

SCHOOL OF MECHANICAL ENGINEERING

M.Tech CAD/CAM

Curriculum & Syllabi (2023-2024 batch onwards)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

• Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- **World class Education**: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- **Cutting edge Research**: An innovation ecosystem to extend knowledge and solve critical problems.
- **Impactful People**: Happy, accountable, caring and effective workforce and students.
- **Rewarding Co-creations**: Active collaboration with national & international industries & universities for productivity and economic development.
- **Service to Society**: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

• To be a leader in imparting world class education in Mechanical Engineering, with a vision to nurture scientists and technocrats of the highest caliber engaged in global sustainable development.

MISSION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

- To create and maintain an environment fostering excellence in instruction & learning, Research and Innovation in Mechanical Engineering and Allied Disciplines.
- To equip students with the required knowledge and skills to engage seamlessly in higher educational and employment sectors ensuring that societal demands are met.

M. Tech CAD/CAM

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment.

PO_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information.

PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice.

PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems.

PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development.

PO_07: Having a clear understanding of professional and ethical responsibility.

PO_08: Having a good cognitive load management skills related to project management and finance.

M. Tech CAD/CAM

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (CAD/CAM) programme, graduates will be able to

- **PSO_1:** Analyse, design and develop mechanical systems to solve complex engineering problems by integrating modern mechanical engineering tools, software and equipment's.
- **PSO_2:** Adopt a multidisciplinary approach to solve real-world industrial problems.
- PSO_3: Independently carry out research / investigation to solve practical problems and write / present a substantial technical report/document

M. Tech CAD/CAM

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

Agenda Item 67/12

To consider and approve the revised programme credit structure, curriculum and course contents of Master of Technology in CAD / CAM

ANNEXURE – 16

Master of Technology in CAD/CAM School of Mechanical Engineering

Programme Credit Structure	Credits	MCDM603L Product Design and Life Cycle	3003
Discipline Core Courses Skill Enhancement Courses Discipline Elective Courses	24 05 12	MCDM604L Fracture Mechanics MCDM605L Manufacturing and Mechanics of Composites Materials	3 0 0 3 3 0 0 3
Open Elective Courses Project/ Internship Total Graded Credit Requirement	03 26 70	MCDM606L Optimization Methods MCDM607L Computational and Experimen- tal Vibration Analysis and Con- trol	3 0 0 3 3 0 0 3
Discipline Core Courses	24 L T P C	MCDM607P Computational and Experimen- tal Vibration Analysis and Con-	0 0 2 1
MCDM501L Advanced Mechanics of Solids MCDM502L Applied Materials Engineering MCDM503L Computer Graphics and Geo-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MCDM608L Computational Fluid Dynamics MCDM608P Computational Fluid Dynamics Lab	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
MCDM503P Computer Graphics and Geo- metric Modelling Lab	0 0 2 1	MCDM609L Design Thinking and Innovation MCDM610L Machine Fault Diagnostics MCDM611L Computer Aided Process Plan-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
MCDM504L Finite Element Methods MCDM504P Finite Element Methods Lab MCDM505L Integrated Manufacturing Sys-	3 0 0 3 0 0 2 1 3 0 0 3	MCDM612L Advanced Manufacturing Tech-	3003
tems MCDM505P Integrated Manufacturing Sys- tems Lab	0 0 2 1	MCDM613L Statistics and Quality Manage- ment	3003
MCDM506L Advanced Vibration Engineering MMAE503L Additive Manufacturing Technol-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MAUE605L Vehicle Aerodynamics MMAE608L Design and Analysis of Experi- ments	3003 2103
MMAE503P Additive Manufacturing Technol- ogy Lab	0 0 2 1	Open Elective Courses	03
Skill Enhancement Courses MENG501P Technical Report Writing	05 0 0 4 2	Engineering Disciplines Social Sciences	
MSTS501P Qualitative Skills Practice MSTS502P Quantitative Skills Practice	0 0 3 1.5 0 0 3 1.5	Project and Internship	26
Discipline Elective Courses	12	MCDM696J Study Oriented Project MCDM697J Design Project MCDM698J Internship I/ Dissertation I	02 02 10
MAUE505L Vehicle Dynamics MAUE505P Vehicle Dynamics Lab MCDM601L Advanced Finite Element Meth- ods	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MCDM699J Internship II/ Dissertation II	12
MCDM602L Design For Manufacture and As- sembly	3003		

Course Code	÷	Course Title	L	Т	Р	С		
MCDM501L		Advanced Mechanics of Solids	2	1	0	3		
Pre-requisite	;	NIL	Syl	labus	versi	on		
				1.	U			
Course Obie	ctive	S :						
The main obje	ctives	of this course are to:						
1. Introd to vari	uce tl ious t	ne students the behavior of structural and mechan ypes of loading.	ical sy	stems	subje	ected		
2. Impac failure	t skil crite	ls to evaluate the resulting stresses, strains and ria of these systems.	deflec	tions a	as we	ell as		
Course Oute								
On completio	n of t	: his course student should be able to:						
		when the structure over the second to a wide	Varia	hiafla	a dina a			
I. Analy	ze me	echanical and structural systems respond to a wide	varie		ading			
2. Analyz mecha	ze an anica	d compute the stresses and deflections, and failure and structural systems.	e crite	ria of a	varie	ety of		
3. Comp	ute th	ne stress function calculation for non-circular shaft.						
4. Evalua and st	 Evaluate the Energy methods and shear center towards designing mechanical and structural systems 							
5. Demo	nstra metr	te the stresses and deflections calculation in bea	ıms sı	ubjecte	d to			
6. Analyz like ro	ze Ra tating	adial and tangential stresses and displacements i disks.	n cur\	/ed be	ams			
Module:1	Str	ess and strain Relations			6 ho	urs		
Stress-strain re ordinates, Tra Problems	elatio nsfor	ns and general equations of elasticity in Cartesian mation of stress and strain in 3D, Principal valu	and p ues ar	oolar co nd dire	o- ection:	s –		
Module:2	2D (elasticity solutions			<u>6 ho</u>	urs		
Plane stress a Cartesian and hole – Problem	and : pola າຣ	strain, Airy's function solutions to some 2D el r coordinates such as beams, pressure vessel al	asticity nd pla	y prob te with	lems circu	ın ular		
		<u> </u>						
Module:3	I Orsi	on of non-circular shafts	troca	functio	6 ho	ours		
membrane ana	alogy	torsion of hollow thin-walled tubes- Problems	11655	iuncuo	Π,			
Module:4	Ener	gy methods			6 ho	ours		
Principle of mir	nimur	n potential energy, Castigliano's theorems- Probler	ns					
Module:5	Shea	r centre			6 ho	urs		
Bending axi	is i	and shear center - shear center for	axi-sv	mmetr	ic	and		
unsymmetrical	secti	ons-shear flow-problems	,					
Module:6	Unsv	mmetrical bending			6 ho	urs		
Stresses and c	leflec	tions in beams subjected to unsymmetrical loading	- Prob	lems				

Mod	lule:7	Curved beams				7 hours		
Radia	Radial and circumferential stresses in curved beams, deflection of curved beams, closed							
ring s	ring subjected to concentrated load and uniform load - chain links and crane hooks -							
Probl	ems							
Stres	ses due	to rotation: Radial and tang	ential stress	es and dis	splaceme	nts in rotating disks		
of cor	nstant a	nd variable thickness- Probl	ems			-		
Mod	lule:8	Contemporary Issues				2 hours		
			Total	Lecture	hours:	45 hours		
Text	t Book(5)						
1.	A. P. E	Boresi and R. J. Schmidt, Ad	vanced Mec	hanics of l	Materials	, Wiley India, 2009		
2.	Schme	err Jr., L. Advanced Mecha	nics of Solid	s: Analytic	al and N	Iumerical Solutions		
	with M	ATLAB®. Cambridge: Cam	bridge Univer	rsity Press	s, 2021.			
Refe	erence l	Books						
1.	M. H. S	Sadd, Elasticity: Theory, Ap	plications and	d Numeric	s, Elsevie	er India, 2012		
2.	S. P. 1	limoshenko, J. N. Goodier,	Theory of E	lasticity, 1	ata McG	raw-Hill Education,		
	2010							
3.	L. S. S	rinath, Advanced Mechanic	s of Solids, T	ata McGr	aw-Hill E	ducation, 2008		
4.	J. P. D	en Hartog, Advanced Stren	gth of Materia	als, Dover	, 2012			
Tuto	orial							
1.	Modu	le 1				2 hours		
2.	Modu	le 2				2 hours		
3.	Modu	le 3				2 hours		
4.	Modu	le 4				2 hours		
5.	Modu	le 5				3 hours		
6.	Modu	le 6				2 hours		
7.	Modu	le 7				2 hours		
			Tota	l tutorial	hours	15 hours		
Mod	e of Eva	aluation: CAT ,Written Assig	nment, Quiz	and FAT				
Rec	ommeno	led by Board of Studies	27-07-202	2				
App	roved by	/ Academic Council	No. 67	Date	08-08-	2022		

Course Code	Course Title		L	Τ	Ρ	С		
MCDM502L	Applied Materials Enginee	ring	3	0	0	3		
Pre-requisite	NIL		Sylla	abus	vers	ion		
O sum a Okia stina s				1	.0			
Course Objectives	this source are to:							
	or this course are to.		_					
 Familiarize students with basic concepts of mechanical behavior of materials. Impart knowledge of different classes of materials and their applications. Impart knowledge on various surface modification techniques. Familiarize students with different material working practices 								
Course Outcome :								
At the end of the co	urse, the student will be able to:							
1. Demonstrate	e mechanical behavior of materials							
Apply fatigute	e fracture and creep mechanism in fai	ilure analysis a	and de	sign.				
3. Apply mode	n materials in different engineering a	pplications.						
4. Modity surfa	ces to improve wear resistance							
5. Analyze the	metal working practices and suggest	Dest alternativ	es					
0. Analyze del	sets in longing, extrasion and sheet in) .					
Module:1 Rev	iew of basic concepts				7 ho	urs		
Mechanical behavio	of Materials, Mechanical properties	s of materials	, stres	s an	d stra	ain,		
Mohr's strain circle,	Elasticity, plasticity, Tensile Testing	g, stress-strair	n curv	e for	duc	tile,		
brittle and polymer r	naterials, Bridgman correction, Othe	r tests of plas	tic be	navio	r, Str	rain		
hardening of metals-	mechanism.							
Module:2 Eat	Modulo:2 Estigue Fracture and Croop mechanisms 6 hours							
S-N curves effect of	f mean stress stress concentration	desian estin	nates	cycli	ic str			
strain behavior. Duc	ility and Fracture, slip system, Griffi	ths theory. Or	owan	theor	rv.	000		
theoretical fracture s	trength, Irwin's fracture analysis, frac	cture mechanie	cs in d	lesigr	n, Cre	еер		
mechanisms, temper	ature dependence of creep.			_				
Madula:2 Mad					<u> </u>			
Noquie:3 Noqu	ern materials and alloys	ual phage stor	lo Mia					
super alloys, Relfac	low allow steel. Transformation ind	uced plasticity	eis, iviic	io ai i/TDII		וסט ו		
Maraging steel Sma	irt materials Metallic dass Quasi c	rvstal Nano-c	rvstalli	ne m	ateri	als		
metal foams, Compa	cted graphite cast iron and creep resi	istant aluminur	n alloy	/S		uro,		
,								
Module:4 Surfa	ce modifications of materials				6 ho	ours		
Mechanical surface	treatment and coating, Case hard	ening and ha	rd fac	ing,	Ther	mal		
spraying, Vapor de	position and ion implantation, Diffu	ision coating,	elect	ropla	ting	and		
Electrolysis, Conver	sion coating, Ceramic coating, Org	anic coatings	, diam	iond	coati	ing,		
	Inodification							
Module:5 Revi	ew of Metal Working				6 ho	urs		
Mechanisms of meta	I working, Flow-stress determination	n, Temperatur	e in m	letal	worki	ing,		
strain-Rate Effects, F	riction and Lubrication, Deformation-	zone geomet	ry, Hy	drost	atic	-		
Pressure, Workability	r, Residual stress.							
Module:6 Fora	na				6 ho	lire		
Forging equipment	vpes forging in plain strain calculation	on of forging le	l Dade f	orain		ui 3		
defects. powder met	allurgy forging. Residual stresses in fo	orgina.		2.9.1	.9			
Rolling:		5 5						

Classification, Rolling of bars and shapes, Forces and geometrical relationship, calculation of rolling loads, variables and defects in rolling, rolling mill control, theories. Module:7 Extrusion and Sheet metal forming 6 hours Classification, Analysis of extrusion process, Deformation, lubrication and defects. Forming methods, shearing and blanking, bending, stretch forming, deep drawing, Limit criteria, Defects. Module:8 **Contemporary Issues** 2 hours Total Lecture hours: 45 hours Text Book(s) George E. Dieter, Mechanical Metallurgy, McGraw Hill, 2017. 1. **Reference Books** Norman E. Dowling, Mechanical Behavior of Materials , Prentice Hall, 2012 1. 2. Kenneth G Budenski and Michael K Budenski Engineering Materials' by Prentice-Hall of India Private Limited, 2009. William F. Hosford& Ann Arbor Robert M. Caddell, Metal Forming : Mechanics and 3. Metallurgy, Cambridge University Press, 2011 4. J.E.Dorn, Mechanical behaviour of materials at elevated temperatures, McGraw Hill, 2000. 5. Henry Ericsson Theis, Handbook of Metal forming Processes, CRC Press, 1999 Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022 Approved by Academic Council No. 67 Date 08-08-2022

Course Code Course Title	L T P C							
MCDM503L Computer Graphics And Geometric Modelling	2	0	0	2				
Pre-requisite NIL	Sy	llabus	vers	ion				
		1	.0					
Course Objectives								
The main objectives of this course are to:								
 Impact skills related to product lifecycle management (PLM), which represents an all- encompassing vision for managing data relating to the design, production, support and ultimate disposal of manufactured goods. 								
 Provide hands on training in classical geometric modeling as we of computer graphics. 	ell as	its mo	odern	use				
Course Outcome								
On completion of this course student should be able to:								
On completion of this course student should be able to.								
 Apply various procedures of PLM to engineering product ranges. Integrate the role of graphic communication in the engineering design process Generate various curves and surfaces using Computer graphics. Generate technical drawings of parts and assemblies according to engineering design standards. Use different CAD software's to generate computer models and technical drawing 								
 Calculate mass properties and translate product data to suit vario 	ous p	proces	sors.					
			4 1					
Module:1 Overview of CAD/CAM Systems			4 ho	urs				
Product life cycle, CAD/CAM systems and applications, 3D modeling (conc	epts, I	PLM a	and				
Module:2 Computer graphics Concents			4 ho	lire				
Transformations $= 2D \& 3D$ Homogenous representation concatenat	ed t	ransfo	rmatic	ns				
Visualisation – Hidden line, surface and solid algorithms, shading, colors	S S	an3101	matic	113,				
Module:3 Geometric modeling – Curves			4 ho	urs				
Curve entities and representation, analytic curves - line, circle, ellipse,	para	abola,	synthe	etic				
curves–Hermite cubic spline, Bezier curve, B-spline curve, NURBs, Curv	ve m	anipul	ations	;				
Module:4 Geometric modeling – Surfaces			4 ho	urs				
Surface entities and representation, surface analysis, Analytical surfaces – Hermite bicubic surface, Bezier surface, B-spline surface, Consurface manipulations	aces oons	synth surfa	netic ce,					
Module:5 Geometric modeling – Solids			4 ho	urs				
Geometry and topology, solid entities and representation, Boundary r	repre	esentat	tion,					
Module:6 Assembly Modeling			4 ho	urs				
Introduction, assembly tree, assembly planning, mating conditions. ass	semb	ly app	roach	ies,				
testing mating conditions, managing assemblies, inference of position a assembly analysis	nd o	rientat	ion,					
Module:7 Mass properties and Product data exchange 4 hours								
Calculation of mass properties, Types of translators, IGES, STEP, AC	IS a	nd DX	ίF,					
Module:8 Contemporary Issues			2 ho	urs				
Total Lecture hours	:		30 ho	urs				
Text Book(s)								

1.	Ibrahim Zeid, "Mastering CAD/CAM", McGraw Hill Education (India) P Ltd., SIE,						
	2013						
Refe	Reference Books						
1.	1. P. N. Rao, "CAD/CAM: Principles and Applications", 2012, McGraw Hill Education (India) P Ltd.						
2,	2, David F. Rogers and J. Alan Adams, "Mathematical Elements for Computer Graphics" Tata McGraw-Hill Edition authors, book title, year of publication, edition number, press, place						
Mod	Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT						
Rec	ommended by Board of Studies	27-07-2022					
Approved by Academic Council No. 67 Date 08-08-2022							

Course Code Course Title L T P						С			
MCDM503P Computer Graphics and Geometric Modelling 0 0 2 Lab						1			
Pre-	requisite	NIL	Sylla	abus	vers	ion			
				1.	0				
Cou	Course Objectives								
1. 1	o expose the	e students to geometric modelling and assembly in ed in industry like CATIA / NX / PTC Creo / Solid Wor	a CAi ks / In	J en vento	vironr or etc	nent			
2.	Able to do ind	lustry scale drawings, customization, programming fo	r desi	gn au	itoma	ition,			
Ν	Aacro writing,	etc.							
Cou	rse Outcome								
1. Go ac	enerate and i cording to en	nterpret engineering, technical drawings of parts an gineering design standards.	d ass	embl	ies				
2. Us we	se CAD softw ell-defined pa	vare to generate a computer model and technical dra rt or assembly.	awing	for a	a sim	ple,			
Indic	cative Experi	ments							
1.	2D view ske support, bea	etches and solid models of shaft support, machine bla aring bracket, vice-body, depth stop & flange connecte	ock, s or	liding) bloc	k &			
2.	Design tree	, visualisation tools, command and GUI managers,	units	etc.;	Sketo	cher			
	coordinate s	onies, dimensional & geometric constraints, tra systems etc.	nsion	nalio	n lo	ois,			
3.	Solid model	ing and assembly of Universal coupling – use design	tables	s/ma	cros				
4.	Solid mode	ling –Sketch based features like extrude, revolve	e, sw	eep,	etc	and			
	variational s Boolean ope	sweep, loft, etc., dress based features like fillet, chan erations etc. design table macros, formulas and other property calculations, multibody features, functional n	nfer, d desig	raft, In au	shell tomat	etc. tion			
5.	Assembly	modelling : Assembly planning - Insert, position	anc	l or	ientat	tion,			
	assembly n properties li	nating and simulation, interference and assembly ke CG etc., assembly approaches	analy	sis, a	assen	nbly			
6	Solid model	ling, assembly and drafting with GD&T of a tool post							
7	Drafting – s views etc	tandard views, dimensioning, layouts, GD&T, Bill of r	nateri	als, e	explo	ded			
8	Solid model	ling, assembly of a windmill and a study of assembly i	nterfe	renc	е				
9	Surface mo	delling of an mobile phone case							
10	Surface mo generative s etc, multi-se Surface rec tools etc	odelling - wire frame models and manipulations, a shape design - Extrude, Sweep, Trim .etc and Mesh o ection & blended surfaces, surface manipulations, a construction from cloud point data and from other r	analyt of curv utoma everse	ical res, F ation e eng	surfac Free f tools ginee	ces, orm etc ring			
11	Surface mo sustainabilit	delling of a soap bottle with its plastic tool design and y	l desi	gn fo	r				
12	Creation of	surfaces from reverse engineered data from a toy car							
13	Design a co	ncept of a hair dresser using concept tools							
14	Preparation	of a CAD model of an aerofoil for FEA/CFD analysis							
	I	Total Laboratory Hours	30 ho	ours					

