

SCHOOL OF MECHANICAL ENGINEERING

M.Tech Applied Computational Fluid Dynamics

Curriculum & Syllabi (2023-2024 batch onwards)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

• Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- **World class Education**: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- **Cutting edge Research**: An innovation ecosystem to extend knowledge and solve critical problems.
- **Impactful People**: Happy, accountable, caring and effective workforce and students.
- **Rewarding Co-creations**: Active collaboration with national & international industries & universities for productivity and economic development.
- **Service to Society**: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

• To be a leader in imparting world class education in Mechanical Engineering, with a vision to nurture scientists and technocrats of the highest caliber engaged in global sustainable development.

MISSION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

- To create and maintain an environment fostering excellence in instruction & learning, Research and Innovation in Mechanical Engineering and Allied Disciplines.
- To equip students with the required knowledge and skills to engage seamlessly in higher educational and employment sectors ensuring that societal demands are met.

M.Tech Applied Computational Fluid Dynamics

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment.

PO_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information.

PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice.

PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems.

PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development.

PO_07: Having a clear understanding of professional and ethical responsibility.

PO_08: Having a good cognitive load management skills related to project management and finance.

M.Tech Applied Computational Fluid Dynamics

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Automotive Engineering) programme, graduates will be able to

- **PSO_1:** Compute, Design, Model, Simulate and Analyse various fluid flow and heat transfer problems using numerical techniques for applications in Aerospace, Automotive, Biomedical, Chemical, Environmental and Energy Engineering.
- **PSO_2:** Adopt a multidisciplinary approach to solve real-world industrial problems involving Mass, Momentum and Energy transport processes.
- **PSO_3:** Independently carry out research / investigation to solve practical problems and write / present a substantial technical report/dissertation.

M.Tech Applied Computational Fluid Dynamics

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

Agenda Item 66/8

To consider and approve the new academic programme, curriculum and course contents for Master of Technology in Applied Computational Fluid Dynamics

ANNEXURE – 4

Proceedings of the 66th Academic Council (16.06.2022)

Master of Technology in Applied Computational Fluid Dynamics School of Mechanical Engineering

Programme Credit Structure	Credits	Discipline Elective Courses	12
Discipline Core Courses Skill Enhancement Courses Discipline Elective Courses	24 05 12	MCFD601L Computational Aerodynamics MCFD602L Chemically Reacting Flows - Combustion	
Open Elective Courses Project/ Internship	03 26	MCFD602P Chemically Reacting Flows - Combustion Lab	0 0 2 1
Total Graded Credit Requirement	70	MCFD603L Fluid Structure Interaction MCFD604L Experimental methods for Fluid	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Discipline Core Courses	24 L T P C	Flow MCFD604P Experimental methods for Fluid Flow Lab	0 0 2 1
MCFD501L Transport Phenomena MCFD502L Advanced Fluid Dynamics	$3 0 0 3 \\ 3 0 0 3$	MCFD605L Multiphase flows	3003
MCFD503L Advanced Heat Transfer	3 0 0 3	MCFD606L Finite Element Analysis of Solids and Fluids	3003
MCFD504L Numerical Methods for Partial Differential Equations	3003	MCFD607L High Performance Computing MCFD607P High Performance Computing	2 0 0 2 0 0 2 1
MCFD504P Numerical Methods for Partial Differential Equations Lab	0 0 2 1	Lab MCFD608L Numerical Simulation of En-	3003
MCFD505P Computational Fluid Dynamics Lab	0 0 4 2	vironmental and Atmospheric Flows	0000
MCFD506L Numerical Solution of the Navier-Stokes equations	3003	MCFD609L Modeling and Simulation of En- ergy Systems	3 0 0 3
MCFD506P Numerical Solution of the Navier-Stokes equations Lab	0 0 2 1	ergy Systems	
MCFD507P Advanced Computational Fluid Dynamics Lab	0 0 4 2	Open Elective Courses	03
MCFD508L Turbulence Modelling	3003	Engineering Disciplines Social Sciences	
Skill Enhancement Courses	05	Project and Internship	26
MENG501P Technical Report Writing MSTS501P Qualitative Skills Practice MSTS502P Quantitative Skills Practice	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MCFD696J Study Oriented Project MCFD697J Design Project MCFD698J Internship I/ Dissertation I MCFD699J Internship II/ Dissertation II	02 02 10 12

Master of Technology in Applied Computational Fluid Dynamics

Short Syllabus

Discipline Core courses

MCFD501L Transport Phenomena (3-0-0-3)

Tensor analysis - differential operations, integral theorems; Mechanisms of momentum, energy and mass transport- transport properties; Equations of change- isothermal systems, non-isothermal systems, multicomponent systems; Friction factors – internal flow, external flow, steady-state and unsteady-state; Newtonian and non-Newtonian models; Turbulent Flow - temperature distribution; Mass diffusion - heterogeneous and homogeneous chemical reaction; Time-dependent mass diffusion- Equation and solution.

MCFD502L Advanced Fluid Dynamics (3-0-0-3)

Overview of Fluid Dynamics - Lagrangian and Eulerian approaches; Governing Equations of Fluid Flow - Reynolds transport theorem, NS Equations for viscous flow; Potential Flow Theory - Pressure distribution over stationery, rotating cylinders, Conformal transformation, flow over flat plate, cylinder, spherical body and airfoils; Boundary layer Theories - von Karmann Momentum integral equation, Flow separation and recirculation; Turbulent flows - Eddy Viscosity concepts, Laws of the Wall and free shear flows; Compressible Flow - nozzles and diffusers, normal and oblique shock waves; Flow measurement devices - intrusive and non-intrusive techniques.

MCFD503L Advanced Heat Transfer (3-0-0-3)

Governing Laws of heat transfer- heat conduction, convection, thermal radiation; Generalized heat conduction equations for anisotropic inhomogeneous mediums- steady state, unsteady state, analytical and numerical methods; Transient conduction- analytical and numerical methods; Convective heat transfer in external flows- analytical and numerical methods; Convective heat transfer in internal flows- analytical and numerical methods; Natural convection- Combined forced and free convection; Radiation- Radiative Transfer Equation, Radiative properties of surfaces.

MCFD504L Numerical Methods for Partial Differential Equations (3-0-0-3)

Partial Differential Equations- PDE Definition, Elliptic, parabolic, and hyperbolic equations; Interpolation Methods - Operators, Lagrange's methods, Newton's fundamental interpolation, Interpolation by iteration; Solution Techniques for Elliptic equations - Finite difference discretization, Direct and Iterative methods; Parabolic Equations- Initial Boundary Value problems, Consistency, Stability, Convergence, Forward-Time Centered Space, Backward-Time Centered Space, Crank Nicolson, Alternating Direction Implicit; Hyperbolic Equations -Solution properties: Domain of Dependence, Finite difference discretization schemes, Dispersion and Dissipation behaviour; The Finite Element Method- Generalization of the finite element concepts, Basic equations and solution procedure.

MCFD504P Numerical Methods for Partial Differential Equations Lab (0-0-2-1)

Code development for 2D Elliptic equation using Jacobi, Gauss-Seidel and SOR methods; 1D parabolic (Heat equation) using the FTCS method; 2D parabolic equation; 1D advection equation, using the Upwind scheme; 1D convection-diffusion equation, using the FTCS scheme and the upwind scheme; 1D convection-diffusion equation, using finite volume method to implement the FTCS scheme and the upwind scheme; 1D convection-diffusion equation, using finite volume method to implement the FTCS scheme and the upwind scheme; 1D convection-diffusion equation, using finite volume method to implement QUICK scheme; 1D finite element Poisson equation using Conjugate gradient method; Lid-driven cavity problem using vorticity-stream function formulation; Sod's shock tube problem using any two upwind schemes.

MCFD505P Computational Fluid Dynamics Lab (0-0-4-2)

2D/3D geometry creation; Structured mesh generation; Unstructured mesh generation; Simulation of Laminar and turbulent flow; Computational analysis of Shock wave and boundary layer interaction; Simulation of Two-phase flow- VOF model; Numerical analysis of Wake formation behind tandem cylinders; Simulation of blood flow; Computational analysis of tube-in-tube heat exchanger; Simulation of melting of an ice block.

MCFD506L Numerical Solution of the Navier-Stokes Equations (3-0-0-3)

Navier-Stokes equations variants and related mathematical models - Vorticity-stream function equations, Velocity-pressure formulation; Solution algorithms for NS equations - Operator splitting, projection; FVM for Convection-Diffusion Equations - Steady one and multi-dimensional equations; Flux limiter functions; Finite volume steady incompressible Navier-Stokes flow Solver - Pressure correction based incompressible steady flow solvers - staggered grid, NS equations spatial discretization, SIMPLE, SIMPLER, SIMPLEC algorithm and PISO algorithm; Unsteady incompressible NS flow Solver - Explicit, Crank–Nicolson and implicit scheme; Finite volume Implementation of different Boundary conditions; Complex geometries - Body-fitted, Cartesian vs. Curvilinear grids, Structured and Unstructured grids, Spatial discretization, pressure–velocity coupling and face velocity interpolation in unstructured meshes.

MCFD506P Numerical Solution of the Navier-Stokes Equations Lab (0-0-2-1)

Finite difference codes on structured Cartesian grids – For incompressible NS equations in Vorticity/stream function, Velocity/Vorticity, and Velocity/pressure formulations, staggered and collocated grids; Finite volume codes on structured Cartesian grids – For incompressible NS equations in Velocity/pressure formulations, staggered grids; Solution algorithms for incompressible NS equations in Velocity/pressure formulations - Operator splitting, Projection, and Pressure-correction based (SIMPLE, SIMPLEC).

MCFD507P Advanced Computational Fluid Dynamics Lab (0-0-4-2)

3D geometry creation using ICEM CFD; Computational analysis of Jet surface interaction; Supersonic flow over a bump; Simulation of shell and tube heat exchanger; Computational investigation of a hydraulic jump; Analysis of a moving strip in an air stream; Simulation of a blower using multiple reference frames model; Simulation of Species transport and gaseous combustion; Simulation of a porous media; use of user defined function for ANSYS.

MCFD508L Turbulence Modelling (3-0-0-3)

Background of Turbulence Flows - Origin of turbulence, irregularity, three dimensional motions; Statistical Description of Turbulence - Kolmogorov hypothesis, scales of turbulence, energy cascading; Turbulent Transport of Moment and Heat - Reynolds decomposition technique, turbulent stresses, Reynolds' analogy, dynamics of turbulence; Turbulence Modelling - eddy viscosity hypothesis, near-wall treatment; Free Shear Flows - Mixing Layer, wakes and Jets; Wall-Bounded Flows - Channel and pipe flows, Reynolds stresses, turbulent boundary layer equations; Advanced Turbulence Modelling Techniques - Large Eddy simulation (LES), Direct Numerical Simulation (DNS), Detached Eddy Simulation (DES) models.

Discipline Elective courses

MCFD601L Computational Aerodynamics (3-0-0-3)

Aerodynamics/Gas dynamics Concepts - Wing Aerodynamics, Compressibility effects, Transonic Aerodynamics, shock, and expansion waves; Governing equations of compressible flows – Integral conservative form; Numerical Schemes for Euler Equations ; Spatial discretization- Structured and unstructured Finite Volume Schemes, Discretization of the Convective Fluxes, Discretization of the Viscous Fluxes; Temporal Discretization-Explicit and implicit Time stepping, Multistage Schemes; Turbulence Modeling Approaches for compressible flow- Favre Averaging, one and two-equation models; Boundary Conditions.

MCFD602L Chemically Reacting Flows - Combustion (2-0-0-2)

Combustion and thermochemistry - flame types; Chemical Kinetics- Elementary reaction rates, Some important chemical mechanisms; Conservation Equations for reacting flows; Laminar flames - premixed flames, diffusion flames; Droplet evaporation and burning - Simple model for droplet evaporation, Simple model of droplet burning; Turbulent flames - Structure of turbulent premixed flames, Turbulent nonpremixed flames; Burning of solids, Simulations using different combustion models.

MCFD603L Fluid Structure Interaction (3-0-0-3)

Governing Equations of Fluid and Structural Mechanics - Continuum Mechanics, Material Laws, Linear Stokes, steady and unsteady Equations, Flow Problems on Moving Domains; Coupled Fluid Structure Interactions (FSI) – Interface Regularity and Boundary Conditions, FSI in ALE and Fully Eulerian Formulation; Discretization techniques for FSI equations - Time Discretization using Shifted Crank-Nicolson, Fractional-step θ method, and Galerkin Methods, Discretization of Interface and moving Interfaces; ALE Formulation –Discretization and Linearization; Finite Elements for FSI in ALE Formulation – Inf-Sup stable FE-Spaces, Stabilised Finite elements; Fully Eulerian Formulation - Interface Capturing and Initial Point Set Method, Fully Eulerian Framework; Linear Solvers for FSI - Partitioned Solvers, Direct Solution of Linear Systems, Krylov Space Solvers, GMRES Multigrid Iteration.

MCFD604L Experimental methods for Fluid Flow (2-0-0-2)

Measurements - Error Estimates, Uncertainty Analysis; Pressure measurements – static and total pressure measurements; Measurements of Temperature, Heat flux and Species Concentrations; Flow Rate measurements; Velocity measurements- Pressure-based Velocity Measurements, Particle-based techniques, Density-based Techniques;

Measurements of Force and Moment; Linking experiments with CFD-verification and validation.

