

SCHOOL OF MECHANICAL ENGINEERING

M.Tech Applied Computational Fluid Dynamics

Curriculum & Syllabi (2022-2023 batch onwards)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

• Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- **World class Education**: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- **Cutting edge Research**: An innovation ecosystem to extend knowledge and solve critical problems.
- **Impactful People**: Happy, accountable, caring and effective workforce and students.
- **Rewarding Co-creations**: Active collaboration with national & international industries & universities for productivity and economic development.
- **Service to Society**: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

• To be a leader in imparting world class education in Mechanical Engineering, leading to nurturing of scientists and technologists of highest caliber who would engage in sustainable development of the globe.

MISSION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

- To create and maintain an environment fostering excellence in instruction & learning, Research and Innovation in Mechanical Engineering and Allied Disciplines.
- To equip students with the required knowledge and skills to engage seamlessly in higher educational and employment sectors ensuring that societal demands are met.

M.Tech Applied Computational Fluid Dynamics

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment.

PO_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information.

PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice.

PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems.

PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development.

PO_07: Having a clear understanding of professional and ethical responsibility.

PO_08: Having a good cognitive load management skills related to project management and finance.

M.Tech Applied Computational Fluid Dynamics

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Automotive Engineering) programme, graduates will be able to

- **PSO_1:** Compute, Design, Model, Simulate and Analyse various fluid flow and heat transfer problems using numerical techniques for applications in Aerospace, Automotive, Biomedical, Chemical, Environmental and Energy Engineering.
- **PSO_2:** Adopt a multidisciplinary approach to solve real-world industrial problems involving Mass, Momentum and Energy transport processes.
- **PSO_3:** Independently carry out research / investigation to solve practical problems and write / present a substantial technical report/dissertation.

M.Tech Applied Computational Fluid Dynamics

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

Agenda Item 66/8

To consider and approve the new academic programme, curriculum and course contents for Master of Technology in Applied Computational Fluid Dynamics

ANNEXURE – 4

Proceedings of the 66th Academic Council (16.06.2022)

Master of Technology in Applied Computational Fluid Dynamics School of Mechanical Engineering

Programme Credit Structure	Credits	Discipline Elective Courses	12
Discipline Core Courses Skill Enhancement Courses Discipline Elective Courses	24 05 12	MCFD601L Computational Aerodynamics MCFD602L Chemically Reacting Flows - Combustion	3 0 0 3 2 0 0 2
Open Elective Courses Project/Internship	03	MCFD602P Chemically Reacting Flows - Combustion Lab	0 0 2 1
Total Graded Credit Requirement	70	MCFD603L Fluid Structure Interaction MCFD604L Experimental methods for Fluid	3 0 0 3 2 0 0 2
Discipline Core Courses	24 L T P C	Flow MCFD604P Experimental methods for Fluid	0 0 2 1
MCFD501L Transport Phenomena MCFD502L Advanced Fluid Dynamics	3 0 0 3 3 0 0 3	MCFD605L Multiphase flows MCFD606L Finite Element Analysis of Solids	3 0 0 3 3 0 0 3
MCFD503L Advanced Heat Transfer MCFD504L Numerical Methods for Partial Differential Equations	3003	and Fluids MCFD607L High Performance Computing MCED607P High Performance Computing	2002
MCFD504P Numerical Methods for Partial Differential Equations Lab	0 0 2 1	Lab	30021
MCFD505P Computational Fluid Dynamics Lab	0 0 4 2	vironmental and Atmospheric Flows	5005
MCFD506L Numerical Solution of the Navier-Stokes equations	3003	MCFD609L Modeling and Simulation of En- ergy Systems	3 0 0 3
MCFD506P Numerical Solution of the Navier-Stokes equations Lab	0 0 2 1		
MCFD507P Advanced Computational Fluid Dynamics Lab	0 0 4 2	Open Elective Courses	03
MCFD508L Turbulence Modelling	3003	Engineering Disciplines Social Sciences	
Skill Enhancement Courses	05	Project and Internship	26
MENG501P Technical Report Writing MSTS501P Qualitative Skills Practice MSTS502P Quantitative Skills Practice	$\begin{array}{ccccccc} 0 & 0 & 4 & 2 \\ 0 & 0 & 3 & 1.5 \\ 0 & 0 & 3 & 1.5 \end{array}$	MCFD696JStudy Oriented ProjectMCFD697JDesign ProjectMCFD698JInternship I/ Dissertation IMCFD699JInternship II/ Dissertation II	02 02 10 12

Master of Technology in Applied Computational Fluid Dynamics

Short Syllabus

Discipline Core courses

MCFD501L Transport Phenomena (3-0-0-3)

Tensor analysis - differential operations, integral theorems; Mechanisms of momentum, energy and mass transport- transport properties; Equations of change- isothermal systems, non-isothermal systems, multicomponent systems; Friction factors – internal flow, external flow, steady-state and unsteady-state; Newtonian and non-Newtonian models; Turbulent Flow - temperature distribution; Mass diffusion - heterogeneous and homogeneous chemical reaction; Time-dependent mass diffusion- Equation and solution.

MCFD502L Advanced Fluid Dynamics (3-0-0-3)

Overview of Fluid Dynamics - Lagrangian and Eulerian approaches; Governing Equations of Fluid Flow - Reynolds transport theorem, NS Equations for viscous flow; Potential Flow Theory - Pressure distribution over stationery, rotating cylinders, Conformal transformation, flow over flat plate, cylinder, spherical body and airfoils; Boundary layer Theories - von Karmann Momentum integral equation, Flow separation and recirculation; Turbulent flows - Eddy Viscosity concepts, Laws of the Wall and free shear flows; Compressible Flow - nozzles and diffusers, normal and oblique shock waves; Flow measurement devices - intrusive and non-intrusive techniques.

MCFD503L Advanced Heat Transfer (3-0-0-3)

Governing Laws of heat transfer- heat conduction, convection, thermal radiation; Generalized heat conduction equations for anisotropic inhomogeneous mediums- steady state, unsteady state, analytical and numerical methods; Transient conduction- analytical and numerical methods; Convective heat transfer in external flows- analytical and numerical methods; Notural convection- Combined forced and free convection; Radiation- Radiative Transfer Equation, Radiative properties of surfaces.

MCFD504L Numerical Methods for Partial Differential Equations (3-0-0-3)

Partial Differential Equations- PDE Definition, Elliptic, parabolic, and hyperbolic equations; Interpolation Methods - Operators, Lagrange's methods, Newton's fundamental interpolation, Interpolation by iteration; Solution Techniques for Elliptic equations - Finite difference discretization, Direct and Iterative methods; Parabolic Equations- Initial Boundary Value problems, Consistency, Stability, Convergence, Forward-Time Centered Space, Backward-Time Centered Space, Crank Nicolson, Alternating Direction Implicit; Hyperbolic Equations -Solution properties: Domain of Dependence, Finite difference discretization schemes, Dispersion and Dissipation behaviour; The Finite Element Method- Generalization of the finite element concepts, Basic equations and solution procedure.

MCFD504P Numerical Methods for Partial Differential Equations Lab (0-0-2-1)

Code development for 2D Elliptic equation using Jacobi, Gauss-Seidel and SOR methods; 1D parabolic (Heat equation) using the FTCS method; 2D parabolic equation; 1D advection equation, using the Upwind scheme; 1D convection-diffusion equation, using the FTCS scheme and the upwind scheme; 1D convection-diffusion equation, using finite volume method to implement the FTCS scheme and the upwind scheme; 1D convection-diffusion equation, using finite volume method to implement the FTCS scheme and the upwind scheme; 1D convection-diffusion equation, using finite volume method to implement QUICK scheme; 1D finite element Poisson equation using Conjugate gradient method; Lid-driven cavity problem using vorticity-stream function formulation; Sod's shock tube problem using any two upwind schemes.

MCFD505P Computational Fluid Dynamics Lab (0-0-4-2)

2D/3D geometry creation; Structured mesh generation; Unstructured mesh generation; Simulation of Laminar and turbulent flow; Computational analysis of Shock wave and boundary layer interaction; Simulation of Two-phase flow- VOF model; Numerical analysis of Wake formation behind tandem cylinders; Simulation of blood flow; Computational analysis of tube-in-tube heat exchanger; Simulation of melting of an ice block.

MCFD506L Numerical Solution of the Navier-Stokes Equations (3-0-0-3)

Navier-Stokes equations variants and related mathematical models - Vorticity-stream function equations, Velocity-pressure formulation; Solution algorithms for NS equations - Operator splitting, projection; FVM for Convection-Diffusion Equations - Steady one and multi-dimensional equations; Flux limiter functions; Finite volume steady incompressible Navier-Stokes flow Solver - Pressure correction based incompressible steady flow solvers - staggered grid, NS equations spatial discretization, SIMPLE, SIMPLER, SIMPLEC algorithm and PISO algorithm; Unsteady incompressible NS flow Solver - Explicit, Crank–Nicolson and implicit scheme; Finite volume Implementation of different Boundary conditions; Complex geometries - Body-fitted, Cartesian vs. Curvilinear grids, Structured and Unstructured grids, Spatial discretization, pressure–velocity coupling and face velocity interpolation in unstructured meshes.

MCFD506P Numerical Solution of the Navier-Stokes Equations Lab (0-0-2-1)

Finite difference codes on structured Cartesian grids – For incompressible NS equations in Vorticity/stream function, Velocity/Vorticity, and Velocity/pressure formulations, staggered and collocated grids; Finite volume codes on structured Cartesian grids – For incompressible NS equations in Velocity/pressure formulations, staggered grids; Solution algorithms for incompressible NS equations in Velocity/pressure formulations - Operator splitting, Projection, and Pressure-correction based (SIMPLE, SIMPLEC).

MCFD507P Advanced Computational Fluid Dynamics Lab (0-0-4-2)

3D geometry creation using ICEM CFD; Computational analysis of Jet surface interaction; Supersonic flow over a bump; Simulation of shell and tube heat exchanger; Computational investigation of a hydraulic jump; Analysis of a moving strip in an air stream; Simulation of a blower using multiple reference frames model; Simulation of Species transport and gaseous combustion; Simulation of a porous media; use of user defined function for ANSYS.

MCFD508L Turbulence Modelling (3-0-0-3)

Background of Turbulence Flows - Origin of turbulence, irregularity, three dimensional motions; Statistical Description of Turbulence - Kolmogorov hypothesis, scales of turbulence, energy cascading; Turbulent Transport of Moment and Heat - Reynolds decomposition technique, turbulent stresses, Reynolds' analogy, dynamics of turbulence; Turbulence Modelling - eddy viscosity hypothesis, near-wall treatment; Free Shear Flows - Mixing Layer, wakes and Jets; Wall-Bounded Flows - Channel and pipe flows, Reynolds stresses, turbulent boundary layer equations; Advanced Turbulence Modelling Techniques - Large Eddy simulation (LES), Direct Numerical Simulation (DNS), Detached Eddy Simulation (DES) models.

Discipline Elective courses

MCFD601L Computational Aerodynamics (3-0-0-3)

Aerodynamics/Gas dynamics Concepts - Wing Aerodynamics, Compressibility effects, Transonic Aerodynamics, shock, and expansion waves; Governing equations of compressible flows – Integral conservative form; Numerical Schemes for Euler Equations; Spatial discretization- Structured and unstructured Finite Volume Schemes, Discretization of the Convective Fluxes, Discretization of the Viscous Fluxes; Temporal Discretization-Explicit and implicit Time stepping, Multistage Schemes; Turbulence Modeling Approaches for compressible flow- Favre Averaging, one and two-equation models; Boundary Conditions.

MCFD602L Chemically Reacting Flows - Combustion (2-0-0-2)

Combustion and thermochemistry - flame types; Chemical Kinetics- Elementary reaction rates, Some important chemical mechanisms; Conservation Equations for reacting flows; Laminar flames - premixed flames, diffusion flames; Droplet evaporation and burning - Simple model for droplet evaporation, Simple model of droplet burning; Turbulent flames - Structure of turbulent premixed flames, Turbulent nonpremixed flames; Burning of solids, Simulations using different combustion models.

MCFD603L Fluid Structure Interaction (3-0-0-3)

Governing Equations of Fluid and Structural Mechanics - Continuum Mechanics, Material Laws, Linear Stokes, steady and unsteady Equations, Flow Problems on Moving Domains; Coupled Fluid Structure Interactions (FSI) – Interface Regularity and Boundary Conditions, FSI in ALE and Fully Eulerian Formulation; Discretization techniques for FSI equations - Time Discretization using Shifted Crank-Nicolson, Fractional-step θ method, and Galerkin Methods, Discretization of Interface and moving Interfaces; ALE Formulation –Discretization and Linearization; Finite Elements for FSI in ALE Formulation – Inf-Sup stable FE-Spaces, Stabilised Finite elements; Fully Eulerian Formulation - Interface Capturing and Initial Point Set Method, Fully Eulerian Framework; Linear Solvers for FSI - Partitioned Solvers, Direct Solution of Linear Systems, Krylov Space Solvers, GMRES Multigrid Iteration.

MCFD604L Experimental methods for Fluid Flow (2-0-0-2)

Measurements - Error Estimates, Uncertainty Analysis; Pressure measurements – static and total pressure measurements; Measurements of Temperature, Heat flux and Species Concentrations; Flow Rate measurements; Velocity measurements- Pressure-based Velocity Measurements, Particle-based techniques, Density-based Techniques;

Measurements of Force and Moment; Linking experiments with CFD-verification and validation.

MCFD605L Multiphase flows (3-0-0-3)

Overview of Multiphase flow - Flow patterns and regimes, conservation equations for multiphase flows; Liquid - Gas Two Phase Flows - Separated flow instabilities, Pressure drop models; Particle motion - Single particle motion, Flow around a sphere, Grain's size and concentration effect on free flow drag; Bubble/Droplets dynamics - Rayleigh-Plesset equation, Bubble growth and collapse; Euler-Lagrangian Model - particle tracking and trajectory, Force balance; Euler-Euler Model - Liquid-liquid / liquid-solid mixing, Complex multiphase flows with turbulence; Boiling and Condensation - Flow boiling in mini and micro channels, Film boiling, Condensation.

MCFD606L Finite Element Analysis of Solids and Fluids (3-0-0-3)

Introduction to approximation methods - Direct formulation, Minimum total potential energy formulation, weighted residual formulation, variational approach; Higher order and isoparametric elements - polynomial form of interpolation functions, lagrangian interpolation, Higher order one dimensional elements; Application to solid mechanics- one dimensional analysis and multi-dimensional problems - trusses, beams, plates, shells, plane stress and plane strain problems; Application to fluid mechanics- isothermal and non-isothermal problems; Application to steady state heat conduction; Application to transient heat conduction analysis.

MCFD607L High Performance Computing (2-0-0-2)

Moore's law and saturation, Multi-core and multi-node computers, accelerators, Amdahl's law, introduction to Linux; Professional code development practices – editors, compilers, IDEs, unit and integration testing, scripting languages, environment modules, run code on HPC; Parallelization in modern computers – pipelining, memory hierarchy and latency, Compiler flags based optimization; Analysis tools and Optimization – Debugging, profiling, and instrumenting the code, interoperability; Shared Memory Architecture – data dependencies and resolution, Directive driven optimization, task based vs data parallelization, reduction, synchronization, atomic operations, performance enhancement comparison; Distributed Memory Architecture – Message Passing Interface, blocking vs non-blocking communication, debugging, instrumenting, and performance enhancement; Hybrid Computing – GPU Architecture, Nvidia and CUDA, CUDA kernels and memory management.

MCFD608L Numerical Simulation of Environmental and Atmospheric Flows (3-0-0-3)

Overview-Anthropogenic climate change and environmental flows, Solar variability, orbital mechanics, greenhouse gases, Scales of motion, atmospheric and oceanic circulation; Fundamentals of Atmospheric Processes-Equations of motion in Cartesian coordinates; Energy Climate Dynamics-Potential Temperature, States of stability, Stratification and diffusion problems, Parcel Concepts; Thermodynamical Processes-Thermodynamic principles; Boundary Layer Processes-Expanded continuity equations, Cloud-fog physics, Boundary layer physics; Shallow Water model theory-Shallow Water equations; Numerical methods in Boundary layer Processes including large scale flows-Mass conservation equation implementation, Boundary conditions, Introduction of zonal jets and currents, Large scale perturbations and geostrophic equilibrium.

MCFD609L Modeling and Simulation of Energy Systems (3-0-0-3)

Overview of Energy Systems - Workable and Optimum Energy systems, Equation fitting; System Simulation - Sequential and simultaneous calculations; Optimization - Unconstrained and constrained optimization, Sensitivity Coefficients, Search Methods; Thermal System Analysis - Geometric programming, Linear Programming, Simplex algorithm; Modelling of Thermodynamic properties - Regression analysis, Internal energy and entropy, pressuretemperature relationship; Design of Heat Exchangers - parallel flow, counter flow; Simulation and optimization of thermal devices - thermal power plant components, Solar collector, Wind turbine Simulation and optimization of thermal power plant components, Solar collector, Wind turbine, hydraulic turbine and draft tubes, Gas turbine and compressors.

Skill Enhancement Courses

MENG501P Technical Report Writing (0-0-4-2)

Basics of Technical Communication–Process of communication, Levels of communication; Vocabulary and Editing - Word usage, Punctuation and Proofreading; Advanced Grammar - Shifts: Voice, Tense, Person and Number - Clarity: Pronoun reference, Misplace and unclear modifiers; Elements of Technical writing - Eliminating unnecessary words - Sentence clarity and combining; The Art of condensation; Technical Reports - Formats of reports and Prewriting; Data Visualization; Systematization of Information; Research and Analyses; Structure of Reports; Writing the Report; Writing scientific abstracts; Supplementary Texts; Presenting Technical Reports.

MSTS501P Qualitative Skills Practice (0-0-3-1.5)

Business Etiquette: Social and Cultural Etiquette; Writing Company Blogs; Internal Communications and Planning: Writing press release and meeting notes; Time management skills - Prioritization, Procrastination, Scheduling, Multitasking; Presentation skills – Preparing presentation; Organizing materials; Maintaining and preparing visual aids; Dealing with questions; Quantitative Ability -L1 – Number properties; Averages; Progressions;Percentages; Ratios; Reasoning Ability-L1 – Analytical Reasoning - Data Arrangement, Blood Relations,Ordering/ranking/grouping, Puzzle test, Selection Decision table; Verbal Ability-L1 – Vocabulary Building.

MSTS502P Quantitative Skills Practice (0-0-3-1.5)

Resume skills – Resume Template; Use of power verbs; Types of resume; Customizing resume; Interview skills – Types of interview; Techniques to face remote interviews and Mock Interview; Emotional Intelligence - L1 – Transactional Analysis; Brain storming; Psychometric Analysis; SWOT analysis; Quantitative Ability-L3 – Permutation-Combinations; Probability; Geometryand mensuration; Trigonometry; Logarithms; Functions; Quadratic Equations; Set Theory; Reasoning ability-L3 – Logical reasoning; Data Analysis and Interpretation - Syllogisms, Binary logic, Sequential output tracing, Crypto arithmetic, Data Sufficiency, DataInterpretation; Verbal Ability-L3 – Comprehension and Critical reasoning.

Open Electives

MFRE501L Français Fonctionnel (3-0-0-3)

Saluer, Se présenter, Etablir des contacts. Compétences en lecture - consulter un dictionnaire, appliquer des stratégies de lecture, lire pour comprendre - Présenter quelqu'un, Chercher un(e) correspondant(e), Demander des nouvelles d'une personne.Situer un objet ou un lieu, Poser des questions-Comprendre et traduire un texte court, et indiquer le chemin.- Trouver les questions, Répondre aux questions générales en français, Écouter des vidéos (site internet, YouTube) qui aident à améliorer leur prononciation/ vocabulaire et leurs compétences orales- Comment écrire un passagedévelopper des compétences rédactionnelles. Discussion de groupe (donnez un sujet et demandez aux élèves de partager leurs idées)-Comment écrire un dialogue-Invited Talk: Native speakers.

MGER501L Deutsch für Anfänger (3-0-0-3)

Die erste Begegnung - Einleitung, Begrüssungs formen, Länder und Sprachen; Hobbys und Berufe - Über Hobbyssprechen, Wochentage, Jahreszeiten, und Monatenennen; Alltag und Familie - Über die Familiesprechen, eineWohnungbeschreiben, Situations gespräche-Korrespondenz - Leseverständnis, Mindmapmachen, Korrespondenz- Briefe, Postkarten, E-Mail; Aufsatzschreiben - Meine Universität, Das Essen, mein Freund odermeine Freundin, Übersetzungen - Trainierung den Sprachfähigkeiten

Course Code	Course Title		L	Т	Ρ	С				
MCFD501L	Transport Phenomena	a 3 0 0								
Pre-requisite	NIL	Syllabus versio								
				1.0						
1 To teach	es the basic concents of transport phenome	na similarities o	f the		/ern	ina				
 equations of mass, momentum, and heat transfer 2. To illustrate the common mathematical structure of transport problems. 3. To formulate appropriate differential equations to obtain velocity, temperature, and concentration profiles of transport processes. 										
Course Outcome										
	s	a abla ta								
1. Understar energy 2 Relate sin	 Upon successful completion of the course the students will be able to Understand the transport properties of molecular transfer of mass, momentum and energy 									
3. Solve one 4. Apply Na mass tran 5. Analyse ir	-dimensional steady state momentum, hea vier-Stokes equation to examine the prot sfer. ndustrial transport problems with appropria	at and mass transfolders related to	fer p fluid s an	roble hea d bo	ems. at, a und	and ary				
Conditions	·									
Module:1 Mec	nanisms of Momentum, Energy and			7	hou	Jrs				
Coordinate syste Vector and tens transport - level o pressure and terr	ms and its rotation of axes- Vector and or integral theorems. momentum transpo of analysis - molecular transport properties perature.	l tensor differenti ort, energy trans s of gases and lic	al o port quids	pera and s - e	ition I ma ffect	s - ass t of				
Module:2 Equa	itions of Change			6	hou	Jrs				
Equations of cha	nge for isothermal systems - equations of	change for non-is	othe	rmal						
Systems - equation	ons of change for multicomponent systems			6	ho	ire				
Bala	nces for Isothermal Flow Systems			Ŭ	not	115				
Friction factors fo the viscous loss, problems.	r flow in tubes, Friction factors for flow arou Use of the macroscopic balances for stead	und a bluff body, I ly-state and unste	Estin ady-	natio state	n of e					
Module:4 Tran	sport phenomena in polymeric			5	hou	Jrs				
Behaviour of poly	meric liquids, non-Newtonian viscosity and	the generalized	New	tonia	n					
models, Elasticity	and the linear viscoelastic models, nonline	ear viscoelastic m	odel	s						
Module:5 Tem Flow	perature distributions in Turbulent s			7	hou	Jrs				
Time-averaged e	quations of change for incompressible non	-isothermal flow, t	he ti	me-						
averaged temper and jets.	ature profile near a wall, temperature distri	bution for turbuler	nt flo	w in	tube)S				
Module:6 Con Flow	centration Distributions in Laminar s			6	hou	Jrs				
Shell mass balan with a heterogene film-gas absorptio	ces, boundary conditions; Diffusion throug eous and a homogeneous chemical reactio on - solid dissolution.	h a stagnant gas f n; Diffusion into a	ilm; falli	Diffu ng lie	ısior quid	1				

Independent Variables Time-dependent diffusion; Steady-state transport in binary boundary layers; Steady-state boundary layer theory for flow around objects; Boundary layer mass transport with complex interfacial motion Module:8 Contemporary Issues 2 hou Total Lecture hours: 45 hou
Time-dependent diffusion; Steady-state transport in binary boundary layers; Steady-state boundary layer theory for flow around objects; Boundary layer mass transport with complex interfacial motion Module:8 Contemporary Issues 2 hou Total Lecture hours: 45 hou Text Book(s) Foundary layer house
boundary layer theory for flow around objects; Boundary layer mass transport with complexinterfacial motion Module:8 Contemporary Issues 2 hou Total Lecture hours: 45 hou Text Book(s) Contemporary Issues 45 hou
interfacial motion Module:8 Contemporary Issues 2 hou Total Lecture hours: 45 hou Text Book(s)
Module:8 Contemporary Issues 2 hou Image: State of the state of th
Total Lecture hours: 45 hou Text Book(s)
Total Lecture hours: 45 hou Text Book(s)
Total Lecture hours: 45 hou Text Book(s)
Text Book(s)
1. Bird R. B., Stewart W. E., Lightfoot E. N., Transport Phenomena, 2012, Second Editio
John
Wiley & Sons Inc., Wiley Student Edition, India.
Reference Books
1 Geankoplis C.J., Transport Processes and Separation Process Principles, 2018, Fifth
Edition, Pearson Education India.
2. Plawsky Joel L, Transport Phenomena fundamentals, 2020, Fourth Edition., CRC Pres
USA.
3. William M. Dean, Analysis of Transport Phenomena, 2013, Second Edition, Oxford
University Press, India.
Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final
assessment test
Recommended by Board of Studies 27-05-2022
Approved by Academic Council No. 66 Date 16-06-2022

Course Code	Course Title		L	Τ	Ρ	С			
MCFD502L	Advanced Fluid Dynamics		3	0	0	3			
Pre-requisite	NIL	Sy	/llab	us v	ersi	on			
				1.0					
Course Objective	es iundomentals of fluid machanics and reverning as	untinga	for			<u></u>			
time engineering applications									
2. To provide in-depth knowledge of potential flow and boundary layers.									
3. To understand complex phenomena underlying turbulent and compressible flows.									
4. To familiarize students with experimental techniques related to fluid mechanics.									
Lipon completion	e the course the students will be able to								
opon completion									
1. Deduce go	overning equations for particular flow fields with app	ications	5.						
2. Analyse p	otential flows and execute concept of conformal	transfor	mati	on fe	or fl	ow			
over bodie	S.	flow	م الم	++		far			
3. Apply bou	ndary layer concepts for real huids for solving huid	now ar	ia ne	รลเ เ	rans	ler			
4. Analyse tu	Irbulent flows through various techniques for wall t	ounded	and	free	e she	ear			
flows.	ç i								
5. Examine o	compressible flows through various systems involvin	g shock	wav	'es.					
6. Apply vari	ous intrusive and non-intrusive techniques to n	easure	flow	/ an	d fl	uid			
properties.									
Module:1 Over	view of fluid motion			5	hou	Jrs			
Introduction- New	tonian and non-Newtonian fluids. Description of flu	id motic	n –	Lagr	ang	ian			
and Eulerian app	proaches. Motion of fluid element translation, rot	ation ar	าd d	eforr	nati	on;			
vorticity and strain	n-rate tensors; Streamlines, Path lines, Streak lines	and Tin	ne lin	es, S	Strea	am			
vorticity	ocity Potential Functions, Rotational and Irroration	al nows	; - C	Ircuia	atior	1 –			
Module:2 Gove	erning Equations of Fluid Flow	differen	tial	<u>8</u>	hou	<u>Jrs</u>			
forms – equation	n incorem. Three dimensional continuity equation -	aineerir	illai a	ina i nolic	nieg atio	jrai ne			
Derivation of Nav	rier-Stokes Equations for viscous compressible flo	vs – Ex	act	solut	ions	to			
certain simple ca	ses: Coutte flow - Hagen Poisoulle flow - flow k	etween	two	con	cen	tric			
rotating cylinders.	-								
Module:3 Pote	ntial Flow Theory			5	hou	Jrs			
Pressure distribut	ion over stationery and rotating cylinders in a unifo	m flow	- Ma	gnus	s eff	ect			
- Kutta – Zhukov	sky theorem. Complex potential functions. Confe	rmal tra	ansfo	orma	tion	to			
analyze flow ove	r a flat plate, cylinder, spherical body and airfoil	s. Thin	airfo	oil th	eory	/ –			
generalized airfoll	theory for campered and flapped airfolis.								
Module:4 Bour	ndary layer Theory			7	hou	Jrs			
Boundary Layer	thickness - laminar and turbulent boundary layer	formula	ition,	go\	/ern	ing			
equations, order-	or-magnitude analysis, von Karmann Momenium	ntegrai	equ	ation	1. FI	ow			
Separation and re									
Module:5 Turb	ulent Flow		<u> </u>	7	hou	Jrs			
Introduction to Th	eory of Hydrodynamic Stability, factors affecting tr	ansition	and	its o	conti	rol.			
distribution Laws	of the wall and free shear flows	pis, ur	ivers	bal V	100	лгу			
alstribution, Laws									

