial Differential ional, 1998.	Equati	ions, Rid	cha	rd Haberman, Prentice Hall	
4	4 Numerical Analysis, R. L. Burden and J. D. Faires, 10 th Edition, Cengage Learning, India edition, 2015.						
Mod	de of Eva	luation: CAT, Assignment, Quiz,	FAT				
		ed by Board of Studies	27-07-				
Арр	proved by	Academic Council	No. 67	Da [·]	te	08-08-2022	

Course Code	Course Title	L	Т	Р	С
MAUE601L	Engine Design and Development	3	0	0	3
Pre-requisite	Nil	Syll	abus	vers	ion
•				.0	
Course Objective	es a la companya de la compan				
To make students	who take this course be able to				
 To provid 	e sufficient background of engine design and developn	ient.			
2. To broad	en the understanding constraints in the engine design.				
3. To gain tl	ne basic knowledge of the concepts in engine design ar	nd			
developm	nent.				
4. To broad	en the understanding of Sizing and design of major con	npone	nts		
	e the students to apply the knowledge modern pollution	•			
Course Outcome					
	course, the student will be able to		J		
	the fundamental knowledge of engine component desig	jn and	1		
developm		1			
•••	concepts considering material, loads on engine compo	onent	aesig	n and	
developm					
•	he Lubrication and crankcase breathing system capaci	ty			
4. Impart the	e knowledge to develop the pollution control system.				
					
	ne Maps, Customers and Market			5 ho	
	uirements - Regulatory and technological constraints a				
	ng customer requirement to technical profile - Pack ability / durability, regulatory, production volume,			•	
	ment – Engine Mapping – Developing reliable and dur				
	nisms – Engine Development Process		Jingin	0 11	cai
Module:2 Engi		[7 ho	urs
	que curve – displacement – number of cylinders - cyli	nder a	arran	geme	nt –
inline, V, opposed	I – Bore spacing - Bore to stroke ratio optimization – C	ombu	stion	cham	ıber
design - Valve arr	angement - Cooling type- air cooled-liquid cooled - oil	cooled	d – Lu	ubrica	tion
	ystem – injectors – Fuel Pumps - Spark Plug				
	c and Cylinder Head			5 ho	
	Choice of Materials and Manufacturing - Monolithic b				
	 Design constraints – Cylinder block layout design – (•		•	
	nd head mating – head gasket – Thermal loads – Engi	ne be	aring	desig	jn –
	- Types – Material Selection g of major engine components	<u> </u>		8 ho	ure
	– Material Selection – Connecting Rod Design - Ci	rank (Shaft		
	ring Load and Design - CAM shafts – location - C				
	ear Characterization and Design		1100	type .	ana
Module:5 Cylin				7 ho	urs
	alve sizing Intake and Exhaust valves- Valve train - I	ntake	port		
•	t and manifold length - Exhaust port and exhaust man		-		
Module:6 Cool	ng and Lubrication systems			5 ho	urs
	nkcase Capacity - Pump type, sump size and location		ricatio	on circ	cuit,
	I scavenging, Crankcase ventilation, windage, breathing	•			
	imp capacity and temperature control, Circuit design ar	<u>id ana</u>	lysis		
	Vheel and Engine Accessories, Pollution control			6 ho	urs
devic			(^ :	111/44	
	Accessory Systems - Alternator, Starter and Compre (Power Steering Hydraulic Pump)- Power take off -				
	(i ower oteening rightadile i dilip)- rower take oll -	บรอเย	<u>, 1 01</u>	Jaidi	yuu

Co	nverters	- Particulate Traps - EGF	2								
Мо	dule:8	Contemporary Issues				2 hours					
			Tota	al Lecture	e hours:	45 hours					
Tex	xt Book	(S)									
1.	Kevin I	Hog and Brain Dondlinger	"Vehicular Engin	e Design"	, 2016 Springer	Publications					
Re	ference	Books									
1.	Engine	ering Know-How in Engin	e Design (Part 1	to 24), SA	E, USA.						
_	SAE S	P-1071, Applications and	Developments in	New Eng	ine Design and	Components,					
2.	SAE P	ublications, USA		_	-						
Мо	de of Ev	aluation: CAT, Written as	signment, Quiz a	nd FAT							
			0								
Re	commer	ded by Board of Studies	27-07-2022								
Ар	Approved by Academic Council No. 67 Date 08-08-2022										

Course Code	Course Title	L	Т	Ρ	С
MAUE602L	Battery and Fuel Cell	3	0	0	3
Pre-requisite	NIL	Sy	llabu	is ver	sion
-				1.0	
Course Objectiv	es:				
1. To broaden the	ne importance of Battery and Fuel cell.				
	e students to understand the importance of Battery and	Fuel	cell		
	students to know about Battery performance and selec			hne v	امر
cell.	sudents to know about Dattery performance and selec		allei	yanu	i uci
•	asic knowledge about Lithium-Ion Batteries.				
	tudents to identify the Advanced Batteries for Electric V	ehicle	es		
Course Outcom					
	ssful Completion of this course ,Students will be able to				
	analyze the various type's battery and Fuel cell.				
	various Battery and Fuel cell performance.				
	nd inspect various Battery types and Fuel cell.				
	attery and fuel cell for the modern requirements				
5. To apply the	advanced batteries for electric vehicles				
Module:1 Intro	duction			5 h	ours
		lota		-	
	attery - Battery types - Fundamentals of electrochen , differences -Thermodynamics of electrochemical				
derivation of Ner		Cell	5 -	Delili	illon,
	ery performance and selection			6 h	ours
Battery Perform	ance Measurements, Factors Affecting Battery Per	form	ance		
	Battery Design – Battery Management System - Bat				
	Test - Battery Installation - Selection of Battery for Aut				
Module:3 Lead					ours
	on - cell construction - battery construction - Disch	arge	perf	orman	ice –
	s – Temperature effects and limitations – serv				
characteristics -	maintenance requirements – failure modes				•
	um-Ion Batteries				ours
	eristics - Chemistry - Construction of Cylindrical and F				
	Li-Ion Battery Performance - Charge Characteristics				
	Cylindrical C/LiCoO2 Batteries - Polymer Li-Ion Batteri	es - 1	hin-l	Film, S	3olid-
	ries - Conclusions and Future Trends				
	anced Batteries for Electric Vehicles				ours
	cteristics Description of the Electrochemical System				
	naracteristics of - Metal/Air Batteries - Zinc/Bromine Bat	teries	s - Sc	odium-	Beta
	m/Iron Sulfide Batteries			<u></u>	
Module:6 Fuel			. f		ours
	overview of fuel cells - technology: low and high tempe			el Cells	3 -
	ction kinetics: Introduction to electrode kinetics – perform			ant. fi	ام
	of fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell	r pow	er pi	ani. Il	iei
Module:7 Type	cell power section, power conditioner			6 h	ours
	alkaline fuel cell, polymer electrolyte fuel cell, phos	horia			
• •	e fuel cell, solid oxide fuel cell, Direct Methanol (
	blid oxide fuel cells: planar, tubular, Types of solid o	•			
	rmediate temperature ,Single chamber solid oxide fuel				•
fuel cells.		0013	, 10	510113	VVILII
	itemporary issues:			2 h	ours

			-						
		Total I	_ecture hours:		45 hours				
Tex	kt Book	(s)	·						
1.	 David Linden and Thomas B. Reddy — Hand Book of Batteries Third EditionII , McGraw-Hill, NY, 2010 								
Re	ference	Books							
1.		A. Huggins Advanced Bations, NY 2009	atteries - Materi	al Science	Aspects, Springer				
2.	D.A.J.	Rand, P.T. Moseley, J. Garche	, C.D. Parker, Val	ve Regulate	ed Lead Acid				
	Batteri	es, Elsevier Publications, USA,	2004	_					
Мо	de of Ev	valuation: CAT, Written assignm	nent, Quiz and FA	Т					
Мо	de of as	sessment:							
Re	commer	nded by Board of Studies	27-07-2022						
Ар	Approved by Academic Council No. 67 Date 08-08-2022								