Text	Text Book(s)						
1.	Ibrahim Zeid, "Mastering CAD/CAM", McGraw Hill Education (India) P Ltd., SIE,						
	2013						
Refe	Reference Books						
1.	P. N. Rao, "CAD/CAM: Principles and Applications", 2012, McGraw Hill Education						
	(India) P Ltd.						
2.	David F. Rogers and J. Alan	Adams, "Mathem	natical Elem	nents for Computer			
	Graphics" Tata McGraw-Hill Edi	tion authors, book	title, year o	f publication, edition			
	number, press, place						
Mode	of assessment: Continuous asses	sment / FAT / Oral	examinatio	n and others			
Reco	mmended by Board of Studies	27-07-2022					
1,000		21-01-2022		00.00.0000			
Appro	oved by Academic Council	NO. 67	Date	08-08-2022			

Course	e Code	Course Title	L	Т	Ρ	С
MCDM	5041	Course Title	3	0	0	3
Pre-ree	quisite	NIL	Sylla	abus V	/ersi	on
-	-			1.0		
	e Objecti	ves :				
1. Ena the	Finite Ele	ement Method (FEM) as applied to solid mechanics an	d ther	mal an	alys	yıng is
2. Intr	oduce stu	idents to the theory of elasticity				
3. Tea ana	ach stude alysis and	nts the characteristics of various elements in structur selection of suitable elements for the problems being	al and solve	d thern d	nal	
4. Intr	oduce stu	idents to various field problems and the discretization of	of the	proble	m	
5. Ma	ke the stu	dents derive finite element equations for simple and co	omple	x elem	ents	
	•					
Cours	e Outcor	ne : . course, the student will be able to:				
		course, the student will be able to.	roblor	ma in a	truc	tural
anc	thermal	engineering by approximate and numerical methods	robier		struc	lurai
2. Em	ploy vario	ous formulation methods in FEM.				
3. App disp	oly suitat placemen	le boundary conditions to a global equation for ba ts, stress and strains induced.	ars, tr	usses	to s	solve
4. App disj	oly suitab placemen	e boundary conditions to a global equation for beams ts, stress and strains induced.	and	frames	s to s	solve
5. Ana syn ste	alyze line nmetric p pped bar	ar 2D and 3D structural problems using CST element roblems with triangular elements. Evaluate heat trans and fin like structures.	and a fer pr	analyze oblem	e the s for	Axi- bar,
6. Ana syn	alyze the nmetric co	Vector Variable problems using Plane stress, Planditions	ane S	Strain	and	Axi-
7. Der	monstrate	the use of Finite element analysis in Production Proc	esses	6		
Modul	e:1 F	undamental concepts		<u></u>	6 ho	urs
Physical	ו problem	s, Finite Element Analysis as Integral part of Comp	uter /		Desi	gn;.
Stresses	s and Eq	Linear and nonlinear material laws: Temperature F	ffects	IONS, 3	oution	s –
Tensors	and indi	cial notations: Deformation gradients: Classification	of diff	erent	types	sof
deforma	tions; De	gree of Freedom; Field Problem and their degree	of f	reedor	n. S	olid
Mechan	ics Proble	ems and Fluid Mechanics Problems. Deformations a	nd str	esses	in b	ars,
thin bea	ams, thicl	k beams, plane strain- plane stress hypothesis, thi	n plat	e, thic	k pl	ate,
General	netric boo 3D defor	nes; Approximate nature of most of these deformation (inear small deformation), Large deformation (r	n nyp 1onlin	otnese ear).	s;	
				,		
Module	e:2 G B	eneral Techniques and Tools of Displacement ased Finite Element Analysis			6 ho	urs
Mathem	atical m	odels, Approximate solutions, Minimization proc	cedur	e, Va	riatio	onal

procedure, Interpolation polynomial method, Nodal approximation method and Finite Element Solutions. Strong or classical form of the problem and weak or Variational form of the problem; Galerkin's and Weighted residual approaches; Shape and interpolation functions for 1D, 2D & 3D applications; Use of shape (interpolation) functions to represent general displacement functions and in establishment of coordinate and geometrical transformations; Hermite, Lagrange and other interpolation functions. One Dimensional Problems: Bars & Trusses Module:3 6 hours Introduction; Local and global coordinate systems; Transformation of vectors in two and three dimensional spaces; Finite Element stiffness matrix and load vector of a basic element in local coordinate system using energy approach; Assembly of Global Stiffness Matrix and Load vector; Treatment of boundary conditions; Solution algorithms of linear system matrices; Example problems in trusses; Formulation of dynamics analysis, global mass matrix; Extraction of modal frequencies and mode shape. One Dimensional Problems – Beams and Frames Module:4 7 hours Finite Element Modeling of a basic beam element in local coordinate system using energy approach; Formulation of element matrices; Assembly of the Global Stiffness Matrix, Mass matrix and Load vector; Treatment of boundary Conditions; Euler Bernoulli (thin) beam element and Timoshenko (thick) beam element; Beam element arbitrarily oriented in plane (2D) as Plane frames and in space as space frame analysis (3D); Solution algorithms of linear systems.; extraction of modal frequencies and mode shape. Two Dimensional Analysis – Scalar Variable Module:5 6 hours Problems Formulation of 2D problems using Partial Differential Equations; Solution algorithm using Energy principle; Constant Strain Triangles (CST); Bilinear Quadrilateral Q4; Formulating the element matrices; Modelling boundary conditions; Solving the field problems such as heat transfer in automotive cooling fin, engine cover; Torsion of a non-circular shaft etc. Module:6 Vector Variable problems - Plane stress, Plane 6 hours Strain and Axi-symmetric Analysis Equilibrium equation formulation – Energy principle and formulating the element matrices -Plane stress, plane strain and axi-symmetric elements; Orthotropic materials; Isoparametric Elements: Natural co-ordinate system: Higher Order Elements: Four-node Quadrilateral for Axisymmetric Problems; Hexahedral and tetrahedral solid elements; Linear, Quadratic and cubic elements in 1D, 2D and 3D; Numerical integration of functions; Gauss and other integration schemes. C0 and C1 continuity elements. Module:7 Analysis of Production Processes 6 hours FE Analysis of metal casting - Special considerations, latent heat incorporation, gap element – time stepping procedures – Crank – Nicholson algorithm – Prediction of grain structure - Basic concepts of plasticity - Solid and flow formulation - small incremental deformation formulation - FE Analysis of metal cutting, chip separation criteria, incorporation of strain rate dependency. Module:8 Contemporary issues: 2 hours Total Lecture hours: 45 hours Text Book(s) Seshu.P, Finite Element Analysis, Prentice Hall of India, 2013 1. 2. Saeed Moaveni, Finite Element Analysis, Theory and Application with ANSYS, Pearson Fifth Edition, 2021 **Reference Books** Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, Concepts and 1

	Applications of Finite Element Analysis, John Wiley & Sons, Incl.2002.						
2	S.S.Rao, Finite element method in Engineering, 2011, Butterworth Heinemann						
3	J.N Reddy, An introduction to the Finite Element Method, 2017, Mcgraw Hill						
4	Tirupathi R. Chandrapatla, Ashok D. Belegundu, Introduction to Finite Element in						
	Engineering Pearson 4 th Edition,	, 2011					
Mod	le of Evaluation: CAT ,Written Ass	ignment, Quiz	z and FAT	-			
Rec	Recommended by Board of Studies 27-07-2022						
Approved by Academic Council No. 67 Date 08-08-2022							

Cour	se Code	Cou	urse Title		L	Т	Р	С		
MCI	DM504P	Finite Elem	ent Methods I	_ab	0	0	2	1		
Pre	-requisite	NIL			Sy	llabus	s vers	ion		
						1	.0			
Cou	Course Objectives									
1	1. To enable the student's skills in FEM software that can be used and implemented for									
	various er	ngineering applications.								
2	. To develo	op proficiency in the a	pplication of th	ne finite elem	ent me	ethod	(mode	eling,		
	analysis, a	and interpretation of res	ults) to realistic	c engineering	probler	ms				
•	0.4									
Cou	Irse Outcon	ne								
1	. Demonstr	ate the ability to create	and analyze th	IE FE models t	or trus	ses, fi	rames	,		
	plate struc	ctures, machine parts, a	ina engineering	g components	using	genera	ai-purp	oose		
2	Domonstr	res like Ansys, Maliab e	to and internre	t EEA analysi	- rocul	to for a	docian	and		
2	evaluation	ale life ability to evalua	le and interpre	TEA analysis	siesui	15 101 0	uesiyi	i anu		
	CValuation	i puiposes								
Indi	cative Expe	eriments								
1.	Stress an	alysis of a bar without c	onsidering self	-weight	4 h	ours				
2.	Effect of s	self-weight on stress of a	a vertical hangi	ing bar	4 h	ours				
3.	Stress an	alysis of the tapered roo	ł		4 h	ours				
4.	Two dime	ensional truss problem			4 h	ours				
5.	Bending r	moment and shear force	e diagram of va	rious	4 h	ours				
6	Plane stre	ess and plane strain and	lysis		4 h	ours				
0. 7	Model he	armonic and transient ar	nysis Nalvsis on har	heam and	3 h	ours				
/.	plates				510	Juis				
8.	Axi-symm	netric analysis			3 h	ours				
	·	-	Total Labora	atory Hours	30	hours				
Мос	le of assess	ment: Continuous asses	ssment / FAT /	Oral examinat	ion an	d othe	rs			
Rec	ommended	by Board of Studies	27-07-2022							
Арр	roved by Ac	ademic Council	No. 67	Date	08-0	8-2022	2			

Course Code Course Title L T P						С			
MCDM505L	Integrat	ed Manufa	cturir	ng System	IS	3	0	0	3
Pre-requisite	NIL					Sylla	abus v	ersio	on
Course Objective							1.0		
The main objectives	of this course a	re to							
1 Acquaint the	students with th	e need of ir	nteara	ation of ma	nufacturi	na sv	stem		
2. Make the et	udanta undarata		ian n			ng sy	of mo	ahar	viagl
assemblies.	udents understa	ia the desi	ign pr	incipies a	nd auton	allon	or me	cnar	lical
Introduce th automation.	3. Introduce the students the importance of Group technology, Robotics and Flexible automation.								
4. Familiar with	virtual manufact	uring and le	ean p	roduction.					
Course Outcome	•								
At the end of the c	· ourse, the studer	t will be ab	le to:						
1. Demonstrate	the importance	of Automat	tion of	machine	compone	nts.			
2 Apply the p	inciples of contr	ol system :	advar	nced autor	nation to	vario	nus me	char	nical
engineering	systems.	or system a	auvai			vanc		ona	lical
3. Design the a	pplications of rol	ootics and g	group	technolog	y in indu	stries.			
4. Analyze the	applications of a	utomated a	issem	bly.					
5. Analyze cell	ılar manufacturir	ig using gro	oup te	chnology.					
6. Identify the o	ptimal manufact	uring suppo	ort sys	stem for le	an produ	ction.			
Module:1 Int	roduction							5 ho	urs
Production System	s, Automation in	Production	n Sys	tem, Manu	ual Labo	r in P	roduct	ion	
Manufacturing Indu	n Principles and stries and Produc	strategies. sts Manufa	acturin	na Operatio	ons Proc	luctio	n Facili	ities	
Product/Production	Relationship	,		.9 -1				,	
Module:2 Int	roduction to aut	omation						5 hoi	urs
Basic Elements of a	n Automated Sv	stem. Adva	anced	Automatio	on Functi	ons.	Levels	of	
Automation, Industr	al control system	IS							
Module:3 Con	trol svstem con	ponents						5 ho	urs
Sensors, Actuators,	Analog-to-Digita	I Conversio	on, Di	gital-to-An	alog Con	versi	on, Inp	ut/ou	tput
Devices for Discrete	Data	_							
Fundamentals of N	umerical Control	- Compute	er Nur	nerical Co	ntrol, Ap	plicat	ions, P	art	
programming									
Module:4 Indu	strial robotics							8 ho	urs
Robot anatomy, Co	ntrol systems, A	pplications	s, and	Robot pr	ogrammi	ng, D	iscrete	Cor	ntrol
Manufacturing Sv	stems - Com	rs (PLC)	Class	ifications	Overvi	٥.	sinale	sta	ation
manufacturing cells	Flexible manufa	cturing sys	stems,	, compone	nts, appl	icatio	ns, Pla	nning	g
and implementation	and analysis								
Module:5 Gro	ip technology a	nd Cellula	r mar	nufacturin	a		•	7 ho	urs
Part families, Part	s Classification	and Coc	ding,	Productio	n Flow	Ana	ysis,	Cellu	ular

7 hours

Manufacturing, Application Considerations in Group Technology, Quantitative Analysis in Cellular Manufacturing

Module:6 Assembly systems

Manual assembly lines, Automated manufacturing systems and Automated assembly systems.

Quality control systems – Quality assurance, Statistical Process Control (SPC), Inspection principles and practises, inspection technologies

Module:7	Manufacturing support systems	6 hours
Product design	and CAD/CAM in the production system, Process planning	ing and concurrent
engineering, pi	oduction planning and control systems - Just In Time (JIT) and Lean
production		

Mod	ule:8 Contemporary Issues	2 hours					
	Total Lecture hours:	45 hours					
Text	Book(s)						
1.	M.P. Groover, Automation Production systems and Comp manufacturing, Pearson Education, 2015.	outer Integrated					
2	Jayaprakash, G., Groover, Mikell P. Automation, Production Systems, and Computer-integrated Manufacturing. United Kingdom: Pearson Education						
Refe	erence Books						
1.	XunXu, Integrating advanced Computer Aided Design, M Numerical Control, IGI Global, 2009	lanufacturing and					
2.	J.A. Rehg& H. W. Kraebber, Computer Integrated Manufacturing, Education 2005	Pearson					
3.	Education, 2009	ring, Pearson					
4	4 Scheer, August-Wilhelm. CIM Computer Integrated Manufacturing: Towards the Factory of the Future. Springer Science & Business Media, 2012.						
5	Alavudeen, A., and N. Venkateshwaran. Computer integrated manufacturing. PHI Learning Pvt. Ltd., 2008.						
Mod	e of Evaluation: CAT ,Written Assignment, Quiz and FAT						
Reco	ommended by Board of Studies 27-07-2022						
Appr	oved by Academic Council No. 67 Date 08-08-20)22					

Co	urse Code	Course Title	L	Т	Ρ	С	
MC	DM505P	Integrated Manufacturing Systems Lab	0	0	2	1	
Pre	-requisite	NIL	Sylla	bus v	versi	ion	
Co	urse Objectives	•		1.0	0		
The	main objectives of	f this course are to					
1 2 3 4	 Acquaint the students with the need of integration of manufacturing system. Make the students understand the design principles and automation of mechanical assemblies. Introduce the students the importance of Group technology, Robotics and Flexible automation. Familiar with virtual manufacturing and lean production. 						
Co	urse Outcome :						
At t	he end of the cou	irse, the student will be able to:					
1 2 3	 Demonstrate t Apply the prin engineering sy Design the ap 	he importance of Automation of machine componer ciples of control system advanced automation to /stems. plications of robotics and group technology in indus	nts. variou tries.	s me	echar	nical	
4	. Analyze the ap	oplications of automated assembly.					
5	5. Analyze cellula	ar manufacturing using group technology.					
6	6. Identify the op	timal manufacturing support system for lean produc	tion.				
Ind	icative Experime	ents					
1	3D solid modell moulding die	ing and assembly using a CAD/CAM system for a p	olastic	inject	tion		
2	Write required (CNC program for turning/ milling operations.					
3	Generate CNC	program using any CAD Software for turning/ millin	g oper	ation	S.	-	
4	for lathe and mi	INC program by optimising tool path movement usi		VI SOI	twar	e	
5	Inspection plan	ning for automated inspection for an automotive cor	npone	nt			
6	Industrial Robo	t Programming for spot welding and paint shop app	licatior	1			
7	Generate suitat	ble Computer aided Process plan					
8	Virtual commiss suitable simulat	Virtual commissioning of pick and place robot by integrating PLC hardware using a suitable simulation software					
T	Total Laboratory Hours 30 hours						
16)	L DOOK(S)						
1.	M.P. Groover, manufacturing, Javaprakash, G	Automation Production systems and Com Pearson Education, 2015.	puter Svste	Integ	grate an	d Id	
-	Computer-integ	rated Manufacturing. United Kingdom: Pears	son	Edu	catio	n	
Ref	erence Books						
1.	XunXu, Integ Numerical Cor	rating advanced Computer Aided Design, M htrol, IGI Global, 2009	lanufa	cturir	ng a	and	
2.	J.A. Rehg& H. Education, 200	W. Kraebber, Computer Integrated Manufacturing, 05	Pears	on			

3.	 T.C. Chang, R. Wysk and H.P. Wang, Computer aided Manufacturing, Pearson Education, 2009 								
Mode of assessment: Continuous assessment / FAT									
Rec	Recommended by Board of Studies 27-07-2022								
Approved by Academic Council No. 67 Date 08-08-2022									

Course Code		Course Title	L	Т	Ρ	С
MCDM506L		Advanced Vibration Engineering	3	0	0	3
Pre-requisite		NIL	Syllab	ous v	/ersi	on
				1.0)	
Course Objec	tives	.				
The main object	lives c	of this course are to:				
1. Introduc with app	e clas licatio	ssical Vibration theories, relating to discrete and ns	l continu	ious	syst	ems
2. Teach v and mod	arious dal tes	numerical techniques including FE for analysis ting for natural frequencies and mode shapes.	of comp	lex s	struct	ures
Introduc stability.	e non	-linearity and random phenomena in vibrating sy	/stems i	ncluo	ding	their
Course Outco	ome :					
At the end of the	e cour	se, the student will be able to:				
1. Apply c systems	oncep and i	its of Mechanical vibrations single, two and r n continuous, Non-linear and Random Vibration c	nulti de oncepts.	gree	free	dom
2. Demons systems	trate with a	the classical vibration theories, relating to dis applications.	crete ar	id c	ontin	uous
3. Use and Perform frequend	d app vario cies ar	ly various numerical techniques for analysis on us experimental techniques such as modal test and mode shapes.	of compl ing to ic	lex s denti	struct fy na	tures itural
4. Analyze suitable	vario contro	us measurements of vibration techniques in s bl techniques	tructures	s an	d en	nploy
5. Interpret including	and og their	demonstrate non-linearity and random phenomen stability.	a in vibr	ating	g sys	tems
Free and Force damped vibration periodic Excitation	d Vibr ons-M	ration analysis of single degree of freedom- Unda easurement of damping-Response to Periodic,	amped a Harmon	nd v ic aı	iscound nd N	urs Isly on-
Madular2	T	degree of freedom overem			<u> </u>	
Free and Force Vibration Absor	ed vib	ration analysis-Coordinate transformation and and Vibration Isolation	linear su	uper	positi	ion-
Module:3 Stiffness and F Orthogonality- N	Multi Iexibil <i>I</i> odal	degree of freedom system ity matrix- Eigen Value formulation- Lagrange's matrix and modal analysis of multi DOF	method	-Prir	6 ho nciple	urs of
Module:4	Appro	oximate numerical methods			6 ho	urs
Rayleigh's Meth Matrix method.	nod, N	fatrix inversion method, Stodola's method, Holze	r's meth	od, ⁻	Trans	sfer
Modular	///	liona of Continuous systems			6 4 -	
Wibrotion analys		uons of Continuous systems		Intic		
of rotary inertia	and s	hear deformation effects-Effect of axial force	lier's equ	uatio	い-ヒゴ	ect
Module:6	Exper	imental methods			6 ho	urs
			1			