Мо	dule:6	Compressible Flow				6 hours			
One	e dimen	sional compressible fluid f	low – flow throug	h varia	able	area passage – nozzles and			
diff	users, fu	indamentals of supersonic	cs – normal and c	oblique	e sho	ock waves and calculation of			
flov	flow and fluid properties over solid bodies - flat plate, wedge and diamond.								
Мо	dule:7	Experimental Techniqu	les			5 hours			
Intr	oductior	: Design of fluid flow ex	periments; unce	rtainty	/ ana	alysis - types of error; flow			
me	measurement - hot wire and hot film anemometers; flow visualization techniques - Laser -								
Dop	opler a	nemometry (LDA) and	Particle Image	Velo	cime	try (PIV), pressure and			
tem	perature	e measurements, methods	s of measuring tu	rbuler	ice.				
Мо	dule:8	Contemporary issues				2 hours			
		-	Total Lecture ho	urs:		45 hours			
Ŧ									
Iex		S)		<u> </u>					
1.	Muralic	Inar, Gautam Biswas, Adv	anced engineerin	ng tiulo	d me	chanics, 2015, 3rd Edition,			
2	Maite	Publications.		unatio		th Edition 2021			
Z.	vvnile,			ucalic	л, э				
rei		DOUKS	hokroborty Intro	ductic	n to	Eluid Machanias and Eluid			
١.	Machin	e 2017 McCraw Hill	makiaborty, mito	aucii		Fluid Mechanics and Fluid			
2	Kundu	Pijush K Ira M Cohen :	and David R. Dow	vlina	Eluio	mechanics Academic			
۷.	press,	2015.		viirig.	i iuiu	meenames. Academic			
3	Schlich	ting, H and K. Gersten. B	oundary Layer Th	neory.	Spri	nger, 2017			
Mo	de of Ev	aluation: CAT, written ass	ignment, Quiz an	d FAT	Γ				
Red	commen	ded by Board of Studies	27-05-2022						
Арр	proved b	y Academic Council	No. 66	Date		16-06-2022			

Course Code	Course Title			L	Т	Ρ	С
MCFD503L	Advanced Heat Transfer			3	0	0	3
Pre-requisite	NIL		Sy	llab	us v	ersi	on
					1.0		
Course Objecti	Ves t knowledge of soversing lowe of different modes	ofboot	tran	ofor			
2 To form	late and reduce mass momentum and energy		serva	sier.	eai	latic	ns
situation	allv.	<i>yy</i> 0011			сq	June	115
3. To obtai	n the exact and approximate solutions of externa	I and ir	ntern	al he	eat t	rans	fer
equation	S.						
4. To deter	mine radiative heat flux between the two surfa	ces wit	th pa	artici	patir	ng/no	on-
participa	ling mealums.						
Course Outcor	16						
Upon successfu	completion of the course the students will be able	e to					
1. Formula	e governing equations for real time problems.						
2. Solve pr	blems of steady state heat conduction.						
3. Analyze	problems of transient heat conduction.						
4. Solve for 5. Solve pa	ced convective heat transfer problems						
6. Solve ra	diative heat transfer problems.						
Module:1 Gov	verning laws of Heat Transfer				5	hοι	ırs
A review of hea	t conduction, convection, thermal radiation, and	viscous	flow	; the	e dei	rivati	on
of mass, mom	entum, and energy equation in dimensional ar	nd non-	-dime	ensio	nal	forn	ns.
various non-dim	ensional numbers in near transfer.						
Module:2 Ste	ady State Conduction				6	hοι	ırs
Derivation of th	ree-dimensional heat conduction equations for a	anisotro	pic i	nhor	noge	enec	us
mediums, conc	uctive tensor. Steady state conduction in isc	otropic	and	nor	noge	enec	us
Module:3 Tra	nsient Conduction	<u> </u>			6	hοι	irs
Transient condu	ction: Recapitulation of transient conduction for s	simple s	syste	ms.	Ana	lysis	of
and numerical	onduction with complex boundary conditions. So	nution r	netne	Jus	- an	aiyu	car
	<u> </u>						
Module:4 Ext	ernal Forced Convection		•		6	hou	ırs
Convective hea	t transfer in external flows and their solution h	nethods	s: An	alog	y be	etwe	en
equations Simil	arity solution techniques. Momentum and energy	intears	al me	thod	inu Is ar	nd th	gy eir
applications in f	ow over flat plates with low and high Prandtl num	per app	roxin	natio	ns.		
Modulo 5 Inte	real Foread Convertion				7	hai	
Convective hear	transfer in internal flows and solution methods:	Flow th	roug	h ch	1 anna		<u>irs</u> nd
circular pipes.	Fully developed forced convection in ducts with	th cons	stant	hea	at flu	ix a	nd
constant wall te	mperature boundary conditions, Forced convecti	on in th	ne th	erma	al er	ntrar	ice
region of ducts,	Heat transfer in combined entrance region, Integr	al meth	nod fo	or int	erna	al flo	ws
with different wa	Il boundary conditions.						
Module:6 Nat	ural Convection				7	hοι	ırs
Introduction to	natural convection; Boussinesq approximation a	nd sca	le ar	nalys	sis; I	Natu	ral
convection from	a vertical plate using similarity and integral solu	ution, N	atura	al co	nveo	ction	in
enciosed space	s. Complined forced and free convection.						

Module:7 Radiation			6 hours			
Laws of Radiation, Intensity of Radiation, Irradiation, Radiosity, Radiative properties of surfaces, Radiation exchange between surfaces, View Factor, Radiation exchange in a black enclosure, Radiative heat transfer in participating media (Gas Radiation), Radiative Transfer Equation. Radiant exchange between surfaces; Radiative heat transfer in non-participating media.						
Module:8 Contemporary Issues			2 hours			
	Total Lecture be		15 hours			
		urs.	45 110015			
Taxt Book(a)						
1 Vunue & Congol and Afabin J Ch	noior Hoot and M	Trong	for: Fundamentals and			
Applications 5 th edition McGra	Majar,⊓eat anu Ma w-Hill 2015	155 110115				
Reference Books	W Thii, 2010.					
1 J P Holman and Souvik Bhattach	narvva. Heat Trar	sfer. 10 tl	n edition. McGraw-Hill. 2016.			
2. F P Incropera, D P Dewitt, T L E	Bergman, and A S	Lavine, I	ncropera's Principles of Heat			
and Mass Transfer, Wiley, 2018.	5 /	,				
3. D W Hahn, and M N Ozisik, Hea	t Conduction, Joh	n Wiley 8	Sons, 3rd Edition, 2012.			
4. V S Arpaci, Conduction Heat Tra	ansfer, Addison-W	/esley, Re	eading, MA, 1966.			
5. M F Modest, Radiative Heat Tra	nsfer, Academic I	Press, 3rd	Edition, 2013.			
6. Kays, W.M. and Crawford W., Co	onvective Heat ar	nd Mass T	ransfer, McGraw Hill , 2004			
Mode of Evaluation: Continuous asse	essment test, writ	ten assigr	nment, Quiz and Final			
assessment test						
Recommended by Board of Studies	27-05-2022					
Approved by Academic Council	No. 66	Date	16-06-2022			

Course Code	Course Title		L I.	TF) C			
MCFD504L	Numerical Methods for Partial Differential Equati	ons 🗧	3 (0 0) 3			
Pre-requisite	NIL	Sylla	bus	ver	sion			
			1.0	0				
Course Objectiv	es							
1.To develop	a conceptual understanding of numerical methods	commor	nly	used	d for			
solving pa	rtial differential equations							
2.To impart working knowledge of numerical methods including experience in								
implementi	ng them for model problems drawn from fluid flow	and h	eat	trar	nsfer			
applications								
3.To develop a foundation for theoretical techniques to analyze the behavior of the								
numerical	methods							
Course Outcom	9							
Upon successful	completion of this course students will be able to							
1. Demonstr	ate the understanding of numerical methods common	nly used	t to	r so	lving			
partial diff	erential equations.							
2. Apply diffe	erent interpolation methods to compute parameters ne	eded as	s th	e pa	irt of			
	simulation and presentation of results							
3. Develop 1	at and iterative techniques to solve system of equations		15					
4. Apply ulle	the consistency of a finite differences scheme and	, dofino	tho	cto	hility			
	the consistency of a limite differences scheme and	denne	uie	รเล	Dility			
6 Apply diffe	erent boundary conditions and linearization techniques							
7 Apply the	finite element method for the solution of PDEs							
Module:1 Part	al Differential Equations			6 h	ours			
PDE Definition –	Linear, Semi-linear, Quasi-linear, fully non-linear - So	me mod	el e	qua	tions			
 Applications, 	Limiting Cases –The existence of characteristics	and the	eir	phy	sical			
interpretation. E	lliptic, parabolic, and hyperbolic partial differenti	al equa	atio	ns.	The			
convection-diffusion	on equation. Initial Values and Boundary Conditions-	numeric	al c	once	erns.			
Machine arithmet	ic and related matters relevant to computations.							
Module:2 Inter	polation Methods			6 h	ours			
Operators -finite	differences, average, differential, etc., their inter-relation	ations. D	Diffe	renc	e of			
polynomials. Di	fference equation. Interpolation. Lagrange's meth	iods, e	error	te	rms.			
Uniqueness of	interpolating polynomial. Newton's fundamental inte	rpolatio	n.	Forw	/ard,			
backward, and	central difference interpolations. Interpolation by	y iterat	ion.	S	pline			
interpolation, co	mparison with Newton's interpolation. Hermite's inte	erpolatio	n.	Biva	riate			
interpolation, Lag	range, and Newton's methods. Inverse interpolation.							
Module:3 Solu	tion Mechanisms for linear systems – Elliptic			6 ho	ours			
equa	ations							
Finite difference	discretization – Lagrangian interpolation, Taylor's seri	es, trun	cati	on e	rror,			
Application to P	oisson equation in one and two dimensions – Solu	tion me	tho	ds-D	rect			
methods: Gauss	-Jourdan elimination, Lower-Upper decomposition, Th	iomas a	algo	rithm	1 for			
tridiagonal syster	ns. Iterative methods: Jacobi Gauss-Seidel, Successi	ve Over	-Re	laxa	tion,			
Successive Line	Uver-Relaxation, Steepest descent, Conjugate gra	aient. C	on\	/erge	ence			
analysis for itera	uve methods. Solution of algebraic system. Solution	method	IS TO	ר פו	iiptic			
equations.								
Module:4 Solu	ition Techniques for Parabolic Partial			6 ho	ours			
Diff	erential Equations				-			
Finite difference	discretization of spatial derivatives - Parabolic equation	ı in its s	emi	-disc	crete			

ioni – Matrix Ionidiation, Initial Boundary Valde problems – solution properties –					
Consistency, Stability, Convergence. Solution methods for the Parabolic Differential					
equations (1D & 2D): Forward-Time Centered Space (FTCS), Backward-Time Centered					
Space (BICS), Crank Nicolson, Alternating Direction Implicit (ADI). Newmann Boundary					
conditions- Over relaxation – Under relaxation. Multigrid Techniques.					
Module:5 Solution for Hyperbolic Partial Differential /nours					
Solution properties. Domain of Dependence Ceneral solution _Time and spatial Finite					
difference discretization schemes - Forward time central difference Forward time unwind					
Lax-Wendroff Beam and Warming Predictor/Corrector Algorithm Semi-discrete form					
Method of lines: Consistency Stability Analysis Convergence Truncation Error Lax					
Equivalence theorem. CFL condition. Fourier stability Analysis. Von Stability Criterion.					
Absolute Stability Diagrams. Dispersion and Dissipation behaviour: Application- wave					
equations, Runge–Kutta Methods.					
Module:6 The Finite Volume Method 6hours					
Finite volume discretization – conservation methods Finite Volume Method (1D) Finite					
Volume Method (2D): computational cells cell averages Cartesian grids orthogonal non-					
Cartesian grids non-orthogonal meshes					
Module:7 The Finite Element Method 6hours					
Generalization of the finite element concepts. Basic equations and solution procedure: Direct					
method, Galerkin-weighted residual, variational approaches. The Finite Element Method					
(1D): Discretization of the domain, Derivation of element matrices and vectors, Assembly of					
element matrices and vectors and derivation of system equations					
cionicia matrices and vectore and derivation of eyetem equatione					
Module:8 Contemporary Issues 2hours					
Module:8 Contemporary Issues 2hours					
Module:8 Contemporary Issues 2hours					
Module:8 Contemporary Issues 2hours Total Lecture hours: 45hours					
Module:8 Contemporary Issues 2hours Total Lecture hours: 45hours					
Module:8 Contemporary Issues 2hours Total Lecture hours: 45hours Text Book(s) 5000000000000000000000000000000000000					
Module:8 Contemporary Issues 2hours Total Lecture hours: 45hours Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Equations, Finite					
Module:8 Contemporary Issues 2hours Total Lecture hours: 45hours Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Equations, Finite Difference and Finite Volume Methods, Academic Press, 2016, ISBN: 978-0-12-040204.4					
Module:8 Contemporary Issues 2hours Total Lecture hours: 45hours Text Book(s) 45hours 1. Sandip Mazumder, Numerical Methods for Partial Differential Equations, Finite Difference and Finite Volume Methods, Academic Press, 2016, ISBN: 978-0-12-849894-1. 2. Haffman Lea D, and Steven Frenkel, Numerical Methods for Partial Methods, for Partial Difference and Finite Volume Methods, Academic Press, 2016, ISBN: 978-0-12-849894-1.					
Module:8 Contemporary Issues 2hours Total Lecture hours: 45hours Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Equations, Finite Difference and Finite Volume Methods, Academic Press, 2016, ISBN: 978-0-12-849894-1. 2 Hoffman, Joe D., and Steven Frankel. Numerical Methods for Engineers and Scientists CPC press, 2001, ISBN: 078-0-82, 470443-8					
Module:8 Contemporary Issues 2hours Total Lecture hours: 45hours Image: Second Colspan="2">Image: Second Colspan="2">Image: Second Colspan="2">Addition Colspan="2">Second Colspan="2">Second Colspan="2">Second Colspan="2">Second Colspan="2">Second Colspan="2">Second Colspan="2">Second Colspan="2">Contemporary Issues Total Lecture hours: 45hours Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Equations, Finite Difference and Finite Volume Methods, Academic Press, 2016, ISBN: 978-0-12-849894-1. 2 Hoffman, Joe D., and Steven Frankel. Numerical Methods for Engineers and Scientists. CRC press, 2001, ISBN 978-0-82-470443-8 Reference Books					
Module:8 Contemporary Issues 2hours Total Lecture hours: 45hours Intervalue of the tector and derivation of system equations Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Equations, Finite Difference and Finite Volume Methods, Academic Press, 2016, ISBN: 978-0-12-849894-1. 2 Hoffman, Joe D., and Steven Frankel. Numerical Methods for Engineers and Scientists. CRC press, 2001, ISBN 978-0-82-470443-8 Reference Books 1 Morton K W. & Mayers D E Numerical Solution of Partial Differential Equations (2nd)					
Module:8 Contemporary Issues 2hours Total Lecture hours: 45hours Intervalue of the vector of the vec					
Module:8 Contemporary Issues 2hours Total Lecture hours: 45hours Image: Second Colspan="2">Image: Second Colspan="2">Afshours Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Equations, Finite Difference and Finite Volume Methods, Academic Press, 2016, ISBN: 978-0-12-849894-1. 2 Hoffman, Joe D., and Steven Frankel. Numerical Methods for Engineers and Scientists. CRC press, 2001, ISBN 978-0-82-470443-8 Reference Books 1. Morton, K. W., & Mayers, D. F. Numerical Solution of Partial Differential Equations (2nd Ed.). Cambridge University Press, 2005. 2. Pinder, George F. Numerical methods for solving partial differential equations: a					
Module:8 Contemporary Issues 2hours Total Lecture hours: 45hours Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Equations, Finite Difference and Finite Volume Methods, Academic Press, 2016, ISBN: 978-0-12-849894-1. 2 Hoffman, Joe D., and Steven Frankel. Numerical Methods for Engineers and Scientists. CRC press, 2001, ISBN 978-0-82-470443-8 Reference Books 1. Morton, K. W., & Mayers, D. F. Numerical Solution of Partial Differential Equations (2nd Ed.). Cambridge University Press, 2005. 2. Pinder, George F. Numerical methods for solving partial differential equations: a comprehensive introduction for scientists and engineers. John Wiley & Sons, 2018.					
Module:8 Contemporary Issues 2hours Total Lecture hours: 45hours Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Equations, Finite Difference and Finite Volume Methods, Academic Press, 2016, ISBN: 978-0-12-849894-1. 2 Hoffman, Joe D., and Steven Frankel. Numerical Methods for Engineers and Scientists. CRC press, 2001, ISBN 978-0-82-470443-8 Reference Books 1. Morton, K. W., & Mayers, D. F. Numerical Solution of Partial Differential Equations (2nd Ed.). Cambridge University Press, 2005. 2. Pinder, George F. Numerical methods for solving partial differential equations: a comprehensive introduction for scientists and engineers. John Wiley & Sons, 2018.					
Module:8 Contemporary Issues 2hours Total Lecture hours: 45hours Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Equations, Finite Difference and Finite Volume Methods, Academic Press, 2016, ISBN: 978-0-12-849894-1. 2 Hoffman, Joe D., and Steven Frankel. Numerical Methods for Engineers and Scientists. CRC press, 2001, ISBN 978-0-82-470443-8 Reference Books 1. Morton, K. W., & Mayers, D. F. Numerical Solution of Partial Differential Equations (2nd Ed.). Cambridge University Press, 2005. 2. Pinder, George F. Numerical methods for solving partial differential equations: a comprehensive introduction for scientists and engineers. John Wiley & Sons, 2018. Mode of Evaluation: CAT , written assignment , Quiz , FAT					
Module:8 Contemporary Issues 2hours Total Lecture hours: 45hours Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Equations, Finite Difference and Finite Volume Methods, Academic Press, 2016, ISBN: 978-0-12-849894-1. 2 Hoffman, Joe D., and Steven Frankel. Numerical Methods for Engineers and Scientists. CRC press, 2001, ISBN 978-0-82-470443-8 Reference Books 1. Morton, K. W., & Mayers, D. F. Numerical Solution of Partial Differential Equations (2nd Ed.). Cambridge University Press, 2005. 2. Pinder, George F. Numerical methods for solving partial differential equations: a comprehensive introduction for scientists and engineers. John Wiley & Sons, 2018. Mode of Evaluation: CAT , written assignment , Quiz , FAT Recommended by Board of Studies 27-05-2022					

Course Code Course Title L T F						Ρ	С			
MCF	D504P	Numerical Methods for Partial Differential Equations 0 0 2					2	1		
			Lab							
Pre-	requisite	NIL				Syllabus versi				
						1.0				
Cou	rse Objective	es				<u> </u>				
	1. Io enable	e the students to dev	velop nume	erical c	odes by a	applyin	g t	heo	oreti	cal.
	2 To teach	the students to extend	the numer	ised for	solving PD	res.	חס	Ee	to t	the
	solution of	fluid flow and heat trans	sfer problem	s		nouei	ΓD	_3	10 1	.ne.
				0.						
Cou	rse Outcome)								
Upo	n successful o	completion of this course	e students wi	ill be al	ole to.					
	1. Develop nu	umerical codes using FD	M for solving	g mode	l partial diff	erentia	l eq	uat	tions	3.
	2. Develop nu	umerical codes using FE	M for solving	g mode	l partial diffe	erentia	l eq	uat	ions	; .
		-								
Indi	cative Experi	iments			<i></i>					
1.	Write a prog	gram to solve a 2D Ell	liptic (Poisso	on equ	ation) using	g Jaco	bl,	Ga		-
2	Seidel and S	rom to colvo a 1D parab	lo Dinchiel C		hann bound	ETCS	nait mot		5 1	
2.	Write a prog	ram to solve a 1D parab	olic (Heat et	ruation) using the $\frac{1}{2}$	FTCS	me	tho	r Y	
<u> </u>	Write a prog	ram to solve a 1D adve	ection equat	tion us	ing the Un	wind s	che	me	u the	<u>د</u>
<u></u> т.	Lax-Friedric	hs scheme and the Lax-	Wendroff scl	heme a	and check th	ne uns	table	e F	TCS	, }
	scheme									
5.	Write the co	de to solve a 1D convec	tion-diffusior	n equa	tion, using t	he FT	CS s	sch	eme	<u>}</u>
	and the upw	ind scheme								
6.	Write the co	ode to solve a 1D con	vection-diffu	ision _. e	quation, us	sing fir	nite	vol	ume	;
	method to in	nplement the FICS sche	eme and the	upwind	scheme.	· .	••			
1.	vvrite the co	ode to solve a 1D con	ivection-aimu	ision e	quation, us	sing tir	nte	VOI	ume	;
8	Write the co	npiemeni Quick scheme nde to solve 1D finite e	element Poi	sson e	a usina Ca	oniuaa	te c	ira	dien	t
0.	method			00011 0	q. using O	onjuga		Jia		
9.	Write the co	de to solve Lid-driven ca	vity using vo	orticity-	stream func	tion fo	rmu	lati	on	
10.	Write the co	de to solve Sod's shock	tube problen	n using	any two up	wind s	sche	me	s	
			To	tal Lab	oratory Hou	ırs 30) ho	urs		
Text	t Book(s)									
1.	Hoffman, Jo	be D., and Steven Fra	ankel. Nume	erical	methods fo	or eng	inee	ers	anc	ł
	scientists. C	RC press, 2018.								
Refe	erence Books							4: -		Over el
1.	Ed Combr	V., & Mayers, D. F. Num idae University Press, 20	erical Solutio	on of P	artial Differe	ential E	:qua	atio	ns (2	zna
		andall I Finite Differen	ore Methods	s for (rdinary and	d Part	i al I	iff	oror	ntial
	Faustione [.]	Steady-State and Time-F)enendent ¤	Prohlem	s Philadali	nhia E	οΔ· (Sor	cietv	for
	Industrial an	d Applied Mathematics	2007 ISRNI		98716290	orna, r	Л. ч	500	nety	101
Mod	e of assessm	ent: Continuous assess	ment and $F\Delta$	T						
Rec	ommended by	V Board of Studies	27-05-202	2						
App	roved by Acad	demic Council	No. 66	_ Date	16-06-20	22				
Mod	Leveque, Randall J. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2007. ISBN: 9780898716290. Mode of assessment: Continuous assessment and FAT Recommended by Board of Studies 27-05-2022						itial for			
Abb	ioveu by Acat		110.00	Dale	10-00-20	<u></u>				

Course Code Course Title L							L	ΤI	Ρ	С
MCFD	505P	Computati	onal Fluid D	vnamic	s Lab		0	0 4	4	2
Pre-rec	uisite	NIL		,		Svl	abu	s ve	rsi	on
							1	.0	-	
Course	Obiectiv	es								
1.	To impart	skills required for the c	creation of 2D) and 3D) aeometrie	s for fl	ow r	node	lin	a.
2.	To teach	different methods of gri	id generation	for simp	ole fluid flov	v prob	lems	5.		5
3.	To enable	students to apply the o	concepts of C	FD and	perform si	, mulati	ons	using	a flo	ow
	solvers a	nd visualize the results.			•				•	
Course	Outcome	9								
Upon s	uccessful	completion of this cours	se students w	/ill be ab	le to					
1.	Perform g	eometry modeling for si	imple fluid flo	w proble	ems.					
2.	Develop d	ifferent types of mesh s	suited for the	accurate	e capturing	of flov	v fiel	d.		
3.	Perform 2	D analysis to understa	and the flow	charact	eristics and	d force	es ir	nvolv	ed	in
	different ir	ternal and external flow	VS.							
4.	Develop u	ser defined functions to	perform cus	tomized	simulation	s.				
5.	Demonstra	ate simulation-results u	sing different	post pro	ocessing to	ols.				
Indicat	ive Exper	iments								
1. 20	D/3D geom	etry creation using Des	sign Modeler	and/or S	Space Clair	n .				
2. U	nstructured	d mesh generation for a	a y-section/ B	iturcatin	g Artery do	main				
3. St	ructured n	nesh generation for the	study of exte	ernal flov	v over a NA	CA ae	erofo	bil		
4. La	aminar and	I turbulent flow over an	aerofoil at di	fferent a	ngles of att	ack				
5. Si	mulation o	f incident shock wave a	and boundary	/ layer in	iteraction					
6. In	vestigatior	of flow patterns in oil-	water flows u	sing VO	F model					
7. Pi	rediction of	f wake formation behind	d tandem cyli	nders sı	ubjected to	consta	ant h	eatfl	ux	
8. Si	mulation o	f blood flow through bif	urcating arter	ry						
9. N	umerical si	tudy of tube-in-tube hea	at exchanger	with the	incorporati	ion of	user	defir	nec	t
in	let velocity	profiles		<u> </u>	<u></u>					
10. Tr	ansient st	udy of phase change ch	naracteristics	of an ic	e block					
- 15			lo	otal Labo	oratory Hou	rs 60) hoi	Jrs		
Text B	<u>ook(s)</u>	<u> </u>				<u>.</u>	1			
1. It	J, JIYUAN, actical apr	Guan Heng Yeoh, and	inemann 201	IU. Com	putational	fluid d	ynai	mics:	а	
Refere	nce Book			10.						
	azek liri	Computational fluid c	lynamics: nri	incinles	and applic	ations	Bi	itterv	vor	th_
	einemann	2015	iynamios. pri	noipieo		auono	. Dt		101	u
2. Jo	hn Matsso	on. An Introduction to A	NSYS Fluent	t 2020. S	SDC Public	ations.	202	20		
3. Ve	ersteeg, H	enk Kaarle, and Weera	tunge Malala	sekera.	An introduc	ction to)			
CC	omputation	al fluid dynamics: the fi	nite volume r	nethod.	Pearson eo	ducatio	on, 2	2007.		
Mode o	fassesem	ent: Continuous assess	sment and F/	Т						
Recom	mandad h	V Roard of Studies	27_05_2022	11						
	ad by Acce	demic Council	No 66	Data	16_06 204	22				
Abbion	eu by Aca		110.00	Dale	10-00-20	<u></u>				