Course Code	Course Title	L	Т	Ρ	С
MAUE603L	Vehicle and Engine Testing	3	0	0	3
Pre-requisite	Nil	Sy	llabus		ion
Course Objectiv			1	.0	
Course Objective	stand and interpret EEC, ECE, FMVSS, AIS a	nd CM	VP ro	aulatio	one
	homologation of vehicles for both domestic and e			0	
	nts, guidelines, various parameters, test instrume				
	pmologation tests				
	stand the requirements and guidelines of Static	and D	ynami	c test	ing
	s of the vehicle and vehicle components and perform				
	tand and gain knowledge about various safety prot				۱ of
	es and testing regulations related to HEV, EV and re				1:
	d the regulations and testing protocols of vehicle's	lighting	g and	signai	ing
systems					
Course Outcome					
	course, the student will be able to				
	he vehicle and identify its regulation according to	the typ	pe pro	posed	i in
CMVR 2 Perform	the Static and Dynamic tests according to IS and		equiat	ions a	and
	analysis report		cyulat		and .
	nd the safety protocols of vehicle's energy storage	systen	ns and	l perfo	orm
	sts to meet CoP	,		•	
	nd the safety systems of EV sub systems and pe	rform \	arious	s tests	; to
meet CoF					
•	he vehicle for retrofitting (both HEV and EV), ider	tify its	regula	ation a	and
•	arious tests arious tests on vehicle's lighting and signaling devic	20			
0. 1 01101111 V		50			
Mashalad ONV	D and Hamala notion			0 1	
	R and Homologation /ehicles, Homologation and its types, Regulations	overvi		<u>6 ho</u>	
	I CMVR), Type approval Scheme, Homologation fo				
	is Parameters, Instruments and Types of test tracks	стро	I, UUI	IOIIIII	y 01
	is rarameters, instruments and rypes of test tracks				
Module:2 Stati	c Tests			6 ho	urs
Static Testing - 1	Tyre Tread Depth Test, Vehicle Weightment (IS:11	825), I	Horn iı	nstalla	tion
(IS:15796), Rear	view mirror installation (AIS:002), Tell Tales (AIS:12	6), Exte	ernal F	Project	ion,
Wheel Guard, A	rrangement of Foot Controls For M1 Vehicle,	Angle	& Di	mensi	ons
Measurement of \	/ehicle – Drive away chassis				
Module:3 Dyna	mic Tests			7 ho	ure
	g: Hood Latch, Gradeability (AIS:003), Pass-by N	bise (18	S:3028		
•	Turning Circle Diameter & Turning Clearance Ci	•		,	
· · · ·	beedo-meter Calibration (IS:11827), Range Te				-
-	, Coast-down test (IS:14785), Brakes Performance			-	
	rrow band EMI Test. Engine power test (petrol &		•		,
	ss emission, Evaporative emission (petrol vehicles),				-
Modulo 4 Dia -4	ria Vahiala Staraga avatar taating			5 h -	
Module:4 Elect	ric Vehicle Storage system testing			5 ho	urs

Safety Requirements of Traction Batteries (AIS : 048) - Electrical Tests - Short Circuit Test -Overcharge Test - Mechanical Tests- Vibration Test - Shock Test - Roll-Over Test (Battery Module) - Penetration Test (Cell Level or Battery module) - Battery Parameters - Capacity Test - Charge Retention Test - Conformity of Production (COP) - Rated Capacity - Battery Performance Testing (ISO:12405,18243,15118)

Module:5	Electric Vehicle and Retrofit Testing	7 hours
Requireme	nts of a vehicle with regard to its electrical safet	y (AIS: 38) - Safety requirements
with respec	t to the electric power train of motor vehicles o	f categories as defined in Rule 2
(u) of CM\	/R - Safety requirements with respect to the	Rechargeable Electrical Energy
Storage Sy	stem (REESS), of motor vehicles categories as	defined in Rule 2 (u) of CMVR -
Measureme	ent of Electrical Energy Consumption (AIS:39) -	Measurement of Max Power and
30 min Pov	ver (AIS:041) - Method of Measuring the Range	e for Electric Vehicles (AIS:040) -
0	netic Compatibility of the Motor Vehicle (AIS r Electric Vehicles (AIS:049)	5: 003 – part 3) - CMVR Type

CMVR type approval for HEV (AIS:102 part-1, part-2), Type approval of Vehicles retrofitted with HEV (AIS:123 part-1&2), Test for EV kit for Conversion (AIS:123 part 3), Test for Electric Vehicle Conductive AC Charging System (AIS:138), and Test for Electric vehicle conductive DC charging system (AIS:138)

Module:6	Engine Testing	6 hours
Engine Te	sting and Performance: Automotive and station	onary diesel engine testing and
related sta	andards. Engine power and efficiencies. F	Range Test, Maximum Speed,
Acceleratio	n Test, Coast-down test, Engine power test (pel	trol & diesel), Indian driving cycle,
Vehicle ma	ss emission, Evaporative emission (petrol vehicl	es)

Module:7Lighting and Signaling Devices6 hoursVehicle Lighting Testing (AIS:009, AIS:010, AIS:037): Installation requirement for lighting –
front and rear, signaling and reflective devices Installation, Conspicuity and Reflective
Marking, Photometry Test: Performance requirement for lighting, signaling and reflective
devices - Head lamp, Front lamp, direction indicator lamp, signaling lamp and Warning
triangles

tria	ngles					
Мо	dule:8	Contemporary Issues			2 hours	
			Fotal Lecture ho	urs:	45 hours	
Тех	t Book(s)				
	A.J.Ma	rtyr, M.A.Plint, Engine T	esting Theory a	nd Pract	ice, SAE International, Third	
1.	Edition	, 2007.				
Ref	ference	Books				
1.	ISO tes	t standards – 26262, 124	05, 18243, 15118	3, 18243		
2.		2	· · · ·	S)– 003,	004, 008, 009, 010, 014, 020,	
	,	88, 039, 040, 041, 048, 04				
3.	Indian Standards (IS) – 14785, 14664, 3028, 15796, 14495, 15627, 1884, 7079, 8654					
4.	Safety Regulations – Society of Indian Automotive Manufacturers					
5.	5. ECE and EEC regulations / Standards					
Mo	Mode of Evaluation: CAT, Written assignment, Quiz and FAT					
Red	Recommended by Board of Studies 27-07-2022					
App	proved b	y Academic Council	No. 67	Date	08-08-2022	

Course Code	Course Tit	le	L	Т	Р	С
MAUE604L	Vehicle Maintenance ar		3	0	0	3
Pre-requisite	Nil	•	Sy	llabus	s vers	ion
-				1	.0	
Course Objectiv	es:					
	e students with sufficient back		the	impor	tance	of
	enance, its types and their diagno					
	ents with the knowledge of engin					
	tudents to have in-depth knowle		agno	ostics,	chas	SIS
system diagno	ostics and electrical system diagr	nostics.				
Course Outcome						
	knowledge of overall vehicle ma	intenance and its type	<u> </u>	n and	off_b	oard
	nd engine and its sub-system ma		3, 0	n anu	011-00	Jaiu
	the application of oscilloscope a		s for	autor	nohile	20
	-depth knowledge about the diag					
	starting systems, lubrication sys					liory
	wledge of chassis system mainte					ues
	akes, steering and suspension sy		gnet			1400
	analyze the maintenance and		al sv	/stem	inclu	ding
	e control diagnostics, airbags dia					
remote diagn		0		U		
	duction					ours
	nance, types of maintenance: p					
	naintenance, preparation of chec					
	eets and other forms, safety pre					
	agnostic Techniques - diagnos					
	ostic techniques - electrical diag	gnostic techniques - fa	uit c	odes	- on a	and
on-board diagnos	tics - Data sources					
Module:2 Engi	ne maintenance				7 hc	ours
	ngine components: cylinder hea	d valve train cylinder	. plo	ck cc		
-	crankshaft assembly; cleaning	-				•
reconditioning of		I	5			,
	ne subsystem maintenance					ours
	intenance of fuel system, Engin					
	at. Lubrication system mainte	enance, Anticorrosion	an	d ant	i free	eze
additives						
		· · ·				
	loscope diagnostics and On	-board			7 ho	ours
	nostics			.	- 1	
			ngir	ne An	aıyzer	
	- Oscilloscopes - Scanners - F					~ I /
Gasoline on-poar	ors - Ignition System - Other co					ol /
						ol /
	ors - Ignition System - Other co d diagnostics monitors - a secon				- Petr	
Module:5 Engi	ors - Ignition System - Other co d diagnostics monitors - a secon ne Systems	ad perspective	rspe	ctive ·	Petr 5 ho	ours
Module:5 Engine	ors - Ignition System - Other co d diagnostics monitors - a secon ne Systems gine operation - Fuel system - Ig	nd perspective	rspe el Inj	ctive ·	 Petr 5 ho - Die 	ours esel
Module:5 Engine	ors - Ignition System - Other co d diagnostics monitors - a secon ne Systems igine operation - Fuel system - Ig management - Fault finding info	nd perspective	rspe el Inj	ctive ·	 Petr 5 ho - Die 	ours esel
Module:5 Engine	ors - Ignition System - Other co d diagnostics monitors - a secon ne Systems gine operation - Fuel system - Ig	nd perspective	rspe el Inj	ctive ·	 Petr 5 ho - Die 	ours esel