MCFD605L Multiphase flows (3-0-0-3)

Overview of Multiphase flow - Flow patterns and regimes, conservation equations for multiphase flows; Liquid - Gas Two Phase Flows - Separated flow instabilities, Pressure drop models; Particle motion - Single particle motion, Flow around a sphere, Grain's size and concentration effect on free flow drag; Bubble/Droplets dynamics - Rayleigh-Plesset equation, Bubble growth and collapse; Euler-Lagrangian Model - particle tracking and trajectory, Force balance; Euler-Euler Model - Liquid-liquid / liquid-solid mixing, Complex multiphase flows with turbulence; Boiling and Condensation - Flow boiling in mini and micro channels, Film boiling, Condensation.

MCFD606L Finite Element Analysis of Solids and Fluids (3-0-0-3)

Introduction to approximation methods - Direct formulation, Minimum total potential energy formulation, weighted residual formulation, variational approach; Higher order and isoparametric elements - polynomial form of interpolation functions, lagrangian interpolation, Higher order one dimensional elements; Application to solid mechanics- one dimensional analysis and multi-dimensional problems - trusses, beams, plates, shells, plane stress and plane strain problems; Application to fluid mechanics- isothermal and non-isothermal problems; Application to steady state heat conduction; Application to transient heat conduction analysis.

MCFD607L High Performance Computing (2-0-0-2)

Moore's law and saturation, Multi-core and multi-node computers, accelerators, Amdahl's law, introduction to Linux; Professional code development practices – editors, compilers, IDEs, unit and integration testing, scripting languages, environment modules, run code on HPC; Parallelization in modern computers – pipelining, memory hierarchy and latency, Compiler flags based optimization; Analysis tools and Optimization – Debugging, profiling, and instrumenting the code, interoperability; Shared Memory Architecture – data dependencies and resolution, Directive driven optimization, task based vs data parallelization, reduction, synchronization, atomic operations, performance enhancement comparison; Distributed Memory Architecture – Message Passing Interface, blocking vs non-blocking communication, debugging, instrumenting, and performance enhancement; Hybrid Computing – GPU Architecture, Nvidia and CUDA, CUDA kernels and memory management.

MCFD608L Numerical Simulation of Environmental and Atmospheric Flows (3-0-0-3)

Overview-Anthropogenic climate change and environmental flows, Solar variability, orbital mechanics, greenhouse gases, Scales of motion, atmospheric and oceanic circulation; Fundamentals of Atmospheric Processes-Equations of motion in Cartesian coordinates; Energy Climate Dynamics-Potential Temperature, States of stability, Stratification and diffusion problems, Parcel Concepts; Thermodynamical Processes-Thermodynamic principles; Boundary Layer Processes-Expanded continuity equations, Cloud-fog physics, Boundary layer physics; Shallow Water model theory-Shallow Water equations; Numerical methods in Boundary layer Processes including large scale flows-Mass conservation equation implementation, Boundary conditions, Introduction of zonal jets and currents, Large scale perturbations and geostrophic equilibrium.

MCFD609L Modeling and Simulation of Energy Systems (3-0-0-3)

Overview of Energy Systems - Workable and Optimum Energy systems, Equation fitting; System Simulation - Sequential and simultaneous calculations; Optimization - Unconstrained and constrained optimization, Sensitivity Coefficients, Search Methods; Thermal System Analysis - Geometric programming, Linear Programming, Simplex algorithm; Modelling of Thermodynamic properties - Regression analysis, Internal energy and entropy, pressuretemperature relationship; Design of Heat Exchangers - parallel flow, counter flow; Simulation and optimization of thermal devices - thermal power plant components, Solar collector, Wind turbine Simulation and optimization of thermal power plant components, Solar collector, Wind turbine, hydraulic turbine and draft tubes, Gas turbine and compressors.

Skill Enhancement Courses

MENG501P Technical Report Writing (0-0-4-2)

Basics of Technical Communication–Process of communication, Levels of communication; Vocabulary and Editing - Word usage, Punctuation and Proofreading; Advanced Grammar - Shifts: Voice, Tense, Person and Number - Clarity: Pronoun reference, Misplace and unclear modifiers; Elements of Technical writing - Eliminating unnecessary words - Sentence clarity and combining; The Art of condensation; Technical Reports - Formats of reports and Prewriting; Data Visualization; Systematization of Information; Research and Analyses; Structure of Reports; Writing the Report; Writing scientific abstracts; Supplementary Texts; Presenting Technical Reports.

MSTS501P Qualitative Skills Practice (0-0-3-1.5)

Business Etiquette: Social and Cultural Etiquette; Writing Company Blogs; Internal Communications and Planning: Writing press release and meeting notes; Time management skills - Prioritization, Procrastination, Scheduling, Multitasking; Presentation skills – Preparing presentation; Organizing materials; Maintaining and preparing visual aids; Dealing with questions; Quantitative Ability -L1 – Number properties; Averages; Progressions;Percentages; Ratios; Reasoning Ability-L1 – Analytical Reasoning - Data Arrangement, Blood Relations,Ordering/ranking/grouping, Puzzle test, Selection Decision table; Verbal Ability-L1 – Vocabulary Building.

MSTS502P Quantitative Skills Practice (0-0-3-1.5)

Resume skills – Resume Template; Use of power verbs; Types of resume; Customizing resume; Interview skills – Types of interview; Techniques to face remote interviews and Mock Interview; Emotional Intelligence - L1 – Transactional Analysis; Brain storming; Psychometric Analysis; SWOT analysis; Quantitative Ability-L3 – Permutation-Combinations; Probability; Geometryand mensuration; Trigonometry; Logarithms; Functions; Quadratic Equations; Set Theory; Reasoning ability-L3 – Logical reasoning; Data Analysis and Interpretation - Syllogisms, Binary logic, Sequential output tracing, Crypto arithmetic, Data Sufficiency, DataInterpretation; Verbal Ability-L3 – Comprehension and Critical reasoning.

Open Electives

MFRE501L Français Fonctionnel (3-0-0-3)

Saluer, Se présenter, Etablir des contacts. Compétences en lecture - consulter un dictionnaire, appliquer des stratégies de lecture, lire pour comprendre - Présenter quelqu'un, Chercher un(e) correspondant(e), Demander des nouvelles d'une personne.Situer un objet ou un lieu, Poser des questions-Comprendre et traduire un texte court, et indiquer le chemin.- Trouver les questions, Répondre aux questions générales en français, Écouter des vidéos (site internet, YouTube) qui aident à améliorer leur prononciation/ vocabulaire et leurs compétences orales- Comment écrire un passage-développer des compétences rédactionnelles. Discussion de groupe (donnez un sujet et demandez aux élèves de partager leurs idées)-Comment écrire un dialogue-Invited Talk: Native speakers.

MGER501L Deutsch für Anfänger (3-0-0-3)

Die erste Begegnung - Einleitung, Begrüssungs formen, Länder und Sprachen; Hobbys und Berufe - Über Hobbyssprechen, Wochentage, Jahreszeiten, und Monatenennen; Alltag und Familie - Über die Familiesprechen, eineWohnungbeschreiben, Situations gespräche-Korrespondenz - Leseverständnis, Mindmapmachen, Korrespondenz- Briefe, Postkarten, E-Mail; Aufsatzschreiben - Meine Universität, Das Essen, mein Freund odermeine Freundin, Übersetzungen - Trainierung den Sprachfähigkeiten

Course Co		L	Т	Ρ	С		
MCFD501L		Transport Phenomena		3	0	0	3
Pre-requisi		Sylla	bus	vers	ion		
					1.0		
Course Ob	-		- i i l =	+			
equ 2. To il 3. To f	ations llustrate formula	he basic concepts of transport phenomena, s of mass, momentum, and heat transfer e the common mathematical structure of transp ite appropriate differential equations to obtain ion profiles of transport processes.	oort proble	ems.	•		•
Course Ou	tcome						
Upon succe	essful c	ompletion of the course the students will be ab	ole to				
ener 2. Rela 3. Solv 4. App mas 5. Ana	rgy ate sim /e one- ly Nav ss trans	d the transport properties of molecular transfe ultaneous mass, momentum and heat transfer dimensional steady state momentum, heat and ier-Stokes equation to examine the problems fer. dustrial transport problems with appropriate ap	analysis d mass tra s related	insfer j to fluid	orobl I, he	ems. at, a	Ind
Module:1		anisms of Momentum, Energy and transport				7 ho	urs
Vector and	l tenso level o	ns and its rotation of axes- Vector and ten r integral theorems. momentum transport, of f analysis - molecular transport properties of perature.	energy tra	anspor	tan	d m	ass
Module:2	Equa	tions of Change				6 ho	urs
		nge for isothermal systems - equations of chan ns of change for multicomponent systems	ige for nor	n-isoth	erma	l	
Module:3	Interp	hase Transport and Macroscopic ces for Isothermal Flow Systems				6 ho	urs
Friction fact		flow in tubes, Friction factors for flow around a	a bluff boo	ly, Esti	mati	on of	•
	loss, L	Ise of the macroscopic balances for steady-sta	ate and un	steady	/-sta	e	
problems. Module:4		port phenomena in polymeric				5 ho	urs
<u> Pohoviour</u> a	Liqui	us neric liquids, non-Newtonian viscosity and the	aoporaliza		toni		
		and the linear viscoelastic models, nonlinear vi	•			311	
Module:5		erature distributions in Turbulent		<u>s mout</u>		7 ho	urs
	ged eq	uations of change for incompressible non-isoth ture profile near a wall, temperature distributio					es
Module:6	Conc Flows	entration Distributions in Laminar				6 ho	urs
with a heter	balanc rogene	es, boundary conditions; Diffusion through a s ous and a homogeneous chemical reaction; D n - solid dissolution.					

Мс	dule:7	Concentration Distribu Independent Variables		le	6 hours
Tin	ne-depei	ndent diffusion; Steady-sta	ate transport in bin	ary bour	ndary layers; Steady-state
			l objects; Boundar	y layer n	nass transport with complex
	erfacial n				
Мс	dule:8	Contemporary Issues			2 hours
			Total Lecture hou	urs:	45 hours
Te	xt Book	(S)			
1.	Bird R.	B., Stewart W. E., Lightfo	ot E. N., Transpor	rt Pheno	mena, 2012, Second Edition,
	John		· ·		
	Wiley &	& Sons Inc., Wiley Student	t Edition, India.		
Re	ference	Books			
1				tion Prod	cess Principles, 2018, Fifth
		, Pearson Education India		1 0000	
2.	USA.	y Joel L, Transport Pheno	omena fundamenta	ais, 2020), Fourth Edition., CRC Press,
3.	William	n M. Dean, Analysis of Tra	Insport Phenomen	a, 2013,	Second Edition, Oxford
	Univer	sity Press, India.			
Мс	de of Ev	aluation: Continuous asse	essment test, writte	en assigr	nment, Quiz and Final
ass	sessmen	t test		C	
		· · · ·	07.05.0000		
Re	commer	ided by Board of Studies	27-05-2022		

Course Code	Course Title	L	Т	Ρ	С
MCFD502L	Advanced Fluid Dynamics	3	0	0	3
Pre-requisite	NIL	Syllab		versi	on
Course Objectiv			1.0		
Course Objective	es fundamentals of fluid mechanics and governing equation	one for a	solvi	na re	ادد
	leering applications.		50171	ig it	201
	in-depth knowledge of potential flow and boundary laye	rs.			
	tand complex phenomena underlying turbulent and com				
4. To familia	rize students with experimental techniques related to fluid	d mecha	anics		
Course Outcome	2				
	of the course the students will be able to				
	overning equations for particular flow fields with application		e	c i	
2. Analyse p over bodie	otential flows and execute concept of conformal trans	stormati	on t	or tio	SW
	ndary layer concepts for real fluids for solving fluid flov	v and he	eat t	rans	fer
problems.					
	urbulent flows through various techniques for wall bound	ded and	free	e she	er
flows. 5 Examine (compressible flows through various systems involving sh	ock way	100		
	bus intrusive and non-intrusive techniques to measure f			1	
properties.	-				
	view of fluid motion			i hou	
	tonian and non-Newtonian fluids. Description of fluid m	otion -			
	proaches. Motion of fluid element translation, rotation				
vorticity and strain	n-rate tensors; Streamlines, Path lines, Streak lines and	Time lir	nes,	Stre	am
	ocity Potential Functions, Rotational and irrorational fl	ows - c	ircul	atior	ι —
vorticity.					
	erning Equations of Fluid Flow			hou	
	rt theorem. Three dimensional continuity equation - diffe				
	ns of motion momentum, energy, and their engine <i>r</i> ier-Stokes Equations for viscous compressible flows –				
	ises: Coutte flow – Hagen Poisoulle flow – flow betw				
rotating cylinders.					
Module:3 Pote	ntial Flow Theory		5	i hou	urs
	ion over stationery and rotating cylinders in a uniform flo	ow - Ma			
	vsky theorem. Complex potential functions. Conforma				
	r a flat plate, cylinder, spherical body and airfoils. T	hin airfe	oil th	neory	/ –
-	theory for cambered and flapped airfoils.				
	ndary layer Theory			' hou	
	thickness - laminar and turbulent boundary layer for				
separation and re	of-magnitude analysis, von Karmann Momentum integ circulation.	yrar equ	auoi	ı. Fl	UW
-			_	/ h -	
	ulent Flow	tion one		hou	
	neory of Hydrodynamic Stability, factors affecting transi Prandtl's Mixing Length and Eddy Viscosity concepts,				
	of the wall and free shear flows.	CHIVON			y
•					