Course Code	Course Title		LT	P	С			
MCFD506L	Numerical Solution of the Navier-Stokes Equation	ns	3 0	0	3			
Pre-requisite	NIL	Sylla		ersic	on			
Course Objectiv	20	L	1.0					
1 To develo	es n a conceptual understanding of different forms of Navi	ier Stol		nuati	ons			
and the so	blution algorithms used to solve them			1440	0113			
2. To develo	bp a foundation for understanding the different finite	e volur	ne ni	umer	ical			
schemes	for structured and unstructured grids, boundary and init	tial con	dition	s, lin	ear			
algebraic and differential algebraic equations solvers								
3. To impart	working knowledge implementing the solution algo	rithms	and	deve	lop			
computer programs to solve benchmark incompressible fluid flow and heat transfer								
problems	on simple and complex geometries and evaluate t	he sol	ver a	ICCUR	асу			
thorough	verification and validation							
Course Outcom								
Lipon ou coostul	e application of this course students will be able to							
1 Distinguis	h and apply different forms of Navier Stokes equations							
2 Distinguis	h and apply different solution algorithms to solve	the I	Vavie	r-Sto	kes			
equation	in and apply amerent solution algorithms to solve		avic	0.0	Reo			
3. Explain th	e different finite volume schemes to discretize the conv	vection	and	diffus	sion			
terms on s	structured and unstructured grids							
4. Develop c	omputer programs to solve steady and unsteady Navie	r Stoke	es equ	Jatio	n in			
primitive v	ariables using finite volume methods for simple and co	mplex g	geom	etries	3			
5. Apply line	arization techniques, boundary conditions, direct and i	terativ	e app	roacl	hes			
for the dev	velopment of flow solvers		.:					
6. Demonstr	ate the accuracy of the developed computer prog	ram v	vitn t	norol	Jgn			
Vernication	Tand validation and generation of quality documentatio		suits					
Module:1 Navi	er-Stokes equations variants and related mathemat	ical		6 ho	urs			
form	ulations							
Vorticity-stream f	unction formulation for two-dimensional flow - Governin	g equa	tions	, Flov	<i>w</i> in			
a rectangular cav	ity, Direct computation of a steady flow, Modified dynai	nics fo	r stea	idy fl	ow,			
unsteady flow. Ve	elocity-pressure formulation - Pressure Poisson equation	n (PPE	E), Alt	erna	tive			
systems of gove	erning equations, Boundary conditions for the pres	ssure,	Com	patib	llity			
Implementation of	f primitive variables. Implementation on a staggered	arid r	une p	adde	ure.			
arid Second-orde	er methods	gnu, i	1011-51	ayye	ieu			
Module:2 Solu	tion algorithms for Navier Stokes equations			6 ho	urs			
Operator splitting	projection, and pressure-correction methods - Solen	oidal r	roiec	tion a	and			
the role of the pr	essure - Boundary conditions for intermediate variable	es - Ev	olutio	n of	the			
rate of expansio	n - First-order projection method - Second-order m	ethods	. Met	hods	of			
modified dynamic	cs or false transients - Artificial compressibility meth	od for	stea	dy fl	ow.			
Modified PPE - P	enalty-function formulation							
Module:3 Finit	e Volume methods for Convection-Diffusion Equation	ons		7 ho	urs			
Steady one-dime	nsional convection and diffusion. Central differencing so	heme	Prop	ertie	s of			
discretization sch	emes - Conservativeness - Boundedness - Transpo	prtivene	ess.	Upw	/ind			
differencing sche	me, Hybrid differencing scheme, Assessment of the	central	differ	encir	ng,			
upwind differenc	ing and hybrid differencing scheme for convection-	-diffusi	on pi	oble	ms,			
Hybrid differencir	ng scheme for multi-dimensional convection-diffusion,	Power	-law s	scher	me,			
Higher-order diffe	erencing schemes for convection-diffusion problems	- Qua	dratic	upw	/ind			
differencing sche	eme: QUICK scheme - Assessment of the QUICK	schen	ne -	Stab	ility			
problems of the	QUICK scheme and remedies- General comme	nts or	the	QUI	CK			

achamaa	scheme, IVD schemes-	Generalization	of upwind-blased d	Iscretization				
schemes- Total variation and TVD schemes- Criteria for TVD schemes- Flux limiter								
functions- Implementation of TVD schemes- Evaluation of TVD schemes								
Module:4	Finite volume implementat	tion of pressure	-correction based	6 hours				
	incompressible Navier-Sto	kes Solver for S	Steady flows					
The stage	ered grid. The momentum e	equations, Disc	retization of convection	n, diffusion,				
pressure q	adient and body force terms	, The SIMPLE a	algorithm, Assembly of	a complete				
method, Th	e SIMPLER algorithm, The	SIMPLEC algori	thm, The PISO algorith	nm, General				
comments	on SIMPLE, SIMPLER, SIMP	LEC and PISO,	Worked examples of	the SIMPLE				
algorithm.								
Module:5	Finite volume implementat incompressible Navier-Sto	tion of pressure kes Solver for L	-correction based Jnsteady flows	7 hours				
Explicit sch	eme, Crank–Nicolson scheme	e, the fully implic	it scheme, Implicit met	hod for two-				
and three-	dimensional problems, Solut	tion procedures	for unsteady flow ca	alculations -				
Transient S	SIMPLE - The transient PIS	SO algorithm, St	eady state calculation	s using the				
pseudo-trar	nsient approach.							
Module:6	Finite volume Implementat	tion of Boundary	y conditions	4 hours				
Inlet bound	ary conditions - Outlet bound	dary conditions	 Wall boundary condi 	itions - The				
constant pr	essure boundary condition -	Symmetry bour	ndary condition - Perio	dic or cyclic				
boundary c	ondition - Potential pitfalls			·				
Module:7	Finite volume methods for	dealing with co	mplex geometries	7 hours				
Body-fitted	co-ordinate grids for comple	ex geometries, C	artesian vs. curvilinear	grids – an				
example,	Curvilinear grids – difficult	ties, Block-struct	tured grids, Unstruct	tured grids,				
Discretization	on in unstructured grids, Disci		diffusion term, Discretiz	zation of the				
convective	term, Treatment of source t	erms, Assembly	convective term, Treatment of source terms, Assembly of discretised equations, Example					
calculations with unstructured grids. Pressure-velocity coupling in unstructured meshes.								
Staggarod	with unstructured grids, Pr	ressure-velocity	coupling in unstructur	ed meshes,				
Staggered	 with unstructured grids, Pr vs. co-located grid arrangen unstructured meshes 	ressure–velocity nents, Extension	coupling in unstructure of the face velocity i	ed meshes, interpolation				
Staggered method to u	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes.	ressure–velocity nents, Extension	coupling in unstructure of the face velocity i	ed meshes, interpolation				
Staggered method to u	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues	ressure–velocity nents, Extension	coupling in unstructure of the face velocity i	ed meshes, interpolation				
Staggered method to u Module: 8	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho	nents, Extension	coupling in unstructure of the face velocity i 45 hours	ed meshes, interpolation				
Staggered method to u Module: 8	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho	nents, Extension	coupling in unstructure of the face velocity i 45 hours	ed meshes, interpolation 2 hours				
Text Book	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho s)	nents, Extension	coupling in unstructure of the face velocity i 45 hours	2 hours				
Text Book	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho s) rsteeg and W Malalasekera, A inite Volume Method, 2 nd Edit	ours:	coupling in unstructure of the face velocity i 45 hours o Computational Fluid E	Dynamics				
Text Book 1. H K Ve - The F 1312-7	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho s) rsteeg and W Malalasekera, A inite Volume Method, 2 nd Edit 498-3	An Introduction to tion, Pearson Pre	coupling in unstructure of the face velocity i 45 hours o Computational Fluid E entice Hall, 2007, ISBN:	2 hours Oynamics 978-0-				
Text Book 1. H K Ve - The F 1312-7 2. Pozriki	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho s) rsteeg and W Malalasekera, A inite Volume Method, 2 nd Edit 498-3	An Introduction to tical and compu	coupling in unstructure of the face velocity i 45 hours o Computational Fluid E entice Hall, 2007, ISBN:	2 hours 2 hour				
Text Book 1. H K Ve 1312-7 2 Pozrikie Edition	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho s) rsteeg and W Malalasekera, A inite Volume Method, 2 nd Edit 498-3 dis, C. Introduction to theore Oxford University Press, 201	An Introduction to tion, Pearson Pre- tical and compu 1. ISBN 978-0-19	coupling in unstructure of the face velocity i 45 hours o Computational Fluid E entice Hall, 2007, ISBN: tational fluid dynamics	Dynamics 978-0- , Second				
Text Book 1. H K Ve - The F 1312-7 2 Pozrikie Edition Reference	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho s) rsteeg and W Malalasekera, A inite Volume Method, 2 nd Edit 498-3 dis, C. Introduction to theore Oxford University Press, 2017 Books	An Introduction to tion, Pearson Pre- tical and compu 1, ISBN 978-0-19	coupling in unstructure of the face velocity i 45 hours o Computational Fluid E entice Hall, 2007, ISBN: tational fluid dynamics 997-5207-2	Dynamics 978-0- , Second				
Text Book 1. H K Ve - The F 1312-7 2 Pozrikie Edition Reference 1. Joel H	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho s) rsteeg and W Malalasekera, J inite Volume Method, 2 nd Edit 498-3 dis, C. Introduction to theore Oxford University Press, 2017 Books . Ferziger, Milovan Perić, R	An Introduction to tion, Pearson Pre- tical and compu 1, ISBN 978-0-19	coupling in unstructure of the face velocity i 45 hours o Computational Fluid E entice Hall, 2007, ISBN: tational fluid dynamics 097-5207-2	2 hours 2 hours 2 hours 2 hours 2 hours 2 hours 3 978-0- 3 Second 4 for Fluid				
Text Book 1. H K Ve - The F 1312-7 2 Pozrikie Edition Reference 1. Joel H Dynam	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho s) rsteeg and W Malalasekera, A inite Volume Method, 2 nd Edit 498-3 dis, C. Introduction to theore Oxford University Press, 2017 Books . Ferziger, Milovan Perić, R nics, 4 th Edition, Springer, 202	An Introduction to tion, Pearson Pre- tical and compu 1, ISBN 978-0-19 Robert L. Street, 21, ISBN: 978-3-3	coupling in unstructure of the face velocity i 45 hours o Computational Fluid E entice Hall, 2007, ISBN: tational fluid dynamics 997-5207-2 Computational Method 3199-9691-2	2 hours 2 hours 2 hours 2 hours 2 hours 2 hours 3 978-0- 3 Second 4 for Fluid				
Text Book 1. H K Ve - The F 1312-7 2 Pozrikie Edition Reference 1. Joel H Dynam 2. Hirsch	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho s) rsteeg and W Malalasekera, A inite Volume Method, 2 nd Edit 498-3 dis, C. Introduction to theore Oxford University Press, 201 Books . Ferziger, Milovan Perić, R nics, 4 th Edition, Springer, 202 . Ch., Numerical computation	An Introduction to tion, Pearson Pre- tical and compu 1, ISBN 978-0-19 Robert L. Street, 21, ISBN: 978-3-3 of internal and e	coupling in unstructure of the face velocity i 45 hours o Computational Fluid E entice Hall, 2007, ISBN: tational fluid dynamics 997-5207-2 Computational Method 3199-9691-2 external flows, Vol.1 Fu	2 hours 2 hours 2 hours 2 hours 2 hours 2 hours 3 978-0- 3 Second 3 for Fluid 3 Indamentals				
Text Book 1. H K Ve - The F 1312-7 2 Pozrikie Edition Reference 1. Joel H Dynam 2. Hirsch of Nun	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho s) rsteeg and W Malalasekera, A inite Volume Method, 2 nd Edit 498-3 dis, C. Introduction to theore Oxford University Press, 201 Books . Ferziger, Milovan Perić, R hics, 4 th Edition, Springer, 202 . Ch., Numerical computation herical discretization, 2 nd Edit	An Introduction to tion, Pearson Pre- tical and compu 1, ISBN 978-0-19 Robert L. Street, 21, ISBN: 978-3-3 of internal and e ion, Butterworth-	coupling in unstructure of the face velocity i 45 hours o Computational Fluid E entice Hall, 2007, ISBN: tational fluid dynamics 097-5207-2 Computational Method 3199-9691-2 external flows, Vol.1 Fu Heinemann, Elsevier, 2	2 hours 2 hours 2 hours 2 hours 2 hours 2 hours 3 yramics 3 978-0- 3 Second 4 ds for Fluid 1 undamentals 2007, ISBN:				
Text Book 1. H K Ve - The F 1312-7 2 Pozrikie Edition Reference 1. Joel H Dynam 2. Hirsch of Nun 978-0-	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho s) rsteeg and W Malalasekera, A inite Volume Method, 2 nd Edit 498-3 dis, C. Introduction to theore Oxford University Press, 2017 Books . Ferziger, Milovan Perić, R nics, 4 th Edition, Springer, 202 . Ch., Numerical computation herical discretization, 2 nd Edit 7506-6594-0.	An Introduction to tion, Pearson Pre- tical and compu 1, ISBN 978-0-19 Robert L. Street, 21, ISBN: 978-3-3 of internal and e tion, Butterworth-	coupling in unstructure of the face velocity in 45 hours o Computational Fluid E entice Hall, 2007, ISBN: tational fluid dynamics 997-5207-2 Computational Method 3199-9691-2 external flows, Vol.1 Fu Heinemann, Elsevier, 2	2 hours 2 hours 2 hours 2 hours 2 hours 2 hours 3 ynamics 3 978-0- 3 Second ds for Fluid Indamentals 2007, ISBN:				
Text Book 1. H K Ve - The F 1312-7 2 Pozrikie Edition Reference 1. Joel H Dynam 2. Hirsch of Nun 978-0- 3. Jiri Bla	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho s) rsteeg and W Malalasekera, A inite Volume Method, 2 nd Edit 498-3 dis, C. Introduction to theore Oxford University Press, 2017 Books . Ferziger, Milovan Perić, R nics, 4 th Edition, Springer, 202 . Ch., Numerical computation herical discretization, 2 nd Edit 7506-6594-0. zek, Computational Fluid Dyn	An Introduction to tion, Pearson Pre- tical and compu 1, ISBN 978-0-19 Robert L. Street, 21, ISBN: 978-3-3 of internal and e ion, Butterworth-	coupling in unstructure of the face velocity i 45 hours o Computational Fluid E entice Hall, 2007, ISBN: tational fluid dynamics 997-5207-2 Computational Method 3199-9691-2 external flows, Vol.1 Fu Heinemann, Elsevier, 2 s and Applications, 3 rd E	2 hours 2 hours 2 hours 2 hours 2 hours 2 hours 3 yours 978-0- 3 Second ds for Fluid undamentals 2007, ISBN: Edition,				
CalculationsStaggeredmethod to uModule: 8Text Book1.H K Ve- The F1312-72PozrikieEditionReference1.Joel HDynam2.Hirschof Nun978-0-3.Jiri BlaButtern	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho s) rsteeg and W Malalasekera, A inite Volume Method, 2 nd Edit 498-3 dis, C. Introduction to theore Oxford University Press, 2017 Books . Ferziger, Milovan Perić, R nics, 4 th Edition, Springer, 202 . Ch., Numerical computation herical discretization, 2 nd Edit 7506-6594-0. zek, Computational Fluid Dyn vorth-Heinemann, 2015, ISBN	An Introduction to tion, Pearson Pre- tical and compu 1, ISBN 978-0-19 Robert L. Street, 21, ISBN: 978-3-3 of internal and e ion, Butterworth- namics: Principles	coupling in unstructure of the face velocity in 45 hours o Computational Fluid E entice Hall, 2007, ISBN: tational fluid dynamics 097-5207-2 Computational Method 3199-9691-2 external flows, Vol.1 Fu Heinemann, Elsevier, 2 s and Applications, 3 rd E 05-1	2 hours 2 hours 2 hours 2 hours 2 hours 2 hours 3 yours 978-0- , Second ds for Fluid undamentals 2007, ISBN: Edition,				
CalculationsStaggeredmethod to uModule: 8Text Book1.H K Ve- The F1312-72PozrikieEditionEditionReference1.Joel HDynamDynam2.Hirschof Nun978-0-3.Jiri BlaButternMode of Ev	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho s) rsteeg and W Malalasekera, A inite Volume Method, 2 nd Edit 498-3 dis, C. Introduction to theore Oxford University Press, 2017 Books . Ferziger, Milovan Perić, R nics, 4 th Edition, Springer, 202 Ch., Numerical computation herical discretization, 2 nd Edit 7506-6594-0. zek, Computational Fluid Dyn vorth-Heinemann, 2015, ISBN aluation: CAT , written assign	An Introduction to tion, Pearson Pre- tical and compu- 1, ISBN 978-0-19 Robert L. Street, 21, ISBN: 978-3-3 of internal and e- ion, Butterworth- namics: Principles N 978-0-0809-999 ment , Quiz , FA	coupling in unstructure of the face velocity in 45 hours o Computational Fluid E entice Hall, 2007, ISBN: tational fluid dynamics 097-5207-2 Computational Method 3199-9691-2 external flows, Vol.1 Fu Heinemann, Elsevier, 2 s and Applications, 3 rd E 05-1	2 hours 2 hours 2 hours 2 hours 2 hours 2 hours 3 pr8-0- 5 g78-0- 5 g78-0- 5 g78-0- 5 g78-0- 6 gr Fluid 1 ndamentals 2007, ISBN: 5 dition,				
Calculations Staggered method to u Module: 8 Text Book(1. H K Ve - The F 1312-7 2 Pozrikie Edition Reference 1. Joel H Dynam 2. Hirsch of Nun 978-0- 3. Jiri Bla Buttern Mode of Ev Recomment	with unstructured grids, Pr vs. co-located grid arrangen instructured meshes. Contemporary issues Total Lecture ho s) rsteeg and W Malalasekera, A inite Volume Method, 2 nd Edit 498-3 dis, C. Introduction to theore Oxford University Press, 2017 Boks . Ferziger, Milovan Perić, R nics, 4 th Edition, Springer, 202 . Ch., Numerical computation nerical discretization, 2 nd Edit 7506-6594-0. zek, Computational Fluid Dyn vorth-Heinemann, 2015, ISBN aluation: CAT , written assign ded by Board of Studies	An Introduction to tion, Pearson Pre- stical and compu- 1, ISBN 978-0-19 cobert L. Street, 21, ISBN: 978-3-3 of internal and e ion, Butterworth- mamics: Principles 1 978-0-0809-999 ment , Quiz , FA	coupling in unstructure of the face velocity in 45 hours o Computational Fluid E entice Hall, 2007, ISBN: tational fluid dynamics 997-5207-2 Computational Method 3199-9691-2 external flows, Vol.1 Fu Heinemann, Elsevier, 2 s and Applications, 3 rd E 95-1	2 hours 2 hours 2 hours 2 hours 2 hours 2 hours 2 hours 3 for Fluid 3 for Fluid 5 for F				

Course Code	Course Title		L	Т	P C	;
MCFD506P	Numerical Solution of the Navier-Stokes Equations Lab		0	0	2 1	
Pre-requisite	NIL	Sylla	bus	vei	rsion	
October Oblighting			1	.0		
	encentual understanding and working knowledge	of Tin	ita	diffo	ronoo	
 To develop a c and finite volur Navier Stokes formulation. To impart work drawn from fluid 	conceptual understanding and working knowledge ne discretization techniques and solution algorith equations in velocity/pressure, velocity/vorticity, king knowledge of developing CFD codes for be d flow and heat transfer applications	and vo	ark	or s ity/s pro	olving tream blems	י ן ז 5
Course Outcome						
Upon successful comp 1. Demonstrate th incompressible vorticity/stream	letion of this course students will be able to ne understanding of finite difference methods u Navier- Stokes equations in velocity/pressure, v function formulation	sed fo elocity	r so /vor	olvin ticity	ig the /, and	e E
 Demonstrate the incompressible Demonstrate the incompressible Develop finite geometries by formulation on the formulation on t	Navier- Stokes equations in velocity/pressure form ne understanding of different solution algorithms Navier- Stokes equations in velocity/pressure form difference scheme to simulate benchmark pr solving the Navier -Stokes equations in vorti	nulation nulatior nulatior roblem city/stre	n or so n s fo earr	olvir olvir or s n fu	g the simple nction	9 9 0
5. Develop finite geometries by on staggered a method	difference scheme to simulate benchmark p solving the Navier -Stokes equations in velocity/p nd collocated Cartesian grids using operating spl	roblem pressur litting a	s fo e fo ind	or s ormu proj	simple lation ection	9 า า
 Develop finite geometries by velocity/pressur SIMPLE, SIMP 	volume scheme to simulate benchmark pr v solving the two dimensional Navier -Sta re formulation on staggered and collocated Ca LEC and projection method	oblems okes irtesiar	i fo equa gr	or s atio ids	simple ns in using	9 1 J
	4.					
Indicative Experimen	ts Evaluait finite difference code to compute the v	<u>alaaitu</u>		ofilo	in a	
unidirection the prese velocity/p	cribed boundary conditions by solving the gov ressure formulation	condition /erning	on, eq	subj luati	ject to	ג כ ר
2. Write a unidirection the preserve velocity-p	Implicit finite difference code to compute the volume the volume on a channel flow starting from the specified initial cribed boundary conditions by solving the government of the government of the solving formulation	/elocity conditi /erning	,pr on, eq	ofile subj juati	in a ject to on in	ג כ ר
3. Write a Implicit finite difference code to compute the velocity profile in a unidirectional channel flow starting from the specified initial condition and pressure gradient, subject to the prescribed boundary conditions by solving the governing equation in velocity/vorticity formulation						ε Ε Ε
4. Develop a finite-difference method based on the stream function/vorticity formulation for computing the velocity profile of steady channel flow subject to a specified flow rate.						/ a
5. Develop formulatio a sliding l	a finite-difference method based on the streat on for computing the two-dimensional flow in a squ id.	am fun Jare ca	ictio vity	on/vo driv	orticity en by	/ /
6. Develop a	a finite-difference method based on the velocity / μ	pressur	e fo	ormu	lation	<u>ו</u>

	for computing the two-dimensional using the operation splitting and s	flow in a squar	re cavity driven by	y a sliding lid
	arid.			a concoutou
7.	Develop a finite-difference method for computing the two-dimensional using the operation splitting and s grid.	based on the flow in a squa olenoidal proje	velocity /pressure re cavity driven by ection method on	e formulation y a sliding lid a staggered
8.	Develop a finite-volume method ba computing the two-dimensional flow a staggered grid using the SIMPLE	ased on the vel w in a square o E algorithm	ocity /pressure fo avity driven by a	rmulation for sliding lid on
9.	Develop a finite-volume method ba computing the two-dimensional na staggered grid using Projection me	ased on the vel tural convectio thod	ocity /pressure fo n flow in a squar	rmulation for e cavity on a
10.	Develop a finite-volume method ba computing the two-dimensional staggered grid using the SIMPLEC	ased on the vel flow over a algorithm	ocity /pressure fo backward facing	rmulation for step on a
			1	
		Total La	boratory Hours	30 hours
Text Book(<u> </u>	. Ast
1.	Edition, CRC press, 2022, ISBN: 9	Jynamics for N 78-0-367-6873	/lechanical Engin 0-4.	eering, 1°°
2.	C. Pozrikidis, Fluid Dynamics: simulation, 3 rd Edition, Springer,20	Theory, Cor 17, ISBN 978-1	nputation and I-4899-7990-2.	Numerical
Reference	Books			
1.	H K Versteeg and W Malalasekera Dynamics - The Finite Volume Met 2007, ISBN: 978-0-1312-7498-3.	, An Introducti hod, 2 nd Editio	on to Computatio n, Pearson Prent	nal Fluid ice Hall,
2.	D. G. Roychowdhury, Computation 1 st Edition, CRC press, ISBN: 978-	al Fluid Dynan 0-367-40806-0	nics for Incompre	ssible Flows,
3.	Joel H. Ferziger, Milovan Perić, R Fluid Dynamics, 4 th Edition, Spring	Robert L. Stree Jer, 2021, ISBN	t, Computational I: 978-3-3199-969	Methods for 91-2
4.	Sreenivas Jayanthi, Computatio Scientists, 1 st Edition, Springer, 20	nal Fluid Dy 18, ISBN 978-9	namics for Eng 94-024-1215-4	gineers and
Mode of ass	essment: Continuous assessment /	FAT / Oral exa	mination and othe	ers
Recommend	ded by Board of Studies	27-05-2022		
Approved by	y Academic Council	No. 16	Date 16-06-20	22

Cou	rse Code	Course 1	ïtle	LTPC		
MCF	D507P	Advanced Computational	Fluid Dynamics Lab	0 0 4 2		
Pre-	requisite		Syllabus version			
				1.0		
Cou	rse Obiectiv	es		-		
1	To impart	skills required for the advanced a	rid generation technig	ues.		
	2. To teach o	lifferent methods of simulation se	tup for fluid flow proble	ems		
	To enable	the students to apply CED techni	ques for the design a	nd analysis of		
	aerospace	automotive and turbo machinery	/ svstems			
	dereepue					
Cou	rse Outcom					
Upo	n successful	completion of the course, students	s will be able to			
· ·	I. Perform a	eometry modeling and grid generation	ation for complex fluid	flow domains.		
	2. Perform c	omputational analysis on internal	and external flows.			
3	3. Analyze tł	e interaction between fluid and st	ructure.			
4	1. Setup con	putational framework for the ana	ysis of reacting flows.			
5	5. Perform c	omputational analysis of turboma	chines using moving r	eference frame.		
6	Develop u	ser defined functions to perform of	sustomized simulation	S.		
Indi	cative Exper	iments				
1.	Grid generat	ion for 3D domain using ICEM CF	D			
2.	Computation	al analysis of Jet surface interact	on			
3.	Computation	al study of supersonic flow over a	3D bump			
4.	Computation	al analysis of shell and tube heat	exchanger			
5.	Investigation	of a hydraulic jump using two pha	ase flow model			
6.	Analysis of a	moving strip in an air stream usir	ng Fluid structure inter	raction		
7.	Simulation o	f a centrifugal blower using multip	le reference frames			
8.	Simulation o	f Species transport and gaseous of	combustion using met	hane and air		
	mixture.					
9.	Simulation o	f a porous media in an exhaust sy	stem of an IC engine			
10	Creating and	l compile user defined function (U	DF) of temperature pr	ofile		
_	– • • • •	Т	otal Laboratory Hou	rs 60 hours		
Text	Book(s)			<u> </u>		
1.	Tu, Jiyuan,	Guan Heng Yeoh, and Chaoqun	Liu. Computational	fluid dynamics: a		
Defe	practical app	roach. Butterworth-Heinemann, 2	018.			
Refe	Plozok liri	S Computational fluid dynamica:	principles and applie	ationa Buttonwarth		
1.	Heinemann		principles and applic	allons. Dullerworth-		
2	Iohn Mateer	n An Introduction to ANSVS Flue	ant 2020 SDC Publics	ations 2020		
۷.	50mm Mat330		ant 2020, ODC 1 ublice	110113, 2020		
3.	Versteeg, Henk Kaarle, and Weeratunge Malalasekera. An introduction to					
	computational fluid dynamics: the finite volume method. Pearson education, 2007.					
	<u></u>					
4	Charles Hirs	cn, Numerical Computation of Inte	ernal and External Flo	ws: The		
	Fundamentals of Computational Fluid Dynamics, Butterworth-Heinemann, 2007					
Mod	Mode of assessment: Continuous assessment / Lab FAT / Viva voce					
Rec	ommended h	V Board of Studies	022			
Ann	roved by Aca	demic Council No. 66	Date 16-06-201))		
	Sicu by Aca			-4		