Мо	dule:6	Chassis System – mainte diagnostics	nance and		5 hours	
sys sus ant	tem. Se pension i-lock b	nd maintenance of clutch, g rvice and maintenance of k systems, wheel alignment,	orake – disc vehicle body	and drur mainten	nts, propeller shaft, differential n brakes, steering wheel and ance - Diagnostics of brakes - cs - steering diagnostics -	
Мо	dule:7	Electrical System			5 hours	
sys fau	tem fau lts - di	Its - in car entertainment se	ecurity and co em faults -	ommunic	lighting - diagnosing auxiliary ation - body electrical system diagnostics - Cruise control	
Мо	dule:8	Contemporary Issues			2 hours	
		Tota	al Lecture ho	ours:	45 hours	
Tex	t Book	(s)				
1.	Autom 2015	otive Technician Training, To	om Denton, Ta	aylor and	Francis, New York,	
Ret	ference	Books				
1.		obile Electrical and Electron nance and Repair, Tom Den			motive Technology - Vehicle sevier, New York, 2013	
2.	Advand	Ivanced Automotive Fault Diagnosis: Automotive Technology - Vehicle				
	Mainte	nance and Repair, Tom Den	ton, Third Edi	tion, Else	evier, New York, 2012.	
Мо	de of Fv	aluation: CAT, Written assig	nment, Quiz a	and FAT		
		ded by Board of Studies	27-07-2022			

Course Code	Course Title	L	T	P	C
MAUE605L Vehicle Aerodynamics		3	0	0	3
Pre-requisite	Nil	Sy	labus		ion
Course Objectiv			1.	.0	
Course Objective1. To provide the road vehicles	ne students with sufficient background to understand t	he a	erodyi	namic	s of
aerodynamic					-
and comfort.	students to understand aerodynamics of vehicles to he			•	afety
4. To teach stud	lents how to measure and test vehicles using different to	echni	ques.		
<u> </u>					
Course Outcom				,	
analysis of ca	wledge of basic principles of road vehicle aerodynami ars, light trucks and commercial vehicles.		•		
consumption					
and analyzing	knowledge of basic of flow over vehicles and resistan g for stability safety and comfort.				
and to dem	e performance of high speed race cars, commercial ve nonstrate the various measurement and testing t				
	late and analyse the flow over cars using compute				
technique and	d to calculate the lift and drag forces through various tur	bulei	nce m	odels.	
	duction to Road Vehicle Aerodynamics			<u>5 hc</u>	
streamlining era	of road vehicle aerodynamics; evolution of road vehicles ; parametric studies; one-volume bodies; bathtub k /cles; shape and detail optimization; futuristic trends; pe Trucks.	odie	s; cor	nmer	cial
	otion Dynamics			7 hc	
effective mass; consumption and	of motion; aerodynamic drag; tire rolling resistance; o traction diagram; acceleration capability and vehi d economy; gear-ratio re-matching; EPA driving cycles el consumption strategies.	cle	elastic	city; f	uel
Madula a D'	tional Otability, Cofety and Comf. (-	
Flow field around flows; aerodynan passing maneuv	ctional Stability, Safety and Comfort d a vehicle; interior and exterior flows; attached, separ- nic forces and moments; cornering and side wind behav ers; spoiler design; safety and aesthetics; water and ent; ventilation, air flow and odor removal. Engine a systems.	viors; dirt	stabili accur	scillat ity ind mulati	ex; on;
Module:4 Race	e Car, High Performance and Commercial Vehicles			6 hc	ours
Race cars: Fror Center of gravi	t wings, Rear wings, Weight distribution, Over steer ty effects, Slip streaming. Commercial vehicle ae nprovements in design, Different styles of trailers. Effe	rodyr	namics	er ste s: Tru	eer, uck
				<u> </u>	
	surement and Testing Techniques				ours
wind tunnel and	on-road testing techniques; classification and desig	n of	wind	tunne	els;

instrumentation and data acquisition; wind tunnel components and corrections; road testing methods; cross-wind and engine cooling tests; soiling, water and dirt accumulation, visibility measurements on road; wind noise models, analysis and measurement.

Module:6 Computational Fluid Dynamics and Application	5 7 hours					
Introduction to CFD analysis; CFD vs. experimentation; Fundation	mentals of fluid mechanics;					
Continuity, Navier-stokes and energy equations; Modeling ar	J Discretization techniques;					
basic steps in CFD computation; 3-D structured and unstructured grid generation, mesh						
smoothing and sensitivity checks; turbulence models; Eddy viscosity and non-eddy						
viscosity models; RANS and ARSM models; LES and DNS me	iods.					

Module:7 Vehicle Aerodynamic Simulation	5 hours
Biomass - processing and usage, forms - municipal solid waste, wood Availability, properties, Production Methods, modifications required in performance and emission characteristics, storage, handling and disp aspects. Challenges.	n CI engines,

Module:8	Contemporary issues:	2 hours

				Total L	ecture hours:	45 hour			
Tex	Text Book(s)								
1.		/ and Applications of Aerody Dbidi. Published by SAE with							
Re	ference	Books							
1.	Competition car aerodynamics, (2015) 3rd edition- Simon McBeath. Published by Veloce Publishing with ISBN 978-1845847760.								
2.									
Мо	Mode of Evaluation: CAT, Written assignment, Quiz and FAT								
Re	Recommended by Board of Studies 25-07-2022								
Ар	proved b	by Academic Council	No. 67	Date	08-08-2022				

Course Code	Course Title	L T P C
MAUE606L	Vehicle Crashworthiness	3 0 0 3
Pre-requisite	Nil	Syllabus version
•		1.0
Course Objectiv	es:	
2. To help Crashwor	e basic knowledge about Vehicle Crashwort the students to identify the various te thiness. the students to know about vehicle collision	esting regulations for Vehicle
 To broad aspects. 	en the knowledge about the pedestrian various of vehicle safety systems and Injury	safety and vehicle Ergonomic
Course Outcom	<u>o</u> .	
	this course, the student will be able to	
 Acquire a different Configura Formulate Understar 	nd analyze the various testing procedures tion of collision. various vehicle crashworthiness models nd the requirement for vehicle safety syster le ergonomics aspects	
	us injury Mechanisms for evaluating crash se	everity
	ppropriate dummies for different crash tests	-
Module:1 Safe	ty and Crashworthiness	4 hours
Structures - C Crashworthiness,	afety - The Automobile Structure Materials trashworthiness Goals - Crashworthine Crashworthiness Tests, Crashworthin chicle structures for crashworthiness – Activ	ss Requirements, Achieving ness Models Requirements.
Module:2 Cras	h Testing Types and Configurations	6 hours
frontal rigid barrie	Crash testing standards-FMVSS, EURO N er test, Offset frontal barrier test, Side impa irements for crash testing –star ratings- ige Analysis	ct crash test, roll over - Tests,
Module:3 Vehi	cle Collision Models	9 hours
Impulsive models Central Collision- Non central Colli relative motion-C	S- Perfect plastic impact- Perfect elastic im central head on collision, oblique collision, sion-non-central head on offset collision, k Change in vehicle speeds-Total crush en severity assessment. Problems involving veh	pact- Co-efficient of restitution- collision against fixed obstacle, Kelvin's theorem, Application of ergy, Vehicle individual crush
Medule: 4 Dede	atrian Safaty and Ermanamica	<u>Chaura</u>
Module:4 Pede	estrian Safety and Ergonomics	6 hours
Importance of E Human impact f	rgonomics in Automotive safety- Location olerance- Determination of Injury thresho ance. Study of crash dummies	
Importance of E Human impact t comparative toler	olerance- Determination of Injury thresho ance. Study of crash dummies	olds, Severity Index, Study of
Importance of E Human impact to comparative toler Module:5 Vehi	olerance- Determination of Injury thresho	olds, Severity Index, Study of 6 hours

belts- Head restraints, Air bags - Use of energy absorbing systems - Impact protection from steering controls - Design of seats for safety- types of seats-Importance of Bumpers - Damageability criteria in bumper designs - Types of safety glass and their requirements, rearward field of vision in automobiles - Types of rear view mirrors and their assessment - Warning devices - Hinges and latches, etc - External Projections, Door locks & retension systems Rear/front/side under run protection devices

Module:6 Injury Mechanisms

6 hours

Head Injury Mechanisms –Brian injury mechanisms-Acute Subdural Hematoma- Neck Injury Mechanisms - Compression Injuries - TensionExtension Injuries- Lateral Bending Injuries- Abdominal Injury Mechanisms-Thoracic –Lumbar Spine InjuryMechanisms-Pelvic Injury Mechanicsms- Injury Mechanisms of the Lower extremity such as Knee joint injuries, Ankle joint injuries, Fractures of the long bone and foot bornes-Low Speed Crush InjuriesHigh Speed Impact Injuries.