Vibration exciters and measuring instruments- Free and forced vibration tests- Signal analysis-Industrial case studies

Module:7 Introduction to Random Vibration 4 hours Probability density function- Stationary and ergodic process- Auto-correlation function- Power spectral density-Narrow band and wideband random processes-Response of single and Multi-DOF systems. Module:8 Introduction to non-linear vibration 3 hours Fundamental conceptsin stability and equilibrium points-Perturbation technique- Duffing equation, Phenomena of Jump, vibration analysis of a simple pendulum with non-linear behavior Contemporary Discussion 2 hours Module:9 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book(s) 1 S. S. Rao, "Mechanical Vibrations" Pearson India, 6 th Edition 2016. 2. Kelly SG "Mechanical Vibrations" CL Engineering 1 st Edition,2011 Reference Book 1 1. Dukkipati RV, "Advanced Mechanical Vibrations", Narosa Publications, 2008. 2. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, Delhi, 2012. 3. W.T. Thomson, M.D. Dahleh, "Theory of Vibrations with applications", Pearson New International 5 th Edition, 2013. 4. Meirovitch L, "Fundamental of Vibration", Waveland, Pr.Inc., 2010 5. William J Boltega, "Engineering Vibrations", CRC Press, 2 nd Edition, 2014. 6. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition,
Probability density function- Stationary and ergodic process- Auto-correlation function-Power spectral density-Narrow band and wideband random processes-Response of single and Multi-DOF systems. Module:8 Introduction to non-linear vibration 3 hours Fundamental conceptsin stability and equilibrium points-Perturbation technique- Duffing equation, Phenomena of Jump, vibration analysis of a simple pendulum with non-linear behavior Contemporary Discussion 2 hours Module:9 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book(s) 1 S. S. Rao, "Mechanical Vibrations" Pearson India, 6 th Edition 2016. 2 Kelly SG "Mechanical Vibrations" CL Engineering 1 st Edition,2011 Reference Book 2 1. Dukkipati RV, "Advanced Mechanical Vibrations", Narosa Publications, 2008. 2 2. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, Delhi, 2012. 3. 3. W.T. Thomson, M.D. Dahleh, "Theory of Vibrations with applications", Pearson New International 5 th Edition, 2013. 4. 4. Meirovitch L, "Fundamental of Vibrations", CRC Press, 2 nd Edition, 2014. 6. 5. William J Boltega, "Engineering Vibrations", CRC Press, 2 nd Edition, 2014. 6. 6. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CAC Press, 2017.<
Module:8 Introduction to non-linear vibration 3 hours Fundamental conceptsin stability and equilibrium points-Perturbation technique- Duffing equation, Phenomena of Jump, vibration analysis of a simple pendulum with non-linear behavior Contemporary Discussion 5 hours Module:9 Contemporary Issues 2 hours Module:9 Contemporary Issues 2 hours Text Book(s) 45 hours 1. S. S. Rao, "Mechanical Vibrations" Pearson India, 6 th Edition 2016. 2. Kelly SG "Mechanical Vibrations" CL Engineering 1 st Edition,2011 Reference Book 1. 1. Dukkipati RV, "Advanced Mechanical Vibrations", Narosa Publications, 2008. 2. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, Delhi, 2012. 3. W.T. Thomson, M.D. Dahleh, "Theory of Vibrations with applications", Pearson New International 5 th Edition, 2013. 4. Meirovitch L, "Fundamental of Vibrations", CRC Press, 2 nd Edition, 2014. 6. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017. Mode of Evaluation: CAT , Written Assignment, Quiz and FAT Recommended by Board of Studies 1 27.07.202
Module:8 Introduction to non-linear vibration 3 hours Fundamental conceptsin stability and equilibrium points-Perturbation technique- Duffing equation, Phenomena of Jump, vibration analysis of a simple pendulum with non-linear behavior Contemporary Discussion technique- Duffing Module:9 Contemporary lssues 2 hours Module:9 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book(s) 45 hours 1. S. S. Rao, "Mechanical Vibrations" Pearson India, 6 th Edition 2016. 2008. 2. Kelly SG "Mechanical Vibrations" CL Engineering 1 st Edition,2011 2008. Reference Book 3 3 1. Dukkipati RV, "Advanced Mechanical Vibrations", Narosa Publications, 2008. 3 2. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, Delhi, 2012. 3 3. W.T. Thomson, M.D. Dahleh, "Theory of Vibrations with applications", Pearson New International 5 th Edition, 2013. 4 4. Meirovitch L, "Fundamental of Vibration", Waveland, Pr.Inc., 2010 5 5. William J Boltega, "Engineering Vibrations", CRC Press, 2 nd Edition, 2014. 6 6. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017.
Fundamental conceptsin stability and equilibrium points-Perturbation technique- Duffing equation, Phenomena of Jump, vibration analysis of a simple pendulum with non-linear behavior Contemporary Discussion Module:9 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book(s) 45 hours 1. S. S. Rao, "Mechanical Vibrations" Pearson India, 6 th Edition 2016. 2. Kelly SG "Mechanical Vibrations" CL Engineering 1 st Edition,2011 Reference Book
Module:9 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book(s) 1. S. S. Rao, "Mechanical Vibrations"Pearson India, 6th Edition 2016. 2 2. Kelly SG "Mechanical Vibrations" CL Engineering 1st Edition,2011 Reference Book 1. Dukkipati RV, "Advanced Mechanical Vibrations", Narosa Publications, 2008. 2. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, Delhi, 2012. 3. W.T. Thomson, M.D. Dahleh, "Theory of Vibrations with applications", Pearson New International 5th Edition, 2013. 4. Meirovitch L, "Fundamental of Vibration", Waveland, Pr.Inc., 2010 5. William J Boltega, "Engineering Vibrations", CRC Press, 2nd Edition, 2014. 6. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017. Mode of Evaluation: CAT , Written Assignment, Quiz and FAT Perommended by Board of Studies
Module:s Contemporary issues 2 hours Total Lecture hours: 45 hours Total Lecture hours: 45 hours Text Book(s) 1. S. S. Rao, "Mechanical Vibrations"Pearson India, 6 th Edition 2016. 2. Kelly SG "Mechanical Vibrations" CL Engineering 1 st Edition,2011 Reference Book 1. Dukkipati RV, "Advanced Mechanical Vibrations", Narosa Publications, 2008. 2. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, Delhi, 2012. 3. W.T. Thomson, M.D. Dahleh, "Theory of Vibrations with applications", Pearson New International 5 th Edition, 2013. 4. Meirovitch L, "Fundamental of Vibrations", CRC Press, 2 nd Edition, 2014. 5. William J Boltega, "Engineering Vibrations", CRC Press, 2 nd Edition, 2014. 6. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017. Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022
Total Lecture hours: 45 hours Text Book(s) . 1. S. S. Rao, "Mechanical Vibrations"Pearson India, 6 th Edition 2016. 2. Kelly SG "Mechanical Vibrations" CL Engineering 1 st Edition,2011 Reference Book 1. Dukkipati RV, "Advanced Mechanical Vibrations", Narosa Publications, 2008. 2. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, Delhi, 2012. 3. W.T. Thomson, M.D. Dahleh, "Theory of Vibrations with applications", Pearson New International 5 th Edition, 2013. 4. Meirovitch L, "Fundamental of Vibrations", ORC Press, 2 nd Edition, 2014. 5. William J Boltega, "Engineering Vibrations", CRC Press, 2 nd Edition, 2014. 6. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017. Mode of Evaluation: CAT, Written Assignment, Quiz and FAT Recommended by Board of Studies
Total Lecture hours: 45 hours Text Book(s) . 1. S. S. Rao, "Mechanical Vibrations" Pearson India, 6 th Edition 2016. 2. Kelly SG "Mechanical Vibrations" CL Engineering 1 st Edition,2011 Reference Book 1. Dukkipati RV, "Advanced Mechanical Vibrations", Narosa Publications, 2008. 2. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, Delhi, 2012. 3. W.T. Thomson, M.D. Dahleh, "Theory of Vibrations with applications", Pearson New International 5 th Edition, 2013. 4. Meirovitch L, "Fundamental of Vibrations", CRC Press, 2 nd Edition, 2014. 6. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017. Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022
 Text Book(s) S. S. Rao, "Mechanical Vibrations" Pearson India, 6th Edition 2016. Kelly SG "Mechanical Vibrations" CL Engineering 1st Edition,2011 Reference Book Dukkipati RV, "Advanced Mechanical Vibrations", Narosa Publications, 2008. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, Delhi, 2012. W.T. Thomson, M.D. Dahleh, "Theory of Vibrations with applications", Pearson New International 5th Edition, 2013. Meirovitch L, "Fundamental of Vibrations", CRC Press, 2nd Edition, 2014. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017. Mode of Evaluation: CAT, Written Assignment, Quiz and FAT
 S. S. Rao, "Mechanical Vibrations" Pearson India, 6th Edition 2016. Kelly SG "Mechanical Vibrations" CL Engineering 1st Edition,2011 Reference Book Dukkipati RV, "Advanced Mechanical Vibrations", Narosa Publications, 2008. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, Delhi, 2012. W.T. Thomson, M.D. Dahleh, "Theory of Vibrations with applications", Pearson New International 5th Edition, 2013. Meirovitch L, "Fundamental of Vibration", Waveland, Pr.Inc., 2010 William J Boltega, "Engineering Vibrations", CRC Press, 2nd Edition, 2014. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017. Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT
 Kelly SG "Mechanical Vibrations" CL Engineering 1st Edition,2011 Reference Book Dukkipati RV, "Advanced Mechanical Vibrations", Narosa Publications, 2008. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, Delhi, 2012. W.T. Thomson, M.D. Dahleh, "Theory of Vibrations with applications", Pearson New International 5th Edition, 2013. Meirovitch L, "Fundamental of Vibrations", ORC Press, 2nd Edition, 2014. William J Boltega, "Engineering Vibrations", CRC Press, 2nd Edition, 2014. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017. Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT
 Reference Book Dukkipati RV, "Advanced Mechanical Vibrations", Narosa Publications, 2008. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, Delhi, 2012. W.T. Thomson, M.D. Dahleh, "Theory of Vibrations with applications", Pearson New International 5th Edition, 2013. Meirovitch L, "Fundamental of Vibration", Waveland, Pr.Inc., 2010 William J Boltega, "Engineering Vibrations", CRC Press, 2nd Edition, 2014. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017. Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT
 Dukkipati RV, "Advanced Mechanical Vibrations", Narosa Publications, 2008. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, Delhi, 2012. W.T. Thomson, M.D. Dahleh, "Theory of Vibrations with applications", Pearson New International 5th Edition, 2013. Meirovitch L, "Fundamental of Vibration", Waveland, Pr.Inc., 2010 William J Boltega, "Engineering Vibrations", CRC Press, 2nd Edition, 2014. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017. Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT
 Benson H. Tongue, "Principles of Vibrations", Oxford University Press, Delhi, 2012. W.T. Thomson, M.D. Dahleh, "Theory of Vibrations with applications", Pearson New International 5th Edition, 2013. Meirovitch L, "Fundamental of Vibration", Waveland, Pr.Inc., 2010 William J Boltega, "Engineering Vibrations", CRC Press, 2nd Edition, 2014. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017. Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT
 W.T. Thomson, M.D. Dahleh, "Theory of Vibrations with applications", Pearson New International 5th Edition, 2013. Meirovitch L, "Fundamental of Vibration", Waveland, Pr.Inc., 2010 William J Boltega, "Engineering Vibrations", CRC Press, 2nd Edition, 2014. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017. Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT
 Meirovitch L, "Fundamental of Vibration", Waveland, Pr.Inc., 2010 William J Boltega, "Engineering Vibrations", CRC Press, 2nd Edition, 2014. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017. Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT
 William J Boltega, "Engineering Vibrations", CRC Press, 2nd Edition, 2014. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017. Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022
 6. Paolo L. Gatti, "Applied Structural and Mechanical Vibrations: Theory and Methods", Second Edition, CRC Press, 2017. Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022
Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT
Recommended by Board of Studies 27-07-2022
1×10^{-1}
Approved by Academic Council No. 67 Date 08-08-2022

Course Code	Course Title	L	Т	P	C
MMAE503L	Additive Manufacturing Technologies	3	0	0	3
Pre-requisite	NIL	Sy	liabus	versi	ion
Course Objection	/05		1.	U	
	ves studente with the concent of Additive Menufacture	ing (/	M) V	orious	
	succents with the concept of Additive Manufactur selection of materials for AM modeling of AM	nig (F	NVI), V	anous	their
applications in	various fields	proce		anu	
2. Able to design	and print 3D components using various printing tool	S.			
3. Apply digital m	anufacturing technologies to various facets of huma	n end	eavor.		
Course Outcom	e				
Upon successful	completion of the course, the students will be able to	2			
1. Understanding	the concepts, capabilities and limitations of additive	e techr	nologie	es and	l
their varied ap	plications.				
2. Identifying the	suitable file format and data processing technique for	or AM	syster	ns usi	ng
3 Proposing suit	able material and AM systems for specific requireme	nt			
4. Applving desi	an for additive manufacturing guidelines in design	nina m	lass c	ustom	nized
products.				actor	
5. Suggesting the	e appropriate post processing technique to improve	e the o	quality	of pri	inted
part.				•	
6. Designing app	ropriate rapid tools for any given medical and autom	obile a	applica	tions.	
Module:1	Introduction			4 ho	ours
Introduction to AN	I, AIVI evolution, Distinction between AM & CNC mail	chinin	g, Ster	os in A	ΑM,
	IVI processes, Advantages of AM and Types of mat	erials	ior AN	n, Des	sign
Module:2	Process Planning for Additive Manufacturing			7 ho	urs
3D model data o	reation. Concept of reverse engineering Data co	llectio	n. Mo	delina	for
printing, file forma	its: STL, OBJ, AMF, 3MF, CLI, STL file errors, Corr	ectior	and	printat	oility
analysis, Optimiza	ation of part orientation and support structure gener	ation,	Types	of	,
supports, Slicing p	parameters, Tool path generation.				
Module:3	Additive Manufacturing Processes			8 ho	ours
Basic principles of	of the Additive Manufacturing process, Generation	of la	yer inf	ormat	tion,
Physical principle	s for layer generation. Elements for generating	the	physic	al La	yer,
Classification of Additive Manufacturing processes, Overview of polymerization: Stereo-					
Innography (SL)-Photopolymensation, Selective Laser Sintering/Weiting in the Powder Bed,					
based Direct Energy Deposition technologies. Material Jetting. Binder Jetting and Hybrid					
AM Processes.					
Module:4	Materials for AM			6 ho	urs
Multifunctional an	d graded materials in AM, Atomic structure and	bon	ding, l	Nature	e of
polymers, Thermoplastics and thermosetting polymers, Types of polymerizations,					
Properties of polymers, Degradation of polymers, Metal and Ceramic Powders,					
Composites, Role of solidification rate, Evolution of non-equilibrium structure,					
microstructural studies, Structure property relationship, and Case studies.					
Module:5	Design for Additive Manufacturing			6 ho	ours
Introduction to ge	ometric modelling, Modelling of synthetic curves like	e Herr	nite, B	ezier	and
ы-spline, Paramet	tric representation of freeform surfaces, Design fre	eaom	with A	AIVI, N	eed
DfAM methods. General guidelines for DfAM. The economics of Additive Manufacturing					

Design to minimize print time, Design to minimize post-processing.							
Module:6 Post-Processing for Additive Manufacturing				6 hours			
Suppo	ort structur	e removal, Surface tex	ture improv	ement, Si	urface treatments	of Polymer &	
metal,	Heat trea	atment, HIP & residual	stress relie	eving, UV	curing, Cleaning	& de-	
powde	powdering, Machining, Surface coating and Infiltration.						
Mod	ule:7	Rapid Tooling & Re	verse Engi	neering		6 hours	
Conve	Conventional tooling, Rapid tooling, Differences between conventional and rapid tooling,						
Classi	Classification of rapid tooling: Direct and indirect tooling methods, Soft, Bridge (firm) and						
Hard t	Hard tooling methods, Rapid tooling for investment casting, Re-Engineering–Hardware and						
softwa	software: Contact methods, Noncontact methods, Destructive method, Point capture						
device	es, Irack	ing systems, internal	measurer	nent sys	stems, X-ray Ic	omograpny, &	
Desiru		ems Contemporary Issue	<u> </u>			2 hours	
wou	ule.o	Contemporary issue	5			2 nours	
				Total I	octuro hours:	45 hours	
						45 Hours	
lext	BOOK(S)				<u></u>		
1.	C P Pau	ul, AN Jinoop, Additi	ve Manufac	cturing –	Prichiples, techn	ologies and	
Defe		ions, Nic Graw Hill Publi	ication, 202	1.			
Refe	Reference Books						
1.	1. Additive Manufacturing, Second Edition, Amit Bandyopadhyay Susmita Bose, CRC						
Press Taylor & Comp; Francis Group, 2020.							
2.	2. Olat Diegel, Axel Nordin, Damien Motte, A Practical Guide to Design for Additive						
Mode	Manufacturing, Springer Nature Singapore Pte Ltd., 2020.						
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Lab / Seminar							
Reco	mmended	by Board of Studies	27-07-20	22			

Course Code	Course Title	LTP		С		
MMAE503P	Additive Manufacturing Technology Lab	0	0	2	1	
Pre-requisite	NIL	Syllabus version		on		
		1.0				
Course Objectives						

- 1. To acquaint students with the concept of Additive Manufacturing (AM), various AM technologies, selection of materials for AM, modeling of AM processes, and their applications in various fields.
- 2. Able to design and print 3D components using various printing tools.
- 3. Apply digital manufacturing technologies to various facets of human endeavor.

Course Outcome

Upon successful completion of the course, the students will be able to

- 1. Understanding the concepts, capabilities and limitations of additive technologies and their varied applications.
- 2. Identifying the suitable file format and data processing technique for AM systems using software.
- 3. Proposing suitable material and AM systems for specific requirement.
- 4. Applying design for additive manufacturing guidelines in designing mass customized products.
- 5. Suggesting the appropriate post processing technique to improve the quality of printed part.
- 6. Designing appropriate rapid tools for any given medical and automobile applications.

Indicative Experiments 1. Generating a 3D CAD model by Reverse Engineering (UV-Scanner) 2. Generating a complicated 3D model with freeform surface (Rhinoceros 7) Generating a model and storing it in .STL format. Calculating the number of 3. triangles required to store the model in .STL format. (Rhinoceros 7) 4. Performing the slicing operation on the .STL file generated in Problem -3. Proposing the suitable part orientation and support structure design with software (Repeiter/Cura/Pursa). Calculating the build time required to print complicated 3D model by keeping layer 5. thickness and infill density 0.2mm and 10% respectively. (Repeiter/Cura/Pursa). 6. Evaluating the dimensional accuracy of the part printed by FDM 7. Evaluating the dimensional accuracy of the part printed by SLA 8. Evaluating the dimensional accuracy of the part printed by SLS Designing a split pattern for sand casting and printing it with FDM, Producing a 9. metal casting in foundry lab., using this 3D printed pattern. 10 Preparing the build set-up for metal 3D printer 11. Working on process parameter (Laser power, scan speed, hatch width, hatch space, etc.) 12. Fabrication and post processing of metal part (Support removal, surface treatment, etc.) Total Laboratory Hours 30 hours Text Book(s) C P Paul, A N Jinoop, Additive Manufacturing - Pricniples, technologies and 1. Applications, Mc Graw Hill Publication, 2021.