Course Co	de	Course Title L T P C						
MCFD508L	FD508L Turbulence Modelling				0	0	3	
Pre-requis	site NIL Syllabus version					on		
	1.0							
Course Ob	ojective	es						
1. To	provide	e a comprehensive knowledge in the field of turbu	llence	mo	dellir	ng a	ind	
sim	ulation.	a the physical insight and the methomatical fr	20014		n	dod	to	
2. 10 und	proviu Ierstan	the formulations of turbulence models and their ess	antial I	JIK imita	tion	s S	10	
3. To	make	the students to understand the underlying com	blex r	hen	ome	non	in	
turb	ulent fl	ows and modelling approaches.						
Course Ou	itcome							
Upon succe	essful o	completion of the course, students will be able to						
1. Rela	ate the	basic characteristics of turbulence in various enginee	ring a	pplic	atior	าร.		
2. Ana	lyse th	e transport of momentum and energy in turbulent flov	/S.					
3. App	ly Rey	nolds decomposition principle for the analysis of turbu	ilent m	lean	flow	<i>'</i> .		
4. Ana	lyse th	e free shear and wall bounded turbulent flow characte	eristics					
5. App	ly the	advanced turbulence modelling techniques in pred	cting	the	sma	ll-sc	ale	
fluc	tuation	S.						
Module:1	Chara	acteristics of Turbulence			5	hou	Jrs	
Origin of t	urbuler	nce, irregularity, diffusivity, three dimensional motio	ns, di	ssip	atior	1, W	ide	
spectrum,	eddy	motions and length scales, experimental tech	niques	s ir	tu	rbul	ent	
measureme	ents.							
Module:2	Statis	stical Description of Turbulence			7	hou	Jrs	
Random n	ature	of turbulence, distribution function, probability de	isity f	unct	ion	(PD	F),	
moments,	correla	ations, Laylor's hypothesis, integral micro scales	hom	oge	າຍວເ	is a	and	
turbulence	spectra	a	e, en	ergy	Ca	Sca	ue,	
tarbaichioc	Special	a.						
Module:3	Turbu	lent Transport of Momentum and			7	hou	Jrs	
	Energ							
Reynolds d	lecomp	osition technique, turbulent stresses, vortex stretchin	j, Rey	nold	S			
equations,	mixing	length model, Reynolds' analogy, dynamics of turbule	ence.			<u> </u>		
wodule:4	Turb				<u> </u>	nou	<u>Jrs</u>	
Introduction	n, eddy	-viscosity hypothesis, algebraic model, Spalart Alimai	as mo	del,	K-8 8	and	K-	
ω models,	Reynol	ds-stress model, near-wall treatment.			~			
Mixing Lov	or Tur	Snear Flows		cim	b ilorit		urs rid	
Turbulence	e, Large	e scale turbulent motion – Vortex stretching.	5, 501	-5111	nan	у, С	лц	
Module:6Wall-Bounded Turbulent Flows6 hours								
Channel and pipe flows, Reynolds stresses, turbulent boundary layer equations, logarithmic-								
law of walls, turbulent structures								
Module:7	Adva	nced Turbulence Modelling			5	hou	Jrs	
	Iech	niques					<u> </u>	
Large Eddy	Large Eddy simulation - Smagorinsky–Lilly model, Dynamic Smagorinsky–Lilly model, wall							
adopting local eddy viscosity (WALE) sub grid scale model; Direct Numerical Simulation								

(D1	(DNS) model. Detached Eddy Simulation (DES) model.								
Мо	dule:8	Contemporary Issues			2 hours				
				T					
			Total Lecture ho	ours:	45 hours				
Tex	kt Book	(S)							
1.	Pope,	S.B., 2003, Turbulent Flow	ws, Cambridge U	niversity F	Press. ISBN: 0-521-59886-				
	9.		-	-					
2.	Tenne	kes, H., and Lumley, J.L	, 2018, A First	Course i	n Turbulence, MIT Press,				
	Cambr	idge, Massachusetts, USA	A. ISBN: 9780262	2536301.					
Re	ference	Books							
1.	Wilcox	, D.C., 2006, Turbulence I	Modelling for CFL	D, DCW Ir	dustries, California, USA.				
2.	Ferzige	er, J.H., and Peric, M., 200	02, Computationa	al Methods	s for Fluid Dynamics,				
	Spring	er.							
3	Sagau	, P., and Germano, M., 20	002, Large Eddy	Simulatio	n for Incompressible Flows,				
Springer Verlag.									
Мо	de of Ev	aluation: CAT, written ass	signment, Quiz ar	nd FAT					
Re	commer	ded by Board of Studies	27-05-2022						
Ap	proved b	y Academic Council	No. 66	Date	16-06-2022				

Course Code	Course Title	LTPC			
MCFD601L	Computational Aerodynamics	3 0 0 3			
Pre-requisite NIL Syllabus ver					
		1.0			
Course Object	ves				
1. To dev	elop a conceptual understanding of numerical metho sible flows	ods suitable for the			
2 To impa	SIDIE 110WS. It knowledge of spatial and temporal discretization sol	nomes applicable for			
	red finite volume framework	lemes applicable 101			
3 To te	ach the turbulence modelling techniques and t	oundary conditions			
impleme	tation strategies applicable for the compressible flows	Journauly contaitions			
Course Outcor	ne				
Upon successfu	I completion of this course students will be able to				
1. Demons	trate the knowledge of complex flow structures of sible flows	different regimes of			
2. Formula	te governing equations of compressible flows by cons	idering different flow			
features	involved.				
3. Develop	numerical algorithms for steady and unsteady Euler equ	lations.			
4. Apply so	hemes suitable for the discretization of convective and	viscous fluxes for the			
developi	nent N-S solvers.	manahing strategies			
5. Develop	compressible unsteady now solvers using different time	marching strategies			
0. Select	amice				
7 Impleme	nt appropriate boundary condition for a chosen flow don	nain			
	in appropriate boundary condition for a chosen new den				
Module:1 Co	nputational Aerodynamics: Aerodynamics/Gas dyr	amics 8 hours			
Co	ncepts: Overview and Preparation				
Wing Aerodyn	amics- Wing Terminology, Prandtl's Lifting Line	Theory, Subsonic			
Compressibility	Effects, Transonic Aerodynamics- Wing Sweep. Super	sonic Aerodynamics-			
Oblique shock	vaves, shock reflections, shock/shock interactions, Prar	ndtl-Meyer expansion			
waves, under/o	ver-expanded flow. Hypersonic Aerodynamics- Importan	ce of Temperature in			
Hypersonic Flov	v, Aerodynamic Heating.				
Module:2 Pri	nciples of Computational Gas dynamics	4 hours			
Compressible fl	bw governing equations in integral form, conservative fi	nite volume method -			
The Euler Equa	tions, introduction to flux averaging, introduction to flux	splitting. Introduction			
to flux reconstru	ction. Artificial viscosity	6 houro			
Flux Approach	Lev Friedriche method Lev Wondreff Methode Wa				
Vector Splitting	Stear Warming Flux vector splitting Van Leer Flux V	ector Splitting Wave			
Approach-II: Re	construction-Evolution- Roe's First-Order Upwind Metho	id			
Module:4 Fir	ite Volume Method for compressible flow- S	natial 7 hours			
dis	cretization				
Structured Finit	e-Volume Schemes, Geometrical Quantities of a Cont	trol Volume, General			
Discretization N	lethodologies, Discretization of the Convective Fluxes.	Discretization of the			
Convective Fluxes-Geometrical Quantities of a Control Volume, Cell-centered scheme,					
Median-Dual C	ell-vertex scheme, Discretization of the Convective FI	uxes-central scheme			
with artificial d	ssipation, upwind schemes, Solution reconstruction,	gradients and limiter			
functions, Discr	etization of the Viscous Fluxes.				
Module:5 Fir	ite Volume Method for compressible flow-	6 hours			
	nporal UISCretization				
Explicit Time-St	epping Schemes - First-Order Lime Accuracy, Second-	Jrder Time Accuracy,			
General Form	or Backward Time Difference, Multistage Schemes (H	kunge-kutta), Hybrid			

Multi	stage	Schemes, Determination of the Maximum Time Step, Implicit Time-	Stepping		
Sche	emes				
Mod	ule:6	Turbulence Modelling for compressible flows	6 hours		
Turb	ulence	e Modeling Approaches- Basic Equations of Turbulence, Favre (Mass) Av	veraging,		
Eddy	/, Visco	cosity Hypothesis, First-Order Closures- Spalart-Allmaras One-Equation I	Model, k-		
ε-Tw	o-Equa	uation Model, Wall functions, SST Two-Equation Model			
Mod	ule:7	Boundary Conditions and their implementations	6 hours		
Solid	wall	boundary, farfield in external flows, Inlet/Outlet boundary in international	al flows,		
symr	metry,	coordinate cut and periodic boundary, interface between grid blocks	-physical		
signi	ficance	es and implementation strategies for structured and unstructured domains	S.		
Mod	ule:8	Contemporary Issues	2 hours		
		Total Lecture hours:	45 hours		
Text	Book	<(S)			
1. (Cummi	nings. Russell M., et al. Applied computational aerodynamics: A m	odern		
e	engine	eering approach. Vol. 53. Cambridge University Press, 2015.			
2 E	Blazek.	Generational fluid dynamics: principles and applications. Butter Action Section 2.1 Sectio	worth-		
H	Heinen	mann, 2015.			
Refe	rence	e Books			
1.	Laney	ey, Culbert B. Computational gasdynamics. Cambridge university press, 19	998.		
2.	Morar	an, Jack. An introduction to theoretical and computational aerodynamics	. Courier		
	Corpo	oration, 2003.			
	- •	,			
Mode	e of Ev	valuation: CAT , written assignment , Quiz,FAT			
Mode	e of as	ssessment: Continuous assessment and FAT			
Recommended by Board of Studies 27-05-2022					
Appr	oved b	by Academic Council No. 66 Date 16-06-2022			
		· · · · · · · · · · · · · · · · · · ·			

Course code Course Title L T F						С		
MCFD602L Chemically Reacting Flows-Combustion					0	2		
Pre-requisite NIL Sy						ion		
1.0								
Course Objectiv	/es							
 To introduce To impart ski between turb To enable stu To familiarize 	 To introduce theory and methodology to simulate reacting flows with CFD. To impart skills required for incorporating species transport and coupling the interaction between turbulence and chemistry. To enable students to perform combustion simulations using commercial CFD tools. To familiarize the students with the multi-phase spray modeling. 							
Course Outcom	e							
 Upon completion Explain the kinds Apply the kinds Apply the kinds Perform gas for the second secon	of the course the students will be able to nowledge of different types of flames. nowledge of different turbulence-chemistry interac reacting flows. turbine engine's combustion analysis. pasic theory of Lagrangian models for spray and its injection simulation and analyse key fuel droplet charac d fuel atomization and combustion simulation within	tion m s appl cteristic a typic	nodel icatic cs. cal g	ls f on f as	or or f turb	the uel		
WOQUIE:1 Com	Dustion and thermochemistry			3	nou	urs		
Property relation Chemical Equilib temperature. Intr	rium. Equilibrium products for combustion, and their corrests, Reactant and Product mixtures, Standard Enth rium. Equilibrium products for combustion. Determinat roduction to the physics of turbulence-chemistry inte	nalpies ion of eraction	ng ap of adiat n an	forr batic d d	atio nati fla	ns. on. me ent		
Module:2 Cher	mical Kinetics			5	hoi	irs		
Introduction to C	chemical Kinetics. Global versus elementary reactions	Flem	enta	rv re	act	ion		
rates. Rates of re important chem hydrocarbons, M	eaction for multistep mechanisms. Analysis of reaction ical mechanisms- The H2-O2 system. CO oxid ethane combustion. Oxides of Nitrogen formation.	n mech dation.	nanis Ox	ms. idat	So	me of		
Module:3 Con	servation Equations for Reacting flows			4	hou	urs		
Conservation of multicomponent energy in reacting	mass in reacting flows, Species mass conservation diffusion, Conservation of momentum in reacting flo g flows. The concept of conserved scalar.	(spec ows. C	ies d onse	cont erva	inui [:] tion	ty), of		
Module:4 Lam	inar flames			5	hou	urs		
Laminar premixed flames. Zeldovich's analysis of flame propagation. Structure of CH4-air flame. Flame velocity and flame thickness in laminar premixed flames. Quenching, flammability, and ignition in laminar premixed flames. Flame stabilization.								
Laminar diffusion flames. Mixing in non-reacting jets. Jet-flame physical description. Simplified model for laminar jet non-premixed flames. Laminar diffusion jet flames: flame length for circular port and slot burners.								
Module:5 Dro	olet evaporation and burning		<u> </u>	4	hou	urs		
Applications. Sir Simple model of constant and dro	nple model for droplet evaporation-Gas-phase analy droplet burning- Problem setup and conservation eq plet lifetimes.	sis, Dr juation	ople s, bi	t life urnir	etim ng r	es. ate		
Module:6 Turk	oulent premixed and nonpremixed flames			4	hou	urs		

Practical applications. Turbulent flame speed. Structure of turbulent premixed flames. Wrinkled laminar flame regime. Distributed Reaction regime. Flamelet model. Flame stabilization. Turbulent nonpremixed flames- Jet flame, Flame length, Flame radiation, Lift off and blowout

-								
Мо	dule:7	Burning of solids				3 hours		
Pra	ctical a	pplications. Heterogeneous r	eactions. Bui	ning of c	arbon-overview,	one-film		
mo	del, two	-film model, particle burning	times. Coal c	ombustic	on.			
Мо	dule:8	Contemporary Issues				2 hours		
				Total L	ecture hours:	30 hours		
Тех	t Book	(s)						
1.	Turns,	Stephen R., An Introduction	to Combusti	on: Conc	epts and Applica	ations, 2018,		
	3 rd edit	ion, McGraw-Hill Companies	s, New York,	NY, USA				
		· · · · · ·		-				
2	Poinso	t, Thierry, and Denis Veyna	nte. Theoreti	cal and r	numerical combu	ustion, 2005,		
	2 ^{na} edi	tion, RT Edwards, Inc.						
Ref	ference	Books						
1.	Lefebv	re, Arthur H., and Dilip R. I	Ballal. Gas tu	urbine co	mbustion: altern	ative fuels and		
	emissi	ons. CRC press, 2010.						
Mo	Mode of Evaluation: CAT, written assignment, Quiz, FAT							
		ý 5	, .					
Red	Recommended by Board of Studies 27-05-2022							
App	proved b	y Academic Council	No. 66	Date	16-06-2022			
		-	•		•			

Соц	irse code		Course Tit	le			1	т	Р	С
MCFD602P Chemically Reacting Flows - Combustion Lab 0 0						0	2	1		
Pre	-requisite	NIL	ioning i lonio			Svl	labi	JS \	/ers	ion
						•).	1	1.0		
Cou	irse Objecti	ves								
1.	To provide	e hands on experience	e required t	o simulat	e reacting	flows	s by	/ cł	າວວຣ	sing
	adequate c	combustion models.	•		0		,			0
2.	To enable	students to perform con	nbustion sim	ulations u	sing comm	ercial	CFE) to	ols.	
3.	To train stu	idents to carry out the n	nulti-phase s	pray mod	elling studi	es.				
				-						
Cou	Irse Outcon	ne								
Upo	n successfu	I completion of the cour	se, students	will be at	ole to					
1.	Perform co	mbustion simulation of	an IC engine).						
2.	Perform sir	nulations of flow combu	istion.							
3.	Perform sp	ray modelling studies.								
		• • • • • •								
Indi	cative Expe	eriments			- !					
1.	Simulation	of compustion of Metha		sence or	air.					
2.	Simulation	of combustion in a rock	et engine's c	ombustio	n section					
3.	Simulation	of gas burner with air s	wirier							
4.	Simulation	of a Non-Premixed com	ibustion							
5.	Spray simu	lation by using DPM mo								
-			10	tal Labor	atory Hou	rs 3l) no	urs	•	
Iex	t BOOK(S)						- 4 :		005	
1.	Poinsot, I hi	erry, and Denis Veyna	nte. Theoret	ical and r	numerical c	ombu	stior	ı, 2	005	,
Def	2nd edition,	RI Edwards, Inc.								
Ret	erence Boo	KS	L -							
1.	Ansys Fluer									
NIOC	Mode of assessment: Continuous assessment / Lab FAT / Viva voce									
Rec	ommended	by Board of Studies	27-05-2022	D (40.00.000					
App	roved by Ac	ademic Council	NO. 66	Date	16-06-202	22				ļ

Course Code Course Title L T							
MCFD603L	Fluid Structure Interaction	3 0 0 3					
Pre-requisite NIL Syllabu							
		1.0					
Course Objectives							
1. To develo Mechanic	p a conceptual understanding of governing equations of s.	fiuld and structural					
2. To develo structure i	p a foundation for understanding of the coupling condition nteractions	ons involved in fluid					
3. To develo	op an understanding of FEM methods to solve the gove	erning equations of					
4 To impart	an understanding of linear equations solvers for FSI						
Course Outcom	6						
Upon successful	completion of this course students will be able to						
1. Apply the	governing equation of fluid and structural mechanics.						
2. Apply the	different coupling conditions involved in fluid structure in	teraction.					
3. Formulate	the FSI governing equations in ALE and Fully Eulerian	approaches.					
4. Explain t	he different finite element schemes to discretize t	he FSI governing					
5. Apply line	arization techniques and linear algebraic equation solv	vers for solving FSI					
problems. 6. Perform n	umerical simulation of Fluid structure Interaction problem	ns.					
Module:1 Mod Mec	els : Governing Equations of Fluid and Structural hanics	6 hours					
Continuum Mech	nanics - Coordinate Systems - Deformation Gradient	- Strain - Rate of					
Deformation and Systems, Materia The Navier-Lamé The Fluid Probler Incompressible F Problems on Mo	Strain Rate - Stress - Conservation Principles in D al Laws - Hyperelastic and Incompressible Materials, T e Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Ec Tows- Flow Problems on Moving Domains- Eulerian To ving Domains - The Arbitrary Lagrangian Eulerian (AL	ifferent Coordinate he Solid Problem - er-Lamé Equations. quations- Theory of echniques for Flow LE) Formulation for					
Module:2 Cou	aled Fluid Structure Interactions	6 hours					
Coupling Condition	one Kinematic Dynamic and Geometric Conditions	Interface Pequilarity					
and Boundary Co Variational Coup Definition of the Structures in Eule	onditions - Coupled Fluid-structure Interaction - The A bling Techniques - Fluid-structure Interactions in A ALE Map - Coupled ALE Formulation - Fully Eulerian Formulation - Fully Eulerian Formulation - Fully Eulerian	dded Mass Effect - LE Coordinates - ormulation - Elastic Coordinates					
Module:3 Disc	retization techniques for FSI governing equations	6 hours					
Time Discretization - Numerical Stability- Numerical Dissipation- Shifted Crank-Nicolson Methods- The Fractional-Step-Method -Galerkin and Discontinuous Galerkin Methods- Time Discretization of the Stokes and N-S Equations. Spatial Discretization - Interpolation with Finite Elements - Elliptic Problems - Finite Elements on Curved Domains - Saddle-Point Problems. Methods for Navier-Stokes equations- Oseen Fixed Point Linearization -Newton Iteration -Discretization of Transport Dominant Flows-Discretization of Interface-Problems - Discretization of Moving Interfaces							
Module:4 ALE	Module:4 ALE Formulation for Fluid-structure Interactions 7 hours						
Time-Discretization Fluid-structure In Derivation of Sen Discretization ar Framework - Line	on for the FSI Problem in ALE-Formulation - Non-stati nteractions- Time Stepping Schemes for Fluid-stru cond Order Time Stepping Schemes - Temporal Stab nd Damping, Linearization of Fluid-structure Interac earization by Fixed Point-Iterations- Newton Linearization	onary Dynamics of octure Interactions- ility - Stable Time- ctions in the ALE n for Fluid-structure					

Inte Line	eractions earizatio	in ns	Arbitrary	Lagrangian	Eulerian	Formulat	tion -	Numerical	Study	on
Мо	dule: 5	Fini	te Elemen	ts for Fluid-	structure I	nteractior	ns in A	LE	6 ho	urs
		For	mulation							
Fin	ite Elem	ent T	riangulatio	ns for Fluid-	structure Ir	nteractions	in AL	E Formulation	on - Inf-S	Sup
Sta	ble FE-S	Space	es for Flui	d-structure li	nteractions	in ALE I	Formula	ation - Stab	ilized Fi	nite
Ele	ments fo	or Fl	uid-structu	re Interaction	ns- Matrix	Formulat	ion of	the Linear	System	s -
Cor	nstruction	n of t	he ALE M	ap - Harmon	ic Extensio	n - Harmo	onic Ex	tension with	Stiffenir	ng -
Extension by Pseudo-Elasticity- Biharmonic Extension										
Мо	dule:6	Fully	/ Eulerian	Formulation	for Fluid-	structure	Intera	ctions	6 ho	urs
Eul	erian Mo	dels	for Fluid-st	ructure Intera	actions - El	astic Struc	ctures i	n Eulerian C	oordinate	es -
Flu	id-structı	ire In	teraction i	n Eulerian Co	oordinates-	Interface	Captu	ring and the	Initial P	oint
Set	Method	-Time	-Discretiza	ation of the F	ully Euleria	in Framev	vork - L	inearization	of the F	ully
Eul	erian Co	ordin	ates - Finit	e Elements f	or the Fully	/ Eulerian	Frame	work - Nume	erical Stu	ıdy-
Sta	tionary S	Struct	ure Bench	mark Probler	n - Station	ary Fluid-	structu	re Interactio	n Proble	m -
Cor	ntact Pro	blem.								
Мо	dule:7	Line	ar Solvers	s for Fluid-st	ructure Int	eractions	;		6 ho	urs
Par	titioned	Solve	rs - Direct	Solution of I	_inear Syst	ems - Co	ndition	Number Ana	alysis of	the
Sys	stem Mat	rices	-Krylov Sp	ace Solvers	for Fluid-st	ructure Int	eractio	ns - Multigric	Solvers	tor
the	Arbitrar	y La	grangian	Eulerian Forr	nulation -	GMRES	Multigr	id Iteration-	Partitio	ned
Mu	ltiarid Sm	Multiarid Smoother								
Module: 8 Contemporary Issues 2 hours										
Мо	dule: 8	Cont	emporary	Issues					2 ho	urs
Мо	dule: 8	Cont	emporary	lssues Total	Lecture h	ours:			2 ho 45 ho	urs urs
Мо	dule: 8	Cont	emporary	r Issues Total	Lecture h	ours:			2 ho 45 ho	urs urs
Мо Тех 1	dule: 8	S)	ter Fluid	r Issues Total	Lecture he	ours:	nalysis	and finite e	2 ho 45 ho	urs urs
Мо Тех 1.	dule: 8 (t Book(Thomas Second	S) Editio	nter, Fluid	Total Structure Int er. 2017. ISB	Lecture ho eractions: N 978-3-31	Durs: Models, A 9-63969-7	nalysis	and finite e	2 ho 45 ho elements	urs urs
Mo Tex 1.	dule: 8 dule: 8 tt Book(Thomas Second	S) S Rich Edition Book	nter, Fluid s	Total Structure Int er, 2017, ISB	Lecture here the sections: N 978-3-31	Durs: Models, A 9-63969-7	nalysis	and finite e	2 ho 45 ho elements	urs urs
Mo Te 1. Ref 1.	dule: 8 tt Book(Thomas Second ference	S) S Rich Edition Book azilev	nter, Fluid on Spring s. Kenji T	Total Structure Int er, 2017, ISB	Lecture here the sections: N 978-3-31	Durs: Models, A 9-63969-7 ezduvar,	nalysis 7 Compu	and finite e	2 ho 45 ho elements	urs urs
Mo Te 1. Ref 1.	t Book(Thomas Second erence	S) S Rich Edition Book azilev tion: I	nter, Fluid on Spring s, Kenji T	Total Structure Int er, 2017, ISB Takizawa, Ta nd Application	Lecture ho eractions: N 978-3-31 lyfun E. T	Durs: Models, A 9-63969-7 ezduyar, on, John-V	nalysis 7 Compu Viley, 2	and finite e itational Flui	2 ho 45 ho elements id Struct 978-0-47	urs urs
Mo Te 1. Ref 1.	dule: 8 dule: 8 t Book(Thomas Second ference Yuri Ba Interact 7877-1	S) S Rich Edition Book azilev	nter, Fluid on Spring s, Kenji T Methods a	Total Structure Int er, 2017, ISB Takizawa, Ta nd Application	Lecture ho eractions: N 978-3-31 lyfun E. T n, 1 st Editio	Durs: Models, A 9-63969-7 ezduyar, on, John-V	nalysis 7 Compu Viley, 2	and finite e Itational Flui 2013, ISBN: 9	2 ho 45 ho elements id Struct 978-0-47	urs urs , ture '09-
Mo Tex 1. Ref 1.	dule: 8 dule: 8 thomas Second ference Yuri Ba Interact 7877-1 Rajeev	S) S Rich Edition Book azilev tion: I	ter, Fluid on Spring s, Kenji ⊺ Methods a	Total Structure Int er, 2017, ISB Takizawa, Ta nd Application n, Vaibhav J	Lecture h eractions: N 978-3-31 lyfun E. T n, 1 st Editio oshi, Com	Durs: Models, A 9-63969-7 ezduyar, on, John-V putational	nalysis 7 Compu Viley, 2 Mecha	and finite enterional Flui 2013, ISBN: 9	2 ho 45 ho elements id Struct 978-0-47 id Struct	urs urs , ture '09- ture
Мо Тех 1. 1. 2.	dule: 8 dule: 8 tt Book(Thomas Second ference Yuri Ba Interac 7877-1 Rajeev Interac	s) SRich Edition Book azilev tion: f	ter, Fluid on Spring s, Kenji Methods a nar Jaimar Computati	Total Structure Int er, 2017, ISB Takizawa, Ta nd Application n, Vaibhav Jo onal method	Lecture h eractions: N 978-3-31 byfun E. T n, 1 st Editionshi, Com s for coup	Durs: Models, A 9-63969-7 ezduyar, on, John-V putational led fluid	nalysis 7 Compu Viley, 2 Mecha structu	and finite entational Flui 2013, ISBN: 9 anics of Flu re analysis,	2 ho 45 ho elements id Struct 978-0-47 id Struct 1 st Editi	urs urs , ture '09- ture ion,
Мо Тех 1. 1. 2.	dule: 8 dule: 8 thomas Second ference Yuri Ba Interact 7877-1 Rajeev Interact Springe	s) s Rich Edition Book azilev tion: I Kum tion: er, 20	ter, Fluid on Spring s, Kenji ⊺ Methods a nar Jaimar Computati 21, ISBN §	Total Structure Int er, 2017, ISB Takizawa, Ta nd Application n, Vaibhav J onal method 978-981-16-53	Lecture ho eractions: N 978-3-31 Nyfun E. T n, 1 st Edition oshi, Com s for coup 354-4	Durs: Models, A 9-63969-7 ezduyar, on, John-V putational led fluid	Compu Viley, 2 Mecha structu	and finite e tational Flui 2013, ISBN: 9 anics of Flu re analysis,	2 ho 45 ho elements id Struct 978-0-47 id Struct 1 st Editi	urs urs , ture '09- ture ion,
Mo Tex 1. 1. Ref 1. 2. 3.	dule: 8 dule: 8 t Book(Thomas Second ference Yuri Ba Interact 7877-1 Rajeev Interact Springe Jean-F	s) s Rich Edition Book azilev tion: I Kum tion: 20 ranço	nter, Fluid on Spring s, Kenji Methods a nar Jaimar Computati 21, ISBN 9 is Sigrist,	Total Structure Int er, 2017, ISB Takizawa, Ta nd Application n, Vaibhav Jo onal method 078-981-16-53 Fluid Struct	Lecture ho eractions: N 978-3-31 lyfun E. T n, 1 st Edition oshi, Com s for coup 354-4 cure Intera	Durs: Models, A 9-63969-7 ezduyar, on, John-V putational led fluid ction: An	Compu Viley, 2 Mecha structu	and finite e Itational Flui 2013, ISBN: anics of Flu re analysis, uction to fin	2 ho 45 ho elements id Struct 978-0-47 id Struct 1 st Editi	urs urs , ture '09- ture ion, ment
Mo Tex 1. 1. 2. 3.	dule: 8 dule: 8 tt Book(Thomas Second ference Yuri Ba Interact 7877-1 Rajeev Interact Springe Jean-F couplin	s) s Rich Edition Book azilev tion: f Kum tion: er, 20 ranço g, 1 st	ter, Fluid on Spring s, Kenji Methods a nar Jaimar Computati 21, ISBN § is Sigrist, Edition, J	Total Structure Int er, 2017, ISB Takizawa, Ta nd Application n, Vaibhav J onal method 078-981-16-53 Fluid Struct ohn Wiley, 20	Lecture he eractions: N 978-3-31 lyfun E. T n, 1 st Edition oshi, Com s for coup 354-4 lure Intera 015, ISBN 9	Models, A 9-63969-7 ezduyar, on, John-V putational led fluid ction: An 978-1-119	Compu Viley, 2 Mecha structu	and finite e and finite e anics of Flu re analysis, uction to fin -5	2 ho 45 ho elements id Struct 978-0-47 id Struct 1 st Editi	urs urs , ture '09- ture ion, nent
Mo Tex 1. Ref 1. 2. 3. Mod	dule: 8 dule: 8 tt Book(Thomas Second ference Yuri Ba Interact 7877-1 Rajeev Interact Springe Jean-F couplin de of Eva	S) S Rich Edition Book azilev tion: I Kum tion: I ranço g, 1 st aluatio	ter, Fluid on Spring s, Kenji Methods a nar Jaimar Computati 21, ISBN § is Sigrist, Edition, J on: CAT, v	Total Structure Int er, 2017, ISB Takizawa, Ta nd Application n, Vaibhav J onal method 078-981-16-53 Fluid Struct ohn Wiley, 20 vritten assigni	Lecture he eractions: N 978-3-31 lyfun E. T n, 1 st Edition oshi, Com s for coup 354-4 lure Intera 015, ISBN 9 ment, Quiz,	Durs: Models, A 9-63969-7 ezduyar, on, John-V putational led fluid ction: An 978-1-119- FAT	Compu Viley, 2 Mecha structur introdu	and finite entropy of the second seco	2 ho 45 ho elements id Struct 978-0-47 id Struct 1 st Editi	urs urs , ture '09- ture ion, nent
Мо Тех 1. 1. 2. 3. Мо	dule: 8 dule: 8 t Book(Thomas Second Ference Yuri Ba Interact 7877-1 Rajeev Interact Springe Jean-F couplin de of Eva	S) S Rich Edition Book azilev tion: I Kurr tion: 20 rançco g, 1 st aluatio Sessm	ter, Fluid on Spring s, Kenji Methods a nar Jaimar Computati 21, ISBN 9 is Sigrist, Edition, J on: CAT, w	Total Structure Int er, 2017, ISB Takizawa, Ta nd Application n, Vaibhav Ja onal method 978-981-16-53 Fluid Struct ohn Wiley, 20 vritten assigni nuous assess	Lecture he eractions: N 978-3-31 byfun E. T n, 1 st Edition oshi, Com s for coup 354-4 cure Intera 015, ISBN 9 ment, Quiz, sment and	Durs: Models, A 9-63969-7 ezduyar, on, John-V putational led fluid ction: An 978-1-119- FAT	Compu Viley, 2 Mecha structu introdu	and finite entational Flui 2013, ISBN: 9 anics of Flu re analysis, uction to fin -5	2 ho 45 ho elements id Struct 978-0-47 id Struct 1 st Editi	urs urs , ture 709- ture ion, nent
Mo Tex 1. Ref 1. 2. 3. Moo Ref	dule: 8 dule: 8 t Book(Thomas Second Yuri Ba Interact 7877-1 Rajeev Interact Springe Jean-F couplin de of Eva de of ass commend	S S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S Cont S S S Cont S S S Cont S S S S S S S S	ter, Fluid on Spring s, Kenji Vethods a nar Jaimar Computati 21, ISBN 9 is Sigrist, Edition, J on: CAT, w nent: Conti y Board of	Total Structure Int er, 2017, ISB Takizawa, Ta nd Application n, Vaibhav J onal method 078-981-16-53 Fluid Struct ohn Wiley, 20 vritten assign nuous assess Studies 2	Lecture here eractions: N 978-3-31 Nyfun E. T n, 1 st Edition oshi, Com 354-4 cure Intera 015, ISBN 9 ment, Quiz, sment and 7-05-2022	Durs: Models, A 9-63969-7 ezduyar, on, John-V putational led fluid ction: An 978-1-119- FAT FAT	Compu Viley, 2 Mecha structu introdu	and finite e and finite e anics of Flu re analysis, uction to fin -5	2 ho 45 ho elements id Struct 978-0-47 id Struct 1 st Editi	urs urs , ture '09- ture ion, nent
Mo Tex 1. Ref 1. 2. 3. Moo Ref Apr	dule: 8 dule: 8 t Book(Thomas Second ference Yuri Ba Interact 7877-1 Rajeev Interact Springe Jean-F couplin de of Eva de of ass commento proved by	S) S Rich Edition Book azilev tion: I Kum tion: I Kum tion: aluation Sessm ded b y Aca	ter, Fluid on Spring s, Kenji Methods a nar Jaimar Computati 21, ISBN 9 is Sigrist, Edition, J on: CAT, w nent: Conti y Board of demic Cou	Total Structure Int er, 2017, ISB Takizawa, Ta nd Application n, Vaibhav J onal method 078-981-16-53 Fluid Struct ohn Wiley, 20 vritten assign nuous assess Studies 2 incil N	Lecture he eractions: N 978-3-31 lyfun E. T n, 1 st Edition oshi, Com s for coup 354-4 ure Intera 015, ISBN 9 ment, Quiz, sment and 7-05-2022 o. 66	Durs: Models, A 9-63969-7 ezduyar, on, John-V putational led fluid ction: An 078-1-119- FAT FAT	Compu Viley, 2 Mecha structur introdu -95227	and finite entropy of the second seco	2 ho 45 ho elements id Struct 978-0-47 id Struct 1 st Editi	urs urs , ture '09- ture ion, nent