Module:7Introduction to Dummies6 hoursDescription of an ATDs-Hybrid II Dummy Family - Hybrid III Dummy Family - CRABI Infant
Dummies - Side Impact Dummies - Dummy Harmonization6 hours

Module:8 Contemporary issues: 2 hours

	Tot	al Lecture ho	ours:	45 hours		
Tex	kt Book(s)					
1.	Matthew Huang, "Vehicle Crash Me	chanics", CR	C Press 2	2002.		
2.	Paul Du Bois, Clifford C. Chou and others, "Vehicle Crashworthiness and Occupant Protection", American Iron and Steel Institute.2004					
Re	ference Books					
1.	. Jorge A.C.Ambrosio, "Crashworthiness Energy Management and Occupant Protection", International Centre for Mechanical Sciences, Springer Wien New York,2001					
2	Narauan Yoganandan, Alan M. Nahum, John W. Melvin, "Accidental Injury Biomechanics and Prevention, Third Edition, Springer, 2015					
Мо	Mode of Evaluation: CAT, Written assignment, Quiz and FAT					
Re	commended by Board of Studies	27-07-2022				
	Approved by Academic Council No. 67 Date 08-08-2022					

Course Code	Course Title	L	Т	Ρ	С	
MAUE607L	Design of Vehicle Drivelines	3	0	0	3	
Pre-requisite	Nil	Syll	abus	versi	on	
			1.0)		
Course Objectives						
1. To make	students understand the different components of drivelin	e syst	ems.			
2. To make	the students be familiar with the different design aspects	of dri	veline			
compone	nts.					
3. To introdu	uce the student to the systematic design procedure adop	ted in	indus	tries.		
Course Outcom	e					
At the end of this	course, the students will be able to					
1. Comprehe	end the different components of driveline systems.					
2. Compute	the dimensions of driveline components subjected to) stati	c and	fatig	jue	
loads.						
3. Compute	the critical dimensions of components in the different tra	nsmis	sion t	ypes.		
Encompa	ss the modern design tools being followed in industries.					
Module:1 Intro	duction to Transmission & Driveline Systems		1	<u>4 hoι</u>	ırs	
	driveline systems: clutch, gearbox, hydraulic coupling					
manual transmis	ssion, automatic transmission system, transfer case,	diffe	rential	s, dr	ive	
shafts and prope	ller shafts					
Module:2 Clute				<u>6 ho</u> ı	ırs	
Single plate clut	ch, band clutch, multi-disk clutch, clutch design and anal	lysis				
Module:3 Pow	ertrain Integration System			7 hou	Jrs	
Various resistance	es to motion of the automobile, traction, tractive effort, p	erforr	nance	curv	es,	
acceleration, grad	deability, drawbar pull- necessity of gearbox, desirable ra	atios d	of 3 sp	eed 8	ያ 4	
speed gearboxes	s - matching engine and transmission system using ro	bad lo	ads a	ind a	xle	
loads, total ratio	and overall gear ratio- selecting the largest powertrain	ratio,	selec	ting t	the	
smallest powert	rain ratio, selecting the intermediate gears- gears	shift	- fu	Inctio	nal	
requirement – de	sign					
Module:4 Auto	matic Transmission			7 hou	irs	
	tion, gear shift mode, stepped and continuously varia	ahle 1				
	arboxes, epicyclical gearboxes, continuously variable ti					
	ysis of planetary geartrains, gear ratios and clutch eng					
	steady-state condition, torque analysis in shifting proces			mout	no,	
	odynamic Transmission	<u> </u>		7 hou	irs	
	principles - performance characteristics – advantages	_ limi				
	n of drag torque. Torque converter - principles - performa					
	mitations – multi and poly stage torque converters		Jilaiac	//01101	100	
	ostatic Drive and Electric Drive			6 hoi	irs	
	- various types of hydrostatic transmission – principle	<u>-</u> - ad				
	parison of hydrostatic transmission with hydrodyna					
	working principle of Janny hydrostatic drive - electric					
	d Ward Leonard control system – advantages and limita			Sibic	51	
	erentials and Final drives	10110		6 hou	ire	
	e- friction free differential, differential with internal f	friction				
	- drives - performance limits, transmission ratios -					
	and locking differentials, types of self-locking differential		Grua	yee		
	emporary Issues			2 hou	ire	
					113	

				Total Le	ecture ho	urs:			45 hou	ırs
Tex	Text Book(s)									
1.			ett, Kenneth orth -Heinem				,	e Motor	Vehicle" 13th	
Ref	ference	Books								
1.			"Advanced v York, 2002		Technol	ogy",	second	edition,	Butterworth	-
2.	Dr. N.	K. Giri, "A	utomobile Me	echanics"	, Seventh	reprir	nt, Khanna	a Publish	ers, Delhi, 200	05
Мо	Mode of Evaluation: CAT, Written assignment, Quiz and FAT									
Ree	Recommended by Board of Studies 27-07-2022									
Арр	proved b	y Acaden	nic Council	No.	67	Date	08-08	3-2022		

Course Code	Course Title	L	Т	Р	С
MAUE608L	Noise, Vibration and Harshness	3	0	0	3
Pre-requisite	Nil	Sy	llabus	s versi	on
			1	.0	
Course Objectiv	'es				
1. To help tl	ne students to understand the different sources of nois	se fro	m aut	omobi	les,
including	engine noise, vehicle structural noise, aerodynamic n	oise,	exhau	ust no	ise,
and their	reduction techniques				
	e the students to identify the role of NVH engineers				
	f noise and vibration, noise quality, and developme	nt st	ages	ofar	ıew
vehicle.		. .	-		
	the students with sound measurement, single degree				ion,
test facilit	ies for measuring noise and vibration, and processing t	ne no	ise sig	gnals.	
Course Outcom					
	e rize various sources of automotive noise and their reduc	rtion	in auto	mohil	<u></u>
	the knowledge of the role of NVH engineers in a new ve				00
3. Identify v	arious sound and vibration measurement methods, inc	ludir	d tran	sient a	and
	ate response of a single degree of freedom applied to v				
	he hands-on experience of using semi-anechoic room				and
	ids simulators to measure various types of noise and vi				
5. Outline th	ne role of transducers, acoustics holography, and var	ious	instru	mentat	tion
	I for analyzing the NVH of vehicle systems				
	sampling, statistical, and frequency analysis of va	rious	data	obtaiı	ned
during N∖	/H measurements.				
	mobile noise pollution		.	5 ho	
	se pollution - Engine Noise, Transmission Noise, Veh bise, Exhaust Noise.	icie s	iruciu	rai ino	ise,
	in the Automotive Industry			6 ho	ure
	and vibration. Design features. Common problems. N	larau			
	noise requirements. Target vehicles and objective ta				
	vehicle programme and the altering role of NVH engine		J. DCV	ciopin	CIII
Module:3 Hum		<u>//0.</u>		5 ho	urs
	d measurement. Human sensitivity and weighting fac	tors	related		
	sources, Acoustical resonances. Properties of acousti				••••
Module:4 Vibra				7 ho	urs
	tion in automotive, Transient and steady-state respon	se of	one		
	applied to vehicle systems. Transmissibility, Magnifica				
vibration analysis					
Module:5 Test	Facilities and Instrumentation			7 ho	urs
Laboratory simul	ation: rolling roads (dynamometers), road simulators, se	emi-a	inechc	oic rooi	ms,
	c. Transducers, signal conditioning and recording sys				ead
recordings. Soun	d Intensity technique, Acoustic Holography, Statistical I	Energ	iy Ana		
Module:6 Sign				6 ho	
	g and resolution. Statistical analysis. Frequency analys	sis. C	ampbo	ell's pl	ots,
	is, coherence and correlation functions.				
	control Strategies & comfort			7 ho	
	Noise path analysis. Noise reduction in Automobile				
	n of Experiments, Optimization of Dynamic chara	icteri	stics.	Vibrat	lion
	elmholtz resonators. Active control techniques.			0 -	
woaule:8 Cont	temporary Issues			2 ho	urs