Refe	Reference Books					
1.	Additive Manufacturing, Second Edition, Amit Bandyopadhyay Susmita Bose, CRC					
	Press Taylor & amp; Francis Group, 2020.					
2.	Olaf Diegel, Axel Nordin, Damie	en Motte, A Practical Guide to Design for Additive				
	Manufacturing, Springer Nature Singapore Pte Ltd., 2020.					
Mod	Mode of assessment: Continuous assessment / FAT / Oral examination and others					
Rec	ommended by Board of Studies	27-07-202	22			
Approved by Academic Council		No. 67	Date	08-08-2022		

Course Code	Course Title	L T P C				
MAUE505L	Vehicle Dynamics	3	0	0	3	
Pre-requisite	NIL	S	yllabus	versi	on	
			1.0)		
Course Objecti	ves:					
 To enable students to understand the role of tire characteristics and its mechanics for vehicle dynamics To enable the students to understand vehicle performance, handling and ride aspects and the issues involved in it such as braking, traction, road holding, vehicle control and stability To prepare the students to understand significance of steering and suspension mechanisms for vehicle dynamics. To demonstrate how to apply fundamentals of vibrations and acoustics for vehicle NV/H perspective along with importance of medal analysis and transfer path analysis 						
Expected Cour	se Outcome:					
On completion of 1. Predict th various tir 2. Compute of two and 3. Demonstr lateral and 4. Compute 5. Outline th 6. Evaluate using app 7. Identify th developm	of this course, the student will be able to e necessary forces and moments during tire/road in e models for vehicle dynamic simulations. maximum traction, optimum braking distribution and d three axle vehicles ate the application of fundamental governing equa d vertical dynamics and able to use state space appro- steady state and transient response of vehicle during e role of suspension in roll over stability. the role of suspension for vibration isolation, rattle s ropriate mathematical models. the current literature and the necessity of modern t ent	terac stab ations bach corr pace ools	tion thro ility of th s for lor nering. and roa for vehic	ugh ne vel ngitud d hol cle	hicle linal, ding	
Module:1	Tyre Mechanics			9 ho	urs	
Introduction to V construction-Tyre resistance-Corne tractive and brai cornering force, F Tyre performance	ehicle Dynamics- Vehicle and Tyre co-ordinate syse forces and moments-Tyre-slip & skid phenome ring properties of tyres- Tyre models- Julien's tyre king effort, Temple & Von Schippe approach of Friction Ellipse concept, Magic Formula tyre model for e on wet surfaces-Ride properties of tyres.	tems non moo tyre r stea	, Tyre ty grip an del for c string m ady state	/pes d rol ombi nodel moti	and ling ned for on.	
Module:2	Longitudinal Dynamics			6 ho	urs	
Performance ch characteristics. E Traction control s	aracteristics-Maximum tractive effort-Power plan Braking performance-Study of tractor-semitrailer-An system	t ar ti loc	nd Tran k brake	smiss syste	sion em-	
Module:3	Lateral Dynamics			6 ho	urs	
General frame w for deducing gov High speed corn axle vehicle- neu duirng pure corne	ork and governing equations for vehicle in space-N verning equations for ground vehicles. Bicycle Mode ering-State space approach-Steaty state handling utral steer-understeer-oversteer. Steady state gains ering. Vehicle handling tests.	leces el-Lov chara s fror	ssary ass w speed acteristic n Bicycl	sump turn s of e Mo	tion ing- two odel	

Moc	lule:4	Vehicle stability					4 hours	
Vaw	nlana sta	bility and steering condi-	tions_I Inderst	oor arad	ient _ H	andling resp		
vehic	le- Latera	I transient response-Min	nuro plot-Roll	over stal	bility ana	lysis.		
	.						0 1	
Moc	dule:5	Steering and Suspen	ision Mechai	nisms			6 hours	
Steer Solid distrit tyres	Solid Axle suspension-Independent suspension-Roll center and Roll axis-Roll mement distribution-Car tyre relative angles-Caster theory- Role of suspension and nonlinearity of tyres on vehicle roll and its effect on Understeer co-efficient							
Мос	dule:6	Vertical Dynamics					6 hours	
model- pitch and bounce model- Suspension performance for ride-vibration isolation, suspension travel, Road holding. Active and Semi-active suspensions. Introduction to random vibration. ISO road roughness and road profiles-RMS acceleration of sprung mass of vehicle for random road excitation.								
Мос	dule:7	Introduction to Noise Harshness	e, Vibration a	Ind			6 hours	
Fund analy	amentals sis- Trans	of Acoustics, Noise an sfer path analysis- Single	d Vibrations. e reference- N	Frequer Iulti refer	ncy resp rence an	onse functio alysis.	ons-Modal	
Мос	dule:8	Contemporary Issues	5				2 hours	
			Total Le	cture ho	ours		45 hours	
Tex	t Book(s)							
1.	J. Y. W Inc., Ne	ong (2008), "Theory of 0 w York, 2008	Ground Vehic	les", 4 th E	Edition, J	ohn Wiley a	nd Sons	
2.	2. Thomas D Gillespie, Fundamentals of Vehicle Dynamics, 2 nd Revised Edition, SAE International, Warrendale, 2021							
Reference Books								
1. Reza N Jazar "Vehicle Dynamics: Theory and Application", 3 rd Edition, Springer International Publishing AG, Switzerland, 2017								
2	2 Katsuhiko Ogata, "Modern Control Engineering",5 th Edition, Prentice Hall.Pearson.2010.							
3.	C. Suja Hill Edu	tha, "Vibration and Acou ມcation (India) Private lin	istics: Measu nited, 2010.	rements	and Sigr	al Analysis"	, McGraw	
	r	. ,						
IVIOO	le of Eval	uation: CAT / Assignmer	nt / Quiz / FAT	/ Projec	t / Semir	nar		
Rec	le of Eval	uation: CAT / Assignmer	nt / Quiz / FAT	/ Projec	t / Semir	ar		

Cours	e Code	Сог	urse Title		LTP			
MAU	E505P	Vehicle	Dynamics Lab		0	0	2	1
Pre-r	requisite	NIL			Sy	llabus	s vers	ion
_	<u> </u>					1	.0	
Cour	se Objecti	ves						-
vehic	repare stud ular systen	n and its subsystems.	-time and virtua	al experiment	al me	asure	ments	for
0	0							
Cour	se Outcon	ne						
Upon Successful Completion of this Lab course, Students will be able to1. Understand and use the measurement systems such as data acquisition system, various types of exciters, accelerometers, microphones in real time experiments.							rious	
2. Ca an	nrry out virt d ride quali	ual testing using CARS ty.	SIM software to	quantify its	perfor	mance	ə, han	dling
Indic	ative Chal	lenging Experiments			-			
1.	Preparat	tion of test set up for sp	pectral testing			3 h	ours	
2.	Experim	ental Modal Analysis a	wheel rim.			3 hours		
3.	Quantific	cation of structural transfer function for NVH study				3 h	ours	
	of a pase	senger car						
4.	Quantific	cation of Vibro-acoustic	transfer function	on for NVH		3 h	ours	
	study of	a passenger car						
5.	Preparat	tion of test set up for sig	nature testing			3 h	ours	
6.	Interior r different	noise measurement in operating condition	a passenger o	car during		3 h	ours	
7.	Whole b passeng	ody vibration measure	ment of an occ	upant in a		3 h	ours	
8.	Mathema performa	atical modelling of ride ance using Matlab/Simu	e models for s link	uspension		3 h	ours	
9.	Virtual v	ehicle testing & stability	analysis using (CARSIM		3 h	ours	
10.	Vibro-ac 3D	oustic analysis of a co	omponent using	Simcenter		3 h	ours	
			Total Laborat	ory Hours		30 h	ours	
Mode	e of assess	ment: Continuous asses	ssment / FAT / C	Pral examinati	ion an	d othe	rs	
Reco	mmended	by Board of Studies	27-07-2022					
Appro	oved by Ac	ademic Council	No. 67	Date		08-08	3-2022	2

Course Code	Course Title	L	Т	Ρ	С			
MAUE605L	Vehicle Aerodynamics	3	3 0 0 3					
Pre-requisite	NIL	Sy	Syllabus version					
			1	.0				
Course Objectives	3							
1. To impart ba	sic knowledge of aerodynamics and fluid-vehicle	intera	ction to	o the				
2 To onable th	a student to design model and test low drag, fue	officio	nt on	d acou	uctio			
	2. To enable the student to design, model and test low drag, fuel enicient, and acoustic,							
3 To empower	the students to design vehicles to be stable and	rachy	e veni orthy	665.				
J. To employed	a students to integrate autonomous and EV tech		oruny.	ocofrid	andly			
		lologie	5 1110	COM	shury			
venicie desig	113.							
Course Outcome								
At the end of	the course, the student will be able to							
1. Comprehend	and apply the basic principles of aerodynamic	s to th	e desi	gn of	road			
vehicles.								
2. Render vehi	cles more stable by reducing the aerodynamic	drag, I	ift and	side	wind			
forces and m	oments.							
3. Design fuel e	fficient and low noise luxury sedans, SUVs, race	cars, I	motoro	ycles,				
trucks and bu	JSES.							
4. Assess and	evaluate autonomous and EV technologies ar	nd app	licabil	ity to	road			
vehicles.				-				
5. Simulate adv	vanced computational and simulation tools to mo	del, si	mulate	e and				
analyze the p	performance of road vehicles.							
Module:1 Intr	roduction to Road Vehicle			5 hc	ours			
Basic principles of	road vehicle aerodynamics Evolution of road	d vehi	cles	borro	wed			
shapes, Streamlinir	ng era, Parametric studies, One-volume boo	lies, E	Bathtu	b boc	lies.			
Commercial vehicle	es, Motorcycles, Shape and detail optimizatio	n, Ćc	ncept	vehic	les,			
Autonomous and ele	ectric vehicles - chassis and air flow, Performanc	e ana	ysis o	f cars	and			
light trucks.								
Module:2 Vel	nicle motion and aerodynamics			7 hc	ours			
Vehicle equation o	f motion, Types and origins of aerodynamic	drag,	Drag	reduc	tion			
systems - Ultra-low	drag designs, Tire rolling resistance, Climbing	g resis	tance,	Effec	tive			
mass, Traction diag	ram, Acceleration capability and vehicle elastic	ity, Fι	iel coi	nsump	otion			
and economy - Ge	ear-ratio re-matching - EPA driving cycles -	Urbar	ι – H	lighwa	у —			
Combined, Low fuel	consumption strategies.							
Module:3 Sta	bility, aesthetics and comfort			7 hc	ours			
Flow field around a	vehicle - Interior and exterior flows - Attached, se	parate	d and	oscilla	iting			
flows, Aerodynamic	forces and moments, Cornering and side wir	nd beh	aviors	, Stat	oility			
Index, Passing mane	euvers, Undertrays, Diffusers and Spoilers, Cente	er of gr	avity a	and ce	nter			
of pressure, Active	e aerodynamic controls, Satety and aesthetic	s, So and⊔	IIING -	 VISIL 	ollity			
			v AU S		J.			
Module:4 Hig	h pertormance and commercial hicles			6 hc	ours			
Low C.G chassis, O	pen wheel F1 and closed top NASCAR designs,	Wings	- Air d	ams -				
Barge boards - Sid	<u>e skirts – Undertrays – Diffusers - Strakes and</u>	<u>wic</u> ke	ers, O	ver ste	eer,			

under steer, Drafting. Commercial vehicle aerodynamics - Truck aerodynamics - Improvements in design - Different styles of trailers Effect of gap between truck and trailer - Fairings.							
Module:5	Measurement and test techniques	ing			6 hours		
Wind tunnel and on-road testing techniques - Classification and design of wind tunnels - Instrumentation and data acquisition - Wind tunnel components and corrections, Road testing methods - Cross-wind and engine cooling tests - Soiling, water and dirt accumulation, visibility measurements on road, 1-D sound wave equation - Sound wave expansion - Sound reflection - Transmission and absorption - Vortex sound – Buffeting - Sound and flow control - Active and passive methods - Simplified acoustic models.							
Module:6	Computational Fluid D Applications	ynamics ar	nd		7 hours		
Introduction to CFD analysis - CFD vs. experimentation, Fundamentals of fluid mechanics – Continuity - Navier-stokes and energy equations, Modeling and Discretization techniques - Basic steps in CFD computation - 3-D structured and unstructured grid generation - Mesh smoothing and sensitivity checks - Turbulence models - Eddy viscosity and non-eddy viscosity models - RANS and ARSM models - LES and DNS methods.							
Module:7	Vehicle Aerodynamic	Simulation			5 hours		
Ahmed and V model simula SIMSCALE – Cross-wind se	Vindsor body simulations, tions - Climatic wind tunr ANSYS – FLUENT- FIDAP ensitivity simulations.	Grid-free si el simulatic - N3S – FL	mulati ons, C OW 3	on Comi D si	methods - Solid and surface mercial software packages - mulations, HVAC simulation -		
Module:8	Contemporary Issues				2 hours		
	Total L	ecture hou	rs:		45 hours		
Text Book(s							
1. "Autor 1. 18572	notive Aerodynamics", Jos -7, 680 pages	eph Katz,	Wiley,	Ju	ıly 2016, ISBN: 978-1-119-		
2. ^{"Modif} Publis	ying the Aerodynamics o hing Ltd., January 2022, IS	f Your Roa SBN-13 : 97	ad Ca 78-178	ar", 371 <i>°</i>	Julian Edgar, Veloce 12834		
Reference E	looks						
1. Aerod 1. 13 : 9	ynamics of Road Vehicles, 78-0768000290.	W.H. Hucho	o, SAE	E, U	S 4 th edn., Feb. 1998, ISBN-		
Mode of Eva Assessment	luation : Continuous Asses Test	sment Tests	s, Quiz	zes	, Assignment, Final		
Recommend	ed by Board of Studies	27-07-202	22				
	Acadomia Council	No 67	Date	ρ	08-08-2022		

Course Code	Course Code Course Title L T P						
MMAE608L	Design and Analysis of Experiments	2	1	0	3		
Pre-requisite	NIL	Sylla	abus v	/ersi	on		
			1.0)			
Course Objective	S:						
The objectives of t	his course are to:						
1. Introduce experime	 Introduce the student to the principles and methods of statistical analysis of experimental designs. 						
2. Provide k	2. Provide knowledge on process/product optimization through statistical concepts.						
Course Outcome	:						
Upon the completi	on of the course, the students will be able to						
1. Identify th	e Principles and Guidelines of Design of Experiment	S					
2. Analyze t	he Randomized Block Designs						
3. Analyze t	he Factorial Designs						
4. Explain th Experime	ne comparison of classical and Taguchi's approac nts	h in E	Design	of			
5. Solve the	problems by Regression Analysis.						
6. Analyze t Experime	he importance of response Surface Methodology in nts	Desig	in of				
Module:1 F	voeriments with a Single Factor			7 ho	ure		
Basic Principles an	d Guidelines of Design of Experiments - Single Factor	actor F	Ivnori	ment	<u>e –</u>		
ANOVA - Model A Treatment Means -	Adequacy Checking - Determining Sample Size - (Introduction to DOAE software	Comp	aring	Pairs	s of		
Module:2 R	andomized Block Designs			5 ho	urs		
Randomized compl	ete block design - Latin square designs - Graeco-La	atin so	quare	desiç	jn -		
Balanced incomple	te block designs						
Module:3 Fa	ctorial Designs			7 ho	urs		
I wo levels - 2k fact	orial designs - Confounding and Blocking in factorial	aesig	ns	7 ho			
The One Half and (The Quarter Fraction of the 2k Design Ceneral 2k	n Era	ctiona	/ 110	urs		
Factorial Design – I	Resolution	pria	Cliona	1			
Module:5 Ro	bust Design			5 ho	urs		
Comparison of clas	sical and Taguchi's approach - orthogonal designs	- S/N	ratio	-			
Module:6 Re	aression Analysis			6 ho	urs		
Introduction - Sim	ble Linear Regression Analysis - Multiple Linear F	Reare	ssion	Mode	<u>el -</u>		
Model Adequacy C	hecking	.59.0					
Module:7 Re	sponse Surface Methodology			6 ho	urs		
Response surface	methodology, parameter – optimization - robust pa	ramet	er des	ign a	and		
Module:8 Co	ntemporary Issues			2 ho	urs		
	- -	I					
	Total Lecture hours:		4	5 ho	urs		

Text	t Book(s)						
1.	 Douglas C. Montgomery, (2017), Design and Analysis of Experiments, John Wiley & Sons, Inc., 9th edition 						
Refe	Reference Books						
1.	Philip J. Ross, (2000), Taguchi Te	echniques for	quality Er	ngineering, F	Prentice Hall		
2.	2. Angela Dean, Max Morris, John Stufken, Delrek Bingham (2015), Handbook of Design and Analysis of Experiments, Chapman & Hall/CRC Publishers.						
3.	3. K. Krishnaiah, P. Shahabuddeen (2012) Applied Design of Experiments and Taguchi Methods, PHI Publications.						
Tuto	orial						
1.	Module 1				2 hours		
2.	Module 2				2 hours		
3.	Module 3				2 hours		
4.	Module 4				2 hours		
5.	Module 5				2 hours		
6.	Module 6				2 hours		
7.	Module 7				3 hours		
		1	otal tuto	rial hours	15 hours		
Mod	le of Evaluation: CAT ,Written Assig	nment, Quiz	and FAT				
Rec	ommended by Board of Studies	27-07-2022					
App	roved by Academic Council	No. 67	Date	08-08-202	2		