Course code	Course Title		L T P C			
MCFD604L	Experimental methods for	fluid flow	2 0 0 2			
Pre-requisite	NIL		Syllabus version			
			1.0			
Course Objective	es					
1. To teach va measurements	arious measuring techniques suited	for therma	I, flow and force			
2. To impart know	wledge on how to interpret and analyse t	he experimen	ital data and its error			
3. To teach the v	rerification and validation methods of nur	nerical model	s in comparison with			
experimental c	lata.					
Course Outcome	Course Outcome					
Upon successful c	completion of the course the students will	be able to				
1. Understand t	1. Understand the measuring techniques of temperature, heat flux and species					
2. Understand the	e measuring techniques of pressure, velo	ocity, and flow	v rate.			
3. Understand the	e measuring techniques of force.	•				
4. Verify and vali	date the numerical model with experimer	nts.				
5. Demonstrate experimental c	the knowledge of experimental flu lata and uncertainties.	id dynamics	and analyse the			
6. Validate CFD	solvers by comparing with experimental	data				
			-			
Module:1 Meas	surements	5 NA	5 nours			
Inermal and FI	ow Measurements, Characteristics o	f Measureme	ent Systems, Lime			
Response of Me	easurement Systems, Time-Series A	nalysis and	Signal Processing,			
Statistical Principi	es, Error Estimates, Gramer-Rao Lowe	er Bound (CR	(LB), Propagation of			
Modulo:2 Moas	ession, oncertainty Analysis, Dimensiona	al Allalysis allo				
Manometers Me	asurement of Pressure with Wall Ta	nning - Stat	ic Tubes Pressure			
Transducers Base	ed on Elastic Strain Piezoelectric Tran	sducers Pres	sure-Sensitive Paint			
(PSP)						
Module:3 Mea	surements of Temperature, Heat		5 hours			
flux	and Species Concentrations		·			
Temperature Mea	asurements based on Thermal Expans	ion of Materia	als, Thermocouples,			
Resistance-Based	I Temperature Sensors, Pyrometer	Measurement	s of Temperature.			
Thermochromic L	iquid Crystals, Measurements of Suna	ce Heat Tran	sier Characteristics,			
Molecular Energy	and Spectroscopy Rayleigh Scattering	Mie Scattering	n Raman			
Scattering Light S	Scattering and Laser-Induced Fluorescen	nie Ocaterinę	J, Maman			
Module:4 Meas	surement of Flow Rates	00	3 hours			
Fundamentals, Ob	ostruction Flowmeters., Rotameters, Turk	oine Flowmete	ers, Thermal Mass			
Flowmeters						
Module:5 Meas	surements of Flow Velocity		5 hours			
Pressure-based V	elocity Measurements- Pitot-Static tube	; Particle-base	ed techniques- Laser			
Doppler Anemom	etry/Velocimetry (LDA/LDV), Particle Ir	nage Velocim	netry (PIV), Doppler			
Global Velocimetr	y (DGV), and Laser Transit Velocimetry	(LIV); Density	/-based lechniques-			
Module:6 Mea	nieren Method, Interferometry, Optical T	omograpny.	2 hours			
Basics Basic Ter	ms of Balance Metrology Mounting Va	riations Strain	n Gauges Wiring of			
Wheatstone Bridg	les Strain Gauge Selection Strain Cau	inacions, Sciali Ige Annlicatio	n Materiale Sindle			
Force oad Cell	s Multicomponent Load Measuremen	ige Applicatio	Balances - External			
Balances.						
Module:7 Exp	erimental Synergy		3 hours			

Computer program verification and validation, Fundamentals of verification, Role of computational error estimation in verification testing, Fundamentals of validation, Construction of a validation experiment hierarchy, Statistical estimation of experimental error, Uncertainty quantification in computations, Validation metrics.

IVIOQ	ule:o	Contemporary issues				2 nours
		Total	Lecture ho	urs:		30 hours
Text	Book(5)				
1.	Taewo	oo Lee., Thermal and flow me	asurements	, 2008, 0	CRC Press.	
2.	Roach	e, P.J., Verification and	Validation	in Co	mputational	Science and
	Engine	eering, 1998, Hermosa publis	hers, Albuqu	Jerque, I	NM.	
Refe	rence	Books				
1.	Came	ron Tropea, Alexander L. Yai	⁻ in, John F. F	⁻ oss (Ed	s.) - Handbook	of Experimental
	Fluid N	lechanics, 2007, Springer.				
2.	Rober	t P. Benedict (auth.) - Funda	mentals of To	emperati	ure, Pressure, a	and Flow
	Measu	rements, 1984, Third Edition	, John Wiley	& Sons		
	(=					
Mode	e of Eva	aluation: Continuous assessn	nent test, wri	itten assi	gnment, Quiz a	and Final
asse	essment	test				
Poor	ommon	had by Board of Studios	27 05 2022)		
A			21-03-2022		40.00.0000	
Appr	oved by	Academic Council	NO. 66	Date	16-06-2022	

Cou	Course code Course Title L T P (С			
MCF	D604P	Experimenta	I methods fo	or Fluid I	Flow Lab		0	0	2	1
Pre-	requisite	NIL				Sylla	abu	s ve	rsi	ion
							1	.0		
Cou	rse Objectiv	es								
1.	To teach measureme	various measuring nts.	techniques	suited	for therma	l, flow	/ a	ind	fo	rce
Ζ.	orror estima	tion	interpret and	analyse	ine expen	mentai	ua	la a	nu	115
3.	 To teach the verification and validation methods of numerical models in comparison with experimental data. 									
	0.1									
Cou	rse Outcom	9 			-1- 4-					
Оро 1.	Perform ter standard ins	nperature, heat flux truments	and specie	s conce	entration m	easure	me	nts	us	ing
2.	Carry out pr	essure, velocity, and fl	ow rate meas	suremen	ts in a given	flowfie	eld			
3.	Perform flow	visualization using hi	gh speed ima	aging						
4.	Conduct the	experiments and anal	lyse the expe	rimental	data and ur	ncertair	nties	S.		
Indi	cative Exper	iments								
1.	Wind Tunne	l study of flow over an	airfoil at diffe	erent ang	les of attacl	<-Surfa	ce p	ores	sur	re
2	Measureme	nts of lift and drag ford	es of a symm	netric ae	rofoil in a lov	N SNee	d flo	אור		
3	Smoke visu	alization of flow over a	cylinder							
4	Shadowgrau	oh visualization of a fla	me							
5	Visualization	of an under expande	d iet using So	chlieren t	echnique					
6.	Measureme	nt of open flame temp	erature using	a IR the	rmal imagin	a came	era			
7.	Measureme	nt of temperature in di	fferent mediu	ms using	thermocou	ples				
8.	Visualization	of flow over a bluff be	odv usina tuft	/oil flow	,					
9.	Flow rate m	easurements using ve	nturi and orifi	ce meter	S					
10.	Comparisor	of experimental and r	numerical res	ults of flo	w over a N	ACA00	12 a	airfoi	il	
11.	Non-intrusiv	e velocity measureme	nts using adv	anced fl	ow diagnost	ic tech	niqu	les		
		, ,	То	tal Labo	ratory Hou	rs 30	ho	urs		
Text	t Book(s)					•				
1.	Taewoo Lee	, Thermal and flow me	easurements,	2008, C	RC Press.					
Refe	erence Book	S								
1.	Cameron Tro Fluid Mechai	opea, Alexander L. Ya nics, 2007, Springer.	rin, John F. I	⁻ oss (Ed	s.) - Handb	ook of	Exp	perin	ner	ntal
2.	Robert P. E	Benedict (auth.) - Fu	Indamentals	of Tem	perature, F	ressur	e, a	and	F	low
	<u>Measuremer</u>	ts, 1984, Third Edition	i, John Wiley	& Sons.						<u>.</u>
Mod	e of assessm	ent: Continuous asse	ssment / Lab	FAT / Vi	va voce					
Rec	ommended b	y Board of Studies	27-05-2022							
Арр	roved by Aca	demic Council	No. 66	Date	16-06-202	22				

Course Code	Course Title		L	Т	Ρ	С
MCFD605L	Multiphase flows		3	0	0	3
Pre-requisite	NIL	Sy	llab	us v	ersi	on
0 011 //				1.0		
Course Objectives 1. To provide a comprehensive knowledge of various flow patterns in multiphase flows 2. To provide the physical insight and the mathematical aspects of multiphase flow pressure drop and its different model/correlations. 3. To understand the complex phenomenon underlying in multiphase flows for various industrial problems. Course Outcome Upon successful completion of this course students will be able to 1. Apply the concepts and quantitative description of multiphase flows in engineering problems. 2. Analyse the different flow patterns in liquid-gas two-phase flows and examine the flow regime maps. 3. Analyse the particles motion in multiphase flows problems. 4. Understand phenomenon of growth of bubbles and collapses. 5. Analyse the various forces acting on the fluid particles that are applied in industrial						
needs. 6. Demonstrate	the knowledge of pool, flow boiling, and condensation.					
Module:1 Over	view of Multiphase Flows			7	hou	irs
Basic definitions, Flow patterns a Lagrangian desc for single and r Boundary conditi	Importance of dimensionless numbers, Classification and regimes, Horizontal and vertical two-phase fl iption of fluid motion, Mass, momentum and energy cor nulti-phase flows, Mixture model equations, Two-flui ons in two-phase flow.	of mu lows, nserva d mc	ultiph Eu atior odel	າase leria າ equ equ	flov n a uatio atior	vs, nd ns ns,
Module:2 Liqu	id-Gas Two-Phase Flows			8	hou	ırs
Flow pattern clas Slug flow, Churr instabilities. Frict Weisbach equatio Brill, Friedel, Gas	sification, Flow regime maps for vertical and horizonta flow, Annular flow, Dispersed flow, Flow regimes lin onal pressure drop in disperse, homogenous and sep on. Pressure drop models by Lockhart-Martinelli, Barocz /bubble dynamics flows.	II flow nits, \$ aratec zy-Ch	' - B Sepa I flov isho	ubbl arate ws, I Im, I	e flo ed fle Darc Begg	w, ow ;y– js-
Module:3 Part	cle Motion			6	hou	ırs
Single particle mo	otion, Flow around a sphere, Free flow velocity, Grain's ect on free flow drag, Schiller-Naumann drag model, Hy	size a drauli	and ic tra	ansp	ort c	of
solids, Particle flo	w motion.					
Module:4 Bub	ole/Droplets dynamics			5	hou	irs
Bubble shape, M and non-thermal	arangoni effects and Bjerkes forces, Rayleigh-Plesset e bubble growth and collapse.	quati	on, ⁻	Ther	mal	
Module:5 Eule	r-Lagrangian Model			6	hou	ırs
Newton's second balance, Drag, lif Visualization of p	law for single particle's motion, Lagrangian particle trac t, buoyancy, gravitational and Brownian forces, Particle' article's trajectory.	cking, 's rela	For xati	ce on ti	me,	
Module:6 Eule	r-Euler Model			6	hou	ırs
Euler-Euler mode	el for multiphase flows, Link momentum equation for	each	pha	se,	Liqu	id-

liquid / liquid-solid mixing, Complex multiphase flows with turbulence, compressibility and heat transfer effects.						
Module:7 Boiling and Condensation	5 hours					
Horizontal surfaces – Pool boiling, Nucleate boiling, Film boiling, Critic	cal heat flux (CHF) and					
post CHF heat transfer in flow boiling, Flow boiling and CHF in mini and micro channels;						
Vertical surfaces – Film boiling; Condensation, Choking in two-phase	flow					
Module:8 Contemporary Issues	2 hours					
Total Lecture hours:	45 hours					
Text Book(s)						
1. Brennen, C. (2005). Fundamentals of Multiphase Flow. Cambridg	je: Cambridge					
University Press. doi:10.1017/CBO9780511807169						
Reference Books						
1. Guan Heng Yeoh, Jiyuan Tu. (2019). Computational Techniques	for Multiphase					
Flows (Second Edition). Butterworth-Heinemann. ISBN 97800810	JZ4539.					
1 1 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	ndensation Georgia					
Institute of Technology, ISBN: 9781107431638.	ndensation, ecorgia					
Mode of Evaluation: CAT, written assignment, Quiz and FAT						
Recommended by Board of Studies 27-05-2022						
Approved by Academic Council No. 66 Date 16-0	6-2022					

Course Code Course Title L T P C					
MCFD606L	Finite Element Analysis of Solids and Fluids	3 0 0 3			
Pre-requisite	Nil	Syllabus version			
		1.0			
Course Objectiv	/es				
1. To provid	e students with an introduction to Finite Element Analys	sis and help them			
use this n	nethod to solve problems in solid mechanics, heat trans	fer, fluid flow and			
machine	design.				
2. To teach	how to convert the physical problem into an engineering	g problem through			
geometric	cal and numerical modelling capabilities.				
3. To introdu	uce students to various field problems and the discretize	ation of the problem.			
4. To make	the students drive finite element equations for simple ar	nd complex			
elements	and establish the computational model of the given pro	biem.			
Course Outeers	•				
On completion th	e o student will be able to				
	able product data exchange techniques to convert deal	metric model into			
numerica	lable product data exchange techniques to convert geol				
2 Apply the	knowledge of mathematics and engineering to solve pr	oblems in structural			
fluid and	thermal engineering by approximate and numerical met	hods			
3. Formulate	a 1D and 2D finite element equations at element and as	sembly level for			
various a	oplications	y			
4. Apply finit	e element formulations using linear and quadratic shap	e functions to			
compute	desired results.				
5. Simplify a	complex engineering problem, design engineering con	nponents and solve			
real life p	roblems using commercial FEM tools or develop FE coo	des.			
Module:1 Introduction to Approximation Methods 6 hours					
Module:1 Intro	duction to Approximation Methods	6 hours			
Module:1IntroBasic Steps in the	duction to Approximation Methods	6 hours Ilation-Minimum total			
Module:1 Intro Basic Steps in the potential energy	duction to Approximation Methods ne Finite Element Method-Material models-Direct formu formulation-weighted residual formulation-variational ap	6 hours Ilation-Minimum total pproach.			
Module:1IntroBasic Steps in the potential energyModule:2High	duction to Approximation Methods ne Finite Element Method-Material models-Direct formu- formulation-weighted residual formulation-variational ap ner Order and Isoparametric Elements	6 hours Ilation-Minimum total oproach. 6 hours			
Module:1IntroBasic Steps in the potential energyModule:2HighPolynomial form	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic	6 hours Ilation-Minimum total pproach. 6 hours , Simplex, Complex,			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex element	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation polation polation	6 hours Ilation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian intert	Image: Addition to Approximation Methods The Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements The Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements The Finite Element Method-Material models-Direct formulation-variational apper Order and Isoparametric Elements The Finite Element Method-Material models-Direct formulation-variational apper Order and Isoparametric Elements The Finite Element Method Finite Elements The Finite Element Finite Element Element Finite Element Eleme	6 hours Ilation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of T element.			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS polation, Higher order one dimensional elements- quadratic and cubic functions of shape functions.	6 hours Ilation-Minimum total pproach. 6 hours , Simplex, Complex, lynomials in terms of T element. dratic, Cubic element t, Shape functions of			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape2D guadratic tri	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational appender Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS polation, Higher order one dimensional elements- quadratic functions, properties of shape functions, Truss element	6 hours Ilation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of T element. dratic, Cubic element t, Shape functions of			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interrand their shape2D quadratic triatfunctions - linear	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS polation, Higher order one dimensional elements- quadratic functions, properties of shape functions, Truss element angular element in natural coordinates, 2D quadrilater quadratic element	6 hours Jation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of T element. dratic, Cubic element t, Shape functions of teral element shape pent Hermite shape			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape2D quadratic triatfunctions – lineatfunction of beam	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS polation, Higher order one dimensional elements- quadratic functions, properties of shape functions, Truss element angular element in natural coordinates, 2D quadrilater, quadratic element, Shape function of beam element.	6 hours Jation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of T element. dratic, Cubic element t, Shape functions of teral element shape nent. Hermite shape			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape2D quadratic triatfunctions – lineatfunction of beamModule:3App	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational approximation formulation-variational approximation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS polation, Higher order one dimensional elements- quadratic angular element in natural coordinates, 2D quadrilater, quadratic element, Shape function of beam element. Interpolation to Solid Mechanics- One	6 hours Jation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of T element. dratic, Cubic element t, Shape functions of teral element shape hent. Hermite shape 6 hours			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interrand their shape2D quadratic triatfunctions – lineatfunction of beamModule:3AppDim	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS polation, Higher order one dimensional elements- quadratic angular element in natural coordinates, 2D quadrilatar, quadratic element, Shape function of beam element. lication to Solid Mechanics- One ensional Analysis	6 hours Jation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of T element. dratic, Cubic element t, Shape functions of teral element shape hent. Hermite shape 6 hours			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape2D quadratic triatfunctions – lineatfunction of beamModule:3AppDimGeneric form of	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS collation, Higher order one dimensional elements- quadratic angular element in natural coordinates, 2D quadrilater, quadratic element, Shape functions of beam element. Iteration to Solid Mechanics- One ensional Analysis 1D finite element equations –Truss, Beam -1D therm	6 hours Jation-Minimum total pproach. 6 hours , Simplex, Complex, lynomials in terms of T element. dratic, Cubic element t, Shape functions of teral element shape nent. Hermite shape 6 hours al problem – Linear			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape2D quadratic triatfunctions – lineatfunction of beamModule:3AppDimGeneric form ofelements-Quadratic	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational appropriate and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS polation, Higher order one dimensional elements- quadratic angular element in natural coordinates, 2D quadrilater, quadratic element, Shape functions of beam elements. Interpolation to Solid Mechanics- One ensional Analysis 1D finite element equations –Truss, Beam -1D thermatic elements- Natural coordinates - Isoparametric	6 hours Ilation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of T element. dratic, Cubic element t, Shape functions of teral element shape hent. Hermite shape 6 hours 6 hours 1 al problem – Linear elements-Numerical			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape2D quadratic triatfunctions – lineatfunction of beamModule:3AppDimGeneric form ofelements-Quadration.	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS polation, Higher order one dimensional elements- quadratic functions, properties of shape functions, Truss element angular element in natural coordinates, 2D quadrilater, quadratic element, Shape function of beam element. Iication to Solid Mechanics- One ensional Analysis 1D finite element equations –Truss, Beam -1D thermatic elements- Natural coordinates - Isoparametric	6 hours Jation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of T element. dratic, Cubic element t, Shape functions of teral element shape hent. Hermite shape 6 hours hal problem – Linear elements-Numerical			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape2D quadratic triatfunctions – lineatfunction of beamModule:3AppDimGeneric form ofelements-Quadration.Module:4App	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS polation, Higher order one dimensional elements- quadratic angular element in natural coordinates, 2D quadrilater, quadratic element, Shape function of beam element. Ication to Solid Mechanics- One ensional Analysis 1D finite element equations –Truss, Beam -1D thermatic elements- Natural coordinates - Isoparametric Ication to Solid Mechanics – Multi-	6 hours Jation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of T element. dratic, Cubic element t, Shape functions of teral element shape nent. Hermite shape 6 hours nal problem – Linear elements-Numerical			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape2D quadratic triatfunctions – lineatfunction of beamModule:3AppDimGeneric form ofelements-Quadration.Module:4Appdime	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS collation, Higher order one dimensional elements- quadratic angular element in natural coordinates, 2D quadrilater, quadratic element, Shape functions of beam elements. Interpolation to Solid Mechanics- One ensional Analysis 1D finite element equations –Truss, Beam -1D thermatic elements- Natural coordinates - Isoparametric Iication to Solid Mechanics – Multi-ensional Problems	6 hours Ilation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of T element. dratic, Cubic element t, Shape functions of teral element shape nent. Hermite shape 6 hours nal problem – Linear elements-Numerical 6 hours			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape2D quadratic triatfunctions – lineatfunction of beamModule:3AppDimGeneric form ofelements-Quadration.Module:4AppdimeGeneric form of	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS polation, Higher order one dimensional elements- quadratic angular element in natural coordinates, 2D quadrilater, quadratic element, Shape functions, Truss element element. Iication to Solid Mechanics- One ensional Analysis 1D finite element equations –Truss, Beam -1D thermatic elements- Natural coordinates - Isoparametric Iication to Solid Mechanics – Multi-ensional Problems 2D finite element equations - Triangular element - Residual formulation - Residual formulations - Triangular element - Residual formulations - Residual formulation - Residual formulations - Triangular element - Residual formulations -	6 hours Jation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of T element. dratic, Cubic element t, Shape functions of teral element shape hent. Hermite shape 6 hours hal problem – Linear elements-Numerical 6 hours ectangular elements-			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape2D quadratic triatfunctions – lineatfunction of beamModule:3AppDimGeneric form ofelements-Quadration.Module:4AppdimeGeneric form ofAxisymmetric element	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS polation, Higher order one dimensional elements- quadratic functions, properties of shape functions, Truss element angular element in natural coordinates, 2D quadrilater, quadratic element, Shape function of beam element. Ication to Solid Mechanics- One ensional Analysis 1D finite element equations –Truss, Beam -1D thermatic elements- Natural coordinates - Isoparametric Ication to Solid Mechanics – Multi-ensional Problems 2D finite element equations - Triangular element - Rements- Vector variable problems such as plane stress,	6 hours Ilation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of T element. dratic, Cubic element t, Shape functions of teral element shape nent. Hermite shape 6 hours al problem – Linear elements-Numerical 6 hours 6 hours			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape2D quadratic triatfunctions – lineatfunction of beamModule:3AppDimGeneric form ofelements-Quadration.Module:4AppdimeGeneric form ofAxisymmetric elementsSymmetric problet	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS colation, Higher order one dimensional elements- quadratic functions, properties of shape functions, Truss element angular element in natural coordinates, 2D quadrilater, quadratic element, Shape function of beam element. lication to Solid Mechanics- One ensional Analysis 1D finite element equations –Truss, Beam -1D thermatic elements- Natural coordinates - Isoparametric lication to Solid Mechanics – Multi-ensional Problems 2D finite element equations - Triangular element - Rements- Vector variable problems such as plane stress, ems; Shell structures -Applications in structural and thermatic element - Applications in structural and thermatic element - Rements- Vector variable problems such as plane stress, ems; Shell structures -Applications in structural and thermatic element - Rements - Vector variable problems such as plane stress, ems; Shell structures -Applications in structural and thermatic element - Rements - Vector variable problems such as plane stress, ems; Shell structures -Applications in structural and thermatic element - Rements - Vector variable problems such as plane stress, ems; Shell structures -Applications in structural and thermatic element - Rements - Vector variable problems such as plane stress, ems; Shell structures -Applications in structural and thermatic element - Rements - Vector variable problems such as plane stress, ems; Shell structures -Applications in structural and thermatic element - Rements - Vector variable	6 hours Ilation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of T element. dratic, Cubic element t, Shape functions of teral element shape nent. Hermite shape 6 hours al problem – Linear elements-Numerical 6 hours ectangular elements- plane strain and axi- mal problems.			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape2D quadratic triatfunctions – lineatfunction of beamModule:3AppDimGeneric form ofelements-QuadraticIntegration.Module:4AppdimeGeneric form ofAxisymmetric elementssymmetric probleModule:5FluiDiagration	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS polation, Higher order one dimensional elements- quadratic functions, properties of shape functions, Truss element angular element in natural coordinates, 2D quadrilater, quadratic element, Shape function of beam element. lication to Solid Mechanics- One ensional Analysis 1D finite element equations –Truss, Beam -1D thermatic elements- Natural coordinates - Isoparametric lication to Solid Mechanics – Multi-ensional Problems 2D finite element equations - Triangular element - Resensional Problems 2D finite element equations - Triangular element - Resensional Problems and Mechanical Applications in structural and thermatic of the structures - Applications in structural and thermatic of the structures - Applications in structural and thermatic of the structures - Applications	6 hours Jation-Minimum total proach. 6 hours , Simplex, Complex, ynomials in terms of T element. dratic, Cubic element t, Shape functions of teral element shape nent. Hermite shape 6 hours al problem – Linear elements-Numerical 6 hours ectangular elements- plane strain and axi- mal problems. 7 hours			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape2D quadratic triatfunctions – lineatfunction of beamModule:3AppDimGeneric form ofelements-Quadration.Module:4AppdimeGeneric form ofAxisymmetric elementsymmetric probletModule:5FluiDiscrete and ser	duction to Approximation Methods ne Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS polation, Higher order one dimensional elements- quadratic functions, properties of shape functions, Truss element angular element in natural coordinates, 2D quadrilater, quadratic element, Shape function of beam element. lication to Solid Mechanics- One ensional Analysis 1D finite element equations –Truss, Beam -1D thermatic elements- Natural coordinates - Isoparametric lication to Solid Mechanics – Multi-ensional Problems 2D finite element equations - Triangular element - Rements- Vector variable problems such as plane stress, ems; Shell structures -Applications in structural and thermatic ensional Applications mi-discrete FEM for fluid flow -Split method and penalty	6 hours Ilation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of T element. 7 element. 7 termite shape 7 hours			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape2D quadratic triatfunctions – lineatfunction of beamModule:3AppDimGeneric form ofelements-QuadraticIntegration.Module:4AppdimeGeneric form ofAxisymmetric elessymmetric probletModule:5FluiDiscrete and sermass conservatiobenchmark flower	duction to Approximation Methods he Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS colation, Higher order one dimensional elements- quadratic functions, properties of shape functions, Truss element angular element in natural coordinates, 2D quadrilater, quadratic element, Shape function of beam element. Iication to Solid Mechanics- One ensional Analysis 1D finite element equations –Truss, Beam -1D thermatic elements- Natural coordinates - Isoparametric Iication to Solid Mechanics – Multi-ensional Problems 2D finite element equations - Triangular element - Resensional Analysis 2D finite element equations - Triangular element - Resensional Problems 2D finite element equations - Triangular element - Resensional Problems 2D finite element equations - Triangular element - Resensional Problems 2D finite element equations - Triangular element - Resensional Problems 2D finite element equations - Triangular element - Resensional Problems 2D finite element equations - Triangular element - Resensional Problems 2D finite element equations - Triangular element - Resensional Problems	6 hours Jation-Minimum total proach. 6 hours , Simplex, Complex, lynomials in terms of T element. dratic, Cubic element t, Shape functions of teral element shape nent. Hermite shape 6 hours 6 hours al problem – Linear elements-Numerical 6 hours ectangular elements- plane strain and axi- mal problems. 7 hours ty method - Discrete ems; Non-isothermal			
Module:1IntroBasic Steps in thepotential energyModule:2HighPolynomial formMultiplex elementglobal coordinateLagrangian interand their shape2D quadratic triatfunctions – lineatfunction of beamModule:3AppDimGeneric form ofelements-QuadraticIntegration.Module:4AppdimeGeneric form ofAxisymmetric probletModule:5FluiDiscrete and sermass conservatiobenchmark flow	duction to Approximation Methods he Finite Element Method-Material models-Direct formulation-weighted residual formulation-variational apper Order and Isoparametric Elements of interpolation functions- linear, quadratic and cubic ts, Convergence requirements, Linear interpolation poles and local coordinates of bar, triangular elements, CS polation, Higher order one dimensional elements- quadratic functions, properties of shape functions, Truss element angular element in natural coordinates, 2D quadrilater, quadratic element, Shape function of beam element. Iication to Solid Mechanics- One ensional Analysis 1D finite element equations – Truss, Beam -1D thermatic elements- Natural coordinates - Isoparametric Iication to Solid Mechanics – Multi-ensional Problems 2D finite element equations - Triangular element - Rements- Vector variable problems such as plane stress, ems; Shell structures -Applications in structural and thermatic of the functions in structural and thermatic on and energy conservation; Isothermal fluid flow problems problem;	6 hours Jation-Minimum total proach. 6 hours , Simplex, Complex, ynomials in terms of T element. T element. T element shape functions of teral element shape 6 hours 6 hours al problem – Linear elements-Numerical 6 hours ectangular elements- plane strain and axi- mal problems. 7 hours ty method - Discrete ems; Non-isothermal			