		Tota	I Lecture ho	urs:	45 hours		
Tex	kt Book	(S)					
1.		o ,	s-Herwig Prie	ebsch, A	utomotive NVH Technology,		
	2016, s	springer.					
2.	István	L. Vér, Leo L. Beranek, No	ise and Vibr	ation Co	ontrol Engineering: Principles		
	and Ap	plications, 2006, John Wiley	′ .				
	•						
Re	ference	Books					
1.	M. L. N	/unjal, 2014, Noise and Vibra	ation Control,	, World S	Scientific Press: Singapore		
2.	Norton	M P, Fundamental of Noise	and Vibration	n, Cambi	ridge University Press, 2003.		
Мо	de of Ev	aluation: CAT, Written assig	nment, Quiz	and FAT	· · ·		
Re	commer	nded by Board of Studies	27-07-2022				
Ар	Approved by Academic Council No. 67 Date 08-08-2022						

Cou	rse Code		С	ourse Titl	е		L	Т	Ρ	С
MAU	JE608P	Noise,	Vibrati	on and Ha	on and Harshness Lab			0	2	1
Pre-	requisite	Nil					Syl	llabus	vers	sion
	_						-	1.	0	
Cou	rse Objectiv	es								
	1. To acquire	e hands-on exp	erience	by carrying	g out virtu	al and exper	imen	tal vib	ratio	า
		measurements								
	rse Outcome									
	1. Understar	d the vehicle	vibrati	on and i	noise me	asurements	syst	tems	such	i as
		eters, micropho					I-tim	e expe	erime	nts.
		nowledge in an								
3		ands-on experi			noic room	s and rolling	roa	d simı	ulato	rs to
	measure v	arious noises a	ind vibra	ations.						
Indi	cative Exper									
1.		tion on simple a					MATI	LAB).		
2.		H Simple simul								
3.	Electric vehi	cle sound quali	ty meas	urement a	t different	locations.				
4.	Engine vibra	ition response a	analysis	at differer	nt parts us	ing accelero	mete	ers.		
5.	Interior nois	e measurement	in an a	utomotive	cabin usir	ig microphor	nes.			
6.	Radiated no	ise measureme	nt of dif	ferent veh	icle syster	ns sound lev	el m	eter.		
7.	Structural vi	bration measur	ement u	ising vibro	meter.					
8.	Simple com	oosite automoti	ve part v	vibration m	neasureme	ent at differe	nt en	d cond	dition	S
	using accele	rometers.								
9.	Simple com	oosite automoti	ve part r	noise mea	surement	at anechoic	room	ns usin	ıg	
	microphone	3.							-	
10	Automotive	chassis vibratio	n measi	urement u	sing accel	erometers/vi	brom	neter.		
11.	Drive line N	/H performance	analys	sis						
11.	Demonstrati	on of accelerat	on sens	sor instrum	entations	and prepara	tion 1	for rea	I-tim	е
	vibration tes	ting.								
12.	Demonstrati	on of noise sen	sor inst	rumentatic	ons and pr	eparation for	real	-time r	noise	;
	testing.									
				Т	otal Labo	ratory Hour	's 3	30 hou	Irs	
							•			
Mod	e of assessm	ent: CAT, Writt	en assig	gnment, Q	uiz and FA	T				
	· · ·	D								
		y Board of Stud	ies	27-07-20						
Аррі	roved by Aca	demic Council		No. 67	Date	08-08-202	22			

Course Code	Course Title		L T P C
MAUE609L	Computational Fluid Flow and Hea	at Transfer	3 0 0 3
Pre-requisite	Nil		Syllabus version
			1.0
Course Objectiv	/es		
The objective of			
	he students with sufficient background	to understand	the mathematical
	ation of the governing equations of fluid f		
	ne students to understand the fundam		
	tion techniques.	entar concepto	
	students to the computational complici	ties on various	s turbulence
models.			
Course Outcom			
	course, the student will be able to:		
	ematics and engineering fundamentals to		
	idflow and heat transfer problems and to	formulate gove	rning
	o represent them. I formulate the appropriate discretization	tochniquos has	od on the
•	cal nature of the governing equations.	leciniques bas	
	flow and heat transfer problems (diffusior) uning finito di	fforance mothed
		, .	
4. Solve Iula method.	flow and heat transfer problems (convect	ion-alliusion) us	sing inflie volume
	e knowledge of algorithm for pressure-ve	locity coupling t	or
	sible flow using SIMPLE, SIMPLER, SIM		
	d suggest the type of turbulence models		
subsystem	•• ••		0
		r	
	erning Equations of Fluid flow and		4 hours
	on engineering applications, Merits of	f CED Veete	r colouluo Intogral
transform theore	ems, Reynolds transport theorem, subs	stantial derivativ	e Conservation of
	m and energy equations in conserva-		
Physical bounda			
Module:2 Mat	nematical Nature of the Governing		6 hours
	ations and discretization methods		
	of PDE - elliptic, parabolic and hype		
	aspects of discretization, Different discr		ques – Introduction
	e, finite volume, finite element and spectr	al methods.	
	e difference method		8 hours
	discretization (FDM), Taylor series me		-
	ard and central differences, Explicit, Imp		
	solution to steady and unsteady 1-D an	a 2-D diffusion	
	• •		problems. Different
types of errors -	consistency, accuracy, and stability.		
types of errors - Module:4 Finit	consistency, accuracy, and stability.		8 hours
types of errors - Module:4 Finit Central different	consistency, accuracy, and stability. e volume method ce, upwind, quick, exponential, hybrid	•	8 hours w schemes- False
types of errors - Module:4 Finit Central different diffusion. Finite v	consistency, accuracy, and stability. e volume method ce, upwind, quick, exponential, hybrid rolume solution to 1-D and 2-D convection	•	8 hours w schemes- False lems.
types of errors -Module:4FiniteCentral differencediffusion. FiniteModule:5Solution	consistency, accuracy, and stability. a volume method be, upwind, quick, exponential, hybrid rolume solution to 1-D and 2-D convection ition Algorithm for Pressure-velocity	•	8 hours w schemes- False
types of errors -Module:4FiniteCentral differencediffusion. FiniteModule:5SoluCou	consistency, accuracy, and stability. e volume method ce, upwind, quick, exponential, hybrid rolume solution to 1-D and 2-D convection ition Algorithm for Pressure-velocity pling	n-diffusion prob	8 hours w schemes- False lems. 6 hours
types of errors - Module:4 Finite Central difference diffusion. Finite Module:5 Solu Cou Staggered grid,	consistency, accuracy, and stability. a volume method be, upwind, quick, exponential, hybrid rolume solution to 1-D and 2-D convection ition Algorithm for Pressure-velocity	n-diffusion prob	8 hours w schemes- False lems. 6 hours

Мо	dule:6	Turbulence Modelling					8 hours
Nat	Nature, Description and Characterization of turbulent flow, Reynolds averaging,						
Re	Reynolds averaged N-S equations, Eddy viscosity hypothesis, Reynolds Stress Transport						
Equ	uations.	First order closures: k-ɛ	two equation m	nodels,	SST k	-ω model. La	arge Eddy
Sin	nulation	3.					
Мо	dule:7	Application of CFD in IC	engines				3 hours
Flo	w throu	gh manifolds, valves and	ports, Elements	of air	motion	in engines.	Outline of
	•	nic models, application of	available comme	ercial c	odes to	engine proce	esses with
		t chemical reactions.					
Мо	dule:8	Contemporary Issues					2 hours
		Το	tal Lecture hour	rs:			45 hours
Tex	xt Book	、 /					
1.		D. Anderson, JR., Computa w Hill Education, Fifth repr				cs with Applic	cations,
2	2 Joel H. Ferziger, Milovan Perić, and Robert L. Street., Computational Methods for Fluid Dynamics, Springer, 4 th edition, 2020.						
Reference Books							
Re	•		020.				
Re 1	ference			l Fluid I	-low and	d Heat Transf	
	ference K. Mu	Books	n, Computationa				
	ference K. Mu secor	Books Iralidhar, and T. Sundaraja	n, Computationa Publishing Hous	e, New	Delhi, 2	014.	er,
1	ference K. Mu secor H.K Ve	Books Iralidhar, and T. Sundaraja Ind edition (reprint), Narosa	n, Computationa Publishing Hous a, Introduction to	e, New Comp	Delhi, 2 utationa	014. I Fluid Dynam	er,
1 2	ference K. Mu secor H.K Ve The Fi	Books Iralidhar, and T. Sundaraja Ind edition (reprint), Narosa Persteeg and W Malalaseker	n, Computationa Publishing Hous a, Introduction to nd edition, Prentio	e, New Comp ce Hall	Delhi, 2 utationa	014. I Fluid Dynam	er,
1 2 Mo	ference K. Mu secor H.K Ve The Fi de of Ev	Books Iralidhar, and T. Sundaraja Ind edition (reprint), Narosa Persteeg and W Malalaseker Inite Volume Method, secor	n, Computationa Publishing Hous a, Introduction to nd edition, Prentio	e, New Comp ce Hall	Delhi, 2 utationa	014. I Fluid Dynam	er,
1 2 Mo Ree	ference K. Mu secor H.K Ve The Fi de of Ev	Books Iralidhar, and T. Sundaraja Ind edition (reprint), Narosa Persteeg and W Malalaseker nite Volume Method, secor valuation: CAT, Written ass	n, Computationa Publishing Hous a, Introduction to d edition, Prentio ignment, Quiz ar	e, New Comp ce Hall	Delhi, 2 utationa	2014. I Fluid Dynam 010.	er,