Course Code	Course Title	I	т	Р	С
MCDM601L	Advanced Finite Element Methods	3	0	0	3
Pre-requisite	NIL	Syl	labus	vers	ion
_			1.	0	
Course Objectiv	es :				
The objective of th	is course is to				
1. Enable stu analysis, d	dents to earn advanced topics in FEM so that this esign, and optimization of engineering systems.	tool c	an be	e use	d for
 Make stud structural aspects. 	ents to focus on nonlinear structural analysis. Var problems will be demonstrated using the mathem	ious ı atical	nonlin and	earitie nume	∍s in ∍rical
3. Student wi programs	Il also be exposed in computer programming and u	se of	comn	nercia	I FE
Course Outcom					
At the end of the	course, the student will be able to:				
1 Analyses lin			- t	ما تم م ت	. I'
using finite	ear, nonlinear and simple time-dependent problems i element methods	n stru	ctural	aisci	Jine
2. Use the p formulating	articular continuum and structural (beam, plate and , integrating and for solving elastic problems.	d shel	l) ele	ments	s for
Estimate the	e errors in Finite Element Analysis				
4. Evaluate s	pecial element technology, performance and validatio	n proc	edure	es	
5. Solve spec	ial problems related geometric and material nonlinear	ities			
6. Carryout p	ojects on large deformation and transient nature				
Module:1 F	nite Element Methods-A review			6 ho	urs
Governing differen dimensional and elements-Stress C	ntial equations of one- and two dimensional proble two dimensional elements; Gauss Quadrature alculation and Gauss points-Convergence requireme	ems, and nts an	Librar isopa id Pat	y of arame ch tes	one etric st
	anding of Distance and Obalia			<u> </u>	
Bonding of Platos	and Shalls Finite Element Formulation of Plate ar	d Sh			urs
Thin and Thick Pl Elements – Shell e	ates-Confirming and non-Confirming Elements – Co elements as degenerate 3D stress elements-Application) and ons.	C1 C	ontin	s – Jity
Modula 2	rea dimensional calida			6	
Introduction Tetr	ree almensional solids	ahor c	rdor c		urs
- Elements with cu	rved surfaces				1115
Module:4 Sp	ecial Purpose elements			6 ho	urs
Crack tip element	s – Transition elements - Finite strip elements-Strip	elen	nent n	netho	ds-
Method of infinite	domain – nodeless elements				
Module:5 No	nlinear Analysis			6 ho	urs
Introduction to nor	linear analysis- Material Nonlinearity-Plasticity-Creep	-Viso	plastic	city-N	on-
linear constitutive	problem in solid mechanics- Various yield cor iteration method Newton Raphson method and Modil	isidera ied ne	ations [.] wton	-solut raphs	ion son

met	nod- Application in Any One manuf	acturing proces	S					
Мо	dule:6 Nonlinear Analysis -G	eometrical no	nlinearity		6 hours			
Larg	e deflection and instability-Ite	ration solution	of non	linear eo	quations; General			
incre	incremental nonlinear equation-Lagrange description of motion-Deformation gradient							
tens	tensor-Velocity gradient tensor-Strain tensor-Stress tensor-Basic expression of the total							
and	updated Lagrangian formulations	-Total and upd	lated Lag	rangian fo	ormulations –			
Арр	ication in Any One manufacturing	process						
Мо	dule:7 Dynamic Analysis				7 hours			
Lum	ped and consistent mass matrice	es - Damping r	natrix – F	Free, Trar	nsient and Forced			
resp	onse – Solutions of Eigen-system	ns - Implicit me	thods for	transient	dynamics - Mode			
supe	erposition – Sub space Iterative T	echnique – Ho	ubolt, Wils	son, Newi	mark – Methods –			
Exa	nples							
Ma					2 hours			
	dule:6 Contemporary issues				2 nours			
		Tota	I Lecture	hours:	45 hours			
Te	kt Book(s)							
1	Robert D. Cook, David S. Malk	us, Michael E.	Plesha, F	Robert J.	Witt,Concepts and			
	Applications of Finite Element Ar	nalysis,John Wi	ley & Son	s, Incl.,20	02			
2	O.C. Zienkiewicz, R.L. Taylor, J	.Z. Zhu. Finite	element	method: I	ts Basic and			
_	fundamentals- Butterworth Heine	emann. 2015.						
3	Saeed Moaveni, Finite Element A	nalysis, Theory	and Appl	ication will	in ANSYS, Pearson			
	Finn Edition, 2021.							
Re	ference Books							
1	1 Bathe K.J. Finite Element Procedures. Prentice Hall. 2006.							
2 S.S.Rao, Finite element method in Engineering, Butterworth Heinemann, 2011								
2	S.S.Rao, Finite element method	in Engineering,	Butterwo	rth Heiner	nann,2011			
2	S.S.Rao, Finite element method J.N.Reddy, An introduction to no	in Engineering, nlinear finite ele	Butterwor	rth Heiner alysis, Oxf	nann,2011 ford University			
2 3	S.S.Rao, Finite element method J.N.Reddy, An introduction to no Press,2013	in Engineering, nlinear finite ele	Butterwor ement and	rth Heiner alysis, Oxf	nann,2011 ford University			
2 3 Mo	S.S.Rao, Finite element method J.N.Reddy, An introduction to no Press,2013 de of Evaluation : Continuous Ass	in Engineering, nlinear finite ele essment Tests,	Butterwor ement ana Quizzes,	rth Heiner alysis, Oxf Assignme	mann,2011 ford University ent, Final			
2 3 Mo Ass	S.S.Rao, Finite element method J.N.Reddy, An introduction to no Press,2013 de of Evaluation : Continuous Ass sessment Test	in Engineering, nlinear finite ele essment Tests,	Butterwol ement ana Quizzes,	rth Heiner alysis, Oxf Assignme	mann,2011 ford University ent, Final			
2 3 Mo Ass Re	S.S.Rao, Finite element method J.N.Reddy, An introduction to no Press,2013 de of Evaluation : Continuous Ass sessment Test commended by Board of Studies	in Engineering, nlinear finite ele essment Tests, 27-07-2022	Butterwor ement ana Quizzes,	rth Heiner alysis, Oxf Assignme	nann,2011 ford University ent, Final			

Course Code	Course Title	L	Т	Ρ	С	
MCDM602L	Design for Manufacture And Assembly	3	0	0	3	
Pre-requisite	NIL	Syll	abus	vers	ion	
Course Objective	25		1.	.0		
The objective of the	his course is to					
1. Make stude	ents to redesign the components to achieve cost ef	fective	eness	, opti	mum	
2 Enable stu	dente te integrate competibility between meterio	I and	mon	ufact	urina	
process, material and shape to ensure an optimum combination of function and manufacturing manufacturability.						
 Teach stud principles. 	ents to make the design that is easy to manufactur	re by	apply	ing D	FMA	
Course Outcome	<u> </u>					
Upon completion	of this course, the student shall be able to:					
1. Design con assembly.	nponents by applying DFMA guidelines for the ease	e of m	anufa	cture	and	
2. Apply GD&	T guidelines in manufacturing processes.					
3. Select suita	ble materials and manufacturing processes.					
4. Evaluate th	e modifications in a design that can be facilitated du	uring c	asting	a, for	ging,	
extrusion a	nd machining.	0		<i>,</i> ,	, U,	
 Incorporate temporary f 	the design modifications in the various assembly astening, welding, soldering, brazing and riveting pro	techr cesse	niques es.	suc	h as	
6. Redesign o	f assembly by applying suitable DFMA software.					
Modulo:1	ntroduction			7 ho		
Objectives and Pr	inciples of DEMA Geometric Tolerancing and Dim	ensio	nina	Proc		
capability studies, limits - Datum featu	Feature tolerances, Geometric tolerances and Dimer res- Tolerance stacks.	nsionii	ng - A	ssem	ıbly	
Module:2	Selection of Materials and Manufacturing process	-		6 ho	ure	
Selection of Mater	ials and Manufacturing process. Design requiremen	ts Ma	aterial	s cho	bice	
for metal forming a	nd machining processes	,				
Module:3 D	esign for Casting			5 ho	urs	
Design of castings	s based on parting line considerations, minimizing	core	reaui	remer	nts.	
Metal injection mo metal injection mou	ulded parts: Process, suitable materials, Design re ulded parts.	comm	nenda	tions	for	
	esian for Metal Forming			5 ho	ure	
Design recommend	dation for metal extrusion stamping fine blanked r	parts	Rolle	d forr	ned	
section. Design for recommendations.	or Forging: Forging processes, Suitable materials	for fo	orging	, Des	sign	
Modulo:5	osian for Machining	<u> </u>		6 ha		
Fconomics of mar	control machining chining Features to facilitate machining – surface	e finis	sh re	view	of	
relationship betwee Design guidelines f	en attainable tolerance grades and different machin for turning, drilling and milling.	ing pr	ocess	ses,		

٦

Madu		Dec	ian for Accombly				6 houro
Wodu		Des	sign for Assembly		6	Duration	
Design	tor Asse	embly	⁷ principles and proce	ess, Design	for weiding,	Brazing ai	na Soldering
and De	signior	Joinii	ig of Plastics				
Modu	lo:7	Ro	lesion for Manufact				8 hours
Design	for ecor		Identification of une		lesian Mo	difving the	design
Compu	ter Annli	catio	, identification of the ns for $DFMA = Case$	Studies			uesign –
Compu		callo		otudica.			
Modu	le:8	Co	temporary Issues				2 hours
			<u></u>				
				Т	otal Lecture	e hours:	45 hours
Text F	Book(s)						
1	Geoff	ωv F	Roothrovd Peter De	whurst Wi	nston A Ki	night Prod	uct Design for
••	Manut	Manufacture and Assembly 2010 3rd Edition CRC Press Taylor & Francis					
	Group).		1010, 0 L			
Refer	ence Bo	oks					
1.	AKC	hitale	and R C Gupta, Pr	oduct design	n and Manuf	facturing, 20	011, 6 th edition,
	Prenti	ce Ha	all India Learning Priv	vate Limited		0,	, ,
2.	Karl T	. Ulr	ich, Steven D. Eppi	nger, Maria	C. Yang, F	Product Des	sign and
	Devel	opme	ent, 2020, 7th edition,	Tata McGra	w-Hill.		
3.	Micha	el As	hby. Materials Selec	tion in Mech	nanical Desi	an. 2019. 5	^{ith} edition.
•.	Elsevi	er Pu	ublications.			g, _e.e, e	,
1	0 Ma		S Tillov and E A V	Normon Do	sign for Mor	aufacturing	and Accomply:
4.	Conce	nicy,	Architectures and Im	nlementation	5 100 Mai	inder	and Assembly.
					n, 1990, Opi		
5.	Harry	Peck	, Designing for Manu	itacture, 197	3, Pitman P	ublishing.	
6.	Rober	t Ma	tousek, Engineering	Design – A	systematic	Approach,	Translated by
	A.H. E	Burtoi	ו and edited by D.C.	Johnson, 19	63, Springe	r.	
Mode	of Evalu	ation	: CAT / Written assig	nment / Quiz	z / FAT		
Recon	nmende	d by	Board of Studies	27-07-202	2		
Appro	ved by A	ucade		No 67	Date	08-08-2022)
, , , , , , , , , , , , , , , , , , , ,	Approved by Academic Council No. 67 Date 08-08-2022						

Г

Course Code	Course Title	L	Т	Ρ	С
MCDM603L	Product Design and Life Cycle Management	3	0	0	3
Pre-requisite	NIL	Sylla	bus v	ersi	on
		. <u> </u>	1.0)	
Course Objective	es				
1 Introduce the p					
2. Expose studen	ts to product life cycle management stages				
3. Teach students the DFX concepts from the concept to recovery or disposal					
 Enable students to apply analytic methods during all stages of product planning, development, launch, and control. 					
Course Outcome					
Upon completion th	ne course, student will be able to				
1 Demonstrate th	e product design and development practices				
2. Evaluate the re					
2. Evaluate the pr	oduct planning and product life cycle				
3. Identify the cus	tomer needs in product development				
4. Design and ana	alyze the concept and Product Architecture				
5. Apply DFX con	cepts from the conception to recovery or disposal				
6. Apply innovatio	n in stages of product planning, development, analys	is and c	contro	bl	
Module:1 In	troduction to design-product design			5 ho	urs
Product design pra	acticed in industry. Product development – Characte	eristics (of su	cces	sful
product developme	ent- duration and cost- challenges. Product develo	pment	proce	ess a	and
organizations - gen	ieric development- concept development-process flow	vs- orga	aniza	tions	
Module:2 P	roduct Planning		(6 ho	urs
Identifying opportu	inities- evaluation- resources- pre project planning	J. Case	s Stu	dies	on
Business developr	nent and New product development. Time compre	ssion t	echn	ologi	es-
Collaborative produ	uct development – concurrent engineering – Product	life cyc	le str	ategi	ies.
life cvcle.	esign to Life cycle cost – Design for warranties. Case	Studies	SON	-100	uci
Module:3 Ide	ntifying Customer Needs			6 ho	urs
Raw data collectio	on-Interpret raw data-Organize the need- Relative i	mporta	nce.	Prod	uct
benchmarking- es	tablishing target Specifications- Prepare list of m	etrices-	con	ipetii	live
Solition marking bot					
Module:4 Co	ncept Generations			6 hoi	urs
Clarify the problem	- Search externally- search internally- Systematic e	xplorati	on. C	conce	əpt
Selection- Concep	it Screening- Concept Scoring. Concept Testing- F format-Communicate-Response	urpose	e-Surv	/ey	
	ionnat communicate-response.				
Module:5 Pro	oduct Architecture			6 ho	urs
Types of Modularit	y- Product change- product variety- component stand	dardiza	tion-	prod	uct
performance- man	agement. Industrial Design- Need- Impact- Industr	ial desi	ign p	roce	SS-

	ging- Qua	ality. Design for people – E	rgonomics.				
Mod	ule:6	Design for X				8 hours	
Manufacturing cost-Reduction in cost of components- reduction in cost of assembly- reduction in cost of supporting production- DFM decision on other factors. Design for Environment. Prototyping- Principles of prototyping- prototyping technologies- planning for prototypes. Case studies on design for manufacturing. Quality assurance – Failure Mode and Effect Analysis, Design for Quality, Design for Reliability, Approach to Robust Design, Design for Optimization, Design for test and inspection.							
Mod	ule:7	Patents and Intellectual	Property			6 hours	
Patent- trademark- trade secret- copyright- preparing a disclosure. Product development economics- Elements of economic analysis- economic analysis process. Managing projects- project planning-accelerating projects-project execution.							
Mod	ule:8	Contemporary Issues				2 hours	
Total Lecture hours: 45 hours						45 hours	
Text Book(s)							
Text	Book(s)						
Text	Book(s) Karl T. I McGraw	Jlrich, Steven D. Epping -Hill.	er (2015), Pr	oduct De	sign and	Development,	
Text 1. Refe	Book(s) Karl T. I McGraw rence Bo	Jlrich, Steven D. Epping -Hill. poks	er (2015), Pr	oduct De	esign and	Development,	
Text 1. Refe 1.	Book(s) Karl T. (McGraw rence Bo Robert C Innovatio	Jlrich, Steven D. Epping -Hill. Doks G. Cooper (2017), Winning Dn, Hachette Book Group,	er (2015), Pr at New Produ New York.	oduct De ucts: Crea	ting Valu	d Development,	
Text 1. Refe 1. 2.	Book(s) Karl T. I McGraw rence Bo Robert O Innovatio John S Publica	Jlrich, Steven D. Epping -Hill. Doks G. Cooper (2017), Winning Dn, Hachette Book Group, tark (2015), Product Lifecy tions.	er (2015), Pr at New Produ New York. /cle Managem	oduct De ucts: Crea ent (Decis	ting Valu	d Development, e Through neering), Springer	
Text 1. Refe 1. 2. Mode	Book(s) Karl T. I McGraw rence Bo Robert O Innovatio John S Publica	Jlrich, Steven D. Epping -Hill. Joks G. Cooper (2017), Winning on, Hachette Book Group, tark (2015), Product Lifecy tions. Jation: CAT ,Written Assig	er (2015), Pr at New Produ New York. /cle Managem	oduct De ucts: Crea ent (Decis	ting Valu	d Development, e Through neering), Springer	
Text 1. Refe 1. 2. Mode Reco	Book(s) Karl T. I McGraw rence Bo Robert O Innovatio John S Publica e of Evalu	Jlrich, Steven D. Epping -Hill. Doks G. Cooper (2017), Winning on, Hachette Book Group, tark (2015), Product Lifecy tions. uation: CAT ,Written Assig ed by Board of Studies	er (2015), Pr at New Produ New York. vcle Managem nment, Quiz a 27-07-2022	oduct De ucts: Crea ent (Decis	ting Valu	d Development, e Through neering), Springer	

Course Code	Course Title	L	Т	Р	С		
MCDM604L	Fracture Mechanics	3	0	0	3		
Pre-requisite	NIL	Syllab	us v	ersio	'n		
			1.0				
Course Objectives	:						
The objective of this	course is to:						
 Introduce the and their app 	e physical and mathematical principles of fracture lications in a wide range of engineering design.	mechan	ics				
 Expand the knowledge on experimental methods to determine the fracture toughness and develop the students understanding on the design principle of materials and structures using fracture mechanics approaches 							
Course Outcome :							
Student shall be able	e to						
1 Identify the d	esign parameters against fracture						
2 Ascertain wh	ether the design is safe against fracture						
3 Identify the m	nethods to prevent fracture						
4 Compute the	crack tip opening displacement						
5 Demonstrate	the experimental and numerical approaches to p	revent					
fracture	fracture						
6. Evaluate the under fatigue	fatigue life cycles and assess the life enhancement load	nt metho	ods				
Module:1 Intro	duction			6 hou	irs		
Review of a) Ductile a fracture mechanics in cracks, Crack detection	and brittle fractures b) Conventional design practic design, Micromechanics of various types of fractu on methods.	ces, Nee re, Mod	ed fo e I, II	r I and			
Module:2 Ener	ray Release Rate and Resistance of Crack		-	Shou	ire		
Stress concentration	concepts Griffith's theory and Irwin's modificati	on Ene			11 3		
rate, Change in comp stress and plane strai	liance and strain energy approaches, Crack resis n cases, Crack stability and instability conditions.	tance cu	urves	, Plai	ne		
Modulo:3 Linoa	r Elastic Fracturo Mochanics		-	7 hou	ire		
Module:3Linear Elastic Fracture Mechanics7 hoursLinear Elastic Fracture Mechanics (LEFM), Conditions for validity of LEFM, Stress field around crack tip in Mode I, II and III cracks, Stress intensity parameter, Formulations under complex loads, Relation between stress intensity parameter and energy release rate, Crack tip plastic zone, Analysis of plastic zone size by conventional yield theories, Irwin's correction.							
Module:4 Flasti	c Plastic Fracture Mechanics			S hou	irs		
Relevant and scope, Approach.	J-Integral, Path independence, Stress-Strain rela	ation, Er	ngine	er			
Modulo:E Crool	k Tin Opening Displacement			s hou			
Introduction, Relation	ship between CTOD, KI, GI for small scale vi	elding,	ر Equi	/alen	ce		
between CTOD and J	· · · · · · · · · · · · · · · · · · ·	U,					

Mod	ule:6	Experimental and Num	nerical Approad	hes		6 hours
Test r	nethods	to measure material frac	cture toughness	and criti	cal J integ	gral value,
Correl	ations be	etween impact energy an	d fracture tough	ness.		
Finite	element	modelling of crack and	evaluation of J	integral a	and stress	s intensity
param	eter-Dire	ct and indirect methods.				
		Fatimus Failure				0 1
Mod	ule:/	Fatigue Failure				6 nours
S-N curve, crack initiation, crack propagation, effect of overload, variable and load				amplitude fatigue		
load						
Mod	ule:8	Contemporary Issues				2 hours
			Total	Lecture	hours:	45 hours
Text	Book(s)				·	
1.	T.L. An	derson, Fracture mechar	nics: Fundament	als and A	Application	ns, 4 th Edition.
	CRC Pr	ess, Taylors & Francis, 2	2017.			
Refe	rence Bo	ooks				
1.	Broek Da Business	avid, Elementary Engine Media, 2012.	ering Fracture M	lechanics	, Springer	Science &
2.	Campbe Internatio	ll Flake C, Fatigue and F onal, Materials Park, Ohi	racture: Unders o, 2012.	tanding th	ne Basic, <i>i</i>	ASM
3.	Steven F Internatio	R. Lampman,ASM Handb onal, 2002.	oook, Vol. 19, Fa	itigue and	l Fracture	, etc., ASM
4.	Chin-Teł 2012.	n Sun, Z.H. Jin, Fracture	Mechanics, Aca	demic Pr	ess, Elsev	vier, 1 st Edition,
5.	5. K. Ramesh,E-Book: Engineering Fracture Mechanics (With Trouble shooting and searching, multimedia facilities) by, IIT, Chennai.					
Mode	e of Evalu	ation: CAT ,Written Ass	ignment, Quiz a	nd FAT		
Reco	Recommended by Board of Studies 27-07-2022					
Appr	Approved by Academic Council No. 67 Date 08-08-2022					