Мо	dule:6	Steady State Heat Co	nduction with	th		6 hours
		Applications				
Hea	at Tran	sfer through Plane and	Composite wa	alls- Rad	dial Heat	t Flow in a cylinder-
Coi	nductior	and Convections Systems	s; Two-dimensi	ional plan	e problei	ms- Three dimensional
and	l axisym	imetric problems- Finite ele	ment solution	to conveo	ction-diff	usion equation.
Мо	dule:7	Transient Heat Condu	ction Analy	sis with		6 hours
Applications						
Lur	nped H	eat Capacity System- Nu	merical Solution	on- Tran	sient gov	verning equations and
bοι	undary a	and initial conditions -The	Galerkin me	thod -On	e-dimen	sional Transient State
Pro	blem -	Multi-dimensional Transi	ent Heat Cor	nduction	- Phase	Change Problems—
Sol	idificatio	on and Melting.				3
Мо	dule:8	Contemporary Issues				2 hours
		• •				
			Total	Lecture	hours:	45 hours
Tex	rt Book	(s)				
1	Rao S	S Finite Elements Metho	d in Engineerir	na 5th Ea	dition Els	sevier 2010
2	Ronald	W Lewis P Nithiyaarasu	and K N Seeth	haramu F	undame	ntals of Finite Element
-	Metho	d for Heat and Fluid Flow	John Wiley & s	ons 2004	4	
Ret	ference	Books		,		
1	J N Re	ddy Introduction to Finite	Element Met	hod Mc(Graw -Hil	Il International Edition
••	2019			nou, mot		
2	Tiruna	thi R. Chandrunatla and As	hok D. Belugu	ndu Intro	duction t	to Finite Elements in
~	Engine	ering 4th Edition Prentice	Hall 2011	nau, muc		
3	Seshu	P Finite Flement Analysis	Prentice Hall	l of India	2013	
4	Saeed	Moaveni Einite Element A	nalvsis Theor	v and An	olication	with ANSYS Pearson
•	Fifth E	dition. 2021		y ana / ipi	phoadon	
Mo	de of F	aluation: CAT written assi	anment Quiz	FAT		
				,		
Ree	commer	nded by Board of Studies	27-05-2022			
App	proved b	y Academic Council	No. 66	Date	16-06-2	2022

Course code	Course Title		L	Т	Ρ	С
MCFD607L	High Performance Computing		2	0	0	2
Pre-requisite	NIL	S	Sylla	bus	vers	ion
			1	.0		
Course Objectives						
1. I o develop ur	nderstanding of programming best practices, pro	oductivi	ty to	ols a	nd lii	nux
2 To improve th	lenn in general. De knowledge on working of modern computers	and pr	ara	n ov	ocuti	ion
2. To improve in program effici	ency and ontimization procedures	anu pro	Jyrai		ecui	UII,
3 To familiarize	e our students with debugging performance	evalua	tion	tech	nniau	les
profiling and	l instrumentation to identify bottlenecks	and	oppo	rtuni	ties	of
parallelization in programs.						
4. To impart basic knowledge of OpenMP in the context of shared memory architecture.						
5. To demonstra	te the basics of MPI in the context of distributed	l memo	ry ar	chite	cture	э.
6. To familiarize	with GPGPU device architecture and accelerate	ed code	e usir	ng Cl	JDA	
Course Outcome						
Upon successful com	ipletion of the course the students will be able to			+-	مام	
2 Analyze time	profile benchmark and optimize serial codes	progra		ig io	ois.	
2. Analyze une, 3. Demonstrate	ability to use documentation system, debuggin	a syste	m h	blin	eveti	≥m
version contro	ability to use decamentation system, debuggin of system profiler program analyzer etc	g 39310	лп, к	unu	Syst	<i></i> ,
4. Understand p	arallelizing mechanisms in modern computer ar	nd be al	ble to	o use	e cac	he.
data-locality,	branch-prediction, virtual memory etc and shall	be abl	e to	explo	oit th	iem
to write better	performing programs.			•		
Develop paral	lel program on a shared memory architecture us	sing Op	enM	Ρ.		
6. Write parallel	program for a distributed memory architecture u	ising M	PI.			
7. Use GPGPU	to accelerate program performance using SIMD	archite	cture).		
	C and Linux Environment				1 60	
History of computing	and computers. Moore's law and saturation	Multice	no n	atur	<u>+ 110</u>	the
computers and super	-computers Amdahl's law ton500 org Challen	aina nr	hler	ns th	at n	eed
high-performance He	ow to get Linux? Linux on a USB stick dual b	oot sve	stem	Bas	sic li	nux
literacy - Is. cp. mv. c	cd. mkdir. cut. curl. indirection. tee. pipe. top. h	ead. tai	l. are	ep. s	ed. s	ssh.
scp, .bashrc, .bash p	profile, .bash history.	,	<i>,</i> ,	1,	,	,
Module:2 Pro	ofessional Code Development Practices			(6 ho	urs
Editors: vim, emacs,	compilers: gcc, g++, gfortran, nvcc, debugging:	gdb, d	dd, I	DEs:	ecli	pse
(,netbeans, Visual S	tudio), version control system: git (,svn), build	systen	n: m	ake,	cma	ıke,
documentaion : dox	ygen (,sphinx), scripting: shell scripting, awl	k script	ting,	usir	ng H	PC
machine: PBS scripts	s, job scheduling, environment modules, best p	ractices	for	repro	oduc	ible
Modulo:3 Mo	dorn Computors and Program Ontimization				1 ho	ure
Clock cycle Memory	types (Pegisters 11 cache 12 cache 13 ca	che P	<u> </u>	991		
intranet internet) an	id its significance in latency virtual memory na	adina r	ineli	nina	bra	nch
prediction architectu	re based optimization	, P	npen	inig,	bru	
Compiler Flags: inlin	ing, loop-unrolling, data-contiguity, improving l	latencv	bv d	lata	loca	litv.
gdb- debugging the	code, .gdbinit, preprocessor directives, Appro	priate s	selec	tion	of d	ata
structures and algorit	hms, timing and profiling: time, gprof.					
Module:4 An	alysis Tools and Optimization of Serial Code	•		4	4 ho	urs
Instrumentation of t	he code: google-tools, scorep, TAU, Use o	f Libra	ries	- L/	APA	CK,
SCALAPACK, netlib,	Benchmarking and its importance, Interoperate	oility be	twee	n lar	ngua	ges
C-Fortran, creating lik	prary: sharing developed features without sharin	n <mark>g full c</mark> e	ode.			
Module:5 Sha	ared Memory Architecture (Open MP)				4 ho	urs

most compliers lack the implementation, data dependancies: flow dependency, an dependency, output dependency, Granularity of parallelism; fine vs coarse, Synchronizatio	аι,						
dependency, output dependency, Granularity of parallelism; fine vs coarse, Synchronizatio	most compliers lack the implementation, data dependencies: flow dependency, anti-						
dependency, output dependency, Granularity of parallelism: fine vs coarse, Synchronization,							
Atomic operations,omp_set_num_threads, omp_get_num_threads, omp_get_max_threads,							
omp_get_wtime, omp_get_wtick, omp_set_nested, OMP parallel, parallel loop, parallel							
sections for, private, firstprivate, lastprivate, reduction, schedule, collapse, ordered, nowa	ait,						
OMP section, single, master, critical, task, barrier, taskwait, flush, cancel, cancellation point,							
Accelerator off-loading (simd, declare simd, loop simd, target data, declare target, target							
update, teams, distribute simd, distribute parallel), Debugging, Profiling and selection	of						
code to be parallelized. Performance evaluation: speedup, latency.							
Module:6 Distributed Memory Architecture (MPI) 3 hou	rs						
Open MPI library and how to build it. basic MPI - Message Passing Interface prograr	m,						
Blocking and non-blocking communication, Importance of minimizing communicatio	n,						
MPI_Init, MPI_Finalize, MPI_Comm_rank, MPI_Comm_size, MPI_COMM_WORLD,							
MPI_Get_processor_name, MPI_Send, MPI_Recv, MPI_Bcast,MPI_Reduce,MPI_Allreduc	е						
Module:7 Hybrid Computing 3 hou	rs						
GPU architecture, SIMD instruction, NVidia and CUDA, (OpenCL - much broad	er						
applicability but complex), thread, block, grid, warp concepts, Nsight IDE, GPU kernels ar	nd						
best code local data shared data global data data transfers synchronization narallel							
host code, local data, shared data, global data, data transfers, synchronization, parall	lel						
host code, local data, shared data, global data, data transfers, synchronization, parall algorithms and design patterns	lel						
host code, local data, shared data, global data, data transfers, synchronization, parall algorithms and design patterns Module:8 Contemporary Issues 2 hou	lel rs						
host code, local data, shared data, global data, data transfers, synchronization, parall algorithms and design patterns Module:8 Contemporary Issues 2 hou	lel rs						
host code, local data, shared data, global data, data transfers, synchronization, parall algorithms and design patterns Module:8 Contemporary Issues 2 hou	iel rs						
host code, local data, shared data, global data, data transfers, synchronization, parall algorithms and design patterns Module:8 Contemporary Issues 2 hou Total Lecture hours 30 hou	rs						
host code, local data, shared data, global data, data transfers, synchronization, parall algorithms and design patterns Module:8 Contemporary Issues 2 hou Total Lecture hours 30 hou Text Book(s)	rs						
host code, local data, shared data, global data, data transfers, synchronization, parall algorithms and design patterns Module:8 Contemporary Issues 2 hou Total Lecture hours 30 hou Text Book(s) 1. George Hager, Gerhard Wellein - Introduction to High Performance Computing for	rs rs						
host code, local data, shared data, global data, data transfers, synchronization, parall algorithms and design patterns Module:8 Contemporary Issues 2 hou Total Lecture hours 30 hou Text Book(s) 1. George Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010.	rs						
host code, local data, shared data, global data, data transfers, synchronization, parall algorithms and design patterns Module:8 Contemporary Issues 2 hou Total Lecture hours 30 hou Text Book(s) 1. George Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books	rs						
host code, local data, shared data, global data, data transfers, synchronization, parall algorithms and design patterns Module:8 Contemporary Issues 2 hou Total Lecture hours 30 hou Text Book(s) 1. George Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-	rs						
host code, local data, shared data, global data, data transfers, synchronization, parall algorithms and design patterns Module:8 Contemporary Issues 2 hou Total Lecture hours 30 hou Text Book(s) 1. George Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General- Purpose GPU Programming 1st Edition.	rs						
host code, local data, shared data, global data, data transfers, synchronization, parall algorithms and design patterns Module:8 Contemporary Issues 2 hou Total Lecture hours 30 hou Text Book(s) 1. George Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General- Purpose GPU Programming 1st Edition. Mode of Evaluation: Continuous assessment test, Programming assignments, Quiz and	rs						
host code, local data, shared data, global data, data transfers, synchronization, parall algorithms and design patterns Module:8 Contemporary Issues 2 hou Total Lecture hours 30 hou Text Book(s) 1. George Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General- Purpose GPU Programming 1st Edition. Mode of Evaluation: Continuous assessment test, Programming assignments, Quiz and Final assessment test	rs						
host code, local data, shared data, global data, data transfers, synchronization, parall algorithms and design patterns Module:8 Contemporary Issues 2 hou Total Lecture hours 30 hou Text Book(s) 1. George Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General- Purpose GPU Programming 1st Edition. Mode of Evaluation: Continuous assessment test, Programming assignments, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022	rs						