Course Code	Course Title		I	Т	Р	С
MAUE611L	Vehicle Safety and Lightin	าต	3	0	0	3
Pre-requisite	Nil	.9	-	abus	-	-
· · · · · · · · · · · · · · · · · · ·			• jii	1.0		•
Course Objectiv	/es					
	ehicle passive and active safety systems					
	e understanding crash testing and lighting					
	sic knowledge of lighting of automotive v					
	e importance of vehicle safety and lightin					
	students to apply the knowledge modern		s.			
Course Outcom	e					
	Completion of this course , Students will					
	dge about safety and vehicle structural cr					
	man response to impact response systen					
	erformances of vehicle safety systems an	d lighting				
	e modern lighting system					
5. Develop the m	odern vehicle safety and lighting systems	8				
Modula d Inter-	duction to cofety and Vahiala				6 6	
	oduction to safety and Vehicle ctural crashworthiness				6 hou	urs
		aniatanaa avata	mo ir		mohi	
	ety-Active and passive safety, Driver as erminology. Balance of stiffness and tou					
	acteristics of vehicle structures, Design					
	udies, Optimization of vehicle structures			103, 1	nouei	ing
Module:2 Cras			1033.		7 hou	irs
	s, and Impact with rebound, movable ba	rrier tests Ana	vsis a			
	rier impacts, Roll over crash tests, Beh					
	hotographic analysis of impact tests, F					
	Frontal Pole Impact, Pedestrian Impact.	5 7 1				
Module:3 Ergo	onomics and Human response to				7 hou	urs
Impa						
	Ergonomics in Automotive safety, Loca					
	tolerance, Determination of Injury thre					
	rance, Application of Trauma for analys		ries. I	njury	criteri	ia's
	crash and modeling and simulation studi	es in dummy.				
	icle safety systems	· · · · · · · · ·			<u>6 hou</u>	
	equirements, Restraints systems used a					
	Air bags used in automobiles, Use	••		•••		
-	bact protection from steering controls, D tomobiles. Importance of Bumpers in aut	•		•	• •	
	. Introduction to the types of safety g					
	vision in automobiles, Types of rear v					
	, Hinges and latches etc.			4330	,55110	<i>.</i>
	damentals of light, vision and				7 hou	urs
colo	•					
	radiation and light, Propagation of I	ight, Spectral	sensi	tivity	of lic	ght,
-	adiation and light, Standard element	•		•	-	
	rivation of luminous flux from luminous					
reflection, lumination	ance calculations, discomfort glare, ey	/es as an opt	ical s	ystem	ı, vis	ual
	ng for results, modes of appearance, Poi					
	hromatic Colorimetry, Surface colour,	colour spaces	and	colour	solic	ds,,
the colour, Tri-c colour rendering.		colour spaces	and o	colour	solic	ds,,

Мо	dule:6	Light Measurements, Testing equipment calibration and	6 hours			
		photometric practice				
Bas	ics of	standards and detectors, spectral measurer	ments and Colorimetry, illuminant			
	meters and luminance meters, colorimeters. Fundamentals of equipment used for light					
		ent in Automotive field; Gonio - Photome				
		sphere, types, application, coordinates syste				
		construction, characteristics etc. used in d				
		al Regulations, test requirements and testing p				
Mod	dule:7	New Technology in Automotive	4 hours			
		lighting				
		/ progress in automotive lighting, Gas Disch tem, Daylight running lamps	arges lamps, LED, adoptive front			
		Contemporary Issues	2 hours			
		· · ·				
		Total Lecture hours:	45 hours			
Tex	t Book	(s)				
1.		Happian-Smith 'An Introduction to Moder	n Vehicle Design' Butterworth –			
		nann , ISBN 07506 5044 3. 2002	Ũ			
2.	Burkar	d Wördenweber · Jörg Wallaschek · Peter Bo	yce · Donald Hoffman, 'Automotive			
		g and Human Vision' ISBN 978-3-540-36696				
	York. 2	2007				
Ref		Books				
1.		Seiffert and Lothar Wech, "Automotive safety h	nandbook", SAE International , SAE			
	ISBN 9	978-0-7680-1798-4 , 2007				
2.		u Bois et al., "Vehicle Crashworthiness and Oc				
	and St	eel Institute, Southfield, Michigan 48075, 2004				
3.	Watts,	A. J., et al "Low speed Automobile Accidents"	Lawyers and Judges 2003.			
4.	4. Edward .A, "Lamps and Lighting", Hodder & Stoughton, London, 1993.					
Мос	de of Ev	aluation: CAT, Written assignment, Quiz and F	FAT			
Rec	ommer	nded by Board of Studies 27-07-2022				
		by Academic Council No.67 Date	e 08-08-2022			
		,				

Course Code	Course Title	L	Т	Ρ	С
MCDM504L	Finite Element Methods	3	0	0	3
Pre-requisite	Nil	Syll	abus	Versi	on
			1.0	0	

Course Objectives :

The main objectives of this course are to:

- 1. Enable the students understand the mathematical and physical principles underlying the Finite Element Method (FEM) as applied to solid mechanics and thermal analysis
- 2. Introduce students to the theory of elasticity
- 3. Teach students the characteristics of various elements in structural and thermal analysis and selection of suitable elements for the problems being solved
- 4. Introduce students to various field problems and the discretization of the problem
- 5. Make the students derive finite element equations for simple and complex elements

Course Outcome :

At the end of the course, the student will be able to:

- 1. Apply the knowledge of mathematics and engineering to solve problems in structural and thermal engineering by approximate and numerical methods
- 2. Employ various formulation methods in FEM.
- 3. Apply suitable boundary conditions to a global equation for bars, trusses to solve displacements, stress and strains induced.
- 4. Apply suitable boundary conditions to a global equation for beams and frames to solve displacements, stress and strains induced.
- 5. Analyze linear 2D and 3D structural problems using CST element and analyze the Axisymmetric problems with triangular elements. Evaluate heat transfer problems for bar, stepped bar and fin like structures.
- 6. Analyze the Vector Variable problems using Plane stress, Plane Strain and Axisymmetric conditions
- 7. Demonstrate the use of Finite element analysis in Production Processes

Module:1	Fundamental concepts	6 hours
Physical prob	lems, Finite Element Analysis as Integral part of Computer	Aided Design;.
Stresses and	Equilibrium; Boundary Conditions; Strain-Displacement Relation	ations; Stress –
strain relation	s, Linear and nonlinear material laws; Temperature Effec	ts; Definition of
Tensors and	indicial notations; Deformation gradients; Classification of d	ifferent types of
deformations;	Degree of Freedom; Field Problem and their degree of	freedom. Solid
Mechanics Pr	oblems and Fluid Mechanics Problems. Deformations and s	tresses in bars,
thin beams, t	hick beams, plane strain- plane stress hypothesis, thin plane	ate, thick plate,
axisymmetric I	podies; Approximate nature of most of these deformation hypo	theses; General
3D deformatio	n (linear small deformation), Large deformation (nonlinear).	