Mod	dule:6	Compressible Flow			6 hours
One	dimen	sional compressible fluid f	flow – flow throug	h variat	ble area passage – nozzles and
					shock waves and calculation of
flow	and flu	id properties over solid bo	odies - flat plate, v	vedge a	nd diamond.
Mod	dule:7	Experimental Techniqu	ies		5 hours
Intro	oductior	n: Design of fluid flow ex	xperiments; unce	rtainty	analysis - types of error; flow
mea	asureme	ent - hot wire and hot filn	n anemometers;	flow vis	ualization techniques - Laser -
Dop	pler a	nemometry (LDA) and	Particle Image	Veloc	imetry (PIV), pressure and
		e measurements, methods			
Mod	dule:8	Contemporary issues			2 hours
		. ,			
		-	Total Lecture ho	ure:	45 hours
				ur5.	43 110013
Text	t Book	(S)			
1.	Muralic	lhar, Gautam Biswas, Adv	anced engineerir	ng fluid	mechanics, 2015, 3rd Edition,
	Narosa	Publications.	-	•	
2.	White,	Frank M. Fluid Mechanics	 McGraw-Hill Ed 	ucation	, 9 th Edition, 2021.
Refe	erence	Books			
1.	S K So	om, Gautam Biswas, S C	Chakraborty, Intro	duction	to Fluid Mechanics and Fluid
		es, 2017, McGraw Hill			
			and David R. Dow	vling. <i>Fl</i>	<i>uid mechanics</i> . Academic
	press, 2				
		iting, H and K. Gersten. B			pringer, 2017
		aluation: CAT, written ass		d FAT	
		ded by Board of Studies			
App	roved b	y Academic Council	No. 66	Date	16-06-2022

Course Code	Course Title	L	Т	Ρ	С
MCFD503L	Advanced Heat Transfer	3	0	0	3
Pre-requisite	NIL	Syllal		versi	on
			1.0		
Course Objectiv		transfor			
	knowledge of governing laws of different modes of heat ate and reduce mass, momentum and energy conserval			s	
situationa		aon oqu	anon	0	
	the exact and approximate solutions of external and in	ternal h	eat t	rans	fer
equations				,	
	nine radiative heat flux between the two surfaces with ng mediums.	n partic	ipatir	ig/nc	on-
participati					
Course Outcom)				
Upon successful	completion of the course the students will be able to				
1. Formulate	governing equations for real time problems.				
	plems of steady state heat conduction.				
	roblems of transient heat conduction.				
	ed convective heat transfer problems Iral convective heat transfer processes.				
	ative heat transfer problems.				
	erning laws of Heat Transfer	<u> </u>		hou	
	conduction, convection, thermal radiation, and viscous				
	ntum, and energy equation in dimensional and non- nsional numbers in heat transfer.	amens	onai	1011	ns.
Module:2 Stea	dy State Conduction		6	hou	urs
	e-dimensional heat conduction equations for anisotro				
	ctive tensor. Steady state conduction in isotropic	and ho	mog	enec	ous
	n methods - analytical and numerical;				
	sient Conduction			hou	
	tion: Recapitulation of transient conduction for simple s				
and numerical.	nduction with complex boundary conditions. Solution n	nethous	- ar	aryu	car
Module:4 Exte	rnal Forced Convection		6	hou	urs
	transfer in external flows and their solution methods				
	heat transfer, Boundary layer approximations to mor				
	rity solution techniques, Momentum and energy integra w over flat plates with low and high Prandtl number appr			na tr	neir
	· · · · · · · · · · · · · · · · · · ·	Oximati			
	nal Forced Convection			' hou	
	ransfer in internal flows and solution methods: Flow the ully developed forced convection in ducts with cons	•			
	perature boundary conditions, Forced convection in the				
	leat transfer in combined entrance region, Integral meth				
	boundary conditions.				
Module:6 Natu	ral Convection		7	' hoi	urs
	atural convection; Boussinesq approximation and sca	le analy			
	a vertical plate using similarity and integral solution, N	atural c	onve	ction	i in
enclosed spaces.	Combined forced and free convection.				

Мо	dule:7	Radiation			6 hours							
sur enc Equ	faces, R closure,	adiation exchange betwe Radiative heat transfer in	en surfaces, View participating mee	/ Factor, dia (Gas	iosity, Radiative properties of Radiation exchange in a black Radiation), Radiative Transfer eat transfer in non-participating							
Мо	Module:8 Contemporary Issues 2 hour											
			Total Lecture ho	urs:	45 hours							
					.e nouro							
Tex	kt Book	(s)										
1.		A Cengel and Afshin J G	hajar,Heat and Ma	ass Trar	sfer: Fundamentals and							
		ations, 5 th edition, McGra										
Re	ference											
1	J P Ho	man and Souvik Bhattacl	naryya, Heat Tran	sfer, 10	th edition, McGraw-Hill, 2016.							
2.		•	•	Lavine,	Incropera's Principles of Heat							
		ass Transfer, Wiley, 2018										
3.					& Sons, 3rd Edition, 2012.							
4.		paci, Conduction Heat Tra										
5.		odest, Radiative Heat Tra										
6.					Transfer, McGraw Hill , 2004							
		aluation: Continuous ass	essment test, writ	ten assi	gnment, Quiz and Final							
ass	essmen	t test										
Re	commer	ded by Board of Studies	27-05-2022									
Ap	proved b	y Academic Council	No. 66	Date	16-06-2022							

Course Code	Course Title		Т	Р	С
MCFD504L	Numerical Methods for Partial Differential Equation	ons 3	-	0	3
Pre-requisite	NIL	Syllab		-	-
•			1.0		
Course Objectiv	es				
1.To develop	a conceptual understanding of numerical methods	common	ly us	sed	for
solving pa	rtial differential equations		•		
	working knowledge of numerical methods include				
	ng them for model problems drawn from fluid flow	and he	eat t	rans	fer
application			.		
	a foundation for theoretical techniques to analyze the b	ehavior o	of the	Э	
numerical	methods				
Course Outcom					
	completion of this course students will be able to		,		
	ate the understanding of numerical methods commor	ily used	tor s	SOIVI	ng
•	erential equations. erent interpolation methods to compute parameters ne	adad as	tho	oort	of
	simulation and presentation of results	eueu as	uie	Jan	01
	umerical algorithms using finite difference method to so	lve PDEs	;		
	ct and iterative techniques to solve system of equations				
	he consistency of a finite differences scheme and defin		oility		
criteria.					
	erent boundary conditions and linearization techniques.				
7. Apply the	finite element method for the solution of PDEs.				
Module:1 Parti	al Differential Equations		6	hοι	irs
	Linear, Semi-linear, Quasi-linear, fully non-linear – Sor	ne mode			
	imiting Cases –The existence of characteristics and				
interpretation. E	lliptic, parabolic, and hyperbolic partial differentia	al equa	tions	. Т	he
	on equation. Initial Values and Boundary Conditions-r	numerical	con	cerr	າຣ.
	ic and related matters relevant to computations.				
	polation Methods			hοι	
	differences, average, differential, etc., their inter-relation				
	fference equation. Interpolation. Lagrange's meth interpolating polynomial. Newton's fundamental inte				
•	central difference interpolations. Interpolation by	•		Spli	
-	parison with Newton's interpolation. Hermite's interpol				
	range, and Newton's methods. Inverse interpolation.				
	tion Mechanisms for linear systems – Elliptic ations		6	hοι	ırs
	discretization – Lagrangian interpolation, Taylor's seri	es trunc	ation		or
	bisson equation in one and two dimensions – Solu				
	-Jourdan elimination, Lower-Upper decomposition, Th				
	ns. Iterative methods: Jacobi Gauss-Seidel , Successi				
•	Over-Relaxation, Steepest descent, Conjugate grad				
	tive methods. Solution of algebraic system. Solution				
equations.					
	ition Techniques for Parabolic Partial erential Equations		6	hou	irs
	discretization of spatial derivatives - Parabolic equation	in its se	mi-di	scre	ete
			u		

Consistency, Stability, Convergence. Solution methods for the equations (1D & 2D): Forward-Time Centered Space (FTCS), Ba Space (BTCS), Crank Nicolson, Alternating Direction Implicit (ADI) conditions- Over relaxation – Under relaxation. Multigrid Techniques. Module:5 Solution for Hyperbolic Partial Differential	ckward-Time Centered
Equations	7110013
Solution properties- Domain of Dependence, General solution –T difference discretization schemes - Forward time central difference, Lax-Wendroff, Beam and Warming, Predictor/Corrector Algorithm Method of lines; Consistency , Stability Analysis, Convergence, Equivalence theorem, CFL condition, Fourier stability Analysis , V Absolute Stability Diagrams, Dispersion and Dissipation behavior equations, Runge–Kutta Methods.	Forward time upwind, , Semi-discrete form, Truncation Error, Lax 'on Stability Criterion ,
Module:6 The Finite Volume Method	6hours
Finite volume discretization – conservation methods Finite Volume Method (2D): computational cells, cell averages, Cartesian Cartesian grids, non-orthogonal meshes.	grids, orthogonal non-
Module:7 The Finite Element Method	6hours
Generalization of the finite element concepts. Basic equations and so method, Galerkin-weighted residual, variational approaches. The F (1D): Discretization of the domain, Derivation of element matrices an element matrices and vectors and derivation of system equations	inite Element Method
Module:8 Contemporary Issues	
	2hours
	2hours
Total Lecture hours:	2hours 45hours
Total Lecture hours: Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Ed Difference and Finite Volume Methods, Academic Press, 201 849894-1.	45hours quations, Finite 6, ISBN: 978-0-12-
Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Eq Difference and Finite Volume Methods, Academic Press, 201 849894-1. 2 Hoffman, Joe D., and Steven Frankel. Numerical Methods Scientists. CRC press, 2001, ISBN 978-0-82-470443-8	45hours quations, Finite 6, ISBN: 978-0-12-
Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Ed Difference and Finite Volume Methods, Academic Press, 201 849894-1. 2 Hoffman, Joe D., and Steven Frankel. Numerical Methods Scientists. CRC press, 2001, ISBN 978-0-82-470443-8 Reference Books	45hours quations, Finite 6, ISBN: 978-0-12- for Engineers and
Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Ed Difference and Finite Volume Methods, Academic Press, 201 849894-1. 2 Hoffman, Joe D., and Steven Frankel. Numerical Methods Scientists. CRC press, 2001, ISBN 978-0-82-470443-8 Reference Books 1. Morton, K. W., & Mayers, D. F. Numerical Solution of Partial Difference Difference Books	45hours quations, Finite 6, ISBN: 978-0-12- for Engineers and erential Equations (2nd
Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Ed Difference and Finite Volume Methods, Academic Press, 201 849894-1. 2 Hoffman, Joe D., and Steven Frankel. Numerical Methods Scientists. CRC press, 2001, ISBN 978-0-82-470443-8 Reference Books 1. Morton, K. W., & Mayers, D. F. Numerical Solution of Partial Difference Books 2. Pinder, George F. Numerical methods for solving partial difference	45hours quations, Finite 6, ISBN: 978-0-12- for Engineers and erential Equations (2nd ntial equations: a
Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Ed Difference and Finite Volume Methods, Academic Press, 201 849894-1. 2 Hoffman, Joe D., and Steven Frankel. Numerical Methods Scientists. CRC press, 2001, ISBN 978-0-82-470443-8 Reference Books 1. Morton, K. W., & Mayers, D. F. Numerical Solution of Partial Difference Difference Books	45hours quations, Finite 6, ISBN: 978-0-12- for Engineers and erential Equations (2nd ntial equations: a
Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Ed Difference and Finite Volume Methods, Academic Press, 201 849894-1. 2 Hoffman, Joe D., and Steven Frankel. Numerical Methods Scientists. CRC press, 2001, ISBN 978-0-82-470443-8 Reference Books 1. Morton, K. W., & Mayers, D. F. Numerical Solution of Partial Difference Books 2. Pinder, George F. Numerical methods for solving partial difference	45hours quations, Finite 6, ISBN: 978-0-12- for Engineers and erential Equations (2nd ntial equations: a
Text Book(s) 1. Sandip Mazumder, Numerical Methods for Partial Differential Ed Difference and Finite Volume Methods, Academic Press, 201 849894-1. 2 Hoffman, Joe D., and Steven Frankel. Numerical Methods Scientists. CRC press, 2001, ISBN 978-0-82-470443-8 Reference Books 1. Morton, K. W., & Mayers, D. F. Numerical Solution of Partial Difference Comprehensive introduction for scientists and engineers. John W	45hours quations, Finite 6, ISBN: 978-0-12- for Engineers and erential Equations (2nd ntial equations: a