MCFD607P High Performance Computing Lab 0 0 1 1 Pre-requisite NIL Syllabus version 1.0 Course Objectives 1.0 0 1.0 Course Objectives 1.0 0 1.0 Course Objectives 1.0 Course Objectives 1.0 Course outcome 0 1.0 Course Outcome 0 0.0 0.0 Upon successful completion of the course, students will be able to 1. Analyze time, profile, benchmark and optimize serial codes. 2. Analyze time, profile, benchmark and optimize serial codes. 2. 0.0	Course code		Course Tit	le			L	Т	Ρ	С
Pre-requisite NL Syllabus version 1.0 1.0 Course Objectives 1.0 2. To develop understanding of programming best practices, productivity tools and linux operating system in general. 1. To develop understanding of modern computers and program execution, program efficiency and optimization procedures. 3. To teach parallel code development using OpenMP, MPI and GPGPU. Course Outcome Upon successful completion of the course, students will be able to 1. Analyze time, profile, benchmark and optimize serial codes. 2. Apply parallelizing mechanisms in modern computer and be able to use cache, data-locality, branch-prediction, virtual memory architecture using OpenMP. 4. Write parallel program on a shared memory architecture using OpenMP. 4. Write parallel program for a distributed memory architecture using MPI. Indicative Experiments 1. Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuplot, gft, gdb, cmake, nvida-nsight, metis, open MPI, TAU. 2. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control 3. Using gdb debug and fix issues in provided programs. 4. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. 5. For a given Poisson's equation program, experiment with optimization fla	MCFD607P	High Perf	ormance Co	mputing	Lab		0	0	2	1
1.0 Course Objectives 1. To develop understanding of programming best practices, productivity tools and linux operating system in general. 2. To impart knowledge on working of modern computers and program execution, program efficiency and optimization procedures. 3. To teach parallel code development using OpenMP, MPI and GPGPU. Course Outcome Upon successful completion of the course, students will be able to 1. Analyze time, profile, benchmark and optimize serial codes. 2. Apply parallelizing mechanisms in modern computer and be able to use cache, data-locality, branch-prediction, virtual memory to write better performing programs. 3. Develop parallel program on a shared memory architecture using OpenMP. 4. Write parallel program for a distributed memory architecture using MPI. Indicative Experiments 1. Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuplot, git, gdb, cmake, nvidia-nsight, metis, open MPI, TAU. 2. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control 3. Using gdb debug and fix issues in provided programs. 4. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. 5. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. </th <th>Pre-requisite</th> <th>NIL</th> <th></th> <th></th> <th></th> <th>Syl</th> <th>llabu</th> <th>IS V</th> <th>ers</th> <th>ion</th>	Pre-requisite	NIL				Syl	llabu	IS V	ers	ion
Course Objectives I. To develop understanding of programming best practices, productivity tools and linux operating system in general. Zo impart knowledge on working of modern computers and program execution, program efficiency and optimization procedures. To teach parallel code development using OpenMP, MPI and GPGPU. Course Outcome Upon successful completion of the course, students will be able to Analyze time, profile, benchmark and optimize serial codes. Apply parallelizing mechanisms in modern computer and be able to use cache, data-locality, branch-prediction, virtual memory to write better performing programs. Develop parallel program on a shared memory architecture using OpenMP. Write parallel program for a distributed memory architecture using MPI. Indicative Experiments Indicative Experiments Indicative Experiments Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control Using gdb debug and fix issues in provided programs. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Total Laboratory Hours 30 hours Text Book(s) Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Compute mesh-partition	O a sum a Ohia at						1	.0		
 To develop understanding of programming best practices, productivity tools and linux operating system in general. To impart knowledge on working of modern computers and program execution, program efficiency and optimization procedures. To teach parallel code development using OpenMP, MPI and GPGPU. Course Outcome Upon successful completion of the course, students will be able to Analyze time, profile, benchmark and optimize serial codes. Apply parallelizing mechanisms in modern computer and be able to use cache, data-locality, branch-prediction, virtual memory to write better performing programs. Develop parallel program on a shared memory architecture using OpenMP. Write parallel program on a shared memory architecture using OPENMP. Write parallel program for a distributed memory architecture using MPI. Indicative Experiments Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuplot, git, gdb, cmake, nvidia-nsight, metis, open MPI, TAU. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control Using gdb debug and fix issues in provided programs. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Comment on the improvement. Total Laborator	Course Object	IVES		-1		41	<u>+</u>		يا اه	
 To impart knowledge on working of modern computers and program execution, program efficiency and optimization procedures. To teach parallel code development using OpenMP, MPI and GPGPU. Course Outcome Upon successful completion of the course, students will be able to Analyze time, profile, benchmark and optimize serial codes. Apply parallelizing mechanisms in modern computer and be able to use cache, datalocality, branch-prediction, virtual memory to write better performing programs. Develop parallel program on a shared memory architecture using OpenMP. Write parallel program for a distributed memory architecture using MPI. Indicative Experiments Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuptot, git, gdb, cmake, nvida-nsight, metis, open MPI, TAU. Write a complete program for 10 Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control Using gdb debug and fix issues in provided programs. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. Improve data locality using METIS and implement MPI parallelization. Compare performance. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Compute m	1. To develo	p understanding of pro	gramming be	est practio	ces, produc	clivity	toois	s an	a iir	nux
 To impart Nowledge of working of modelli complete and program efficiency and optimization procedures. To teach parallel code development using OpenMP, MPI and GPGPU. Course Outcome Upon successful completion of the course, students will be able to Analyze time, profile, benchmark and optimize serial codes. Apply parallelizing mechanisms in modern computer and be able to use cache, data-locality, branch-prediction, virtual memory to write better performing programs. Develop parallel program on a shared memory architecture using OpenMP. Write parallel program for a distributed memory architecture using MPI. Indicative Experiments Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuplot, git, gdb, cmake, nvidia-nsight, metis, open MPI, TAU. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control Using gdb debug and fix issues in provided programs. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. 	operating s	system in general.	ag of mode	rn oomn	utoro and	progr	om	<u></u>	outi	ion
 To teach parallel code development using OpenMP, MPI and GPGPU. Course Outcome Upon successful completion of the course, students will be able to Analyze time, profile, benchmark and optimize serial codes. Apply parallelizing mechanisms in modern computer and be able to use cache, data-locality, branch-prediction, virtual memory to write better performing programs. Develop parallel program on a shared memory architecture using OpenMP. Write parallel program on a shared memory architecture using MPI. Indicative Experiments Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuplot, git, gdb, cmake, nvida-nsight, metis, open MPI, TAU. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control Using gdb debug and fix issues in provided programs. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. Improve data locality using METIS and implement MPI parallelization. Compare performance of a given Unstructured FE code. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Compute mesh-partition using METIS and implement MPI parallelization. Compare pe	2. TO impart	fficiency and ontimization	ng of mode	ni comp	ulers and	progra	am	exe	cuu	on,
 Course Outcome Upon successful completion of the course, students will be able to 1. Analyze time, profile, benchmark and optimize serial codes. 2. Apply parallelizing mechanisms in modern computer and be able to use cache, datalocality, branch-prediction, virtual memory to write better performing programs. 3. Develop parallel program on a shared memory architecture using OpenMP. 4. Write parallel program for a distributed memory architecture using OpenMP. 4. Write parallel program for a distributed memory architecture using OpenMP. 4. Write parallel program for a distributed memory architecture using MPI. Indicative Experiments 1. Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuplot, git, gdb, cmake, nvidia-nsight, metis, open MPI, TAU. 2. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control 3. Using gdb debug and fix issues in provided programs. 4. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. 5. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. 6. For a given unsteady LDC problem, time and instrument the code and analyse it with score /TAU. 7. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. 8. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. 9. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. 10. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Referenc	3 To teach n	arallel code developme	nt using One	s. nMP MP	l and GPG	рП				
Course Outcome Upon successful completion of the course, students will be able to 1. Analyze time, profile, benchmark and optimize serial codes. 2. Apply parallelizing mechanisms in modern computer and be able to use cache, data- locality, branch-prediction, virtual memory to write better performing programs. 3. Develop parallel program on a shared memory architecture using OpenMP. 4. Write parallel program for a distributed memory architecture using MPI. Indicative Experiments 1. Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuplot, git, gdb, cmake, nvidia-nsight, metis, open MPI, TAU. 2. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control 3. Using gdb debug and fix issues in provided programs. 4. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. 5. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. 6. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. 7. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. 8. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. 9. Compute mesh-partition using				, 1011		10.				
Upon successful completion of the course, students will be able to 1. Analyze time, profile, benchmark and optimize serial codes. 2. Apply parallelizing mechanisms in modern computer and be able to use cache, data-locality, branch-prediction, virtual memory to write better performing programs. 3. Develop parallel program on a shared memory architecture using OpenMP. 4. Write parallel program for a distributed memory architecture using MPI. Indicative Experiments 1. Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuplot, git, gdb, cmake, nvidia-nsight, metis, open MPI, TAU. 2. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control 3. Using gdb debug and fix issues in provided programs. 4. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. 5. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. 6. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. 7. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. 8. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. 9. Compute mesh-partition using METIS and implement MPI paralleliz	Course Outcor	ne								
 Analyze time, profile, benchmark and optimize serial codes. Apply parallelizing mechanisms in modern computer and be able to use cache, data- locality, branch-prediction, virtual memory to write better performing programs. Develop parallel program on a shared memory architecture using OpenMP. Write parallel program for a distributed memory architecture using MPI. Indicative Experiments Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuplot, git, gdb, cmake, nvidia-nsight, metis, open MPI, TAU. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control Using gdb debug and fix issues in provided programs. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Paralleliza e SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. 	Upon successfu	I completion of the cour	rse, students	will be al	ole to					
 Apply parallelizing mechanisms in modern computer and be able to use cache, datalocality, branch-prediction, virtual memory to write better performing programs. Develop parallel program on a shared memory architecture using OpenMP. Write parallel program for a distributed memory architecture using MPI. Indicative Experiments Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuplot, git, gdb, cmake, nvidia-nsight, metis, open MPI, TAU. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control Using gdb debug and fix issues in provided programs. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Comment on the improvement. Total Laboratory Hours 30 hours Text Book(s) Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books Jason Sanders, Edward Kandrot - CUDA by Example: An Introduct	1. Analyze tir	ne, profile, benchmark a	and optimize	serial co	des.					
 locality, branch-prediction, virtual memory to write better performing programs. Develop parallel program on a shared memory architecture using OpenMP. Write parallel program for a distributed memory architecture using MPI. Indicative Experiments Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuplot, git, gdb, cmake, nvidia-nsight, metis, open MPI, TAU. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control Using gdb debug and fix issues in provided programs. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Comment on the improvement. Total Laboratory Hours 30 hours Text Book(s) Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce	2. Apply para	allelizing mechanisms in	n modern co	mputer a	nd be able	to us	e ca	iche	, da	ata-
 Develop parallel program on a shared memory architecture using OpenMP. Write parallel program for a distributed memory architecture using MPI. Indicative Experiments Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuplot, git, gdb, cmake, nvidia-nsight, metis, open MPI, TAU. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control Using gdb debug and fix issues in provided programs. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Comment on the improvement. Total Laboratory Hours 30 hours Text Book(s)	locality, bra	anch-prediction, virtual i	memory to w	rite better	r performing	g prog	rams	S.		
 4. Write parallel program for a distributed memory architecture using MPI. Indicative Experiments Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuplot, git, gdb, cmake, nvidia-nsight, metis, open MPI, TAU. 2. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control Using gdb debug and fix issues in provided programs. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. 5. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. 6. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. 7. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. 8. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. 9. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Comment on the improvement. Total Laboratory Hours 30 hours Text Book(s) 1. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies. 27-05-2002	3. Develop pa	arallel program on a sha	ared memory	architect	ure using C	DpenM	1P.			
Indicative Experiments 1. Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuplot, git, gdb, cmake, nvidia-nsight, metis, open MPI, TAU. 2. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control 3. Using gdb debug and fix issues in provided programs. 4. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. 5. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. 6. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. 7. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. 8. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. 9. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. 10 Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Text Book(s) 1. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1.	4. Write para	llel program for a distrib	uted memory	/ architec	ture using l	MPI.				
 Setup linux development environment. Install compiler, eclipse, doxygen, graphviz, gnuplot, git, gdb, cmake, nvidia-nsight, metis, open MPI, TAU. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control Using gdb debug and fix issues in provided programs. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Total Laboratory Hours 30 hours Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce 	Indicative Exp	eriments								
 gnuplot, git, gdb, cmake, nvidia-nsight, metis, open MPI, TAU. Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control Using gdb debug and fix issues in provided programs. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Total Laboratory Hours Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. 	1. Setup linux	development environm	ent. Install c	ompiler, e	eclipse, dox	xygen,	grap	bhvi	Z,	
 Write a complete program for 1D Heat Diffusion problem using Finite Difference Method with unit test cases. demonstrate build system and git version control Using gdb debug and fix issues in provided programs. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Paralleliza SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce 	gnuplot, git	., gdb, cmake, nvidia-ns	ight, metis, o	pen MPI,	TAU.					
with unit test cases. demonstrate build system and git version control 3. Using gdb debug and fix issues in provided programs. 4. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. 5. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. 6. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. 7. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. 8. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. 9. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. 10 Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Text Book(s) 1. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce	2. Write a cor	nplete program for 1D H	leat Diffusior	n problem	using Finit	te Diffe	eren	ce N	/leth	lod
 Using gdb debug and fix issues in provided programs. Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Total Laboratory Hours 30 hours Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce 	with unit te	st cases. demonstrate b	build system a	and git ve	ersion contr	ol				
 Time and profile provided serial codes and identify the bottlenecks – opportunities of parallelization. For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Total Laboratory Hours 30 hours Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies 27-05-2022 	3. Using gdb	debug and fix issues in	provided pro	grams.						
 For a given Poisson's equation program, experiment with optimization flags. Compare timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Total Laboratory Hours 30 hours Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies 27-05-2022 	4. Time and p parallelizat	orofile provided serial co ion.	ides and ider	itify the b	ottlenecks	– oppo	ortun	lities	s of	
 timings of different solver algorithms. (Jacobi, GS, GS-SOR, ADI). Profile these codes. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Total Laboratory Hours 30 hours Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce 	5. For a giver	Poisson's equation pro	ogram, exper	iment wit	h optimizati	ion flag	gs. C	Com	pare	е
 6. For a given unsteady LDC problem, time and instrument the code and analyse it with scorep /TAU. 7. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. 8. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. 9. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. 10 Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Total Laboratory Hours 30 hours Text Book(s) 1. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies 27-05-2022 		lifferent solver algorithm	ns. (Jacobi, C	<u> SS, GS-S</u>	<u>OR, ADI). I</u>	-rofile	thes	<u>se c</u>	ode	S.
 7. Parallelize a SIMPLE program using OpenMP. Compare timing and compute speedup. Instrument and Analyze the code. 8. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. 9. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. 10 Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Total Laboratory Hours 30 hours Text Book(s) 1. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies 27-05-2022 	6. For a giver scorep /TA	Unsteady LDC problem	n, time and in	strument	the code a	and an	alyse	e it v	with	
Instrument and Analyze the code. 8. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. 9. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. 10 Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Total Laboratory Hours 30 hours Text Book(s) 1. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies	7. Parallelize	a SIMPLE program usir	ng OpenMP.	Compare	e timing and	l comp	oute	spe	edu	p.
 8. Improve data locality using METIS graph-partitioning library. Compare performance of a given Unstructured FE code. 9. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. 10 Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Total Laboratory Hours 30 hours Text Book(s) 1. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies 27-05-2022 	Instrument	and Analyze the code.								
 9. Compute mesh-partition using METIS and implement MPI parallelization. Compare performance. 10 Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. 30 hours Text Book(s) 1. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce 	8. Improve da	ita locality using METIS	graph-partiti	oning libr	ary. Compa	are pe	rtorn	nan	ce c	of a
 9. Compute mesh-partition using METRS and implement MPT parallelization. Compare performance. 10 Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Total Laboratory Hours 30 hours Text Book(s) 1. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies 27-05-2022 	given Unst	ructured FE code.	TIC and impl			ation	Con			
10 Convert the IO operations in a given program to use binary read-write to improve IO performance. Comment on the improvement. Total Laboratory Hours 30 hours Text Book(s) 1. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies	berforman	nesh-paruluon using ME	no anu impi			auon.	Cou	npa	е	
Total Laboratory Hours 30 hours Text Book(s) 1. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies	10 Convert the	- IO operations in a give	en program to	use hin:	arv read-wr	ite to i	mpro	nve	10	
Total Laboratory Hours 30 hours Text Book(s) 30 hours 1. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General-Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies 27-05-2022	performance	ce Comment on the imp	provement		ary roud wi		mpr	000	10	
Text Book(s) 1. Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General- Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies 27-05-2022			То	tal Labo	ratorv Hou	rs 30	0 ho	urs		
 Georg Hager, Gerhard Wellein - Introduction to High Performance Computing for Scientists and Engineers, CRC Press, Taylor & Francis Group, 2010. Reference Books Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General- Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies 27-05-2022 	Text Book(s)					_				
Reference Books 1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General- Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies 27-05-2022	1. Georg Hag	er, Gerhard Wellein -	Introduction	to High Francis (Performan	ce Co	mpu	iting	foi	r
1. Jason Sanders, Edward Kandrot - CUDA by Example: An Introduction to General- Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies 27-05-2022	Reference Boo		33, Taylor &		<u>Jioup, 2010</u>	J.				
Purpose GPU Programming 1st Edition. Mode of assessment: Continuous assessment / Lab FAT / Viva voce Recommended by Board of Studies 27-05-2022	1. Jason San	ders. Edward Kandrot	- CUDA by	Example	e: An Intro	oductio	on tr) G	ene	ral-
Mode of assessment: Continuous assessment / Lab FAT / Viva voce	Purpose GF	PU Programming 1st Ed	lition.	Example	. <i>,</i>			. 0	5110	
Recommended by Board of Studies 27-05-2022	Mode of assess	ment: Continuous asse	ssment / Lab	FAT / Vi	va voce					
LI VO LVLL	Recommended	by Board of Studies	27-05-2022							
Approved by Academic Council No. 66 Date 16-06-2022	Approved by Ac	ademic Council	No. 66	Date	16-06-202	22				

Course Co	de	Course Title		L	Т	Ρ	С
MCFD608L	-	Numerical Simulation of Environmental and Atmospheric Flows		3	0	0	3
Pre-requis	ite	NIL	Sy	llab	us v	ersi	on
					1.0		
Course Ob	ojective	es					
2. To e 3. To e	 representation of the governing equations of Environmental and Atmospheric Flows. 2. To enable students to understand cutting edge global issues in a warming planet. 3. To help students learn research trends through a research component within the remit of environmental and atmospheric flows. 						
Course Ou	itcome						
Upon comp 1. Pos atm 2. Unc 3. Inte 4. Der insig cha	 Course Outcome Upon completion of the course the students will be able to Possess knowledge of heat and mass transfer applications in environmental and atmospheric flows. Understand the principles of environmental and atmospheric flows. Interpret energy climate data pools sourced globally and write research papers. Demonstrate how atmospheric processes are linked to the dynamics and gain an insightful understanding of the physico-chemical processes leading to climate change 						
Modulo:1	Over	viow			5	hou	
woulde. I	Over	view			5	not	112
Overview of mechanics, volcanic an	of fund , green d soil a	amental physical processes that shape climate. So house gases, Scales of motion, atmospheric and oc aerosols.	lar va eanic	ariab circu	ility, ilatic	orb on, a	ital ind
Module:2	Fund	amentals of Atmospheric Processes			5	hou	Jrs
N-S equation The <i>f</i> -plan	ons. Co le, the j	priolis force. Rossby number. Equations of motion in C β -plane. Geostrophic flows. Vorticity and potential vor	artesi ticity.	an c	oord	linat	es.
Module:3	Energ	gy Climate Dynamics			6	hou	Jrs
Hydrostatic and diffusi Simulation	balano on pro technic	ce. Derivation of the Potential Temperature. States of oblems. Parcel Concepts. Thermal wind equation. ques in large-scale flows.	stabili Gene	ty. S ral	trati Circ	ficat ulati	ion on.
Module:4	Therr	modynamical Processes			8	hou	Jrs
Principles of Thermodyn motions. M	of Ener namic E oist an	gy, Entropy and Enthalpy. The First and Second law Energy Equations. Vertical structure and change of d Pseudo-adiabatic processes.	of Th state	erm due	odyr to	iami verti	cs. cal
Module:5	Boun	dary Layer Processes			5	hοι	ırs
Expanded the momen	continu Itum eq	uity equations. Cloud-fog physics. Boundary layer ph quation in urban boundary layer.	ysics.	Арр	licat	ions	of
Module:6	Shall	ow Water model theory			7	hou	ırs
Approximat approximat	tions to ions. P	N-S equations: Shallow Water (SW) equations, Bous otential vorticity and conservation properties.	ssines	q an	d Ar	nelas	stic
Module:7	Nume	erical methods in Boundary layer Processes ding large scale flows			7	hou	ırs
Coriolis ac	celerat	ion configuration. Mass conservation equation imple	menta	ation	. Bo	und	ary
conditions.	Introdu	uction of zonal jets and currents. Large scale perturba	tions a	and g	geos	trop	hic

equ	equilibrium.						
Мо	dule:8	Contemporary issues			2	hours	
			Total Le	ecture ho	urs: 45	hours	
Tex	ktbook(S)					
1.	Fundar	mentals of Atmospheric M idge University Press, U k	odelling. Mark Ja	cobson. 2 548659 IS	nd Edition (2005). Publ BN-13: 978-05215486	lisher: 56	
	Cumbi		(. 10BN 10. 0021)		BIT 10: 010 002 10 100		
2.	Ocean	Modelling for Beginner	rs. Jochen Kär	npf. 1 st E	dition (2009). Publis	sher:	
Det	Spring	er, Berlin, Heidelberg. ISB	SIN 978-3-642-008	519-1			
Re	rerence	BOOKS					
1.	Geoph New Y	ysical Fluid Dynamics. Jo ork. ISBN 978-0-387-9638	seph Pedlosky. 2 38-4	2 nd Edition	(1987). Publisher: Sp	oringer,	
2.	Introdu	ction to Geophysical Flu	id Dynamics, Ph	ysical and	Numerical Aspects.	Benoit	
	Cushm Massa	an-Roisin & Jean-Marie E chusetts. Hardcover ISBN	Beckers (2011). F I: 978012088759	Publisher: . D	Academic Press, Cam	ıbridge,	
3.	Compt (2002)	Itational Methods in Enviro	onmental Fluid M	echanics.	Kolditz Olaf. 1 st Editio	n	
4	Atmos	ohere Ocean and Climat	e Dynamics Johr	n Marshall	and Alan Plumb 1 st F	dition	
	(2007)	Elsevier Academic Press	s. USA. ISBN-10:	01255869	014 ISBN-13: 978-	annon	
	0125586917						
Мо	de of Ev	aluation: CAT, written ass	signment, Quiz ar	nd FAT			
Re	commer	ded by Board of Studies	27-05-2022				
Ар	proved b	y Academic Council	No. 66	Date	16-06-2022		

Course Code Course Title L T					
MCFD609L	Modeling and Simulation of Energy System	s 3003			
Pre-requisite	NIL	Syllabus version			
-		1.0			
Course Objectiv	/es				
1. To impart kn	owledge on various energy conversion technologies.				
2. To apply the	dynamic, linear and geometric programming for solvir	ng problems related to			
energy syste	ms.				
3. To provide	the mathematical aspects and optimization of va	rious thermodynamic			
systems.					
Course Outcom	•				
	completion of this course students will be able to				
1 Analyse the	various parameters for optimization in workable system	ne			
2 Apply the ma	thematical concents to carry out the system simulation	1 5 .			
3 Ontimize ene	ray systems and their related components	1.			
4 Understand t	he relations between thermodynamic properties involv	ed in energy systems			
5 Develop mat	nematical models for various energy systems and com	inonents			
Module:1 Ove	rview of Energy Systems	6 hours			
Overview of vari	ous technologies and energy conversion. Workable a	nd Optimum systems.			
Economics of	Energy Systems. Polynomial representations. La	grange interpolation.			
Exponential Forr	ns, Equation fitting.	551 ,			
Module:2 Sys	tem Simulation	4 hours			
Classes of simul	ation, Sequential and simultaneous calculations, Succ	essive substation,			
Taylor's series a	nd Newton Raphson methods.	7 hours			
Mothematical ra	neccontation of optimization problems. Optimization	riouis			
	presentation of optimization problems, optimization	Coofficients Soarch			
Methods Dich	stomous search Eibonacci search Lattice search Lini	variate search			
Module:4 The	rmal System Analysis				
Pattern and Ch	aracteristics of Dynamic programming solutions A	narently constrained			
problems Geor	petric programming. Mechanics of Solutions for one	independent variable			
Linear Program	ming Mathematical statement and Geometric Vi	sualization of Linear			
programming pro	blem. Simplex algorithm.				
Module:5 Mo	deling of Thermodynamic Properties	6 hours			
Need for ma	thematical Modeling, Linear and non-linear F	Regression analysis,			
Thermodynamic	properties, Internal energy and entropy, pressure-ter	nperature relationship			
at saturated con	ditions, Maxwell relations.	· ·			
Module:6 Des	gn of Heat Exchangers	6 hours			
Design of Heat	exchangers - parallel flow, counter flow, Evaporat	ors and Condensers,			
Effectiveness, N	TU, Pressure drop and Pumping power.				
Module:7 Nur	nerical analysis of thermodynamic	7 hours			
sys	tems				
Simulation and	optimization of thermal power plant components,	Solar collector, Wind			
turbine, hydrauli	turbine and draft tubes, Gas turbine and compressor	S.			
Module:8 Cor	temporary Issues	2 hours			
ļ,		-			
	Total Lecture hours:	45 hours			
1. W.F. Stoeck	er, Design of Thermal Systems, 4" Edition, McGraw-F	HIII BOOK Company,			

	2003, ISBN 9780072373431							
2.	Y, Jaluria, Design and Optimization of Thermal Systems, 2 nd Edition, McGraw Hill,							
	2007		-					
Ref	erence Books							
1.	Hoseyn Sayyaadi, Modeling, Assessment, and Optimization of Energy Systems,							
	Academic Press, 2021, ISBN 978-0	0-12-816656-	7.					
Мо	de of Evaluation: CAT / written assig	nment / Quiz	/ FAT / F	Project				
	-			-				
Mode of assessment: Continuous assessment / FAT / Oral examination and others								
Ree	Recommended by Board of Studies 27-05-2022							
Арр	Approved by Academic Council No. 66 Date 16-06-2022							

Cou	se code	Course Title	L	Т	Ρ	С
MEN	G501P	G501P Technical Report Writing				2
Pre-I	e-requisite Nil				s ver	sion
	-			1	.0	
Cou	se Objectiv	es				
1.To	develop writi	ng skills for preparing technical reports.				
2. To	analyze and	evaluate general and complex technical information.				
3. To	enable profi	ciency in drafting and presenting reports.				
Сош	se Outcome	3				
	e end of the	course the student will be able to				
1 Co	nstruct error	free sentences using appropriate grammar vocabulary	and s	tvle		
$2 \Delta r$	nly the adva	nced rules of grammar for proofreading reports				
2. Ap	orprot inform	ation and concents in proparing reports.				
		ation and concepts in preparing reports.				
4. De	emonstrate th	le structure and function of technical reports.				
5. Im	prove the ab	ility of presenting technical reports.				
Indic	ative Experi	ments				
	Basics of T	echnical Communication				
1.	General and	d Technical communication,				
	Process of a	communication, Levels of communication				
	Vocabulary	/& Editing				
2.	Word usage	e: confusing words, Phrasal verbs				
	Punctuation	and Proof reading				
2	Advanced	Grammar - Tongo Dereon Number				
3.	Shifts: Voice	e, Tense, Person, Number				
	Clarity. Pror	f Technical writing				
1	Developing	n reclinical writing paragraphs. Eliminating uppecessary words. Avoiding (olichó	e and	l elar	ha
4.	Sentence cl	arity and combining		s and	i siai	iy
	The Art of	condensation				
5	Steps to eff	ective precis writing				
0.	Paraphrasir	a and summarizing				
6.	Technical F	Reports: Meaning, Objectives, Characteristics and Cate	eaorie	s		
_	Formats of	reports and Prewriting: purpose, audience, sources of	of info	- rmati	on.	
7.	organizing t	he material			. ,	
_	Data Visua	lization				
8.	Interpreting	Data - Graphs - Tables - Charts - Imagery - Info grap	ohics			
0	Systematiz	ation of Information: Preparing Questionnaire				
9.	Techniques	to Converge Objective-Oriented data in Diverse Techn	ical R	epor	ts	
10	Research a	nd Analyses: Writing introduction and literature review	, Refe	erend	e sty	/les,
10.	Synchronize	e Technical Details from Magazines, Articles and e-cont	tent		-	
	Structure of	of Reports				
11	Title – Prefa	ace – Acknowledgement - Abstract/Summary – Introduc	ction -	Mat	erials	s and
	Methods – I	Results – Discussion - Conclusion - Suggestions/Reco	mmen	datio	ons	
12	Writing the	Report: First draft, Revising,				
12.	Thesis state	ement, Developing unity and coherence				
13	Writing sci	entific abstracts: Parts of the abstract, Revising the ab	ostrac	t		
10.	Avoiding Pla	agiarism, Best practices for writers				
14	Supplemen	itary Texts				
	Appendix –	Index – Glossary – References – Bibliography - Notes				
15	Presentatio	on				

	Due sentine Teshnisel Deneute						
	Presenting Technical Reports						
	Planning, creating anddigital pres	entation of re	eports				
		Tota	al Labora	tory hours :	60 hours		
Text	Book(s)						
1.	Raman, Meenakshi and Sangeeta Sharma, (2015).Technical Communication: Principles and Practice, Third edition, Oxford University Press, New Delhi.						
Refe	erence Books						
1.	Aruna, Koneru, (2020). Englis Education, Noida.	h Language	Skills f	or Engineers	. McGraw Hill		
2.	Rizvi,M. Ashraf (2018)Effective Hill Education, Chennai.	Technical Co	ommunica	ation Second	Edition. McGraw		
3.	Kumar, Sanjay and Pushpalatha, (2018). English Language and Communication Skills for Engineers, Oxford University Press.						
4.	Elizabeth Tebeaux and Sam Dragga, (2020).The Essentials of Technical Communication, Fifth Edition, Oxford University Press.						
Mode	e of Evaluation : Continuous Asses	ssment Tests,	Quizzes	, Assignment,	Final		
Asse	Assessment Test						
Reco	ommended by Board of Studies	19-05-2022					
Appr	oved by Academic Council	No. 66	Date	16-06-2022			
	· · · · ·		1				

Course Co	de	Course Title	L	Т	Ρ	С	
MSTS501P		Qualitative Skills Practice	0	0	3	1.5	
Pre-requisi	te	Nil	Sylla	abus	s ver	sion	
				1.	.0		
Course Obj	jective						
1. IO	develo	p the quantitative ability for solving basic level problems	s.				
2. 10	improv	e the verbal and professional communication skills.					
	4						
At the end	tcome	course, the student will be able to					
		incontract analytical skills					
		ppropriate analytical skills.					
2. 30	ve proi	beins pertaining to quantitative and reasoning ability.					
J. Lea		ter vocabulary for workplace communication.					
4. Dei	nonsu	ate appropriate benavior in an organized environment.					
	Busir	ness Etiquette: Social and Cultural Etiquette; Writing	a				
Module:1	Com	pany Blogs; Internal Communications and Planning	:		9 ho	ours	
	Writi	ng press release and meeting notes					
Value, Man	ners-	Netiquette, Customs, Language, Tradition, Building a	blog	, De	velo	ping	
brand mess	age, F	AQs', Assessing Competition, Open and objective Cor	nmur	nicat	ion,	Two	
way dialogu	ue, Un	derstanding the audience, Identifying, Gathering Infor	matic	n,. /	Analy	ysis,	
Determining	, Sele	cting plan, Progress check, Types of planning, Write	eas	shor	t, ca	tchy	
headline, G	et to th	ne Point –summarize your subject in the first paragrap	h., B	ody-	- Ma	ke it	
relevant to y	our au	idience.					
Module:2	Time	management skills			3 ho	ours	
Prioritizatior	ı, Proc	rastination, Scheduling, Multitasking, Monitoring, Worki	ng un	der	pres	sure	
and adherin	g to de	eadlines					
	Prese	entation skills – Preparing presentation; Organizing					
Module:3	mate	rials; Maintaining and preparing visual aids; Dealing	J		7 ho	ours	
	with	questions	<u>.</u>				
Tu lips to	prepar	e PowerPoint presentation, Outlining the content, Pas	sing	the	Elev	ator	
Test, Blue	sky ini	inking, introduction, body and conclusion, Use of Fo	nt, C	ise antii	or Co	DIOF,	
Sudionco	Docian	of postors. Sotting out the ground rules. Dealing	lU Ga	intor	ale	your	
Staving in c	ontrol	of the questions. Handling difficult questions		IIICI	Tupu	0115,	
		titative Ability 1.1. Number properties: Averages:					
Module:4	Prog	ressions: Percentages: Ratios		-	11 ho	ours	
Number of	factors	, Factorials, Remainder Theorem, Unit digit position,	Tens	digi	t pos	sition,	
Averages, \	Weight	ed Average, Arithmetic Progression, Geometric Prog	ressi	on,	Harr	nonic	
Progression	rogression, increase and Decrease or Successive increase, Types of ratios and						
proportions.							
Module:5	Reas	oning Ability - L1 – Analytical Reasoning			8 ho	ours	
Data Arrang	gement	(Linear and circular & Cross Variable Relationship), Blo	ood R	elat	ions,		
Ordering / ra	anking	/ grouping, Puzzle test, Selection Decision table.					
Module:6	Verba	al Ability -L1 – Vocabulary Building			7 ho	ours	

Synonyms & Antonyms, One word substitutes, Word Pairs, Spellings, Idioms, Sentence completion, Analogies.