Course Code	Course Title	L	Т	Р	С			
MCDM605L	Manufacturing and Mechanics of Composites Materials	3	0	0	3			
Pre-requisite	NIL	Sylla	bus	vers	ion			
			1	.0				
Course Objec	tives :							
The objective of	of this course is to:							
 Present an introduction to composite materials. Make students to understand the properties of fiber and matrix materials used in commercial composites. Provide a basic understanding of linear elasticity with emphasis on the difference between isotropic and anisotropic material behavior. Enable students to analyze a laminated plate in bending, including evaluation of laminate properties from lamina properties and find residual stresses from curing and moisture. Make student to predict the failure strength of a laminated composite plate. Help students to acquire skills required in processing different composite materials. 								
Course Outer								
	on of the course, the students will							
Opon completi								
2. Analyses orientatio 3. Use the Theory (Apply advanced techniques of composite materials and manufacturing processes. Analyses the reinforced composite design and design for different combinations and orientations of reinforcements. Use the micro, meso and macro mechanics and implement of Classical Laminate Theorem (OLT) to other and each mechanics the leaving techniques. 							
4. Demons	trate the Hydro-Thermo-Mechanical behavior of composi	ite ma	teria	ls. fa	ilure			
analysis 5. Analyse from lam 6. Provide environn	and conduct application oriented case studies. a laminated plate in bending, including evaluation of ina properties and find residual stresses from curing and a knowledge base of issues related to fracture o nental degradation of composites	lamina moistu f com	ite p ire. ipos	orope ites	rties and			
Module:1	Manufacturing of Composites			6 ho	urs			
Raw Material manufacturing, Materials select	s: Introduction, Reinforcements manufacturing, Fabric constructions, 3D Braided performs,Pepregs, Mou ions, guidelines.	Matrix	com	nater poun	ials ds-			
Module:2	Manufacturing composite laminates			7 ho	urs			
Manufacture of	PMC's, VARTEM and SCRIMP, Manufacture of MMC's	C/C a	and	CMC	s -			
processing- For	ming structural shapes- Different casting methods, Sol	-gel m	etho	od, N	on-			
autoclave curing	g- Manufacturing defects.	1						
Module:3	Micro and Macro mechanical analysis of composite materials			6 ho	urs			
Introduction to o Volume and M properties using Macro mechani Reinforced mat reciprocal theor strains.	Introduction to composite materials- Classification-Micromechanical Analysis of a Lamina- Volume and Mass Fractions, Density, and Void Content- Prediction of engineering properties using micromechanics-Material properties of the fiber and matrix. Macro mechanical analysis of a lamina -linear elastic stress-strain characteristics of Fiber- Reinforced material: Stress and deformations in Fiber-Reinforced materials-Maxwell-Betti reciprocal theorem- Stress-strain relations- Effects of free thermal strains and moisture							
Module:4	Stress and Strain			6 ho	urs			
				• 110				

Stress-strain relations for plane stress- Effects of free thermal and free moisture strains-Plane stress & strain relations in a global coordinate system- Transformation relations-Transformed reduced compliances & stiffness- Effects of free thermal and free moisture strains

Mod	ule:5	Classical Lamination 1	heory			6 hours	
Kirchł	noff Hypo	thesis- Laminate Nome	nclature-Laminate	e strains	and dis	placements -	
Implic	ations of	the Kirchhoff Hypothesis	s- Laminate stres	sses & st	trains -S	tress distributions	
throug	gh the thic	kness- Force and mome	ent resultants-Lar	ninate sti	iffness m	atrix: ABD Matrix-	
Class	ification o	f laminates and their effe	ect on the ABD M	atrix-Elas	stic coup	lings.	
Mod	ule:6	Theories of Failures of	Laminates			6 hours	
Symm	netric lam	inates- Cross-ply lamina	tes- Angle ply la	minates-	Antisym	metric laminates-	
Ealanced laminate- Quasi-Isotropic laminates.							
Fallur	e ineones	a pritorion Tabi Mu prito	rian Environmer	atal affaa	to Effort	t of lominato	
Naxin	fightion of	s chienon- i sai-wu chie	nd memorit recul	tanta	IS- Ellec	loriaminale	
classi	lication of	i the unit thermal lorce a	na moment resul	lants.			
Mod	ulo [.] 7	Design and Analysis				6 hours	
Throu	ule.1	Design and Analysis	ioknoso chongo (of a lamir	noto Thi	o nours	
I nrough-thickness laminate strains- I nickness change of a laminate- I nickness change of							
a iaii thorm	al evenance	ion	enecis-mougi		55 1411111	ale coefficient of	
uleilli	ai espans						
∣ Mod	ule:8	Contemporary Issues				2 hours	
Mod	ule:8	Contemporary Issues				2 hours	
Mod	ule:8	Contemporary Issues	Total	ecture	hours:	2 hours	
Mod	ule:8	Contemporary Issues	Total	Lecture	hours:	2 hours 45 hours	
Mod Text	ule:8 : Book(s)	Contemporary Issues	Total	Lecture	hours:	2 hours 45 hours	
Mod Text	ule:8 Book(s)	Contemporary Issues	Total te, Stress Analys	Lecture	hours: er-Reinfo	2 hours 45 hours arced Composite	
Mod Text	ule:8 Book(s) Michael \ Materials	Contemporary Issues	Total te, Stress Analys Inc, 2009.	Lecture	hours: er-Reinfo	2 hours 45 hours orced Composite	
Mod Text 1. Refe	ule:8 Book(s) Michael \ Materials erence Bo	Contemporary Issues	Total te, Stress Analys Inc, 2009.	Lecture	hours: er-Reinfo	2 hours 45 hours orced Composite	
Mod Text 1. Refe	ule:8 Book(s) Michael \ Materials erence Bo Autar K.	Contemporary Issues	Total te, Stress Analys Inc, 2009.	Lecture is of Fibe Taylor &	hours: er-Reinfo Francis,	2 hours 45 hours orced Composite 2006.	
Mod Text 1. Refe 1. 2.	ule:8 Book(s) Michael \ Materials rence Bo Autar K. Robert M	Contemporary Issues	Total te, Stress Analys Inc, 2009. posite Materials , of composite material	Lecture is of Fibe Taylor & erials, Ta	hours: er-Reinfo Francis, aylor & Fr	2 hours 45 hours orced Composite 2006. rancis, 1999.	
Mod Text 1. Refe 1. 2. 3.	ule:8 Book(s) Michael \ Materials erence Bo Autar K. Robert M Jack R. \	Contemporary Issues	Total te, Stress Analys Inc, 2009. posite Materials , of composite mate i,The behavior of	Lecture is of Fibe Taylor & erials, Ta	hours: er-Reinfo Francis, aylor & Fr es compo	2 hours 45 hours orced Composite 2006. rancis, 1999. osed of composite	
Mod Text 1. Refe 1. 2. 3.	ule:8 Book(s) Michael \ Materials rence Bo Autar K. Robert M Jack R. \ materials	Contemporary Issues	Total te, Stress Analys Inc, 2009. oosite Materials , of composite mate i,The behavior of ublishers, 2002.	Lecture is of Fibe Taylor & erials, Ta	hours: er-Reinfo Francis, iylor & Fr es compo	2 hours 45 hours orced Composite 2006. rancis, 1999. osed of composite	
Mod Text 1. Refe 1. 3. Mode	ule:8 Book(s) Michael \ Materials rence Bo Autar K. Robert M Jack R. \ materials of Evalua	Contemporary Issues W. Hyer and Scott R White, DEStech Publications, poks Kaw,Mechanics of Comp lillard Jones,Mechanics of /inson, R. L. Sierakowsk by, Kluwer Academic P ation: CAT ,Written Assig	Total te, Stress Analys Inc, 2009. oosite Materials , of composite mate i,The behavior of ublishers, 2002. nment, Quiz and	Lecture is of Fibe Taylor & erials, Ta structure	hours: er-Reinfo Francis, ylor & Fr es compo	2 hours 45 hours orced Composite 2006. rancis, 1999. osed of composite	
Mod Text 1. 1. 2. 3. Mode Reco	ule:8 Book(s) Michael \ Materials rence Bo Autar K. Robert M Jack R. \ materials of Evalue	Contemporary Issues W. Hyer and Scott R Whi DEStech Publications, boks Kaw,Mechanics of Comp lillard Jones,Mechanics of /inson, R. L. Sierakowsk by, Kluwer Academic P ation: CAT ,Written Assig d by Board of Studies	Total te, Stress Analys Inc, 2009. oosite Materials , of composite mate i,The behavior of ublishers, 2002. nment, Quiz and 27-07-2022	Lecture is of Fibe Taylor & erials, Ta structure	hours: er-Reinfo Francis, iylor & Fr es compo	2 hours 45 hours orced Composite 2006. rancis, 1999. osed of composite	
Mod Text 1. 2. 3. Mode Reco Appr	ule:8 Book(s) Michael \ Materials erence Bo Autar K. Robert M Jack R. \ Jack R. \ Jack R. \ of Evalua of Evalua	Contemporary Issues W. Hyer and Scott R White DEStech Publications, ooks Kaw,Mechanics of Comp lillard Jones,Mechanics of /inson, R. L. Sierakowski by, Kluwer Academic P ation: CAT ,Written Assig d by Board of Studies Academic Council	Total te, Stress Analys Inc, 2009. oosite Materials , of composite mate i,The behavior of ublishers, 2002. nment, Quiz and 27-07-2022 No. 67	Lecture is of Fibe Taylor & erials, Ta structure I FAT Date	hours: er-Reinfo Francis, aylor & Fr es compo 08-08-2	2 hours 45 hours orced Composite 2006. rancis, 1999. osed of composite	

Course Code Course Title		L	Т	Ρ	С		
MCD	M606L	Optimization Methods	3	0	0	3	
Pre-r	requisite	NIL	Sylla	bus	versi	on	
Cour	an Objectives	•		1.	0		
The of	hiective of this c	: course is to					
1110 01		to to the role of entimization in engineering design.	and ita	imn	orton		
1.				. inipo	Jilano	je.	
2.	Introduce the programming	different optimization algorithms in linear as well problems	as no	n-line	ear		
3.	 Introduce the non-traditional optimization algorithms in solving non-linear optimization problems. 						
Cour	rse Outcome :						
Upon	completion of th	he course work, the students will be able to:					
1		ed concents of mathematics to formulate design or	timiza	tion	oroble	ame	
1.	as well as app finding maxim	bly necessary and sufficient conditions based on dif a/minima of single and multi-variables functions.	ferent	ial ca	Iculus	s, in	
2.	Demonstrate t for one dimens	he concept of unimodal function and apply region sional non-linear optimization problems covering var	elimina rious a	ation pplic	meth ations	ods s.	
3.	Analyse the po apply for unc applications.	otential advantage of search methods and gradient onstrained non-linear optimization problems cove	based ering v	l met vide	hods range	and e of	
4.	Enumerate th apply for solvin applications.	e differences between direct and indirect optimi ng constrained non-linear optimization problems co	zation vering	me wide	thods rang	and e of	
5.	Understand an with equality c	nd apply quadratic programming approach to solve onstraints covering wide range of applications.	quad	ratic	functi	ons	
6.	Interpret the approach in so	nature of posynomial function and apply geor olving engineering design problems.	netric	prog	ramn	ning	
7.	Implement bas optimization se	sic optimization algorithms in a computational settin oftware packages to solve engineering problems.	g and	apply	y exis	ting	
8.	Demonstrate appropriate op	the scope of optimization in design of machine optimization techniques for robust design.	elemei	nts a	nd a	pply	
Mod		sical Ontimization Techniques			6 hou	Irc	
Introdu	uction method	sical Optimization recimiques	Statem	ent		11 5 an	
optimi Multiva equali	zation problem ariable optimiza ty constraints: L	-classification of optimization problems-Single var tion with no constraints-Multi variable optimization v agrange multipliers method, Kuhn-Tucker condition	riable vith ec s.	optin juality	nizatio / and	on- in	
Mod		Dimonsional Nonlinear Ontimization			6 hor	Irc	
Unimo	dal function –	Region elimination methods: Unrestricted search	Dicho	tomo		115	
Searc	h, Fibonacci me	thod, Golden Section method.	Biolio	torno	ao		
Mod	ule:3 Unco	nstrained Nonlinear Optimization			6 hou	irs	
Direct Powel Reeve	Search methoo l's method-Indir es method.	ds: Univariate method, Pattern directions, Hook an ect search methods: Gradient of a function, Cauchy	d Jee\ / meth	/es' r od, F	netho Ietcho	d, er-	

٦

Mod	ule:4	Constrained Non-linea	or Optimization			6 hours
Chara	acteristics	of a constrained optim	nization problem	n - Direc	t methods	: Cutting plane
metho	od, metho	ods of feasible direction	s – Indirect me	thods: In	terior and	exterior penalty
functi	on metho	ds.				
Mod	ule:5	Quadratic programmir	ng			5 hours
Introd	luction-ap	plications-necessary cor	nditions-solution	to quadr	atic progra	amming problem
using	Wolfe's n	nethod.				
Mod	ule:6	Geometric programmi	ng			5 hours
Introd	luction to	Geometric programming	I – Solution from	n different	tial calculu	s point of view –
Soluti	on from a	rithmetic-geometric ineq	uality point of vi	ew.		
Mod	ule:7	Advanced Non-linear (Optimization			5 hours
Gene	tic Algorit	hms -Working principle-	Genetic operato	ors-Nume	rical proble	em-Simulated
Anne	aling – Nu	umerical problem - Neur	al network base	d optimiz	ation-Opti	mization of fuzzy
syste	ms-fuzzy	set theory-computational	l procedure.	-	-	-
Mod	ule:8	Design Optimization o	f Machine Elem	nents		4 hours
Funct	ional red	uirements- desirable au	nd undesirable	effects	-material	and geometrical
paran	neters – a	adequate designs Optir	mum design - 1	primary c	lesian eau	ation subsidiary
desia	n equatio	ns, limit equations – basi	ic procedural ste	eps for me	ethods of c	pptimum design –
const	rained pa	rameters and free varia	ables – normal	redunda	ant and in	compatible
speci	fications c	eneral planning.		,		
Mod	ule:9	Contemporary Issues				2 hours
			Tat		. .	
			l Ota	al Lectur	e nours:	45 nours
Text	: Book(s)					
1.	Sinaires	S. Rao. Engineering C	Dotimization - T	heorv and	d Practice	. John Wilev &
	Sons, Ind	s., 2019	- 1	,		j - j - ·
2.	Kalyanm	ov Deb, Optimization for	Engineering De	sign: Alg	orithms an	d Examples, PHI
	Learning	Pvt. Ltd., 2012.	5 5	0 0		, , , , , , , , , , , , , , , , , , ,
Refe	erence Bo	ooks				
1.	Wilhelm	Forst, Dieter Hoffmann, (Optimization - TI	heory and	l Practice,	Springer, 2010.
2.	A. Ravin	dran, G. V. Reklaitis, K. M	M. Ragsdell, Eng	gineering	Optimizati	on: Methods
	and Appl	ications, John Wiley & S	ons, 2006.			
Mode	Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT					
Rec	ommende	d by Board of Studies	27-07-2022			
Appi	roved by A	Academic Council	No. 67	Date	08-08-20)22
	,					

Г

Course Code	Course Title	L	т	Ρ	С			
MCDM607L	Computational and Experimental Vibration Analysis and Control	3	0	0	3			
Pre-requisite	NIL	Syllab	ous v	ersio	'n			
			1.0					
Course Objectiv	/es:		<u> </u>		· .			
basis of fin	ite element methods.	matical	and	pnys	Ical			
2. Build FEM models of physical problems exposed to vibration and apply appropriate constraints and boundary conditions.								
 Develop an as the abil as respons 	nd exercise critical thinking in interpreting results fror ity to identify the mode shapes, stress contours, eig se characteristics.	n FEM en freq	analy uenc	/sis s y as v	uch well			
 Enable students to connect the disciplines of vibration and control on a firm mathematical basis, and study vibration control problems using numerical software. 								
Course Outcom	e'							
1. Demonstr	ate the development of equations of motion and bour	idary co	nditio	ons				
2. Apply Fini	ite element displacement method for vibration problem	ns						
3. Compute	the In-plane and flexural vibration of plates							
4. Compute	the Vibration of Stiffened and Folded Plates							
5. Analyze tl	he free and forced vibration concepts							
6. Evaluate	the control system and State space form representation	on						
Module:1 D	evelopment of finite element energy functions			6 hou	irs			
Axial and torque	elements, beam and plate bending elements, memb	orane el	eme	nt-thr	ee			
dimensional solids conditions	s-axisymmetric solid- Development of equations of m	notion a	nd bo	bunda	ıry			
Module:2 F	inite element displacement method			6 hou	irs			
Ravleigh-Ritz met	hod-Axial vibration of bars- Torsional vibration of	of shaft	s- B	endin	ia ia			
vibration of beam rotary inertia effec	s- Vibration of trusses and frames -Inclusion of she ts.	ear defo	rmat	ion a	nd			
Module:3 In-	plane and flexural vibration of plates			6 hou	ire			
In-plane vibration	of plates: Linear triangular element linear rectangu	ilar olor	nont		ar			
quadrilateral elem	ent- Area coordinates for triangles- Linear triangle i	n area	coor	dinate	25			
Rectangular and tr	riangular elements- conforming and non-conforming e	lements	66661. 8.					
Module:4 Vil	bration of Stiffened and Folded Plates			6 hou	irs			
Sumened Plates- E	chect of memorane displacements-Folded Plates							
Module:5 An	alysis of free and forced vibration			6 hou	irs			
Modal analysis- re	epresentation of damping: structural and viscous da	mping-	stea	dy sta	ate			
response to harm	nonic and periodic excitation- transient response- r	espons	e to	rando	om			
excitation: response	se of single degree-freedom, direct and modal responsional responsion sing EEA software's	onse of	multi	-degro	әе			
of needon system								

Мос	lule:6	Control of flexible stru	ctures			6 hours	
Contr	ol system	s- stability theory-stabili	ty of multi-degre	ees of fre	edom sy	stems-analysis of	
secor	nd order s	ystem- transfer function	analysis.				
	<u> </u>	• • • •					
Moc	lule:7	State space form repre	esentation			7 hours	
Contr	ol law des	ign for state space syste	em-linear quadra	atic regula	ator-moda	al control for	
secor	nd order s	ystems-dynamic observe	er control calcula	ations usi	ng coding	tools	
Expe	Experimental methods: Vibration exciters and measuring instruments- Free and forced						
Discu	lion lesis-	measurement of Dampi	ng- industrial ca	ase studie	es and Co	ontemporary	
DISCL	1331011						
Мос	lule:8	Contemporary Issues				2 hours	
			Total	Lecture	hours:	45 hours	
Tex	t Book(s)						
1.	Maurice	Petyt, "Introduction to fin	ite element vibra	ation ana	lysis", Ca	mbridge University	
	Press, 2 ^r	^d Edition, 2015.			-		
2	K. Ogata	, "Modern control engine	ering", 5 th Editio	n Pearso	n Educati	on India, 2015.	
Refe	erence Bo	ooks					
1.	S. S. Ra 2019.	o, "The finite element m	ethod in engine	ering", 6 ^{tr}	[•] Edition,	ELSEVIER INDIA,	
2.	J.N. Rec 2018	ldy, "An introduction to	finite element	method",	McGraw	/ Hill Professional,	
3.	5. Grana 1996.	m Kelly, "Theory and pro	blems of mecha	anical vibr	ations", i	AcGraw Hill,	
4.	Richard (Educatio	C. Dorf and Robert H. Bi n Inc, 2022.	shop, "Modern o	control sy	stem", 14	th Edition, Pearson	
5.	C. Sujath 2017.	a, "Vibration and Acous	tics: Measureme	ent and Si	gnal Ana	lysis", McGraw Hill,	
Mode of Evaluation: CAT, Written assignment , Quiz , FAT, Seminar, group discussion, field work							
Rec	ommende	d by Board of Studies	27-07-2022				
App	roved by A	Academic Council	No. 67	Date	08-08-2	2022	