Cou	rse Code	Course Title	L	Т	Ρ	С
	D504P	Numerical Methods for Partial Differential Equations Lab		0	2	1
Pre-	requisite		yllab	us v	ers	ion
	-		-	1.0		
Cou	rse Objective	9S				
	knowledge 2. To teach	the students to develop numerical codes by applying the of numerical methods commonly used for solving PDEs. the students to extend the numerical methods of mode fluid flow and heat transfer problems.				he.
	• • •					
	rse Outcome					
	1. Develop nu	completion of this course students will be able to. Imerical codes using FDM for solving model partial differen Imerical codes using FEM for solving model partial differen				
Indi	cative Experi	ments				
1.		gram to solve a 2D Elliptic (Poisson equation) using Ja OR methods subjected to Dirichlet or Neumann boundary				
2.		ram to solve a 1D parabolic (Heat equation) using the FTC				
3.	Write a prog	ram to solve a 2D parabolic (Heat equation), using the FTC	S me	etho	b	
4.	Lax-Friedrick	ram to solve a 1D advection equation, using the Upwind as scheme and the Lax-Wendroff scheme and check the up	nstabl	le F	TCS	
5.	and the upw					
6.		ode to solve a 1D convection-diffusion equation, using plement the FTCS scheme and the upwind scheme.	finite	vol	ume	
7.		ode to solve a 1D convection-diffusion equation, using optimized plement QUICK scheme	finite	vol	ume	
8.	Write the co method	de to solve 1D finite element Poisson eq. using Conju	gate	grac	lient	
9.		de to solve Lid-driven cavity using vorticity-stream function				
10.	Write the coo	de to solve Sod's shock tube problem using any two upwing	d sche	eme	s	
		Total Laboratory Hours	30 ho	ours		
	t Book(s)					
1.	scientists. C	e D., and Steven Frankel. Numerical methods for en RC press, 2018.	ginee	ers a	and	
	erence Books					
1.	Ed.). Cambri	/., & Mayers, D. F. Numerical Solution of Partial Differentia dge University Press, 2012.			•	
	•	andall J. Finite Difference Methods for Ordinary and Pa				
	-	teady-State and Time-Dependent Problems. Philadelphia	, PA:	Soc	iety	for
		d Applied Mathematics, 2007. ISBN: 9780898716290.				
		ent: Continuous assessment and FAT				
		Board of Studies 27-05-2022				
App	roved by Acac	lemic Council No. 66 Date 16-06-2022				

Cou	rse Code	C	course Tit	tle			LT	Р	С
	D505P	Computation			slab		0 0	4	2
	requisite	NIL		Junanine		Sylla	abusv	-	-
110	requisite					Oyne	1.0		
Cou	rse Objectiv	26 26					1.0		
COU		skills required for the creation	ation of 2	D and 2	acomotrio	o for flo	w mo	dalin	
		different methods of grid g						ueiiii	y.
		students to apply the cor						na fl	~ W
		nd visualize the results.				nulatio	15 031	ng n	0
Соц	rse Outcome	1							
		completion of this course s	students v	will he at	le to				
		eometry modeling for simple							
		fferent types of mesh suit				of flow	field		
		D analysis to understand						lved	in
		ternal and external flows.							
4		ser defined functions to pe		stomized	simulations	S.			
		ate simulation-results usin							
Indi	cative Exper								
1.		etry creation using Desig							
2.		l mesh generation for a y-							
3.	Structured m	esh generation for the stu	udy of exte	ernal flov	<i>w</i> over a NA	CA aer	ofoil		
4.		turbulent flow over an ae				ack			
5.		f incident shock wave and							
6.		of flow patterns in oil-wat							
7.		wake formation behind ta			ubjected to	constar	nt hea	tflux	
8.		f blood flow through bifurd							
9.	Numerical s	udy of tube-in-tube heat e	exchanger	r with the	e incorporati	on of u	ser de	efine	d
	inlet velocity								
10.	Transient stu	idy of phase change char							
			Т	otal Lab	oratory Hou	rs 60	hours		
Text	t Book(s)								
1.		Guan Heng Yeoh, and C roach. Butterworth-Heine			nputational 1	fluid dy	namio	cs: a	
Refe	erence Book								
1.	Blazek, Jiri. Heinemann,	Computational fluid dyn 2015.	amics: pr	rinciples	and applic	ations.	Butte	rwor	th-
2.	John Matsso	n, An Introduction to ANS	SYS Fluen	nt 2020, S	SDC Publica	ations, 2	2020		
3.	Versteeg, H	enk Kaarle, and Weeratur	nge Malala	asekera.	An introduc	tion to			
	computation	al fluid dynamics: the finite	e volume	method.	Pearson ed	lucatior	ח, 200	7.	
Mod	e of assessm	ent: Continuous assessm	ent and F	AT					
			27-05-2022						
			No. 66	Date	16-06-202	22			
						-			

Course Code	Course Title		L	Т	Ρ	С
MCFD506L	Numerical Solution of the Navier-Stokes Equation	ns	3	0	0	3
Pre-requisite	NIL	Sylla	bus		rsio	n
				.0		
Course Objectiv	es					
1. To develo	p a conceptual understanding of different forms of Navi	ier Sto	kes	equ	uatio	ons
and the so	olution algorithms used to solve them			-		
	op a foundation for understanding the different finite					
	for structured and unstructured grids, boundary and init	tial cor	nditio	ons	, line	ear
	and differential algebraic equations solvers					
	working knowledge implementing the solution algo					
	programs to solve benchmark incompressible fluid flo					fer
	on simple and complex geometries and evaluate the sc	olver ad	ccur	acy		
thorough	verification and validation					
Course Outcom						
Course Outcom						
	completion of this course students will be able to hand apply different forms of Navier Stokes equations.					
0	h and apply different solution algorithms to solve the	Navier	-St	h	2	
equation		navici	-010	JNC:	5	
	e different finite volume schemes to discretize the conv	ection	and	l dif	fusi	on
	structured and unstructured grids					
	omputer programs to solve steady and unsteady Navie	r Stoke	es e	qua	tion	in
	ariables using finite volume methods for simple and cor					
5. Apply line	arization techniques, boundary conditions, direct and i	terative	e ap	pro	ach	es
	velopment of flow solvers					
	ate the accuracy of the developed computer progr				rou	зh
verification	n and validation and generation of quality documentation	n of res	sults	5		
Madula 4					<u>l</u>	
	er-Stokes equations variants and related mathemati ulations	icai		6	hou	ırs
-	unction formulation for two-dimensional flow - Governin	a equi	ation			/ in
	ity, Direct computation of a steady flow, Modified dynai					
	elocity-pressure formulation - Pressure Poisson equation					
	erning equations, Boundary conditions for the pres					
	PPE, Ensuring compatibility, Explicit evolution equation					
	f primitive variables - Implementation on a staggered					
grid, Second-orde	er methods.	-			-	
Module:2 Solu	tion algorithms for Navier Stokes equations			6	hou	Jrs
	, projection, and pressure-correction methods - Solen					
-	essure - Boundary conditions for intermediate variable					
	n - First-order projection method - Second-order m					
	cs or false transients - Artificial compressibility meth	od for	ste	ead	y flo)W.
Modified PPE - P	enalty-function formulation					
Module:3 Finit	e Volume methods for Convection-Diffusion Equation	ons		7	hou	Jrs
	nsional convection and diffusion, Central differencing so		, Pro			
	nemes - Conservativeness - Boundedness – Transp					
	me, Hybrid differencing scheme, Assessment of the					
-	ing and hybrid differencing scheme for convection-					-
	g scheme for multi-dimensional convection-diffusion,					
	erencing schemes for convection-diffusion problems					
	me: QUICK scheme - Assessment of the QUICK					
problems of the	QUICK scheme and remedies- General comme	nts or	n th	e (JUI	CK

		g scheme, TVD schemes- Generalization of upwind-b Total variation and TVD schemes- Criteria for TVD scl						
	functions- Implementation of TVD schemes- Evaluation of TVD schemes							
Мо	dule:4	Finite volume implementation of pressure-correction ba incompressible Navier-Stokes Solver for Steady flows	ased	6 hours				
		pered grid, The momentum equations, Discretization of c						
		gradient and body force terms, The SIMPLE algorithm, Ass						
		he SIMPLER algorithm, The SIMPLEC algorithm, The PISC						
alg	orithm.	on SIMPLE, SIMPLER, SIMPLEC and PISO, Worked exam	-					
Мо	odule:5	Finite volume implementation of pressure-correction ba incompressible Navier-Stokes Solver for Unsteady flow		7 hours				
Ev	nlicit coh	heme, Crank–Nicolson scheme, the fully implicit scheme, Im		d for two				
		-dimensional problems, Solution procedures for unsteady						
		SIMPLE - The transient PISO algorithm, Steady state calc						
		ansient approach.	ulations us	ing the				
		Finite volume Implementation of Boundary conditions		4 hours				
		dary conditions - Outlet boundary conditions - Wall bounda	ry condition					
		ressure boundary condition - Symmetry boundary condition						
		condition - Potential pitfalls	i i onodio	er eyene				
		Finite volume methods for dealing with complex geome	tries	7 hours				
Bo	dy-fitted	l co-ordinate grids for complex geometries, Cartesian vs. c	urvilinear g	grids – an				
		Curvilinear grids – difficulties, Block-structured grids,						
Dis	cretizati	tion in unstructured grids, Discretization of the diffusion term,	, Discretizat	tion of the				
cor	nvective	e term, Treatment of source terms, Assembly of discretised	equations,	Example				
		is with unstructured grids, Pressure-velocity coupling in u						
		vs. co-located grid arrangements, Extension of the face	velocity inte	erpolation				
		unstructured meshes.						
NIC	dule: 8	Contemporary issues		2 hours				
		Total Lecture hours:	45 hours					
Te	xt Book	((s)						
1.		ersteeg and W Malalasekera, An Introduction to Computation	al Fluid Dvr	namics				
		Finite Volume Method, 2 nd Edition, Pearson Prentice Hall, 200						
	1312-7	7498-3						
2	Pozrikidis, C. Introduction to theoretical and computational fluid dynamics, Second							
Re		n Oxford University Press, 2011, ISBN 978-0-1997-5207-2						
1.		H. Ferziger, Milovan Perić, Robert L. Street, Computationa	l Methode	for Fluid				
1.	Dynamics, 4 th Edition, Springer, 2021, ISBN: 978-3-3199-9691-2							
2.	• • •							
	of Numerical discretization, 2 nd Edition, Butterworth-Heinemann, Elsevier, 2007, ISBN:							
		-7506-6594-0.		,				
3.		azek, Computational Fluid Dynamics: Principles and Applicati	ons, 3 rd Edi	tion,				
		worth-Heinemann, 2015, ISBN 978-0-0809-9995-1	,	,				
Мо		valuation: CAT , written assignment , Quiz , FAT						
Re	commer	nded by Board of Studies 27-05-2022						
			00					
An	proved h	by Academic Council No. 66 Date 16-06-20	22					

	e Code	Course Title L	Т	Ρ	С
MCFD	506P	Numerical Solution of the Navier-Stokes 0	0	2	1
Dro ro	quiaita	Equations Lab Syllabu		roia	
Pre-re	quisite		<u>s ve</u> 1.0	rsic	n
Cours	e Objectives		1.0		
	and finite volun Navier Stokes formulation. To impart work	onceptual understanding and working knowledge of Finite ne discretization techniques and solution algorithms used equations in velocity/pressure, velocity/vorticity, and vorti ing knowledge of developing CFD codes for bench mark I flow and heat transfer applications	for : city/	solvi strea	ing am
Cours	e Outcome				
Upon s 1.	successful compl Demonstrate th incompressible vorticity/stream	etion of this course students will be able to the understanding of finite difference methods used for s Navier- Stokes equations in velocity/pressure, velocity/vo function formulation the understanding of finite volume methods used for s	orticit	y, a	and
3.	incompressible Demonstrate th incompressible Develop finite geometries by	Navier- Stokes equations in velocity/pressure formulation e understanding of different solution algorithms used for Navier- Stokes equations in velocity/pressure formulation difference scheme to simulate benchmark problems solving the Navier -Stokes equations in vorticity/strea	solvi for	ng t sim	the ple
	geometries by s on staggered a method Develop finite geometries by velocity/pressur	difference scheme to simulate benchmark problems solving the Navier -Stokes equations in velocity/pressure nd collocated Cartesian grids using operating splitting and volume scheme to simulate benchmark problems f solving the two dimensional Navier -Stokes equ e formulation on staggered and collocated Cartesian g _EC and projection method	form pro or uatic	ulati jecti sim	ion ion ple in
Indica	tive Experiment				
1.	Write a Ex unidirection the presc	kplicit finite difference code to compute the velocity profile i onal channel flow starting from the specified initial condition ribed boundary conditions by solving the governing equati ressure formulation	sub		to
2.	unidirection the present	mplicit finite difference code to compute the velocity ponal channel flow starting from the specified initial condition ribed boundary conditions by solving the governing equati ressure formulation	, sub	oject	
3.	unidirection pressure g governing	mplicit finite difference code to compute the velocity p onal channel flow starting from the specified initial condition gradient, subject to the prescribed boundary conditions by equation in velocity/vorticity formulation	n and solvi	d ng t	he
4.	formulation specified		subje	ect to	
5.	formulatio a sliding li		y driv	/en	
6.	Develop a	a finite-difference method based on the velocity /pressure f	orm	ulati	on

	for computing the two-dimensional flow in a square cavity driven by a sliding lid using the operation splitting and solenoidal projection method on a collocated grid.
7.	Develop a finite-difference method based on the velocity /pressure formulation for computing the two-dimensional flow in a square cavity driven by a sliding lid using the operation splitting and solenoidal projection method on a staggered grid.
8.	Develop a finite-volume method based on the velocity /pressure formulation for computing the two-dimensional flow in a square cavity driven by a sliding lid on a staggered grid using the SIMPLE algorithm
9.	Develop a finite-volume method based on the velocity /pressure formulation for computing the two-dimensional natural convection flow in a square cavity on a staggered grid using Projection method
10.	Develop a finite-volume method based on the velocity /pressure formulation for computing the two-dimensional flow over a backward facing step on a staggered grid using the SIMPLEC algorithm
<u> </u>	Total Laboratory Hours 30 hours
Text Boo	-
1.	George Qin, Computational Fluid Dynamics for Mechanical Engineering, 1 st Edition, CRC press, 2022, ISBN: 978-0-367-68730-4.
2.	C. Pozrikidis, Fluid Dynamics: Theory, Computation and Numerical simulation, 3 rd Edition, Springer,2017, ISBN 978-1-4899-7990-2.
Reference	ce Books
1.	H K Versteeg and W Malalasekera, An Introduction to Computational Fluid Dynamics - The Finite Volume Method, 2 nd Edition, Pearson Prentice Hall, 2007, ISBN: 978-0-1312-7498-3.
2.	D. G. Roychowdhury, Computational Fluid Dynamics for Incompressible Flows, 1 st Edition, CRC press, ISBN: 978-0-367-40806-0
3.	Joel H. Ferziger, Milovan Perić, Robert L. Street, Computational Methods for Fluid Dynamics, 4 th Edition, Springer, 2021, ISBN: 978-3-3199-9691-2
4.	Sreenivas Jayanthi, Computational Fluid Dynamics for Engineers and Scientists, 1 st Edition, Springer, 2018, ISBN 978-94-024-1215-4
	assessment: Continuous assessment / FAT / Oral examination and others
	ended by Board of Studies 27-05-2022
Approved	by Academic Council No. 16 Date 16-06-2022