	Total Lecture hours: 45 hours						
Ref	erence Books						
1.	Kerry Patterson, Joseph Grenny, Ron McMillan and Al Switzler, (2017).2 nd Edition, Crucial Conversations: Tools for Talking when Stakesare High .McGraw-Hill Contemporary, Bangalore.						
2.	Dale Carnegie,(2016).How to Win Friends and Influence People. Gallery Books, New York.						
3.	Scott Peck. M, (2003). Road Less Travelled. Bantam Press, New York City.						
4.	SMART, (2018). Place Mentor, 1 st edition. Oxford University Press, Chennai.						
5.	FACE, (2016). Aptipedia Aptitude Encyclopedia. Wiley publications, Delhi.						
6.	ETHNUS, (2013). Aptimithra. McGraw – Hill Education Pvt .Ltd, Bangalore.						
Web	osites:						
1.	www.chalkstreet.com						
2.	www.skillsyouneed.com						
3.	www.mindtools.com						
4.	www.thebalance.com						
5.	www.eguru.ooo						
Moc Test	Node of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final Assessment						
Rec	ommended by Board of Studies 19-05-2022						
Арр	Approved by Academic Council No.66 Date 16-06-2022						

Course Co	de	Course Title	L	Т	Ρ	С	
MSTS502P	02P Quantitative Skills Practice 0 0			0	3	1.5	
Pre-requisi	te	Nil	Syllabus version				
				1.0			
Course Obj	jective	s:					
1. To	develo	p the students' advanced problem solving skills.					
2. 10	enhan	ce critical thinking and innovative skills.					
Course Out	tcome						
At th	e end	of the course, the student will be able to					
1. Crea	ate pos	itive impression during official conversations and inte	ervie	ws.			
2. Dem	ionstra	te comprehending skills of various texts.					
3. Impr	ove ac	vanced level thinking ability in general aptitude.					
4. Deve	elop er	notional stability to tackle difficult circumstances.					
Modulo:1	Resu	me skills - Resume Template; Use of power	verb	os;	21	oure	
wodule. I	Туре	s of resume; Customizing resume			21	iours	
Structure of	a star	dard resume, Content, color, font, Introduction to P	ower	verb	s and	Write	
up, Quiz c	on typ	es of resume, Frequent mistakes in customizi	ng r	esun	ne, La	ayout-	
Understand	ing diff	erent company's requirement, Digitizing career portf	olio.	-			
Module:2	Inter remo	view skills – Types of interview; Techniques to fa ote interviews and Mock Interview	ace		3 ł	iours	
Structured	and u	nstructured interview orientation. Closed question	ns a	and	hypoth	etical	
questions. I	ntervie	evers' perspective. Questions to ask/not ask during	no c nan	inter	view. V	Video	
interview, R	ecorde	ed feedback, Phone interview preparation, Tips to c	ustor	mize	prepa	ration	
for personal	intervi	ew, Practice rounds.					
	Emot	ional Intelligence - L1 – Transactional Analysis:	Brair	n			
Module:3	storn	ning; Psychometric Analysis; SWOT analysis		-	12 ł	ours	
Introduction	, Con	tracting, ego states, Life positions, Individual E	Srains	storm	ning, C	Group	
Brainstormir	ng, St	epladder Technique, Brain writing, Crawford's S	lip w	riting	appr	oach,	
Reverse bra	ainstorr	ning, Star bursting, Charlette procedure ,Round rob	in bra	ainsto	orming	, Skill	
Test, Persoi	nality T	est, More than one answer, Unique ways, SWOT ar	nalys	is.			
Module:4	Quai Prob Loga	ntitative Ability - L3–Permutation - Combin ability; Geometry and menstruation; Trigono arithms; Functions; Quadratic Equations; Set The	atior met eory	ns; ry;	14 H	ours	
Counting, G	Groupin	g, Linear Arrangement, Circular Arrangements, Co	onditi	onal	Proba	ıbility,	
Independen	t and	Dependent Events, Properties of Polygon, 2D &	3D	Figur	res, Ar	ea &	
Volumes, H	eights	and distances, Simple trigonometric functions, Intro	ductio	on to	logari	thms,	
Basic rules	asic rules of logarithms, Introduction to functions, Basic rules of functions, Understanding						
Quadratic E	quatio	ns, Rules & probabilities of Quadratic Equations, Ba	ISIC C	once	epts of	Venn	
uagram.	-			<u> </u>			
Module:5 Reasoning ability - L3 – Logical reasoning; Data Analysis and Interpretation					7 ł	ours	

Syllo	ogisms,	Binary logic, Sequentia	al output tra	cing, Crypto ar	ithmetic, Data Suffi	ciency, Data		
me	pretatio	n-Auvanceu, interpreta	alion lables,	pie charts & b				
Мос	lule:6	Verbal Ability - L3 – reasoning	Comprehe	nsion and Cr	itical	7 hours		
Rea	ding co	mprehension, Para Jur	nbles, Critic	al Reasoning (a) Premise and Co	nclusion,		
(b) A	Assump	tion & Inference, (c) St	rengthening	& Weakening	an Argument.			
				Tota	I Lecture hours:	45 hours		
Ref	erence	Books						
1.	Michae and U	el Farra and JIST Edito se an Effective Resum	ors,(2011).Q e in Just On	uick Resume & e Day. Jist Wo	& Cover Letter Bool orks, Saint Paul, Mir	k: Write Inesota.		
2.	Flage Thinki	Daniel E, (2003).The ng. Pearson, London.	e Art of Qu	iestioning: An	Introduction to C	Critical		
3.	David Pengu	Allen, (2015).Getting T in Books, New York C	hings done: ty.	The Art of Str	ess-Free productivi	ty.		
4.	SMAR	T, (2018). Place Mento	or 1 st edition	. Oxford Unive	rsity Press, Chenna	ai.		
5.	FACE	, (2016).Aptipedia Aptil	ude Encyclo	opedia. Wileyp	ublications, Delhi.			
6.	ETHN	US, (2013).Aptimithra.	McGraw-Hi	I Education P	rt Ltd, Bangalore.			
Web	osites:							
1.	www.c	halkstreet.com						
2.	www.s	killsyouneed.com						
3.	www.r	nindtools.com						
4.	www.thebalance.com							
5.	<u>www.</u> e	eguru.ooo						
Mod Ass	le of Eva essmen	aluation: Continuous As t Test	ssessment 7	ests, Quizzes	, Assignment, Final			
Rec	ommen	ded by Board of Studie	s19-05- 202	22				
Арр	Approved by Academic Council No.66 Date 16-06-2022							

Course code	Course Title	L T P C				
MFRE501L	Français Fonctionnel	3 0 0 3				
Pre-requisite	NIL	Syllabus version				
		1.0				
Course Objective	S					
1. Demonstra	e competence in reading, writing, and speaking ba	sic French, including				
knowledge	of vocabulary (related to profession, emotion	s, food, workplace,				
sports/hob	ies, classroom and family).					
2. Achieve p	ficiency in French culture oriented view point.					
Course Outcome						
At the end	of the course, the student will be able to					
1. Remembe	the daily life communicative situations via personal	pronouns, emphatic				
pronouns,	alutations, negations, interrogations etc.					
2. Create co	nmunicative skill effectively in French language vi	a regular / irregular				
verbs.						
3. Demonstra	e comprehension of the spoken / written language	in translating simple				
sentences						
4. Understan	and demonstrate the comprehension of some par	ticular new range of				
unseen wr	ten materials.					
5. Demonstra	e a clear understanding of the French culture th	rough the language				
studied.						
Salue	, Se présenter, Établir des contacts. Compéten	ces				
Module:1 en le	cture - consulter un dictionnaire, appliquer	des 9 hours				
strate	gles de lecture, lire pour comprendre.					
Les nombres car	inaux- Les 7 jours de la semaine-Les 12 mois de	l'annee- La date-Les				
salsons-Les Pron	ms personnels sujets-Les Pronoms Toniques- La co	njugaison des verbes				
reguliers- er / - ir /	re verbes (Le present)- La conjugaison des verbes in	reguliers- avoir /etre /				
	vouloir /pouvoir etc.					
Savoir-Taire pour.	saluer, et se presenter – epeler en trançais – comi	nuniquer en classe -				
	es pour comprendre un texte en trançais.	t(a)				
Module:2	iter queiqu'un, chercher un(e) correspondant	(e), 7 hours				
	s verbes Pronominaux (s'anneler/ s'amuser/ se pro	 mener)_ La Négation_				
L'interrogation ave	r 'Est-re que ou sans Est-re que'- Rénondez négativ	/ement				
Module:3 Situe	un objet ou un lieu. Poser des questions	6 hours				
Les articles (défi	i/ indéfini). Les prénositions (à/en/au/aux/sur/dan	s/avec etc)- L'article				
contracté- L'heure	La Nationalité du Pays-Les professions- L'adjectif	(La Couleur l'adiectif				
nossessif l'adie	tif démonstratif l'adjectif interrogatif (quel					
l'interrogation	vec Comment/ Combien / Où etc Propor	ns relatifs simples				
(qui/que/dont/où)						
Com	rendre et traduire un texte court Demander	et l				
Module:4 india	er le chemin.	5 hours				
La traduction sim	e d'un texte/ dialogue :(français-anglais / anglais –fi	ancais)				
Trouv	er les questions. Répondre aux questions généra	ales				
en fr	nçais, Écouter des vidéos (site internet, YouTu	ibe)				
qui a	dent à améliorer leur prononciation/ vocabulair	e et 6 nours				
leurs	leurs compétences orales					
L'article Partitif (c	/ de la / de l'/ des) -Faites une phrase avec les mo	ts donnés- Mettez les				
phrases en ordre,	masculin/féminin ; singulier/pluriel- Associez les phra	ases- les adverbes de				
temps (ensuite/hie	/puis)					
Com	ent écrire un passage - développer des					
Module:6 ompé	ences rédactionnelles. Discussion de groupe	5 hours				
(donr	ez un sujet et demandez aux élèves de partager					

		leurs idées)						
Déc	Décrivez La Famille -La Maison -L'université -Les Loisirs-La Vie quotidienne- La ville natale-							
Un p	personna	age célèbre						
Мос	lule:7	Comment écrire un dialog	ue			5 hours		
Dial	ogue							
a) F	Réserver	· un billet de train						
b) E	ntre deu	ix amis qui se rencontrent au	u café					
c) P	armi les	membres de la famille						
d) E	ntre le p	atient et le médecin						
e) E	ntre le p	professeur et l'étudiant(e)						
Moc	lule:8	Contemporary Topics				2 hours		
		I						
			Tot	al Lectu	re hours:	45 hours		
Text	t Book(s	5)						
	Adoma	nia 1, Méthode de franç	ais, CelineHiml	ber, Cori	na Brillant	, Sophie Erlich.		
1.	Publish	ner HACHETTE, February 20	016.					
2.	Encha	nté 1 !, Méthode de français,	, Rachana Saga	r Private	Limited, Ja	n 2017.		
Refe	erence I	Books	T					
4	Le fra	nçais pour vous 1, Métho	de de français	, VinodS	ikri, Anna	Gabriel Koshy,		
1.	Prozopublishing, Jan 2019.							
2.	Accuei	I 1, Méthode de français, Ra	ichana Sagar Pr	ivate Lim	ited, Janua	ary 2016		
3	Apprer	ons le français 1 Méthode	e de français, M	lahitha R	anjit & Mo	nica Singh, Jan		
J.	^{3.} 2019							
Mod	Modeof Evaluation : Continuous Assessment Tests, Quizzes, Assignment, Final							
Asse	Assessment Test							
Rec	Recommended by Board of Studies 19-05-2022							
Арр	roved by	Academic Council	No. 66	Date	16-06-202	22		

Course code	Course Title		L	Т	Ρ	С		
MGER501L	Deutsch für Anfänger		3	0	0	3		
Pre-requisite	NIL		Sv	llab	us ve	rsion		
				1	.0			
Course Objective	Course Objectives							
1. Demonstrat	te competency in reading, writing and speaking in I	Basic	Ge	erma	n.			
2. Achieve pro	oficiency in German culture oriented view point.							
3. Develop ba	sic vocabulary in the technical field.							
Course Outcome								
At the end of the co	ourse, the student will be able to							
1. Communica	ate in German language in their daily life communic	cative	sit	uati	ons.			
2 Apply the G	German language skill in writing corresponding lefte	ers F-	-Ma	ailse	tc			
3 Create the	talent of translating passages from English-Germ	an ar	nd v	vice	versa	and		
to		anan			10100	ana		
frame simp	le dialogues based on given situations.							
4. Understand	and demonstrate the comprehension of some p	articu	ılar	ne	<i>N</i> rand	ne of		
unseen						<u>j</u> e e.		
written mate	erials							
5 Develop a c	general understanding of German culture and socie	etv						
Module:1 Die e	erste Begegnung	J.J.			6 1	ours		
Einleituna, Bearü	issungs formen. Länder und Sprachen. Alp	habe	t.	Buc	hstab	ieren.		
Personalpronomen	2 Zahlen (1-100), Telefonnummer und E-Mail Add	resse	-, enei	nnei	n W-fr	aden.		
Aussagesätze Nor	men – Singular und Plural und Artikel					agen,		
Lernziel:								
Verständnisvon De	eutsch, Genus- Artikelwörter							
Module:2 Hobb	bys und Berufe				6 ł	nours		
Über Hobbysspre	chen, Wochentage, Jahreszeiten, und Monatene	nnen	i. L	Jhrz	eitens	agen,		
über Arbeit, Beru	ife und Arbeitszeitensprechen. Zahlen (Hunder	tbisei	ine	Mi	llion)	Aritel		
(bestimmter, unbe	stimmter), Plural der Substantive, Konjugation de	er Ve	rbe	n (r	egeĺm	lässig		
, Junregelmässig), Ja	a-/Nein- Frage, Imperativmit Sie.			``	0	U		
Lernziel :	- · ·							
Sätzeschreiben, ül	berHobbyserzählen, über Berufesprechenusw.							
Module:3 Allta	g und Familie				7 ł	nours		
Über die Families	prechen, eineWohnungbeschreiben, Tagesablaut	fschre	eibe	en,	Mahlz	eiten,		
Lebensmittel, Get	ränke Possessivpronomen, Negation, Kasus-	Akku	lsa	titv	und	Dativ		
(bestimmter, ur	nbestimmterArtikel), trennnbareverben, Mod	lalver	ber	٦,	Adje	ektive,		
Präpositionen								
Lernziel :								
Sätzemit Modalv	verben, Verwendung von Artikel, über F	amili	esp	orec	hen,	eine		
Wohnungbeschreit	pen.							
Module:4 Situa	itions gespräche				6 ł	nours		
Dialoge:								
a) Gespräche mit	t Familienmitgliedern, am Bahnhof,							
b) Gespräche be	im Einkaufen, in einem Supermarkt, in einer Buch	handl	lun	g				
c) Gespräche in	einem Hotel/ in einem Restaurant, Treffen im Cáfe	e, Ter	mir	ı be	im Arz	t.		
Module:5 Korre	espondenz				6 ł	nours		
Leseverständnis, N	/lindmapmachen, Korrespondenz- Briefe, Postkart	en, E·	-Ma	ail				
Lernziel :								
Wortschatzbildung	und aktiverSprachgebrauch		-					
Module:6 Aufsatzschreiben 6 hours								
Aufsätze :			_		· -			
Meine Universität,	Das Essen, mein Freund odermeine Freundin, m	eine l	⊦ar	nilie	, eınF	est in		
Deutschlandusw.					~ ·			
woaule:/ Uber	setzungen				6 1	iours		
Ubersetzungen : ([Deutsch – Englisch / Englisch –Deutsch)							
Lernziel :								

Grammatik – Wortschatz – Übung									
Modu	ule:8	Trainierung den Sprach	fähigkeiten			2 hou	urs		
				Total L	ecture hours:	45 hou	urs		
Text	Text Book(s)								
4	Netzw	erk A1, Stefanie Dengler, I	Paul Rusch,	Helen So	chmitz, Tanja S	ieber, Ernst K	lett		
1.	Sprac	hen GmbH, Stuttgart, 2017							
Refe	rence E	Books							
1	Studio	d A1 Deutsch als Frer	ndsprache,	Hermani	n Funk, Christ	ina Kuhn, Si	ilke		
1.	^{1.} Demme: Heuber Verlag, Muenchen, 2012.								
2.	Lagune ,Hartmut Aufderstrasse, Jutta Müller, Thomas Storz, Muenchen, 2012								
3.	Deutsche SprachlehrefürAusländer, Heinz Griesbach, Dora Schulz, 2011, Berlin								
4	Theme	en Aktuell 1, Hartmurt Aufd	erstrasse, H	eiko Bocl	k, MechthildGer	des, Jutta Mü	ller		
	und H	elmut Müller, 2010, Muenc	hen.						
	<u>www.c</u>	<u>loethe.de</u>							
	wirtschaftsdeutsch.de								
	hueber.de, klett-sprachen.de								
www.deutschtraning.org									
Mode of Evaluation : Continuous Assessment Tests, Quizzes, Assignment, Final									
Asse	Assessment Test								
Reco	mmend	ed by Board of Studies	19-05-2022	2					
Appro	Approved by Academic Council No.66 Date 16-06-2022								

MCFD696J Study Oriented Project 02 Pre-requisite NIL Syllabus version Course Objectives: 1.0 1. The student will be able to analyse and interpret published literature for information pertaining to niche areas. Scrutinize technical literature and arrive at conclusions. 3. Use insight and creativity for a better understanding of the domain of interest. Course Outcome: 1. Retrieve, analyse, and interpret published literature/books providing information related to niche areas/focused domains. Examine technical literature, resolve ambiguity, and develop conclusions. 3. Synthesize knowledge and use insight and creativity to better understand the domain of interest. International 4. Publish the findings in the peer reviewed journals / National / International Conferences. Conferences Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science	Course Code	Co	urse Title			L	Т	Ρ	С	
Pre-requisite NIL Syllabus version Course Objectives: 1.0 1. The student will be able to analyse and interpret published literature for information pertaining to niche areas. 2. 2. Scrutinize technical literature and arrive at conclusions. 3. 3. Use insight and creativity for a better understanding of the domain of interest. 5 Course Outcome: 1. 1. Retrieve, analyse, and interpret published literature/books providing information related to niche areas/focused domains. 5 2. Examine technical literature, resolve ambiguity, and develop conclusions. 3. 3. Synthesize knowledge and use insight and creativity to better understand the domain of interest. 4. 4. Publish the findings in the peer reviewed journals / National / International Conferences. 1. Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. 1. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science	MCFD696J	Study O	riented Pro	oject					02	
1.0 Course Objectives: 1. The student will be able to analyse and interpret published literature for information pertaining to niche areas. 2. Scrutinize technical literature and arrive at conclusions. 3. Use insight and creativity for a better understanding of the domain of interest. Course Outcome: 1. Retrieve, analyse, and interpret published literature/books providing information related to niche areas/focused domains. 2. Examine technical literature, resolve ambiguity, and develop conclusions. 3. Synthesize knowledge and use insight and creativity to better understand the domain of interest. 4. Publish the findings in the peer reviewed journals / National / International Conferences. Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science	Pre-requisite	NIL				Syll	abus	vers	ion	
Course Objectives: 1. The student will be able to analyse and interpret published literature for information pertaining to niche areas. 2. Scrutinize technical literature and arrive at conclusions. 3. Use insight and creativity for a better understanding of the domain of interest. Course Outcome: 1. Retrieve, analyse, and interpret published literature/books providing information related to niche areas/focused domains. 2. Examine technical literature, resolve ambiguity, and develop conclusions. 3. Synthesize knowledge and use insight and creativity to better understand the domain of interest. 4. Publish the findings in the peer reviewed journals / National / International Conferences. Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science							1.0	0		
 The student will be able to analyse and interpret published literature for information pertaining to niche areas. Scrutinize technical literature and arrive at conclusions. Use insight and creativity for a better understanding of the domain of interest. Course Outcome: Retrieve, analyse, and interpret published literature/books providing information related to niche areas/focused domains. Examine technical literature, resolve ambiguity, and develop conclusions. Synthesize knowledge and use insight and creativity to better understand the domain of interest. Publish the findings in the peer reviewed journals / National / International Conferences. Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science	Course Objective	es:								
 pertaining to niche areas. Scrutinize technical literature and arrive at conclusions. Use insight and creativity for a better understanding of the domain of interest. Course Outcome: Retrieve, analyse, and interpret published literature/books providing information related to niche areas/focused domains. Examine technical literature, resolve ambiguity, and develop conclusions. Synthesize knowledge and use insight and creativity to better understand the domain of interest. Publish the findings in the peer reviewed journals / National / International Conferences. Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science	1. The student will be able to analyse and interpret published lit						or inf	orma	tion	
 Scrutinize technical literature and arrive at conclusions. Use insight and creativity for a better understanding of the domain of interest. Course Outcome: Retrieve, analyse, and interpret published literature/books providing information related to niche areas/focused domains. Examine technical literature, resolve ambiguity, and develop conclusions. Synthesize knowledge and use insight and creativity to better understand the domain of interest. Publish the findings in the peer reviewed journals / National / International Conferences. Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science 	pertaining to niche areas.									
 3. Use insight and creativity for a better understanding of the domain of interest. Course Outcome: Retrieve, analyse, and interpret published literature/books providing information related to niche areas/focused domains. Examine technical literature, resolve ambiguity, and develop conclusions. Synthesize knowledge and use insight and creativity to better understand the domain of interest. Publish the findings in the peer reviewed journals / National / International Conferences. Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. 	2. Scrutinize	technical literature and a	arrive at cor	clusions.						
Course Outcome: 1. Retrieve, analyse, and interpret published literature/books providing information related to niche areas/focused domains. 2. Examine technical literature, resolve ambiguity, and develop conclusions. 3. Synthesize knowledge and use insight and creativity to better understand the domain of interest. 4. Publish the findings in the peer reviewed journals / National / International Conferences. Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science	3. Use insigh	t and creativity for a bett	er understa	nding of t	he domain	of int	erest	•		
1. Retrieve, analyse, and interpret published literature/books providing information related to niche areas/focused domains. 2. Examine technical literature, resolve ambiguity, and develop conclusions. 3. Synthesize knowledge and use insight and creativity to better understand the domain of interest. 4. Publish the findings in the peer reviewed journals / National / International Conferences. Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science	Course Outeers									
 Retrieve, analyse, and interpret published interative/books providing information related to niche areas/focused domains. Examine technical literature, resolve ambiguity, and develop conclusions. Synthesize knowledge and use insight and creativity to better understand the domain of interest. Publish the findings in the peer reviewed journals / National / International Conferences. Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science 	Lourse Outcome	analyse and interpret	nublished	litoraturo	booke pr	ovidin	a inf	ormo	tion	
 2. Examine technical literature, resolve ambiguity, and develop conclusions. 3. Synthesize knowledge and use insight and creativity to better understand the domain of interest. 4. Publish the findings in the peer reviewed journals / National / International Conferences. Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science 	i. Reineve,	analyse, and interpret		iiieiaiuie/	books pro	Uviuin	y ini	oma	lion	
 2. Examine technical iterature, resolve ambiguity, and develop conclusions. 3. Synthesize knowledge and use insight and creativity to better understand the domain of interest. 4. Publish the findings in the peer reviewed journals / National / International Conferences. Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science 			iairis.	(and day	alan aanal	lucion	~			
 3. Synthesize knowledge and use insight and creativity to better understand the domain of interest. 4. Publish the findings in the peer reviewed journals / National / International Conferences. Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science 	2. Examine to		e ambiguity	/, and dev		lusion	5. 		: .	
4. Publish the findings in the peer reviewed journals / National / International Conferences. Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science	3. Synthesize	e knowledge and use ins	light and cre		peller und	erstar	ia the		ain	
 4. Publish the findings in the peer reviewed journals / National / International Conferences. Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science 	01 Interest.	finalization in the second		-l :	- / Natio		linte			
Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science	4. Publish tr	ie findings in the pee	er reviewe	a journal	s / Natio	nai /	Inte	rnatio	onai	
Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science	Conferenc	es.								
This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science	Module Content			(Proj	ect duration	on: O	ne se	mes	ter)	
Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science	This is oriented towards reading published literature or books related to niche areas or									
Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science	focussed domains under the guidance of a faculty.									
Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science										
student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science	Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the									
and project reviews – Presentation in the National / International Conference on Science	student has registered. Assessment on the project – Report to be submitted, presentation									
Engineering Technology.										
Recommended by Board of Studies 27-05-2022	Recommended by	/ Board of Studies	27-05-202	2						
Approved by Academic Council No. 66 Date 16-06-2022	Approved by Acad	demic Council	No. 66	Date	16-06-20)22				

					_	_			
Course Code	Course Title			L	Т	Р	С		
MCFD697J	Design	Project					02		
Pre-requisite	NIL	NIL			Syllabus version				
				1.0					
Course Objectives:									
1. Students will be able to design a prototype or process or experiments.									
2. Describe a	2. Describe and demonstrate the techniques and skills necessary for the project.								
3. Acquire kr	nowledge and better unders	tanding of design	systems.						
Course Outcome	9.								
 Develop n prototype Utilize the Synthesize improve de Publish th Conference 	 Develop new skills and demonstrate the ability to upgrade a prototype to a design prototype or working model or process or experiments. Utilize the techniques, skills, and modern tools necessary for the project. Synthesize knowledge and use insight and creativity to better understand and improve design systems. Publish the findings in the peer reviewed journals / National / International Conferences. 								
Module Content (Project durat				tion: One semester)					
Students are expected to develop new skills and demonstrate the ability to develop prototypes to design prototype or working models related to an engineering product or a process.									
Mode of Evalua student has regis and project revie Engineering Tech Recommended by Approved by Acad	tion: Evaluation involves tered. Assessment on the ws – Presentation in the N nology. y Board of Studies 2 demic Council N	periodic reviews project – Report lational / Internat 7-05-2022	by the fac to be subr ional Confe	ulty w mitted erence	rith w , pres e on	hom senta Scier	the tion nce,		

	<u> </u>							
Course Code		Course Title			L	Т	Ρ	С
MCFD698J	Inter	nship I/ Dissertation I					10	
Pre-requisite	NIL	•			Syll	abus	vers	ion
•					-	1.0)	
Course Objectiv	'es:							
To provide suffici	ient hands-on learn	ing experience r	elated to	the desigr	n, dev	elopn	nent :	and
analysis of suitab	le product / process	s so as to enhand	ce the tec	hnical skil	ll sets	in the	e cho	sen
field and also to g	give research orienta	ation.						
Course Outcom	e:							
 Considerative deeper instruction The capalities The capalities The capalities A conscion Publication added advisor 	ably more in-depth k sight into current res pility to use a holistic prmulate and deal w usness of the ethica ns in the peer review vantage.	nowledge of the search and develoc view to critically ith complex issue al aspects of rese wed journals / Int	major sub opment w v, indepen es. earch and ernational	ject/field o ork. dently and developm Conferer	of stuc d crea ent wo nces w	ly, inc tively ork. <i>i</i> ill be	ludin an	g
Module Content		(F	Project du	iration: o	ne se	mest	er)	
1. Dissertatio analysis, data, soft	 Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities. 						n & s of	
2. Dissertation	on should be individ	ual work.						
Carried out inside or outside the university, in any relevant industry or research institution.						arch		
4. Publications in the peer reviewed journals / International Conferences will be an added advantage.							an	
Mode of Evalua presentation, proj	ition: Assessment ject reviews and Fin	on the project al Oral Viva Exa	- Disserta mination.	ition repo	rt to	be sı	ıbmit	ted,
Recommended b	Recommended by Board of Studies 27-05-2022							
Approved by Aca	Date	16-06-20)22					

	1							
Course Code	se Code Course Title				L	Т	Ρ	С
MCFD699J	MCFD699J Internship II/ Dissertation II							12
Pre-requisite	NIL				Syllabus ve			ion
					1.0)		
Course Objectives:								
To provide sufficient hands-on learning experience related to the design, development and								
analysis of suitable product / process so as to enhance the technical skill sets in the chosen								
field.								
Course Outcome): completion of this cour	ree etudente u	ill ha ahla	to				
		rse sludenis w						:41.
1. Formulate	specific problem s	statements to	r III-defin	ed real	lite p	robiei	ms \	Nith
reasonable	e assumptions and co	instraints.		.				
2. Perform lit	erature search and / c	or patent searc	h in the ai	rea of inte	rest.			
3. Conduct e results.	 Conduct experiments / Design and Analysis / solution iterations and document the results. 							
4. Perform e	4. Perform error analysis / benchmarking / costing.							
5. Synthesize	e the results and arrive	e at scientific c	onclusion	s / produc	cts / so	olutior	ı.	
6. Document	the results in the forn	n of technical r	eport / pre	esentation				
Module Content			(Proj	ect durat	ion: o	ne se	mes	ter)
 Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities. Dissertation should be individual work. Carried out inside or outside the university, in any relevant industry or research institution. Publications in the peer reviewed journals / International Conferences will be an 								n & s of arch an
added advantage.								
Mode of Evaluation: Assessment on the project - Dissertation report to be submitted, presentation, project reviews and Final Oral Viva Examination.								
Recommended by	y Board of Studies	27-05-2022						
Approved by Academic Council No. 66 Date 16-06-2022								