Cour	se Code	C	ourse Title			L	Т	Ρ	С
MCI	DM607P	Computational ar	nd Experim	ental Vib	ration	0	0	2	1
		Analysis	and Contr	ol Lab					
Pre	-requisite	NIL				Syll	abus v	/ersic	ิวท
_							1.0		
Cou	irse Objecti	ves							
1	. Develop a	and exercise critical th	ninking in in	terpreting	results fro	om ⊦El	vi anal	ysis s	such
	as the abi	abaractariation	e snapes, s	tress con	tours, eige	en trequ	lency a	as we	ll as
2	Enchlo	tudents to connect f	tha discipli	non of vi	ibration a	nd co	atrol o	n 0	firm
2	mathemat	rical basis and study v	vibration cor	ites of vi	eme usina		rical so	n a ftwar	
Соц	Irse Outcon	1001 50313, 0110 5000 ¥			cino dollig	numer	1001 30	Treat	0.
1	Apply Fini	te element displaceme	ent method	for vibratio	on problen	ns			
2	. Analyze th	ne free and forced vibr	ation conce	pts	p				
	•	Indic	ative Expe	riments					
1.	Computat	ion of natural frequent	cies and nu	merical si	mulation o	of time a	and fre	quen	су
	responses	s of uniform rod using	a programn	ning tool a	and compa	re with	experi	iment	al
	tests.								
2.	Computat	ion of natural frequen	cies and nu	merical si	mulation of	of time	and fre	quer	ю
	responses	s of uniform beam u	sing a prog	gramming	tool and	comp	are wi	th	
	experime	ntal tests.	alaa and nu	mariaala	inculation .	of time o	and fr		
3.	Computat	ion of natural frequent	cies and nu	merical s	inulation (and in mind t		icy
	compare	with experimental test	s	i plate u	sing a pi	ogram	innig i	001 8	inu
4	Computat	ion of natural frequen	cies and nu	merical si	mulation o	of time	and fre	auen	
	responses	s of various uniform tr	iangular pla	ites using	a program	nming	tool an	d	, c j
	compare	with experimental test	s	5	1 5	5			
5.	Computat	ion of natural frequen	cies and nu	merical si	mulation o	of time	and fre	quen	юу
	responses	s of uniform circular	plate using	a progra	mming to	ol and	compa	are w	ith
	experime	ntal tests				<u> </u>			
6.	Computat	ion of natural frequent	cles and nu	merical si	mulation of	of time	and fre	equen	icy
	responses	s of tapered rod using	a program	ning tool a	and compa	are with	n expe	rimen	al
7	Computat	ion of natural frequen	cies and nu	merical si	mulation o	of time	and fre		
1.	responses	s of tapered beam u	sing a pro	pramming	tool and		are wit	th	сy
	experime	ntal tests							
8.	Computat	ion of natural frequen	cies and nu	merical s	imulation of	of time	and fre	equer	ιсу
	responses	s of tapered plate	using a	programn	ning tool	and	compa	ire w	<i>v</i> ith
	experime	ntal tests							
9.	Developm	ent of dynamic mode	el, the gove	erning eq	uation of	motion	and a	dapti	ve
	vibration	control of the cantilev	/er beams u	using piez	zoelectric	actuato	or (PZ	Г).	
	Compare	the responses using v	arious cont	roi system		20	hour		
Τογ	t Book(s)		TOLA	Laborati	JIY HOUIS	30	nours	>	
1	Maurice F	Petyt "Introduction to	o finite ele	ment vihi	ration and	alvsis"	Camh	oridae	
	University	Press. 2nd Edition. 2	015			liyolo ,	Came	nage	
Ref	erence Boo	ks							
1.	C. Sujath	a, "Vibration and Aco	ustics: Mea	surement	and Signa	al Anal	ysis", I	McGr	aw
	Hill, 2010						· · ·		
2.	Richard C	. Dorf and Robert H. I	Bishop, "Mo	odern con	trol syste	m", 13 ^{tt}	^h Editio	n,	
	Pearson E	Education, 2016.	·						
Moc	le of assessi	ment: Continuous asse	essment, F/	۱۲, Oral e	xaminatio	n and c	others		
Rec		by Board of Studies	27-07-20	22	00.00.0	000			
Арр	roved by Ac	ademic Council	NO. 67	Date	08-08-2	022			

Course Code	Course Title	L	Т	Ρ	С		
MCDM608L	Computational Fluid Dynamics	3	0	0	3		
Pre-requisite	NIL	Syllab		ersio	on		
Course Objectives			1.0				
The objective of this	course is to						
1. Provide the s representation	students with sufficient background to underst n of the governing equations of fluid flow and he	and the at transfe	math r.	nemat	tical		
Enable the students to understand the fundamental concepts of FDM, FVM and different discretization techniques.							
3. Enable stude	nts to apply the grid generation techniques.						
4. Expose stude	ents to the computational complicities on various	turbulenc	e mo	odels.			
Course Outcome :							
At the end of the cou	rse, the student will be able to:						
1. Analyze the g	overning equations of fluid flow and heat transfe	er					
2. Explain the pl	hysical behavior of Finite difference discretization	n					
3. Solve fluid flo	w fields using FVM for diffusion problems						
4. Solve fluid flo	w fields using FVM for diffusion-convection and	unsteady	flow	case	s		
5. Interpret the S	Solution Algorithm for Pressure-velocity Coupling	g in Stead	y Flo	ws			
6. Analyze the n	nodel turbulence fluid flow modeling for different	fluid flow	case	es			
Module:1GovModeling of flow, con divergence of velocity conservation form. Edinviscid flow (Euler ed Navier Stokes Equation over a flat plate	verning Equations of Fluid flow and Heat Tran atrol volume concept, substantial derivative, phy 2. Continuity equation, momentum equation, en quations for viscous flow (Navier Stokes equa quation). Reynolds Transport Theorem, Exact on – Parallel Flow, Blassius Solution for determ	nsfer ysical me ergy equ ations), E Solution ining bou	anin ation quat of Si indar	6 hοι g of t i and ions implif γ lay	the its for ied er		
Module:2 Clas	ssification of Physical behavior and FDM			<u>6 hoi</u>	irs		
Elliptical, parabolic an Finite difference discr accuracy, different typ	d hyperbolic equations. etization (FDM), Forward, backward and centra es of errors and boundary conditions.	I differen	ce, C	Drder	of		
Module:3 Finite	e Volume Method(FVM) for Diffusion Problem	S		6 hou	Jrs		
FVM for 1D and 2D st for 2D flow.	eady state diffusion, Solution of discretized equa	ations- TE	DMA	schei	me		
Module:4 FVM	for Convection-Diffusion Problems			6 hou	urs		
FVM for 1D steady state convection-diffusion, Central differencing scheme, Conservativeness, Boundedness, Transportiveness, Upward differencing scheme, Hybrid differencing scheme for 2D convection-diffusion, Power-law scheme, QUICK scheme.							
Module:5 FVM	for Unsteady Flows			6 hoι	urs		

1D u meth	1D unsteady heat conduction (Explicit, Crank-Nicolson, fully implicit schemes), Implicit methods for 2D problems, Discretization of transient convection diffusion problems.							
Мос	dule:6	Solution Algorithm for Steady Flows	Pressure-velocit	ty Coupli	ng in	6 hours		
Conc	ept of stag	gered grid, SIMPLE, SIM	PLER, SIMPLEC,	PISO alg	orithm.			
				_				
Mod	dule:7	Turbulence Modeling				7 hours		
Basic	equation	s of Turbulence: Derivation	on of turbulence	usina no	n-dimensi	onal analysis.		
Revn	olds aver	aging Revnolds average	ed N-S equation	ons Eddv	viscosit	v hypothesis		
Revn	olds Stres	s Transport Equations Fi	rst order closures	k_{-c} two	equation	models SST		
k-ω n	nodel Lar	re Eddy Simulations		5. K-6 (WO	cquation			
K-00 H								
Mod	Module 8 Contemporary Issues				2 hours			
WIOC	Jule.0	contemporary issues				2 110015		
			Tota	I Lecture	hours:	45 hours		
Тех	t Book(s)							
1.	H.K Vers Dynamic	steeg and W Malalasekera s, Prentice Hall,	(2010), An Introd	duction to	Computat	tional Fluid		
Ref	erence Bo	ooks						
1.	S.V. Pata press.	ankar Hemisphere (2004),	Numerical Fluid	Flow & He	eat transfe	er, CRC		
2.	D.A.And Heat Tra	erson, J.C.Tannehill and F nsfer, Butterworth-Heincm	R.H.Fletcher (200 nann, New York.	7), Compı	utational F	luid Flow and		
3.	3. Muralidhar, K., and Sundararajan, T. (2014), "Computational Fluid Flow and Heat Transfer", Narosa Publishing House, New Delhi.							
Mode	Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT							
Recommended by Board of Studies 27-07-2022								
Арр	roved by A	Academic Council	No. 67	Date	08-08-2	2022		
-								

Cour	se Code	C	ourse Title		L	Т	Ρ	С
MC	DM608P	Computation	al Fluid Dynam	ics Lab	0	0	2	1
Pre-	-requisite	NIL			Sylla	abus	Vers	ion
						1.	.0	
Cou	irse Objecti	ves						
1.	. To impart	skills required for the	grid generation to	echniques				
2.	. To teach o	different methods of sin	mulation setup fo	or fluid flow prol	olems		-	
3.	3. To enable the students to apply CFD techniques for the design and analysis of							
	aerospace	e, automotive and turb	o machinery sys	tems				
Соц	Irse Outcom	16						
Upo	n successfu	l completion of the cou	irse, students wi	ll be able to				
1.	. Perform q	eometry modeling and	l grid generation	for complex flu	id flow	doma	ains	
2.	. Perform c	omputational analysis	on internal and e	external flows				
3.	. Analyze th	ne interaction between	fluid and structu	Ire				
4.	. Setup con	nputational framework	for the analysis	of reacting flow	S			
Indi	cative Expe	riments						
1.	Analysis o	of supersonic flow over	r a ramp					
2.	Analysis o	of multiphase flow in a	pipe					
3.	Analysis o	of heat transfer in a spa	ace heater					
4.	Analysis o	of combustion in a swir	l stabilized com	oustor				
5.	Analysis c	of cooling of electronic	components					
6.	Analysis o	of flow in an Engine ma	anifold					
7.	Analysis o	of flow in a gear/vane p	oump					
			Total Labor	atory Hours	30 h	ours		
Text	t Book(s)							
1.	Tu, Jiyuar practical a	n, Guan Heng Yeoh, a approach. Butterworth-	and Chaoqun Liu Heinemann, 201	 Computationa 8. 	al fluid (dynai	mics:	а
Refe	erence Bool	ks						
1.	Blazek, Ji Heinemar	ri. Computational fluid nn, 2015.	dynamics: princ	iples and appli	cations	. But	terwo	rth-
2.	John Mate	sson, An Introduction t	o ANSYS Fluent	2020, SDC Pu	blicatio	ns, 2	020	
Mod	le of assessi	ment: Continuous asse	essment / FAT /	Oral examination	on and o	other	s	
Rec	ommended l	by Board of Studies	27-07-2022					
App	roved by Aca	ademic Council	No. 67	Date	08-08-2	2022		_

Course Code	Course Title	L	Т	Ρ	С			
MCDM609L	Design Thinking and Innovation	3	0	0	3			
Pre-requisite	NIL	Sylla	bus v	rersic	n			
			1.0)				
Course Objectives								
 Exposing stude engineering sce Imparting meth developments 	ent to various creative thinking tools and methods enarios nods to adopt innovation in present and future pr	to ap oduct/j	ply fo proce	or ISS				
I								
Course Outcome								
 Evaluate the design thinking and Problem awareness Discuss about the empathic search of problem and observation Define problem concept mapping for given engineering scenarios Identify Ideate and concept generation Demonstrate the testing and validation Explain the embodiment and detail design 								
Module:1 Wha	t is design thinking? - Understanding and reness		6	b hou	rs			
History of design thinking – evolution – why design thinking – exponents – practitioners – areas of application - case studies –human centric nature - References – literature – Steps in design thinking – conventional 5 stage IDEO process – extended 8 stage process for engineering product development - Understanding context- Goals . Problem awareness - what is a problem from Design thinking POV –solution mission – Problem space vs solution space – problem sensitivity- need finding - need to demand progress – wicked problems-problem scoping								
Modulo:2 Obo	anyo and loarn		6	bou	r 0			
Empathy- empathic methods – interview qualitative – visual pr experience mapping classification – explic latent needs – psycho identification" - Field to	Module:2Observe and learn6 hoursEmpathy- empathic search of problem and observation – ethnography- observation methods – interviewing- questionnaire- analysis of observation results – quantitative- qualitative – visual presentation – emotional understanding – customer journey mapping – experience mapping –empathy map-lead user interaction – customer pains- need classification – explicit, extractable and latent need -user development- behaviour and latent needs – psychology of needs -story boarding results –customer "wants to do							
Module:3 Devel	on Point of view and problem definition			hou	re			
Module:3Develop Point of view and problem definition4 hoursDevelop and define problem – Point of view – framing and reframing problem- develop multiple perspective - define stakeholders – define problem and solution boundaries- constraint mapping -assumption bursting- define goal- Integration of desirability , viability and feasibility- develop personasViabilityConcept mapping-knowledge funnel-innovation canvas-discovery funnel- Job to do model – Kano model – reframing – problem solution fix- story boardingViability								
Module:4 Ideato	and concept generation		0	hou	re			
Brain storming , nom model(Dr.Teenaseelig ,design thinking team questioning mind-set, structure – team beha Concept generation –	inal group technique, lateral thinking, synectics, In g), mind map, TRIZ, flow state , morphological an n – Creativity culture – design thinking space – e mental block , story boarding, idea visualisation, T aviour - concept selection- combining solution	novatio alysis, nhanci ſ perso	on- cr SCA ng cu onalit	eativi MPE uriosit y, tea	ity R ty, im			

Mod	lule:5	Prototype and learn by	/ doing			6 hours
Build	to learn	- learn to build - low f	idelity prototype	e – frugal	p proto-	rapid proto- fail
forwa	forward – fail fast – learn from failures – iteration to go forward –					
Case	studies -	IDEO shopping cart – pro	oduct specificati	on – beno	hmark	
Mod	lule:6	Test and Validate				6 hours
Custo	Customer centric testing- lead users -user experience mapping – feedback- iteration-					
retest	ing – leai	nings – iteration				
Mod	lule:7	Embodiment and det	ail design			6 hours
Produ	ict desig	n spec – architecture –	system modell	ing and s	simulation	 digital model
based	d design	- design for function -f	orm to follow f	function-	mechanica	al and software
desig	n- desigr	i for UX – design for qi	uality and reliat	oility - de	sign for co	ost – design for
manu	facture a	nd assembly- design for	environment –	design to	r six sigma	I- QFD- FMEA -
desig	n to stand	ard – IPR and patents				
Mod	<u>ع</u> ايا	Contemporary Issues				2 hours
WICC		Contemporary 155des				2 110013
			Tot	al Lectur	e hours:	45 hours
Text	t Book(s)					
1.	Idris Mo	otee, Design thinking for S	Strategic Innova	ition, Joh	n Wiley an	d sons, 2013
Refe	erence B	ooks				
4	Time Dr.	win Change by Design	larmar Callina D	ublichero	NewVerl	2010
1.		wh, Change by Design, I	HarperCollins Pl	ublishers,	New York	, 2019
2.	Jeanne	Liedtka and Tim Ogilvie,	Design for grow	vth, Colur	nbia Busin	ess school,
	2011					
3.	Nari I. Develo	Diricn, Steven D. Eppinge pment_7 th Edition_McGra	er and Maria C.	Yang, Pro	Dauct Desig	gn and
	Bevelo					
4.	Jeanne	Liedtka, Andrew King an	Id Kevin Bennet	t, Solving	problems	with design
	unnking	J, Columbia Business Sci	1001, 2013.			
5.	Tom Ke	elley and David Kelley, Cr	eative confiden	ce, Currei	ncy Publish	ner, 2013
Mod	e of Eval	uation: CAT ,Written Assi	gnment, Quiz a	nd FAT		
Rec	ommende	d by Board of Studies	27-07-2022			
App	roved by	Academic Council	No. 67	Date	08-08-20)22

Course Code	Course Title	L	LTP				
MCDM610L	Machine Fault Diagnostics	3	0	0	3		
Pre-requisite	NIL	Syllab	ous v	ersio	n		
			1.0				
Course Objective	S :						
The main objectives	of the course are to:						
1. Understand	advanced concepts of various condition monitoring	method	S iaatia				
2. Enable them	to identify the selection of NDT techniques for vario	us appi It diagn		ns. Notho	А		
4 Apply specifi	c Code Standard or Specification related to each to	esting n	netho	10010	u.		
		ooung n					
Course Outcome							
At the end of the co	ourse, the student will be able to:						
 Apply advan 	ced knowledge about various condition monitoring	method	s in				
accordance	with the established procedures.						
2. Analyze the	importance of NDT and vibration based techniques	for fault	detec	ction			
3. Distinguish h	now the various types of wear particles are associate	ed with	differe	ent w	ear		
modes and r	nonitoring methods	lication	•				
4. Demonstrate	various defect types and select the appropriate ND	T meth	s ode fi	or he	ttor		
evaluation	valious delect types and select the appropriate ND	i meui	005 1				
6. Discuss and	evaluate the acoustic emission method in fault dete	ction ar	id eva	luati	on.		
Module:1 Int	roduction to condition monitoring		7	' hou	irs		
Maintenance strateg	gies, criticality index, various techniques for fault de	tection,	Intro	ductio	on		
to condition monitor	ing, Introduction to non-destructive testing, role of n	on-dest	ructiv	e			
testing in condition r	nonitoring.						
Module:2 Vit	ration analysis of rotating machines			/ hou	ire		
Resice of Machine V	/ibration_Identification of machine faults and freque	ncy rar		:	113		
symptoms Signal	Analysis and Computer aided data acquisition T	ime Do	main	Siar	nal		
Analysis, Frequen	cy Domain Signal Analysis, Fault Detection	Trans	ducer	s a	nd		
instrumentation, Vil	pration Monitoring, Noise monitoring.						
Module:3 Wea	r monitoring		6	6 hou	Irs		
Wear mechanisms,	wear particles, wear process monitoring technique	es, spec	ctrome	etric	oil		
analysis program, F	errography.						
Module:4 Tem	perature monitoring		F	hou	irs		
Need of temperature	e monitoring IR thermography Passive and active	thermo	aran	- 1100	15		
applications	a monitoring, it't monitography, i doore and doave		giupi	'y,			
Module:5 Flav	v detection using traditional non-destructive		6	hau			
test	ing		Ċ	b nou	irs		
Discontinuity-origin	and classification, liquid penetrant testing, magne	etic par	ticle	testin	ıg,		
Eddy current testing	, Ultrasonic testing and industrial radiography.						
Madular	ustic omission testing			h a			
	usic emission lesting and Wayon Equipment Signal Factures, Data di				115		
Incory OFAE SOURCE	es and vvaves, Equipment, Signal Features, Data di	spiay, s	ource	;			
	3						
Module:7 Cas	e studies		Ę	5 hou	irs		