Coi	Irse Code	Course Title		1	т	Р	С
	FD507P	Advanced Computational Fluid Dynamics Lab		0	0	4	2
	-requisite	NIL	Syll	-	-	-	
110			Oyn		.0		011
Coi	irse Objectiv				.0		
	-	skills required for the advanced grid generation techniqu	100				
		lifferent methods of simulation setup for fluid flow proble					
		the students to apply CFD techniques for the design ar		lucio	- of		
		, automotive and turbo machinery systems.	iu ana	1951	5 01		
	aerospace	, automotive and turbo machinery systems.					
Сог	Irse Outcome	Ν					
		completion of the course, students will be able to					
		eometry modeling and grid generation for complex fluid	flow d	oma	ains		
		omputational analysis on internal and external flows.	non a	onne		•	
		e interaction between fluid and structure.					
		putational framework for the analysis of reacting flows.					
		omputational analysis of turbomachines using moving re	eferend	ce fr	am	e.	
		ser defined functions to perform customized simulations					
		· · · · · · · · · · · · · · · · · · ·					
Indi	cative Exper	ments					
1.		on for 3D domain using ICEM CFD					
2.		al analysis of Jet surface interaction					
3.	Computation	al study of supersonic flow over a 3D bump					
4.	Computation	al analysis of shell and tube heat exchanger					
5.	Investigation	of a hydraulic jump using two phase flow model					
6.	Analysis of a	moving strip in an air stream using Fluid structure intera	action				
7.	Simulation o	a centrifugal blower using multiple reference frames					
8.	Simulation o	Species transport and gaseous combustion using met	hane a	and	air		
	mixture.						
9.		a porous media in an exhaust system of an IC engine					
10	Creating and	compile user defined function (UDF) of temperature pre-					
		Total Laboratory Hou	rs 60	ho	urs		
	t Book(s)						
	practical app	Guan Heng Yeoh, and Chaoqun Liu. Computational f roach. Butterworth-Heinemann, 2018.	luid dy	ynar	nics	s: a	
Ref	erence Book						
1.	Blazek, Jiri. Heinemann,	Computational fluid dynamics: principles and applica 2015.	ations.	Bu	itter	wor	th-
2.	John Matsso	n, An Introduction to ANSYS Fluent 2020, SDC Publica	tions,	202	0		
3.	Versteeg, He	nk Kaarle, and Weeratunge Malalasekera. An introduc	tion to				
	computation	al fluid dynamics: the finite volume method. Pearson edu	ucatior	n, 20	007	•	
4	Charles Hirs	ch, Numerical Computation of Internal and External Flo	ws: Th	ie			
		ls of Computational Fluid Dynamics, Butterworth-Heiner)7		
Мос	le of assessm	ent: Continuous assessment / Lab FAT / Viva voce					
		/ Board of Studies 27-05-2022					
Арр	roved by Aca	demic Council No. 66 Date 16-06-202	22				

Course Code	Course Title		L	Т	Ρ	С
MCFD508L	Turbulence Modelling		3	0	0	3
Pre-requisite	NIL	Sy	/llab		ersi	on
				1.0		
Course Objective		longo	m 0.	امالنه		nd
simulation	e a comprehensive knowledge in the field of turbu	lence	moc	leiiir	ig a	na
	e the physical insight and the mathematical framev	ork n	eede	ed to)	
	d the formulations of turbulence models and their esse					
3. To make	the students to understand the underlying complex	bheno	men	on ir	۱	
turbulent f	lows and modelling approaches.					
Course Outcome						
Upon successful of	completion of the course, students will be able to					
1 Delete the	hasis characteristics of turkulance in verious engines		ممانم	ation		
	basic characteristics of turbulence in various enginee transport of momentum and energy in turbulent flow		oplic	allor	15.	
	nolds decomposition principle for the analysis of turbu		ean	flow		
	he free shear and wall bounded turbulent flow character				-	
•	advanced turbulence modelling techniques in pred			smal	l-sca	ale
fluctuation	IS.	_				
Module:1 Char	acteristics of Turbulence			5	hοι	urs
-	nce, irregularity, diffusivity, three dimensional motio		-			
•	motions and length scales, experimental tech	nique	s ir	n tu	rbul	ent
measurements.						
	stical Description of Turbulence				'nοι	
	of turbulence, distribution function, probability de					
	ations, Taylor's hypothesis, integral micro scales nce, Kolmogorov hypothesis, scales of turbulenc		•			
turbulence spectra	• •	, 01	loigj		1000	u0,
Module:3 Turb	ulent Transport of Momentum and			7	' hou	ire
Ener	•			'	not	113
	position technique, turbulent stresses, vortex stretching	a, Rev	nold	S		
•	-length model, Reynolds' analogy, dynamics of turbul	•				
	ulence Modelling			7	'nοι	ırs
Introduction, eddy	-viscosity hypothesis, algebraic model, Spalart Allmar	as mo	del, l	k-٤ aı	nd k-	-
	lds-stress model, near-wall treatment.					
	Shear Flows				hοι	
0, 1, 1	rbulent Wakes – plane and axisymmetric wakes, Jet	s, self	-sim	ilarit	y, G	rid
l urbulence, Large	e scale turbulent motion – Vortex stretching.					
	Bounded Turbulent Flows				hοι	
	flows, Reynolds stresses, turbulent boundary layer e	quatio	ns, l	ogar	ithm	ic-
law of walls, turbu	ilent structures					
	Inced Turbulence Modelling			5	hou	urs
	niques					
• •	ation - Smagorinsky–Lilly model, Dynamic Smagorins dy viscosity (WALE) sub grid scale model; Direct Num	•	•			

(DN	IS) model. Detached Eddy Simulation (DES) model.	
Мо	dule:8 Contemporary Issues	2 hours
	Total Lecture hours:	45 hours
Tex	t Book(s)	
1.	Pope, S.B., 2003, Turbulent Flows, Cambridge Univers	ity Press. ISBN: 0-521-59886-
	9.	
2.	Tennekes, H., and Lumley, J.L., 2018, A First Cours	
	Cambridge, Massachusetts, USA. ISBN: 97802625363	01.
Ref	erence Books	
1.	Wilcox, D.C., 2006, Turbulence Modelling for CFD, DC	<i>W Industries</i> , California, USA.
2.	Ferziger, J.H., and Peric, M., 2002, Computational Met.	hods for Fluid Dynamics,
	Springer.	-
3	Sagaut, P., and Germano, M., 2002, Large Eddy Simul	ation for Incompressible Flows,
	Springer Verlag.	
Мо	de of Evaluation: CAT, written assignment, Quiz and FA ⁻	Γ
Red	commended by Board of Studies 27-05-2022	
Арр	proved by Academic Council No. 66 Date	9 16-06-2022

Course Code	Course Title		LTPC
MCFD601L	Computational Aerodynamics		3 0 0 3
Pre-requisite	NIL	Syllab	us version
•			1.0
Course Objectiv	res		
1. To develo	op a conceptual understanding of numerical methods	suitable	for the
compress	sible flows.		
2. To impart	knowledge of spatial and temporal discretization sch	nemes a	oplicable for
	ed finite volume framework.		
		ooundary	conditions
implement	tation strategies applicable for the compressible flows.		
<u> </u>			
Course Outcom			
•	completion of this course students will be able to		
	ate the knowledge of complex flow structures of differ	rent regir	nes of
	ible flows. a governing equations of compressible flows by cons	idorina (hifforont flow
features i		suering t	
	numerical algorithms for steady and unsteady Euler equ	ations	
	emes suitable for the discretization of convective and		luxes for the
	ent N-S solvers.		
	compressible unsteady flow solvers using different time	marchin	g strategies
	table turbulent flow model for the study of internal/exte		
aerodyna			
7. Implemer	t appropriate boundary condition for a chosen flow don	nain.	
	putational Aerodynamics: Aerodynamics/Gas dyr	namics	8 hours
	cepts: Overview and Preparation		<u> </u>
	mics- Wing Terminology, Prandtl's Lifting Line		
	Effects, Transonic Aerodynamics- Wing Sweep. Super aves, shock reflections, shock/shock interactions, Prar		
	er-expanded flow. Hypersonic Aerodynamics- Importar		
	, Aerodynamic Heating.		
	ciples of Computational Gas dynamics		4 hours
	w governing equations in integral form, conservative fi	nite volu	me method -
	ons, introduction to flux averaging, introduction to flux		
	tion. Artificial viscosity		
Module:3 Basi	c numerical methods for Euler Equations		6 hours
	ax-Friedrichs method, Lax-Wendroff Methods. Wav		
	steger-Warming Flux vector splitting, Van Leer Flux V	•	litting, Wave
	onstruction-Evolution- Roe's First-Order Upwind Metho		-
	te Volume Method for compressible flow- S	patial	7 hours
	cretization		
	-Volume Schemes, Geometrical Quantities of a Con		
	ethodologies, Discretization of the Convective Fluxes.		
	es-Geometrical Quantities of a Control Volume, Convertive El		
	II-vertex scheme, Discretization of the Convective Fl sipation, upwind schemes, Solution reconstruction, g		
	tization of the Viscous Fluxes.	gradients	
	te Volume Method for compressible flow-	I	6 hours
	poral Discretization		0 110013
	pping Schemes - First-Order Time Accuracy, Second-(Order Tir	ne Accuracy
	f Backward Time Difference, Multistage Schemes (F		
			,,,

Multistage Scheme	s, Determination of t	he Maximum	Time Ste	ep, Implicit Time-S	tepping
Schemes					
	lence Modelling				6 hours
	ng Approaches- Bas				
	pothesis, First-Order				on Model, k-
	del, Wall functions, S				
	dary Conditions a				6 hours
	y, farfield in external	,		5	,
	ate cut and periodi				
	nplementation strate	gies for struc	tured and	I unstructured dom	
Module:8 Conte	mporary Issues				2 hours
			lota	I Lecture hours:	45 hours
Text Book(s)					
	ssell M., et al. Aı proach. Vol. 53. Can				modern
2 Blazek, Jiri. Co	omputational fluid dy	/namics: prin	ciples an	d applications. Bu	itterworth-
Heinemann, 20	15.	_	-		
Reference Books					
1. Laney, Culbe	rt B. Computational g	gasdynamics.	. Cambrid	lge university pres	s, 1998.
2. Moran, Jack.	An introduction to t	heoretical an	d compu	tational aerodynar	nics. Courier
Corporation, 2	2003.				
	: CAT , written assig	-	-		
	nt: Continuous asses				
Recommended by		27-05-2022			
Approved by Acade	mic Council	No. 66	Date	16-06-2022	

Course code	Course Title		L	т	Р	С
MCFD602L	Chemically Reacting Flows-Combustion		2	0	0	2
Pre-requisite NIL		Syl	labı	is v	ers	ion
			1	.0		
Course Objectiv						
	theory and methodology to simulate reacting flows with					
	Ils required for incorporating species transport and co	oupling	the i	nte	ract	ion
	ulence and chemistry.					
	idents to perform combustion simulations using comme	ercial C	FDt	001	5.	
4. To familiarize	the students with the multi-phase spray modeling.					
0	_					
Course Outcom						
	of the course the students will be able to nowledge of different types of flames.					
	owledge of different turbulence-chemistry interaction	model	s foi	• th	2	
	reacting flows.	model			0	
	urbine engine's combustion analysis.					
4. Understand I	pasic theory of Lagrangian models for spray and it	s appli	catic	n f	or f	uel
injection.						
	njection simulation and analyse key fuel droplet charac					
6. Perform liquit combustor.	d fuel atomization and combustion simulation within	a typic	ai g	as 1	urb	ine
compusior.						
Madalad Ora						
	bustion and thermochemistry				ho	
	ame types, lean and rich combustion, and their corres is, Reactant and Product mixtures, Standard Ent					
	rium. Equilibrium products for combustion. Determinat					
•	oduction to the physics of turbulence-chemistry inte					
flame regimes.						
Module:2 Cher	mical Kinetics			5	ho	urs
Introduction to C	hemical Kinetics. Global versus elementary reactions	. Eleme	enta	ry re	eact	tion
	eaction for multistep mechanisms. Analysis of reactio			ms.	So	me
	al mechanisms- The H2-O2 system. CO oxidation. O	xidatior	of			
	ethane combustion. Oxides of Nitrogen formation.			4	ho	
	servation Equations for Reacting flows mass in reacting flows, Species mass conservation	(anagi	~ ~ ~		ho	
	diffusion, Conservation of momentum in reacting flo					
	g flows. The concept of conserved scalar.	<i>w</i> s. o	51150	iva		01
Module:4 Lam				5	ho	urs
Laminar premixe	d flames. Zeldovich's analysis of flame propagation.	Struct	ure			
flame. Flame v	elocity and flame thickness in laminar premixed	flame				
flammability, and	ignition in laminar premixed flames. Flame stabilizatio	n.				
Laminar diffusion	n flames. Mixing in non-reacting jets. Jet-flame p	ohvsica	l de	scr	iptic	n.
	for laminar jet non-premixed flames. Laminar diffus					
length for circular	port and slot burners.	, .				
Module:5 Drop	plet evaporation and burning				ho	
	nple model for droplet evaporation-Gas-phase analy					
Simple model of constant and dro	droplet burning- Problem setup and conservation equipted by the second set of the second s	luations	s, bu	rnir	ng ra	ate
	oulent premixed and nonpremixed flames			4	ho	urs