Module:2	General Techniques and Tools of Displacement	6 hours
	Based Finite Element Analysis	
Mathematical	models, Approximate solutions, Minimization proce	edure, Variational
procedure, In	terpolation polynomial method, Nodal approximation n	nethod and Finite
Element Solut	ions. Strong or classical form of the problem and weak or	Variational form of
the problem;	Galerkin's and Weighted residual approaches; Shape	and interpolation
functions for 1	D, 2D & 3D applications; Use of shape (interpolation) fun	ctions to represent

general displacement functions and in establishment of coordinate and geometrical transformations; Hermite, Lagrange and other interpolation functions. Module:3 **One Dimensional Problems: Bars & Trusses** 6 hours Introduction; Local and global coordinate systems; Transformation of vectors in two and three dimensional spaces; Finite Element stiffness matrix and load vector of a basic element in local coordinate system using energy approach; Assembly of Global Stiffness Matrix and Load vector; Treatment of boundary conditions; Solution algorithms of linear system matrices; Example problems in trusses; Formulation of dynamics analysis, global mass matrix; Extraction of modal frequencies and mode shape. **One Dimensional Problems – Beams and Frames** Module:4 7 hours Finite Element Modeling of a basic beam element in local coordinate system using energy approach; Formulation of element matrices; Assembly of the Global Stiffness Matrix, Mass matrix and Load vector; Treatment of boundary Conditions; Euler Bernoulli (thin) beam element and Timoshenko (thick) beam element; Beam element arbitrarily oriented in plane (2D) as Plane frames and in space as space frame analysis (3D); Solution algorithms of linear systems.; extraction of modal frequencies and mode shape. Module:5 Two Dimensional Analysis – Scalar Variable 6 hours Problems Formulation of 2D problems using Partial Differential Equations; Solution algorithm using Energy principle; Constant Strain Triangles (CST); Bilinear Quadrilateral Q4; Formulating the element matrices; Modelling boundary conditions; Solving the field problems such as heat transfer in automotive cooling fin, engine cover; Torsion of a non-circular shaft etc. Vector Variable problems - Plane stress, Plane Strain Module:6 6 hours and Axi-symmetric Analysis Equilibrium equation formulation – Energy principle and formulating the element matrices -Plane stress, plane strain and axi-symmetric elements; Orthotropic materials; Isoparametric Elements; Natural co-ordinate system; Higher Order Elements; Four-node Quadrilateral for Axisymmetric Problems; Hexahedral and tetrahedral solid elements; Linear, Quadratic and cubic elements in 1D, 2D and 3D; Numerical integration of functions; Gauss and other integration schemes. C0 and C1 continuity elements. Module:7 Analysis of Production Processes 6 hours FE Analysis of metal casting - Special considerations, latent heat incorporation, gap element - time stepping procedures - Crank - Nicholson algorithm - Prediction of grain structure - Basic concepts of plasticity - Solid and flow formulation - small incremental deformation formulation – FE Analysis of metal cutting, chip separation criteria, incorporation of strain rate dependency. Module:8 **Contemporary issues:** 2 hours **Total Lecture hours:** 45 hours Text Book(s) Seshu.P, Finite Element Analysis, Prentice Hall of India, 2013 1. 2. Saeed Moaveni, Finite Element Analysis, Theory and Application with ANSYS, Pearson Fifth Edition, 2021

Reference Books								
1	Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, Concepts and Applications of Finite Element Analysis, John Wiley & Sons, Incl.2002.							
2	S.S.Rao, Finite element method in Engineering, 2011, Butterworth Heinemann							
3	J.N Reddy, An introduction to t	he Finite Elemen	t Method,	, 2017, Mcgraw Hill				
4	Tirupathi R. Chandrapatla, Ashok D. Belegundu, Introduction to Finite Element in Engineering Pearson 4 th Edition, 2011							
Mode	Mode of Evaluation: CAT, Written assignment, Quiz and FAT							
Reco	ecommended by Board of Studies 27-07-2022							
Appr	oved by Academic Council	No.67	Date	08-08-2022				

Course Code		e Code	Course Title					L	Т	Ρ	С		
MC	DM	I504P		Finite El	ement Metho	ds Lab		0	0	2	1		
Pre	-re	quisite	Nil					Syllabus version					
									1.0)			
		e Objectiv											
	1.	To enable	the student'	s skills in	FEM software	e that can	be used a	and im	pleme	entec	for		
		various engineering applications.											
	2. To develop proficiency in the application of the finite element me						meth	od (m	nodel	ing,			
	analysis, and interpretation of results) to realistic engineering probler						olems						
	-	e Outcome											
	1.	Demonstra	ate the ability	y to create	e and analyze	the FE m	odels for ti	russes	s, fran	nes,			
		plate struc	tures, machi	ine parts,	and engineeri	ng compo	onents usir	ng ge	neral-	purp	ose		
		FE softwa	res like Ansy	/s, Matlab	etc								
	2	2. Demonstrate the ability to evaluate and interpret FEA analysis resul								lts for design and			
	Ζ.	Demonstra	ate the ability	y to evalu	ate and interp	oret FEA a	analysis re	sults f	or de	sign	and		
	Ζ.	evaluation	-	y to evalu	ate and interp	oret FEA a	analysis re	sults f	or de	sign	and		
	Ζ.		-	y to evalu	ate and interp	oret FEA a	analysis re	sults f	or de	sign	and		
	ica	evaluation tive Exper	purposes ments				analysis re	sults f	or de	sign	and		
	ica	evaluation tive Exper Stress ana	purposes ments lysis of a bai	r without o	considering se	lf-weight	analysis re		or de		and		
Indi	ica	evaluation tive Exper Stress ana	purposes ments lysis of a bai	r without o		lf-weight	analysis re			rs	and		
Indi 1.	ica	evaluation tive Exper Stress ana Effect of se	purposes ments lysis of a bai	r without of stress of	considering se a vertical han	lf-weight	analysis re		4 hou	rs rs	and		
Indi 1. 2.	ica	evaluation tive Exper Stress ana Effect of se Stress ana	purposes i ments lysis of a bai elf-weight on	r without of stress of apered ro	considering se a vertical han	lf-weight	analysis re		4 hou 4 hou	rs rs rs	and		
Indi 1. 2. 3.	ica	evaluation tive Exper Stress ana Effect of se Stress ana Two dimen	purposes ments lysis of a bar elf-weight on lysis of the ta sional truss	r without of stress of apered ro problem	considering se a vertical han	lf-weight ging bar			4 hou 4 hou 4 hou	rs rs rs rs	and		
Indi 1. 2. 3. 4.		evaluation tive Exper Stress ana Effect of se Stress ana Two dimen Bending m Plane stres	purposes iments lysis of a bar elf-weight on lysis of the ta sional truss oment and s as and plane	r without of stress of apered ro problem shear force strain an	considering se a vertical han d e diagram of v alysis	If-weight ging bar various be	ams		4 hou 4 hou 4 hou 4 hou	rs rs rs rs rs rs	and		
Indi 1. 2. 3. 4. 5.		evaluation tive Exper Stress ana Effect of se Stress ana Two dimen Bending m Plane stres	purposes iments lysis of a bar elf-weight on lysis of the ta sional truss oment and s as and plane	r without of stress of apered ro problem shear force strain an	considering se a vertical han d e diagram of v	If-weight ging bar various be	ams		4 hou 4 hou 4 hou 4 hou 4 hou 4 hou	rs rs rs rs rs rs rs	and		
Indi 1. 2. 3. 4. 5. 6.		evaluation tive Exper Stress ana Effect of se Stress ana Two dimen Bending m Plane stres Modal, har	purposes iments lysis of a bar elf-weight on lysis of the ta sional truss oment and s as and plane	r without of stress of apered ro problem shear force strain and ransient a	considering se a vertical han d e diagram of v alysis	If-weight ging bar various be	ams		4 hou 4 hou 4 hou 4 hou 4 hou 4 hou	rs rs rs rs rs rs rs rs rs	and		
Indi 1. 2. 3. 4. 5. 6. 7. 8.		evaluation tive Exper Stress ana Effect of se Stress ana Two dimen Bending m Plane stres Modal, har Axi-symme	purposes iments lysis of a bar elf-weight on lysis of the ta sional truss oment and s and plane monic and tr etric analysis	r without of stress of apered ro problem shear forco strain an ransient a	considering se a vertical han d e diagram of v alysis nalysis on bar	If-weight ging bar various be , beam ar	ams nd plates		4 hou 4 hou 4 hou 4 hou 4 hou 4 hou 3 hou	rs rs rs rs rs rs rs rs rs rs	and		
Indi 1. 2. 3. 4. 5. 6. 7. 8.		evaluation tive Exper Stress ana Effect of se Stress ana Two dimen Bending m Plane stres Modal, har Axi-symme	purposes iments lysis of a bar elf-weight on lysis of the ta sional truss oment and s and plane monic and tr etric analysis	r without of stress of apered ro problem shear forco strain an ransient a	considering se a vertical han d e diagram of v alysis nalysis on bar	If-weight ging bar various be , beam ar	ams nd plates		4 hou 4 hou 4 hou 4 hou 4 hou 4 hou 3 hou 3 hou	rs rs rs rs rs rs rs rs rs rs	and		
Indi 1. 2. 3. 4. 5. 6. 7. 8. Mod	ica ica	evaluation tive Exper Stress ana Effect of se Stress ana Two dimen Bending m Plane stres Modal, har Axi-symme	purposes iments lysis of a bar elf-weight on lysis of the ta sional truss oment and s and plane monic and tr etric analysis	r without of stress of apered ro problem shear force strain an ansient a	considering se a vertical han d e diagram of v alysis nalysis on bar	If-weight ging bar various be , beam ar	ams nd plates		4 hou 4 hou 4 hou 4 hou 4 hou 4 hou 3 hou 3 hou	rs rs rs rs rs rs rs rs rs rs	and		