Fault	detection	 Gearbox vibration, roll 	ing element bea	arings and	induction	motors.
Moc	lule:8	Contemporary Issues				2 hours
			Tota	I Lecture	hours:	45 hours
Tex	t Book(s)					
1.	Handboo Springer	k of Condition Monitor Science & Business Me	ing: Techniques dia (2015).	and Met	thodology-	A. Davies,
2.	Fakherch of Machi	naari, RadoslawZimroz V nery in Non-Stationary C	Valter Bartelmus operations, 1 st E	s, Advanc dition, Spr	es in Con ringer (201	dition Monitoring 5).
Refe	erence Bo	ooks				
1.	Vibration Educatio	and Acoustics- C. Sujat n (India) Private Limited	tha, Measureme (2010).	ent and Sig	gnal Analy	sis. McGraw Hill
2.	Fault dia	gnosis applications- Iser	mann.R. Spring	er – Verla	g, Berlin, (2011)
3.	Practical Narosa F	Non-Destructive Testin Publishers (2008).	g- Baldevraj, Ja	ayakumar	T., Thava	simuthu M.,
4.	Luiz Octa Compan	avio AmaralAffonso, Mac y,Austin, United States (:	chinery Failure <i>I</i> 2013).	Analysis H	land Book	, Gulf Publishing
Mode	of Evalua	ation: CAT ,Written Assig	nment, Quiz ar	nd FAT		
Rec	ommende	d by Board of Studies	27-07-2022			
Арр	roved by A	Academic Council	No. 67	Date	08-08-20)22

Course Code	Course Title	L	Т	Ρ	С	
MCDM611L	Computer Aided Process Planning	3	3 0 0 3			
Pre-requisite	NIL	Syll	abus	Vers	ion	
Course Obies			1	.0		
Course Object	IVes					
The main object	live of the course is to:					
1. Provide t	he student with an understanding of the importance of	proces	ss pla	nning	1	
role in r	nanufacturing and the application of Computer Aided Pr	ocess	Plan	ning t	ool	
in the p	esent manufacturing scenario.			•		
Course Outco	me					
At the end of th	e course, the student will be able to:	-				
1. Discuss 2 Explain	the Group technology					
3 Identify	the requirements of Process engineering and Process	olanni	na			
4. Evaluat	e the optimal selection of machining parameters	Juli	.9			
5. Identify	the importance of machinery tolerances and requireme	nts				
6. Analyze	the Implementation techniques for CAPP and Integrate	ed Pro	cess	Planr	ing	
System	8					
Module:1	Introduction to CAPP			6 bo	ure	
Information requ	irement for process planning system. Role of process	lanni	na	0 110	uis	
advantages of c	onventional process planning over CAPP. Structure of	Autor	nated	proc	ess	
planning system	, feature recognition methods.	/ 10101	natee	. p. c c		
Module:2	Group Technology			6 ho	ours	
Part families; cl	assification and coding systems, production analysis.	Desig	gn of	mach	nine	
cells, - GT codin	g - The optiz system - The MICLASS system.	1		7 1		
Wodule:3	Process engineering and Process planning	Droc		/ NO	ours	
Experienced ba	sed planning - Decision table and decision trees -		ess ach	Capar	Dility	
and Backward n	lanning Input format Principle of Generative CAPP sy	appio etem	autoi	matio	n of	
logical decisions	, Knowledge based systems, Inference Engine, implem	entati	on, be	enefits	S.	
Module:4	Determination of machining parameters		,	7 ho	ours	
Reasons for opt	mal selection of machining parameters, effect of param	neters	on p	roduc	tion	
rate, cost and su	irface quality, different approaches, advantages of mat	hema	tical a	appro	ach	
over convention	al approach, solving optimization models of machining p	proces	ses.	0.1-		
Module:5	Determination of manufacturing tolerances			6 NO	urs	
Design toleranc	es, manufacturing tolerances, methods of tolerance a station of design and manufacturing tolerances, advar	nocau	on, s of in	equer	illai	
approach over s	equential approach.	nayes		negra	lieu	
Module:6	Implementation techniques for CAPP			6 ho	urs	
MIPLAN system	, Computer programming languages for CAPP, crite	eria fo	or se	lecting	g a	
CAPP system a	nd benefits of CAPP.				_	
Logical Design	of process planning - Implementation consideration	ons-	Manu	ufactu	ring	
system compor MIPLAN, APPA	ents, Production Volume, No. of production famil S, AUTOPLAN and PRO, CPPP.	ies- (JAM-	I, CA	ΥP,	
Module:7	An Integrated Process Planning Systems			5 ho	urs	
Totally integrate	d process planning systems – An Overview – Modu	lus sti	uctur	e – C	Data	
structure – Ope	ation – Report Generation, Expert process planning.	Artifici	al int	elliger	nce-	
overview & appl	ication; search strategies for AI production systems; r		uon a	ind		
Module:8	Contemporary Issues		-0001	2 ho	urs	
		I				

		Total I	_ecture hou	rs:	45 hours			
Tex	Text Book(s)							
1.	Mikell.	P. Groover, Automation	n, Productio	n syste	ms and Computer Integrated			
	Manufa	acturing System, Addison	Wesley, 5tl	n edition	(2020).			
Ref	erence B	OOKS						
1.	Computer Aided Design and Manufacturing, Sadhu Singh, Khanna Publishers, 2009							
2.	P.N.Ra	io,N.K.Tewari,T.K. Kundr	a, " Comput	er Aided	l Manufacturing", Tata McGraw-			
	Hill Ed	ucation Publishing Co., 2	017.					
3.	Tien-C	hien-Chang, Richard A.W	/ysk, "An Int	roductio	n to automated process			
	plannir	ig systems", Prentice Ha	l 1985.					
4.	Gideor	Halevi and Roland D.We	eill, "Principl	e of proo	cess planning", A logical			
	approa	ch, Springer, 2012.						
Мос	le of Eval	uation: CAT ,Written Ass	ignment, Qu	uiz and F	FAT			
Rec	ommende	ed by Board of Studies	27-07-202	22				
Арр	roved by	Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title	L	Т	Ρ	С		
MCDM612L	Advanced Manufacturing Technology	3	3 0 0				
Pre-requisite	NIL	Sy	llabus	vers	ion		
			1.	0			
Course Object	tives						
I he course obj	ectives are to:		::				
1. Provide	a inorougn coverage of traditional and non-traditional	macn	ining p	roces	ses.		
Z. Develop	o and understanding of various fundamental mechanis	sms o	maci	iining			
3 Provide	an insight in high-speed machining, micro-machining	hae n	nano	fabric	ation		
techniqu		y anu	nano-		ation		
4. Introduc	ce the semi-conductor. IC chips and micro actuator fab	oricatio	on tech	niaue	S.		
5. Train th	e student in NC part programming, metal cutting co	oncep	ts, ger	neratio	on of		
manufa	cturing drawings and process planning.	•	. 0				
Course Outco	me						
Student shall b	e able to:						
1. Discuss	the advanced machining mechanisms and procedure	S					
2. Analyze	e the high-speed machining characteristics and applica	ations					
3. Evaluat	E AVVM, AVVJM and USM processes.						
5 Demons	ztrate Special machining processes such as deep hole	a horir	ha and	aun			
boring		5 0011	ig and	gun			
6. Design	the Advanced abrasive finishing and foundry processe	es					
	0 71						
Module:1	Module:1Advanced Machining Theory6 hours						
Mechanisms of o	chip formation, shear angle relations, and theoretical c	determ	ninatio	ר of			
cutting forces in	orthogonal cutting, thermal aspects of machining and	tool w	ear.				
Module:2	High speed machining			6 ho	ours		
High speed mad	chining (HSM) – Characteristics of HSM - Machine to	ools r	equire	ments	for		
HSM - Cutting	TOOIS FOR HOM - Design of tools for HOM - 1001	ciamp	ping s	/stem	s -		
Module:3	Advanced machining processes - I			6 hc	urs		
Water iet mach	ining - Abrasive water jet machining - Ultrasonic r	machi	nina –	work	cina		
principle, machi	ning system, process variables, parametric analysis.	broc	ess ca	pabili	ties		
and applications		, 1					
Module:4	Advanced machining processes - II			7 ho	ours		
Electro chemica	al Machining - Electric discharge machining - Lase	r bea	m ma	chinin	g —		
Electron beam r	machining - working principle, machining system, pro	ocess	variab	les,			
parametric analy	vsis, process capabilities and applications.	1					
Module:5	Special Machining Process		<u>, , , e</u>	6 hc	ours		
Deep note drillin	g – Gun drills – Gun boring – Trepanning- snaped tub	e elec	ctrolytic	c drillir	ng –		
materials	g, hard turning and hard mining, thermal ermanced ma	acrimi	ig of fi	aru to	Cut		
Module:6	Advanced abrasive finishing processes			6 ho	urs		
Honing – Lappin	a – Super finishing – High performance grinding - Abi	rasive	flow n	hachir	nina		
– Magnetic abra	sive finishing – Magnetic float polishing.						
Module:7	Advanced foundry processes			6 ho	ours		
Metal mould, co	ntinuous, squeeze, vacuum mould, evaporative patte	rn, an	d cera	mic s	hell		
casting	· · ·						
Module:8 C	Contemporary Issues			2 ho	ours		

	Total L	ecture hours:		45 hours			
Tex	t Book(s)						
1.	1. Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, 7 th Edition, 2019.						
Ref	erence Books						
1.	1. Serope Kalpakjian and Steven R.Schmid, Manufacturing Engineering and Technology, Person, 2020.						
2.	J. Paulo Davim, Machining: Fur	idamentals and R	Recent Advances	s, Springer, 2008.			
3.	H. El-Hofy, Advanced Machinin Processes, McGraw-Hill, New Y	g Processes: Nor ⁄ork, 2005.	ntraditional and I	Hybrid Machining			
4.	Bert P.Erdel, "High Speed Mach	nining", Society of	Manufacturing	Engineers, 2003.			
Мос	le of Evaluation: CAT ,Written Ass	ignment, Quiz ar	nd FAT				
Rec	ommended by Board of Studies	27-07-2022					
Арр	roved by Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title	L	Т	Ρ	С		
MCDM613L	Statistics and Quality Management	3	0	0	3		
Pre-requisite	NIL	Sylla	bus	versi	on		
Course Objective:			1.	0			
The goal of the course	se is to introduce students to statistical quality con	trol (S					
emphasizing those as	pects which are relevant for SQC's practical implen	nentati	on.				
Course Outcomes :							
At the end of the cou	irse, the student will be able to:						
1. Validate the theoretical and practical aspects of SQC.							
2. Apply the link between SQC and business analysis / business planning.							
3. Demonstrate	the Total Quality Management						
4. Outline the Qu	uality Management System Principles & Methodolog	gies					
5. Apply Quality	System tools in Measurement System						
6. Employ the W	forld Class Quality and Problem Solving Tools						
Module:1 Intro	oduction to Quality	- fin 141 -		5 hou	Jrs		
Definition of Quality,	Quality Concepts: Quality Dimensions – Quality d	etinitio	ns -	Qua	ity		
Control – Quality Ass	burance – Quality planning - Quality costs – Econ	omics	01 0	luality	' —		
Module:2 Stati	istical Process Control			6 hou	Jrs		
Process variability – 0	Control charts for variables, Pre control charts,Warr	ning co	ontro	l limit	s –		
process capability, ma	achine capability and gauge capability studies – S	tatistic	al to	leran	ce,		
Other Control Charts	: Control charts for attributes, control charts for	indivi	dual				
measurement, moving	g range chart,.						
Module:3 Introd	luction to Quality Management			6 hou	Jrs		
Total Quality Manage	ment: Quality philosophies of Deming, Crosby, Mille	er - TQ		oncep	ts,		
	i model – Customer retention model, Quality syste	em, se	ven	toois	OT		
quality, 55, QFD, KAI	ZEN, PORATORE,						
Module:4 Qualit	tv Management System			6 hoi	irs		
ISO 9001, TS 16949 F	Principles & Methodologies, system requirements.			•			
Module:5 Qualit	ty System tools			6 hoı	ırs		
Advanced Product Qu	uality Planning, Measurement System analysis, Pro	cess F	ailur	e Mo	de		
and Effect analysis.							
Madula (C. Maria				<u> </u>			
NOCULE:6 WORLD	I Class Quality	arking	Civ		Jrs		
$\Delta a u u u y e a waru, Shi concents – DMAIC/ D$	MADV approach Taguchi Loss function	ai nii iy,	SIX	ธเนท	ıd		
Module:7 Probl	em Solving Tools			8 hou	Jrs		
Seven QC tools and S	Seven Management tools, TRIZ etc.						
		•					
Module:8 Conte	emporary Issues			2 hou	ırs		

		Tota	I Lecture	hours:	45 hours
Text	: Book(s)				
1	Montromory D.C. (2012) Intro	Austion to Statiat		tu Contro	L 7th Edition
1.	John Wiley & Sons.				
Refe	erence Books				
	-				
1.	Introduction to Statistical Process	Control, Peihua	a Qui, CR	C Press, 2	2014.
2.	Krishnaiah.K, (2014) Applied Sta	atistical Quality	Control a	nd Impro	vement, Prentice
	Hall of India.				
Modo	of Evaluation: CAT Writton Assig	inmont Quiz on			
woue	OI EVALUATION. CAT, WITHEN ASSIG		UFAI		
Reco	ommended by Board of Studies	27-07-2022			
Аррі	roved by Academic Council	No. 67	Date	08-08-2	2022
		•	•	•	

Course Code	Co	ourse Title		L	Т	Ρ	С
MCDM696J	Study C	Driented Project					02
Pre-requisite	NIL			Sy	llabus	s vers	ion
					1	.0	
Course Objectiv	es:						
1. The studen	it will be able to anal	lyse and interpret pu	ublished lit	eratu	re for	inform	nation
pertaining t	o niche areas.						
Scrutinize t	echnical literature an	d arrive at conclusio	ns.				
3. Use insight and creativity for a better understanding of the domain of interest.							
Course Outcome	ə:						
1. Retrieve, a	nalyse, and interpret	published literature	/books pro	viding	g infor	matio	n
related to n	iche areas/focused d	omains.	·				
2. Examine te	chnical literature. res	olve ambiguity, and	develop co	onclus	sions.		
3. Svnthesize	knowledge and use	insight and creativity	/ to better ι	under	stand	the do	omain
of interest.							
4 Publish the	e findings in the pee	r reviewed journals	/ Nationa	l / In	ternati	ional	
Conference		i reviewed jeurnale		. ,	tornat	loniai	
Comoronoc							
Module Content		(Pr	roject dura	ation:	One	seme	ster)
This is oriented t	owards reading publ	lished literature or b	pooks relat	ted to	niche	e area	is or
focussed domains	s under the guidance	of a faculty.					
Mode of Evaluat	ion: Evaluation involv	ves periodic reviews	by the fac	ulty w	vith wł	nom th	ie
student has regis	tered. Assessment or	n the project – Repo	rt to be sub	bmitte	ed, pre	esenta	tion
and project review	vs – Presentation in t	he National / Interna	ational Con	feren	ce on	Scien	ce,
Engineering Tech	inology.						
Recommended by	y Board of Studies	27-07-2022					
Approved by Aca	demic Council	No. 67	Date		0	8-08-2	2022
		•					

Course Code	Сог	urse Title		L	т	Р	С	
MCDM697J	Desi	gn Project					02	
Pre-requisite	NIL	<u> </u>		Sy	/llabu	s vers	ion	
						1.0		
Course Objective	es:							
1. Students will be able to design a prototype or process or experiments.								
2. Describe ar	nd demonstrate the tec	hniques and	skills nece	ssary for t	he pro	ject.		
3. Acquire kno	wledge and better und	derstanding of	of design sy	stems.				
Course Outcome):							
 Develop new skills and demonstrate the ability to upgrade a prototype to a design prototype or working model or process or experiments. Utilize the techniques, skills, and modern tools necessary for the project. Synthesize knowledge and use insight and creativity to better understand and improve design systems. Publish the findings in the peer reviewed journals / National / International Conferences. 								
Module Content			(Project	t duration	: One	seme	ster)	
Students are exp prototypes to des process.	Students are expected to develop new skills and demonstrate the ability to develop prototypes to design prototype or working models related to an engineering product or a process.							
Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science, Engineering Technology.								
	,			00.00.0	000			

Course Code	Cours	se Title		L	Т	Р	С
MCDM698J	Internship I/	Dissertation	n I				10
Pre-requisite	NIL			Sy	/llabu	s vers	ion
						1.0	
Course Objectiv			. 4 1 4 . 4				4 I
	lent nands-on learning ex	xperience rei	ated to the c	iesign, (opmeni	t and
chosen field and	able product / process s	entation	ance the te	cnnical	SKIII	sets II	i the
	also to give research one						
Course Outcom	16:						
1 Considera	bly more in-depth knowle	dae of the m	aior subject/	field of	study	includ	lina
deeper ins	and into current research	and develor	oment work		study,	moluu	iing
2. The capat	pility to use a holistic view	to critically.	independent	tlv and o	creativ	/elv	
identify, fo	rmulate and deal with cor	mplex issues		,		,	
3. A consciou	usness of the ethical aspe	ects of resear	ch and deve	elopmer	nt work	۲.	
4. Publication	ns in the peer reviewed jo	ournals / Inter	national Co	nferenc	es will	be an	l
added adv	′antage.						
Module Conten	t	(Pro	iect duratio	n: one	seme	ster)	
1 Dissertatio	n may be a theoretical a	nalvsis mod	elina & simi	Ilation	evneri	menta	tion &
analysis. r	prototype design. fabricat	ion of new e	auipment. c	orrelation,	on and	d analy	/sis of
data, softv	vare development, applie	d research ar	nd any other	related	l activi	ities.	
2. Dissertatio	on should be individual wo	ork.					
3. Carried or	ut inside or outside the	university, i	n any relev	ant ind	ustry	or res	search
institution.							
4. Publication	ns in the peer reviewed	journals / I	nternational	Confe	rences	s will	be an
added adv	antage.						
Mode of Evalue	ation: Assessment on th	ne project [Discortation	renort	to he	submi	tted
presentation, pro	pject reviews and Final Or	ral Viva Exan	nination.	report		Subilli	lieu,
Recommended I	by Board of Studies	27-07-202	2				
Approved by Aca	ademic Council	No. 67	Date	08-08	3-2022	2	

Course Code	Course	Title		L	т	Р	С
MCDM699J	Internship II/ D	issertation II					12
Pre-requisite	NIL			Syllabus version			
1.0							
Course Objectives:							
To provide sufficient hands-on learning experience related to the design, development and							
analysis of suitable product / process so as to enhance the technical skill sets in the							
chosen field.							
Course Outcome:							
Upon successful completion of this course students will be able to							
1. Formulate specific problem statements for ill-defined real life problems with							
reasonable assumptions and constraints.							
2. Perform literature search and / or patent search in the area of interest.							
3. Conduct experiments / Design and Analysis / solution iterations and document the							
results.							
4. Perform error analysis / benchmarking / costing.							
5. Synthesize the results and arrive at scientific conclusions / products / solution.							
6. Document the results in the form of technical report / presentation.							
Module Content		(Project duration: one semester)					
1. Dissertation may be a theoretical analysis modeling & simulation experimentation &							
analysis, prototype design, fabrication of new equipment, correlation and analysis of							
data, software development, applied research and any other related activities.							
2. Dissertation should be individual work.							
3. Carried out inside or outside the university, in any relevant industry or research							
4. Publications in the peer reviewed journals / International Conferences will be an							
added advantage.							
-							
Mode of Evaluation: Assessment on the project - Dissertation report to be submitted,							
presentation, project reviews and Final Oral Viva Examination.							
Recommended by Board of Studies 27-07-2022							
Approved by Aca	Approved by Academic Council		Date	08-0	08-202	22	