Practical applications. Turbulent flame speed. Structure of turbulent premixed flames. Wrinkled laminar flame regime. Distributed Reaction regime. Flamelet model. Flame stabilization. Turbulent nonpremixed flames- Jet flame, Flame length, Flame radiation, Lift off and blowout

Мо	dule:7	Burning of solids				3 hours
Pra	actical a	oplications. Heterogeneous	reactions. Bu	rning of c	arbon-overview,	one-film
mo	del, two	film model, particle burning	times. Coal of	combustic	on.	
Мо	dule:8	Contemporary Issues				2 hours
				Total I	_ecture hours:	30 hours
Ta	vt Book	(0)				
-	xt Book	<pre></pre>				
1.		Stephen R., An Introduction				tions, 2018,
	3 rd edit	ion, McGraw-Hill Companies	s, New York,	NY, USA	۱.	
2	Poinsc	t, Thierry, and Denis Veyna	nte. Theoret	ical and r	numerical combu	stion. 2005.
		tion, RT Edwards, Inc.				,,
Re	ference	Books				
1.	Lefebv	re, Arthur H., and Dilip R. I	Ballal. Gas ti	urbine co	mbustion: alterna	ative fuels and
	emissi	ons. CRC press, 2010.				
Мо	de of Ev	aluation: CAT, written assig	nment, Quiz.	FAT		
		ided by Board of Studies	27-05-2022			
Δ	nrovad k	y Academic Council	No. 66	Date	16-06-2022	

Co	urse code		Course Tit					Т	Р	С
-	FD602P	Chemically Rea		-	ustion I ab		0	0	2	1
	e-requisite	NIL		Comb		Svl	labı	-		•
						Oy.		1.0	0101	
Со	urse Objecti	ves								
1. 2.	To provide adequate c To enable s	hands on experience r combustion models. students to perform con idents to carry out the n	nbustion sim	ulations u	ising comm	ercial				
0.		idents to earry out the h		Jiay mou	ching studie					
Co	urse Outcon	ne								
1. 2. 3.	Perform co Perform sir Perform sp licative Expe Simulation Simulation Simulation	I completion of the cour mbustion simulation of nulations of flow combu ray modelling studies. riments of combustion of Metha of combustion in a rock of gas burner with air sy of a Non-Premixed com lation by using DPM mo	an IC engine stion. ne in the pre et engine's c virler bustion	sence of	air.					
5.	Spray Sinu	anon by using Driving		tal I abo	ratory Houi	re 3() ho	ure		
Te	xt Book(s)		10		i ator y rioui	3 3	, 110	u13		
1.	Poinsot, Thi	erry, and Denis Veyna RT Edwards, Inc.	nte. Theoret	cal and i	numerical c	ombus	stion	i, 20	005,	
Re	ference Boo									
1.		nt 2020 R1-Theory Guid								
		ment: Continuous asses			va voce					_
		by Board of Studies	27-05-2022							
Ар	proved by Ac	ademic Council	No. 66	Date	16-06-202	22				

	Course Title	L	Τ	Ρ	С
MCFD603L	Fluid Structure Interaction	3	0	0	3
Pre-requisite	NIL	Syllab	us v	ersi	ion
-			1.0		
Course Objectiv	res l				
1. To develo	p a conceptual understanding of governing equations of f	fluid and	d stru	uctu	ral
Mechanic					
	p a foundation for understanding of the coupling condition	ns invol	ved	in flu	uid
	interactions.				
	op an understanding of FEM methods to solve the gover	rning eo	quati	ons	of
	cture interactions. an understanding of linear equations solvers for FSI.				
4. TO IIIIpart					
Course Outcom	e				
	completion of this course students will be able to				
	governing equation of fluid and structural mechanics.				
	different coupling conditions involved in fluid structure inte	eraction			
3. Formulate	e the FSI governing equations in ALE and Fully Eulerian a	pproach	nes.		
-	ne different finite element schemes to discretize the FS	SI gover	ning		
equations				_	
	earization techniques and linear algebraic equation solve	ers for s	olvir	ng F	SI
problems		•			
0. Perioriti	umerical simulation of Fluid structure Interaction problems	5.			
Module:1 Mod	els : Governing Equations of Fluid and Structural		6	hou	irs
	hanics		Ŭ		
Continuum Mecl	nanics - Coordinate Systems - Deformation Gradient -	- Strain	- F	Rate	of
Deformation and	I Strain Rate - Stress - Conservation Principles in Dir	fferent	Coo	rdin	- 4 -
0					
	al Laws - Hyperelastic and Incompressible Materials, Th	ne Solid	Pro	bler	m -
The Navier-Lame	Equations - Steady and unsteady incompressible Navie	ne Solid r-Lamé	Pro Equ	bler atio	m - ns.
The Navier-Lame The Fluid Proble	Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq	ne Solid r-Lamé juations	Pro Equ - Th	bler atio eory	m - ns. / of
The Navier-Lame The Fluid Proble Incompressible F	Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te	ne Solid r-Lamé juations chnique	Pro Equ - Th es fo	bler atio eory or Fl	m - ns. / of low
The Navier-Lame The Fluid Proble Incompressible F Problems on Mc	Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te loving Domains - The Arbitrary Lagrangian Eulerian (ALE	ne Solid r-Lamé juations chnique	Pro Equ - Th es fo	bler atio eory or Fl	m - ns. / of low
The Navier-Lame The Fluid Proble Incompressible F Problems on Mo Moving Domain F	Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te living Domains - The Arbitrary Lagrangian Eulerian (ALE Problems	ne Solid r-Lamé juations chnique	Pro Equ - The es fo iulati	bler atio eory or Fl ion	m - ns. / of low for
The Navier-Land The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou	E Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te oving Domains - The Arbitrary Lagrangian Eulerian (ALE Problems pled Fluid Structure Interactions	ne Solid r-Lamé luations chnique E) Form	Pro Equ - The s fo ulati	bler atio eory or Fl ion hou	m - ns. / of low for
The Navier-Lame The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi	Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te oving Domains - The Arbitrary Lagrangian Eulerian (ALE Problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir	ne Solid r-Lamé juations chnique E) Form	Pro Equ - The es fo nulati 6 Reg	bler atio eory or Fl on hou gula	m - ns. / of low for u rs rity
The Navier-Lame The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi and Boundary C	E Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te oving Domains - The Arbitrary Lagrangian Eulerian (ALE Problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir onditions - Coupled Fluid-structure Interaction - The Ad	ne Solid r-Lamé juations cchnique E) Form 	Pro Equ - The s fo nulati 6 Reç	bler atio eory or Fl on fon fon gula	m - ns. / of low for u rs .rity ct -
The Navier-Land The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi and Boundary C Variational Cou	Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te oving Domains - The Arbitrary Lagrangian Eulerian (ALE Problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir	ne Solid r-Lamé Juations cchnique E) Form terface ded Ma E Coo	Pro Equ - The es for iulati 6 Req ass E	bler atio eory or Fl ion hou gula Effectates	m - ns. / of low for urs rity ct -
The Navier-Land The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi and Boundary C Variational Cou Definition of the	E Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te oving Domains - The Arbitrary Lagrangian Eulerian (ALE Problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir onditions - Coupled Fluid-structure Interaction - The Ad pling Techniques - Fluid-structure Interactions in AL	ne Solid r-Lamé Juations chnique E) Form terface ded Ma E Coo rmulatic	Pro Equ - The es for iulati Mass E rdina on - 1	bler atio eory or Fl ion hou gula Effectates	m - ns. / of low for urs rity ct -
The Navier-Lame The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi and Boundary C Variational Cou Definition of the Structures in Eule	E Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te oving Domains - The Arbitrary Lagrangian Eulerian (ALE Problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir onditions - Coupled Fluid-structure Interaction - The Ad oling Techniques - Fluid-structure Interactions in AL ALE Map - Coupled ALE Formulation - Fully Eulerian For	ne Solid r-Lamé Juations chnique E) Form terface ded Ma E Coo rmulatic	Pro Equ - The es for iulati Iulati 6 Reg ass E rdina on - I ates	bler atio eory or Fl ion hou gula Effectates	m - ns. / of low for rity ct - stic
The Navier-Land The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi and Boundary C Variational Coup Definition of the Structures in Eule Module:3 Disc	E Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te oving Domains - The Arbitrary Lagrangian Eulerian (ALE Problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir onditions - Coupled Fluid-structure Interaction - The Ad oling Techniques - Fluid-structure Interactions in AL ALE Map - Coupled ALE Formulation - Fully Eulerian For erian Coordinates - Fluid-structure Interaction in Eulerian (ne Solid r-Lamé Juations cchnique E) Form ded Ma E Coo rmulatio Coordin	Pro Equ - The s for ulati 6 Reg ass E rdina on - l ates 6	bler atio eory r Fl on fun gula Effec ates Elas hou	m - ns. / of low for rity ct - stic
The Navier-Land The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi and Boundary C Variational Cou Definition of the Structures in Eule Module:3 Disc	E Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te oving Domains - The Arbitrary Lagrangian Eulerian (ALE Problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir onditions - Coupled Fluid-structure Interaction - The Ad oling Techniques - Fluid-structure Interactions in AL ALE Map - Coupled ALE Formulation - Fully Eulerian For erian Coordinates - Fluid-structure Interaction in Eulerian (retization techniques for FSI governing equations	ne Solid r-Lamé Juations chnique E) Form ded Ma ded Ma E Coo rmulatio Coordin ed Crar	Pro Equ - The es for iulati 6 Reg ass E rdina on - l ates 6 hk-Ni	bler atio eory or Fl on fun gula Effec ates Elas hou	m - ns. / of low for rity ct - stic urs son
The Navier-Lame The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi and Boundary C Variational Cou Definition of the Structures in Eule Module:3 Disc Time Discretizat Methods- The Fr Discretization of	 Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir onditions - Coupled Fluid-structure Interaction - The Ad pling Techniques - Fluid-structure Interactions in AL ALE Map - Coupled ALE Formulation - Fully Eulerian For erretization techniques for FSI governing equations ion - Numerical Stability- Numerical Dissipation- Shifter actional-Step-Method -Galerkin and Discontinuous Galeri the Stokes and N-S Equations. Spatial Discretization - 	e Solid r-Lamé uations chnique) Form = = = = = = = = = = = = = = = = = = =	Pro Equi - The es for ulation 6 Req ass E rdina on - I ates 6 hk-Ni hods blatio	bler atio eory r Fl ion fun gula Effec ates Elas Elas Elas Elas	m - ns. v of low for urs rity ct - stic urs son me with
The Navier-Lame The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi and Boundary C Variational Cou Definition of the Structures in Eule Module:3 Disc Time Discretizat Methods- The Fr Discretization of Finite Elements	 Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir onditions - Coupled Fluid-structure Interaction - The Ad pling Techniques - Fluid-structure Interactions in AL ALE Map - Coupled ALE Formulation - Fully Eulerian For perian Coordinates - Fluid-structure Interaction in Eulerian Corretization techniques for FSI governing equations ion - Numerical Stability- Numerical Dissipation- Shifted actional-Step-Method -Galerkin and Discontinuous Galeri the Stokes and N-S Equations. Spatial Discretization - Elliptic Problems - Finite Elements on Curved Domai 	ne Solid r-Lamé Juations chnique E) Form ded Ma ded Ma E Coo rmulatio Coordin ed Crar kin Met Interpo	Pro Equi - The es foculation autor of the rdina on - I ates foculation hods blatic addlo	bler atio eory r Fl ion floon gula Elas Elas Elas bon w e-Pc	m - ns. / of low for urs rity ct - stic urs son me vith point
The Navier-Land The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi and Boundary C Variational Cou Definition of the Structures in Eule Module:3 Disc Time Discretizat Methods- The Fr Discretization of Finite Elements Problems. Method	 Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te problems - The Arbitrary Lagrangian Eulerian (ALE Problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir onditions - Coupled Fluid-structure Interaction - The Ad bling Techniques - Fluid-structure Interactions in AL ALE Map - Coupled ALE Formulation - Fully Eulerian For erain Coordinates - Fluid-structure Interaction in Eulerian Cordinates - Fluid-structure Interaction Science ion - Numerical Stability- Numerical Dissipation- Shifted actional-Step-Method -Galerkin and Discontinuous Galeri the Stokes and N-S Equations. Spatial Discretization - Elliptic Problems - Finite Elements on Curved Domai ods for Navier-Stokes equations- Oseen Fixed Point Line 	e Solid r-Lamé Juations chnique E) Form ded Ma E Coo rmulatio Coordin ed Crar kin Met Interpo ins - S earizatio	Pro Equi - The es foculation foculation Rec ass E rdina foculation addle blatic addle on - N	bler atio eory r Fl ion fun gula Effec ates Elas Elas bon w e-Pc New	m - ns. / of low for urs rity ct - stic urs son me vith point ton
The Navier-Lame The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi and Boundary C Variational Coup Definition of the Structures in Eule Module:3 Disc Time Discretization of Finite Elements Problems. Method	 Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir onditions - Coupled Fluid-structure Interaction - The Ad pling Techniques - Fluid-structure Interactions in AL ALE Map - Coupled ALE Formulation - Fully Eulerian For periate Coordinates - Fluid-structure Interaction in Eulerian (Correctional Coordinates - Fluid-structure Interaction in Eulerian Correctional Stability- Numerical Dissipation- Shifter actional-Step-Method -Galerkin and Discontinuous Galering the Stokes and N-S Equations. Spatial Discretization - Elliptic Problems - Finite Elements on Curved Domains ds for Navier-Stokes equations- Oseen Fixed Point Line ization of Transport Dominant Flows-Discretization of Interaction of Intera	e Solid r-Lamé Juations chnique E) Form ded Ma E Coo rmulatio Coordin ed Crar kin Met Interpo ins - S earizatio	Pro Equi - The es foculation foculation Rec ass E rdina foculation addle blatic addle on - N	bler atio eory r Fl ion fun gula Effec ates Elas Elas bon w e-Pc New	m - ns. / of low for urs rity ct - stic urs son me vith point ton
The Navier-Lame The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi and Boundary C Variational Cou Definition of the Structures in Eule Module:3 Disc Time Discretizate Methods- The Fr Discretization of Finite Elements Problems. Metho Iteration -Discret	 Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir onditions - Coupled Fluid-structure Interaction - The Ad oling Techniques - Fluid-structure Interactions in AL ALE Map - Coupled ALE Formulation - Fully Eulerian For eratization techniques for FSI governing equations ion - Numerical Stability- Numerical Dissipation- Shifter actional-Step-Method -Galerkin and Discontinuous Galeri the Stokes and N-S Equations. Spatial Discretization - Elliptic Problems - Finite Elements on Curved Domai ds for Navier-Stokes equations- Oseen Fixed Point Line ization of Transport Dominant Flows-Discretization of Interfaces 	e Solid r-Lamé Juations chnique E) Form ded Ma E Coo rmulatio Coordin ed Crar kin Met Interpo ins - S earizatio	Pro Equi - The es for ulation 6 Req ass E rdina on - I ates 6 hk-Ni hods blatic addlio on - N Prob	bler atio eory r Fl ion flea flea ates Elas hou icols - Ti icols - Ti icols - Ti bon we-Pc Vew lem	m - ns. / of low for urs rity ct - stic urs son me vith cont ton s -
The Navier-Lame The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi and Boundary C Variational Cou Definition of the Structures in Eule Module:3 Disc Time Discretizat Methods- The Fr Discretization of Finite Elements Problems. Metho Iteration -Discret Discretization of Module:4 ALE	 Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq Flows- Flow Problems on Moving Domains- Eulerian Te problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir onditions - Coupled Fluid-structure Interaction - The Ad pling Techniques - Fluid-structure Interactions in AL ALE Map - Coupled ALE Formulation - Fully Eulerian For perian Coordinates - Fluid-structure Interactions in Auter Automatical Stability- Numerical Dissipation- Shifted actional-Step-Method -Galerkin and Discontinuous Galering the Stokes and N-S Equations. Spatial Discretization - Elliptic Problems - Finite Elements on Curved Domain of Transport Dominant Flows-Discretization of Interaction Formulation for Fluid-structure Interactions 	e Solid r-Lamé uations chnique) Form 	Pro Equi - The es for ulation 6 Req ass E rdina on - I ates 6 hk-Ni hods blatic addle on - N Prob	bler atio eory or Fl ion fun gula Elas Elas bon we e-Pc New lems hou	m - ns. / of low for urs rity ct - stic urs son me vith cont ton s - urs
The Navier-Land The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi and Boundary C Variational Cou Definition of the Structures in Eule Module:3 Disc Time Discretization Finite Elements Problems. Method Iteration -Discret Discretization of Module:4 ALE Time-Discretizati	 Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq lows- Flow Problems on Moving Domains- Eulerian Te problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir onditions - Coupled Fluid-structure Interaction - The Ad oling Techniques - Fluid-structure Interactions in AL ALE Map - Coupled ALE Formulation - Fully Eulerian For perian Coordinates - Fluid-structure Interaction in Eulerian Corretization techniques for FSI governing equations ion - Numerical Stability- Numerical Dissipation- Shifted actional-Step-Method -Galerkin and Discontinuous Galeri the Stokes and N-S Equations. Spatial Discretization - Elliptic Problems - Finite Elements on Curved Domain of Navier-Stokes equations- Oseen Fixed Point Line ization of Transport Dominant Flows-Discretization of Interfaces Formulation for Fluid-structure Interactions on for the FSI Problem in ALE-Formulation - Non-static 	ne Solid r-Lamé Juations chnique E) Form ded Ma ded Ma E Coo rmulatio Coordin ed Crar kin Met Interpo ins - Si earizatio erface-l	Pro Equi - The es for ulation 6 Rec ass E rdina on - I ates 6 hk-Ni hods blatic addle on - N Prob 7 ynar	bler atio eory r Fl ion gula Effec ates Elas hou icols - Ti ion w e-Pc New lem inics	m - ns. / of low for urs rity ct - stic urs son me vith coint ton s - urs of
The Navier-Lame The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi and Boundary C Variational Cou Definition of the Structures in Eule Module:3 Disc Time Discretization of Finite Elements Problems. Method Iteration -Discret Discretization of Module:4 ALE Time-Discretizati Fluid-structure	 Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq lows- Flow Problems on Moving Domains- Eulerian Te bying Domains - The Arbitrary Lagrangian Eulerian (ALE Problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir onditions - Coupled Fluid-structure Interaction - The Ad oling Techniques - Fluid-structure Interactions in AL ALE Map - Coupled ALE Formulation - Fully Eulerian For perian Coordinates - Fluid-structure Interaction in Eulerian (retization techniques for FSI governing equations ion - Numerical Stability- Numerical Dissipation- Shifted actional-Step-Method -Galerkin and Discontinuous Galering the Stokes and N-S Equations. Spatial Discretization - Elliptic Problems - Finite Elements on Curved Domaina of ransport Dominant Flows-Discretization of Interaction for Fluid-structure Interactions on for the FSI Problem in ALE-Formulation - Non-station nteractions- Time Stepping Schemes for Fluid-structure 	ne Solid r-Lamé Juations chnique E) Form nterface ded Ma E Coo rmulatio Coordin ed Crar kin Met Interpo ins - So earizatio erface-l onary D cture In	Pro Equi - The es for ulation for autes frequesting fr	bler atio eory or Fl on gula Effec ates Elas hou jcols - Ti on we -Pc Vew lems tics ctio	m - ns. / of low for urs rity ct - stic urs son me vith ton s - urs of ns-
The Navier-Lame The Fluid Proble Incompressible F Problems on Mo Moving Domain F Module:2 Cou Coupling Conditi and Boundary C Variational Cou Definition of the Structures in Eule Module:3 Disc Time Discretizati Methods- The Fr Discretization of Finite Elements Problems. Method Iteration -Discret Discretization of Module:4 ALE Time-Discretizati Fluid-structure I Derivation of Se	 Equations - Steady and unsteady incompressible Navie m- Boundary and Initial Conditions-The Linear Stokes Eq lows- Flow Problems on Moving Domains- Eulerian Te problems pled Fluid Structure Interactions ons - Kinematic, Dynamic and Geometric Conditions- Ir onditions - Coupled Fluid-structure Interaction - The Ad oling Techniques - Fluid-structure Interactions in AL ALE Map - Coupled ALE Formulation - Fully Eulerian For perian Coordinates - Fluid-structure Interaction in Eulerian Corretization techniques for FSI governing equations ion - Numerical Stability- Numerical Dissipation- Shifted actional-Step-Method -Galerkin and Discontinuous Galeri the Stokes and N-S Equations. Spatial Discretization - Elliptic Problems - Finite Elements on Curved Domain of Navier-Stokes equations- Oseen Fixed Point Line ization of Transport Dominant Flows-Discretization of Interfaces Formulation for Fluid-structure Interactions on for the FSI Problem in ALE-Formulation - Non-static 	ne Solid r-Lamé Juations chnique E) Form nterface ded Ma E Coo rmulatic Coordin ed Crar kin Met Interpo ins - S earizatic erface-l onary D cture In lity - St	Pro Equi - The es for nulation on - I ates on - I ates 6 hk-Ni hods blatic addlo on - N Prob 7 ynar htera able	bler atio eory or Fl ion fun gula Effec ates Elas hou icols - Til on w e-Pc New lems tion fun fun tion fun fun fun tion f fun f f fun fun fun f fun fun f f f f	m - ns. of low for urs rity ct - stic urs son me vith pint ton s - urs of ns- ns- me - son s - of ns- son s - of of low for urs son of of low for urs of for urs of of of of of of of of of of