Cours	se Code	Co	urse Title			L	Т	Р	С	
MAUE696J		-	Study Oriented Project					-	02	
Pre-re	quisite	NIL				Syllabus v		vers		
							1.	0		
	se Objectivo									
1.		nt will be able to analys	e and interp	oret publis	shed litera	ture f	or inf	orma	tion	
	pertaining to niche areas.									
		technical literature and a								
3.	Use insigh	t and creativity for a bett	er understa	nding of t	ne domain	of int	erest			
Cours	se Outcome	<u>)</u>								
		analyse, and interpret	published	literature	books pr	ovidin	g inf	orma	tion	
	related to	niche areas/focused dom	nains.		·		0			
2.	Examine to	echnical literature, resolv	e ambiguity	, and dev	elop conc	usion	S.			
		e knowledge and use ins			-			e don	nain	
	of interest.	0	0	,						
4.	Publish th	ne findings in the pee	er reviewed	journal	s / Natio	nal /	Inte	rnatio	onal	
	Conferenc	•		,						
Modu	le Content			(Proj	ect durati	on: O	ne se	mes	ter)	
		towards reading publish s under the guidance of a		e or boo	ks related	to n	iche :	areas	s or	
Mode		on: Evaluation involves	•	2						
		ered. Assessment on the	a mealast F	Ponort to I	he submitt			otion		
studer	0			•						
studer and pr	roject review	vs – Presentation in the N		•						
studer and pr	0	vs – Presentation in the N		•						
studer and pr Engine	roject review eering Tech	vs – Presentation in the N		ternationa						

Course Code		Cour	rse Title			L	т	Ρ	С
MAUE697J De			ign Project						02
Pre-re	equisite	NIL	•			Sylla	abus	vers	ion
							1.0)	
Cours	se Objectiv	es:							
1.	Students v	vill be able to design a pro	totype or pr	rocess or	experime	ents.			
2.	2. Describe and demonstrate the techniques and skills necessary						roject	t.	
3.	Acquire kr	owledge and better under	standing of	design sy	ystems.				
Cours	e Outcome	:							
	prototype	ew skills and demonstrat or working model or proce techniques, skills, and mo	ss or experi	iments.	·				.9.
3.	Synthesize	e knowledge and use in esign systems. ne findings in the peer	isight and	creativity	to bett	erun	derst		
3. 4.	Synthesize improve de Publish th	e knowledge and use in esign systems. ne findings in the peer	isight and	creativity journals	to bett	er [°] un onal /	dersta	rnatio	onal
3. 4. Modu Stude	Synthesize improve de Publish th Conference Ie Content Its are ex ypes to des	e knowledge and use in esign systems. ne findings in the peer	skills and	creativity journals (Projet	to bett / Natic <u>ct durati</u> trate the	er [°] un onal / <u>on: O</u> abilit	dersta Inte ne se	rnatio emes deve	onal ter) elop
3. 4. Studer prototy proces Mode studer and p	Synthesize improve de Publish th Conference Ie Content Its are ex ypes to des ss. of Evalua nt has regis	e knowledge and use in esign systems. ne findings in the peer es. bected to develop new ign prototype or working tion: Evaluation involves tered. Assessment on the ws – Presentation in the	skills and models rel	creativity journals (Proje demonst lated to a eviews by Report to	to bett / Natic ct durati trate the an engine the fac be sub	er un onal / on: O abilit eering ulty w mitted	dersta Inte ne se y to prod vith w , pres	mes deve uct o hom	ter) elop or a the
3. 4. Modu Studer prototy proces Mode studer and p Engine	Synthesize improve de Publish th Conference Ie Content Its are ex ypes to des ss. of Evalua nt has regis roject review eering Tech	e knowledge and use in esign systems. ne findings in the peer es. bected to develop new ign prototype or working tion: Evaluation involves tered. Assessment on the ws – Presentation in the nology.	skills and models rel	creativity journals (Proje demonst lated to a eviews by Report to Internation	to bett / Natic ct durati trate the an engine the fac be sub	er un onal / on: O abilit eering ulty w mitted	dersta Inte ne se y to prod vith w , pres	mes deve uct o hom	ter) ter) br a the

Cours	e Code		Course Title			L	т	Р	с
MAUE	698.1	Interi	Internship I/ Dissertation I					10	
	quisite	NIL					abus	vers	
	4					•]	1.0		
Cours	e Objectiv	es:							
-		ent hands-on learn	• .		•		-		
analys	is of suitab	le product / process	s so as to enhan	ce the tecl	hnical ski	ll sets	in the	e cho	sen
field ar	nd also to g	ive research orienta	ation.						
Cours	e Outcome	9:							
1.		bly more in-depth k	•	•	•	of stud	dy, inc	ludin	g
		sight into current res		•					
2.		pility to use a holistic	•	-	dently and	d crea	tively		
-		rmulate and deal w	•						
		usness of the ethica			-				
4.		ns in the peer review	wed journals / Int	ernational	Conterer	ices w	/III be	an	
	added adv	antage.							
Modul	e Content		()	Project du	ration: o	ne se	mest	er)	
1.	analysis, p	on may be a theore prototype design, fa vare development, a	brication of new	equipmer	nt, correla	tion a	nd an	alysi	
2.	Dissertatio	on should be individ	ual work.						
3.	Carried or institution.	ut inside or outside	e the university,	in any r	elevant ir	ndustr	y or	resea	arch
4.	Publication added adv	ns in the peer rev /antage.	iewed journals /	Internatio	onal Conf	erenc	es wi	ill be	an
		tion: Assessment			tion repo	rt to	be sı	ıbmit	ted,
preser	itation, proj	ect reviews and Fin	al Oral Viva Exa	mination.					
Recom	nmended by	y Board of Studies	27-07-2022						
Approv	ved by Acad	demic Council	No. 67	Date	08-08-20)22			

Cours	e Code	(Course Title			L	т	Р	С
MAUE	699J	Internsh	Internship II/ Dissertation II						12
Pre-requisite NIL			-			0			
Pre-re	equisite	NIL				Syll	labus 1.0		ion
Cours	Course Objectives:						1.0		
		ent hands-on learning	a experience r	elated to	the desig	n, dev	elopn	nent	and
analys	sis of suitabl	le product / process s	o as to enhan	ce the tec	hnical ski	ll sets	in the	e cho	sen
field.									
Cours	e Outcome	<u>)</u> .							
		completion of this cou	rse students w	ill be able	to				
1.	Formulate	specific problem s	statements fo	r ill-defin	ed real	life p	oroble	ms v	with
	reasonable	e assumptions and co	nstraints.						
2.	Perform lite	erature search and / c	or patent searc	h in the ai	rea of inte	erest.			
3.	Conduct e	experiments / Design	and Analysis	/ solution	iterations	and	docui	ment	the
	results.		-						
4.	Perform er	ror analysis / benchm	arking / costin	g.					
5.	Synthesize	e the results and arrive	e at scientific c	onclusion	s / produc	cts / so	olutior	า.	
6.	Document	the results in the form	n of technical r	eport / pre	esentation	I.			
Modu	le Content			(Proj	ect durat	ion: o	one se	emes	ter)
1.		on may be a theoretica							
		prototype design, fabr							s of
C		are development, app on should be individua		and any o	ther relate	ed acti	ivities	•	
2. 3.		ut inside or outside		in anv r	elevant ir	ndustr	v or	resea	arch
•.	institution.						,		
4.		ns in the peer review	ved journals /	Internatio	onal Conf	ferenc	es w	ill be	an
	added adva	antage.							
Mede		tion Accordent -	the project	Discorto	tion ror-	rt to	<u>ho r</u>	ub mait	tod
		tion: Assessment or ect reviews and Final			ition repo	ort to	De Sl	Jomit	tea,
Recon	nmended by	/ Board of Studies	27-07-2022						
Appro	ved by Acad	demic Council	No. 67	Date	08-08-20	022			