, , , ,	Study on
Linearizations	Cludy off
Module: 5 Finite Elements for Fluid-structure Interactions in ALE	6 hours
Formulation	
Finite Element Triangulations for Fluid-structure Interactions in ALE Formulation	n - Inf-Sup
Stable FE-Spaces for Fluid-structure Interactions in ALE Formulation - Stabil	
Elements for Fluid-structure Interactions- Matrix Formulation of the Linear	
Construction of the ALE Map - Harmonic Extension - Harmonic Extension with S	Stiffening -
Extension by Pseudo-Elasticity- Biharmonic Extension	
Module:6 Fully Eulerian Formulation for Fluid-structure Interactions	6 hours
Eulerian Models for Fluid-structure Interactions - Elastic Structures in Eulerian Co	
Fluid-structure Interaction in Eulerian Coordinates- Interface Capturing and the I	
Set Method-Time-Discretization of the Fully Eulerian Framework - Linearization of	
Eulerian Coordinates - Finite Elements for the Fully Eulerian Framework - Numer Stationary Structure Benchmark Problem - Stationary Fluid-structure Interaction	
Contact Problem.	FIODIeIII -
Module:7 Linear Solvers for Fluid-structure Interactions	6 hours
Partitioned Solvers - Direct Solution of Linear Systems - Condition Number Analy	
System Matrices -Krylov Space Solvers for Fluid-structure Interactions - Multigrid	
the Arbitrary Lagrangian Eulerian Formulation - GMRES Multigrid Iteration- Partitio	
Multigrid Smoother.	
Module: 8 Contemporary Issues	
	2 hours
Total Lecture hours:	2 hours 45 hours
Text Book(s)	45 hours
Text Book(s) 1. Thomas Richter, Fluid Structure Interactions: Models, Analysis and finite ele	45 hours
Text Book(s) 1. Thomas Richter, Fluid Structure Interactions: Models, Analysis and finite ele Second Edition Springer, 2017, ISBN 978-3-319-63969-7	45 hours
Text Book(s) 1. Thomas Richter, Fluid Structure Interactions: Models, Analysis and finite ele Second Edition Springer, 2017, ISBN 978-3-319-63969-7 Reference Books	45 hours ements,
Text Book(s) 1. Thomas Richter, Fluid Structure Interactions: Models, Analysis and finite ele Second Edition Springer, 2017, ISBN 978-3-319-63969-7 Reference Books 1. Yuri Bazilevs, Kenji Takizawa, Tayfun E. Tezduyar, Computational Fluid	45 hours ements, Structure
Text Book(s) 1. Thomas Richter, Fluid Structure Interactions: Models, Analysis and finite ele Second Edition Springer, 2017, ISBN 978-3-319-63969-7 Reference Books 1. Yuri Bazilevs, Kenji Takizawa, Tayfun E. Tezduyar, Computational Fluid Interaction: Methods and Application, 1 st Edition, John-Wiley, 2013, ISBN: 97	45 hours ements, Structure
Text Book(s) 1. Thomas Richter, Fluid Structure Interactions: Models, Analysis and finite ele Second Edition Springer, 2017, ISBN 978-3-319-63969-7 Reference Books 1. Yuri Bazilevs, Kenji Takizawa, Tayfun E. Tezduyar, Computational Fluid Interaction: Methods and Application, 1 st Edition, John-Wiley, 2013, ISBN: 97-7877-1	45 hours ements, Structure '8-0-4709-
 Text Book(s) Thomas Richter, Fluid Structure Interactions: Models, Analysis and finite ele Second Edition Springer, 2017, ISBN 978-3-319-63969-7 Reference Books Yuri Bazilevs, Kenji Takizawa, Tayfun E. Tezduyar, Computational Fluid Interaction: Methods and Application, 1st Edition, John-Wiley, 2013, ISBN: 97 7877-1 Rajeev Kumar Jaiman, Vaibhav Joshi, Computational Mechanics of Fluid 	45 hours ements, Structure '8-0-4709-
 Text Book(s) Thomas Richter, Fluid Structure Interactions: Models, Analysis and finite ele Second Edition Springer, 2017, ISBN 978-3-319-63969-7 Reference Books Yuri Bazilevs, Kenji Takizawa, Tayfun E. Tezduyar, Computational Fluid Interaction: Methods and Application, 1st Edition, John-Wiley, 2013, ISBN: 97 7877-1 Rajeev Kumar Jaiman, Vaibhav Joshi, Computational Mechanics of Fluid Interaction: Computational methods for coupled fluid structure analysis, 1 	45 hours ements, Structure '8-0-4709-
 Text Book(s) Thomas Richter, Fluid Structure Interactions: Models, Analysis and finite ele Second Edition Springer, 2017, ISBN 978-3-319-63969-7 Reference Books Yuri Bazilevs, Kenji Takizawa, Tayfun E. Tezduyar, Computational Fluid Interaction: Methods and Application, 1st Edition, John-Wiley, 2013, ISBN: 97 7877-1 Rajeev Kumar Jaiman, Vaibhav Joshi, Computational Mechanics of Fluid Interaction: Computational methods for coupled fluid structure analysis, 1 Springer, 2021, ISBN 978-981-16-5354-4 	45 hours ements, Structure 78-0-4709- I Structure 1 st Edition,
 Text Book(s) 1. Thomas Richter, Fluid Structure Interactions: Models, Analysis and finite ele Second Edition Springer, 2017, ISBN 978-3-319-63969-7 Reference Books 1. Yuri Bazilevs, Kenji Takizawa, Tayfun E. Tezduyar, Computational Fluid Interaction: Methods and Application, 1st Edition, John-Wiley, 2013, ISBN: 97 7877-1 2. Rajeev Kumar Jaiman, Vaibhav Joshi, Computational Mechanics of Fluid Interaction: Computational methods for coupled fluid structure analysis, 1 Springer, 2021, ISBN 978-981-16-5354-4 3. Jean-François Sigrist, Fluid Structure Interaction: An introduction to finite elements 	45 hours ements, Structure 78-0-4709- I Structure 1 st Edition,
 Text Book(s) 1. Thomas Richter, Fluid Structure Interactions: Models, Analysis and finite electron Second Edition Springer, 2017, ISBN 978-3-319-63969-7 Reference Books 1. Yuri Bazilevs, Kenji Takizawa, Tayfun E. Tezduyar, Computational Fluid Interaction: Methods and Application, 1st Edition, John-Wiley, 2013, ISBN: 97-7877-1 2. Rajeev Kumar Jaiman, Vaibhav Joshi, Computational Mechanics of Fluid Interaction: Computational methods for coupled fluid structure analysis, 1 Springer, 2021, ISBN 978-981-16-5354-4 3. Jean-François Sigrist, Fluid Structure Interaction: An introduction to finite electron coupling, 1st Edition, John Wiley, 2015, ISBN 978-1-119-95227-5 	45 hours ements, Structure 78-0-4709- I Structure 1 st Edition,
 Text Book(s) 1. Thomas Richter, Fluid Structure Interactions: Models, Analysis and finite ele Second Edition Springer, 2017, ISBN 978-3-319-63969-7 Reference Books 1. Yuri Bazilevs, Kenji Takizawa, Tayfun E. Tezduyar, Computational Fluid Interaction: Methods and Application, 1st Edition, John-Wiley, 2013, ISBN: 97- 7877-1 2. Rajeev Kumar Jaiman, Vaibhav Joshi, Computational Mechanics of Fluid Interaction: Computational methods for coupled fluid structure analysis, 1 Springer, 2021, ISBN 978-981-16-5354-4 3. Jean-François Sigrist, Fluid Structure Interaction: An introduction to finite eler coupling, 1st Edition, John Wiley, 2015, ISBN 978-1-119-95227-5 Mode of Evaluation: CAT, written assignment, Quiz, FAT 	45 hours ements, Structure 78-0-4709- I Structure 1 st Edition,
 Text Book(s) 1. Thomas Richter, Fluid Structure Interactions: Models, Analysis and finite ele Second Edition Springer, 2017, ISBN 978-3-319-63969-7 Reference Books 1. Yuri Bazilevs, Kenji Takizawa, Tayfun E. Tezduyar, Computational Fluid Interaction: Methods and Application, 1st Edition, John-Wiley, 2013, ISBN: 97- 7877-1 2. Rajeev Kumar Jaiman, Vaibhav Joshi, Computational Mechanics of Fluid Interaction: Computational methods for coupled fluid structure analysis, 1 Springer, 2021, ISBN 978-981-16-5354-4 3. Jean-François Sigrist, Fluid Structure Interaction: An introduction to finite eler coupling, 1st Edition, John Wiley, 2015, ISBN 978-1-119-95227-5 Mode of Evaluation: CAT, written assignment, Quiz, FAT 	45 hours ements, Structure 78-0-4709- I Structure 1 st Edition,
 Text Book(s) 1. Thomas Richter, Fluid Structure Interactions: Models, Analysis and finite ele Second Edition Springer, 2017, ISBN 978-3-319-63969-7 Reference Books 1. Yuri Bazilevs, Kenji Takizawa, Tayfun E. Tezduyar, Computational Fluid Interaction: Methods and Application, 1st Edition, John-Wiley, 2013, ISBN: 97- 7877-1 2. Rajeev Kumar Jaiman, Vaibhav Joshi, Computational Mechanics of Fluid Interaction: Computational methods for coupled fluid structure analysis, 1 Springer, 2021, ISBN 978-981-16-5354-4 3. Jean-François Sigrist, Fluid Structure Interaction: An introduction to finite eler coupling, 1st Edition, John Wiley, 2015, ISBN 978-1-119-95227-5 Mode of Evaluation: CAT, written assignment, Quiz, FAT 	45 hours ements, Structure 78-0-4709- I Structure 1 st Edition,

Course code	Course Title			LIT	Ρ	С
MCFD604L	Experimental methods for f	fluid flow		2 0	0	2
Pre-requisite	NIL		Syllabu		-	_
rie-iequisite			Synabl	1.0	51011	
Course Objective				1.0		
1. To teach va		for thorma	al, flow	and	for	
	5 1		a, now	and	101	ce
measurements		ha avnarimar	tal data	and it	rr	~ r
estimation.	vledge on how to interpret and analyse t	ne experimer	ilai uala	anu it	s en	01
	orification and validation mathada of pur	norical model	o in com	norioo	n wi	th
	erification and validation methods of nur		S III COIII	ipanso		uı
experimental of	ala.					
Course Outcome						
	ompletion of the course the students will	he able to				
	he measuring techniques of tempe		flux a	and s	neci	65
concentration.	to modeling teeningues of tempe		nax c		poor	00
	e measuring techniques of pressure, velo	ocity and flow	/ rate			
	e measuring techniques of force.	only, and non	rate.			
	date the numerical model with experimer	nts.				
•	the knowledge of experimental flu		and	analys	e t	he
	ata and uncertainties.	ia aynannoo	Gird	anarye	• •	
	solvers by comparing with experimental of	data				
Module:1 Meas	surements			5	hou	irs
Thermal and Flo	w Measurements, Characteristics of N	leasurement	Systems	s, Tim	е	
	asurement Systems, Time-Series Analy					
	es, Error Estimates, Cramer–Rao Lowe					of
Errors. Data Regr	ession, Uncertainty Analysis, Dimensiona	al Analysis [`] an	d Similit	ude.		
Module:2 Meas	surements of Pressure			4	hou	ırs
Manometers, Mea	asurement of Pressure with Wall Tap	oping - Stati	c Tubes	s, Pre	ssur	е
Transducers Base	ed on Elastic Strain, Piezoelectric Trans	ducers, Pres	sure-Se	nsitive	Pai	nt
(PSP)						
	surements of Temperature, Heat			5	hοι	irs
	and Species Concentrations					
	surements based on Thermal Expans					
	Temperature Sensors, Pyrometer					
	iquid Crystals, Measurements of Surfa	ce Heat Trar	nsfer Ch	aracte	eristio	cs,
	sitive Paint, Infrared Imaging.		_			
	and Spectroscopy, Rayleigh Scattering,		g, Rama	in		
• · · · · · · ·						
	cattering and Laser-Induced Fluorescen	ce				
Module:4 Meas	surement of Flow Rates				hou	irs
Module:4MeasurementFundamentals, Ob			ers, Ther			irs
Module:4 Meas Fundamentals, Ob Flowmeters	surement of Flow Rates Instruction Flowmeters., Rotameters, Turk		ers, Ther	mal M	ass	
Module:4MeasurementFundamentals, ObFlowmetersModule:5Measurement	surement of Flow Rates Instruction Flowmeters., Rotameters, Turk Surements of Flow Velocity	bine Flowmete		mal M 5	ass hou	Irs
Module:4MeasurementFundamentals, ObFlowmetersModule:5MeasurementPressure-based V	surement of Flow Rates ostruction Flowmeters., Rotameters, Turk surements of Flow Velocity felocity Measurements- Pitot-Static tube;	pine Flowmete Particle-base	ed techn	mal M 5 iques-	ass hou Las	irs er
Module:4MeasurementFundamentals, OtherFlowmetersModule:5Measure-based VDoppler Anemore	surement of Flow Rates estruction Flowmeters., Rotameters, Turk surements of Flow Velocity felocity Measurements- Pitot-Static tube; etry/Velocimetry (LDA/LDV), Particle Ir	pine Flowmete Particle-base nage Velocin	ed techn netry (P	rmal M 5 iques- IV), D	ass hou Las oppl	i rs er er
Module:4MeasurementFundamentals, ObFlowmetersModule:5MeasurementPressure-based VDoppler AnemoreGlobal Velocimetr	surement of Flow Rates estruction Flowmeters., Rotameters, Turk surements of Flow Velocity felocity Measurements- Pitot-Static tube; etry/Velocimetry (LDA/LDV), Particle Ir y (DGV), and Laser Transit Velocimetry (Pine Flowmete Particle-base nage Velocin (LTV); Density	ed techn netry (P	rmal M 5 iques- IV), D	ass hou Las oppl	irs er er
Module:4MeasurementFundamentals, ObFlowmetersModule:5MeasurementPressure-based VDoppler AnemoreGlobal VelocimetrShadowgraph, Sc	surement of Flow Rates estruction Flowmeters., Rotameters, Turk surements of Flow Velocity felocity Measurements- Pitot-Static tube; etry/Velocimetry (LDA/LDV), Particle Ir y (DGV), and Laser Transit Velocimetry (hlieren Method, Interferometry, Optical T	Pine Flowmete Particle-base nage Velocin (LTV); Density	ed techn netry (P	mal M 5 iques- IV), D Techn	hou Las oppl ique	er er er
Module:4MeasurementFundamentals, OtherFlowmetersModule:5MeasurementPressure-based VDoppler AnemoreGlobal VelocimetrShadowgraph, ScModule:6Measure	surement of Flow Rates estruction Flowmeters., Rotameters, Turk surements of Flow Velocity felocity Measurements- Pitot-Static tube; etry/Velocimetry (LDA/LDV), Particle Ir y (DGV), and Laser Transit Velocimetry (hlieren Method, Interferometry, Optical T surements of Force and Moment	pine Flowmete Particle-base nage Velocin (LTV); Density omography.	ed techn netry (P y-based	mal M 5 iques- IV), D Techn 3	hou Las oppl ique	er er er s-
Module:4MeasFundamentals, ObFlowmetersModule:5MeasPressure-based VDoppler AnemoreGlobal VelocimetrShadowgraph, ScModule:6MeasBasics, Basic Ter	surement of Flow Rates pstruction Flowmeters., Rotameters, Turk surements of Flow Velocity 'elocity Measurements- Pitot-Static tube; etry/Velocimetry (LDA/LDV), Particle Ir y (DGV), and Laser Transit Velocimetry (nlieren Method, Interferometry, Optical T surements of Force and Moment ms of Balance Metrology, Mounting Va	Particle-base nage Velocin (LTV); Density omography.	ed techn netry (P y-based n Gauge	mal M 5 iques- IV), D Techn 3 es- Wi	hou Las oppl ique hou ring	er er s-
Module:4MeasurementFundamentals, OtFlowmetersModule:5MeasurementPressure-based VDoppler AnemoreGlobal VelocimetreShadowgraph, ScModule:6MeasureBasics, Basic TerWheatstone Bridge	surement of Flow Rates estruction Flowmeters., Rotameters, Turk surements of Flow Velocity felocity Measurements- Pitot-Static tube; etry/Velocimetry (LDA/LDV), Particle Ir y (DGV), and Laser Transit Velocimetry (hlieren Method, Interferometry, Optical T surements of Force and Moment ms of Balance Metrology, Mounting Va es, Strain Gauge Selection, Strain Gau	Particle-base nage Velocin (LTV); Density omography. riations, Strai	ed techn netry (P y-based n Gauge	mal M 5 iques- IV), D Techn 3 es- Wi rials, s	hou Las oppl ique hou ring Sing	er er s-
Module:4MeasurementFundamentals, ObFlowmetersModule:5MeasurementPressure-based VDoppler AnemoreGlobal VelocimetreShadowgraph, ScModule:6MeasureBasics, Basic TereWheatstoneBridgeForce Load Cells	surement of Flow Rates pstruction Flowmeters., Rotameters, Turk surements of Flow Velocity 'elocity Measurements- Pitot-Static tube; etry/Velocimetry (LDA/LDV), Particle Ir y (DGV), and Laser Transit Velocimetry (nlieren Method, Interferometry, Optical T surements of Force and Moment ms of Balance Metrology, Mounting Va	Particle-base nage Velocin (LTV); Density omography. riations, Strai	ed techn netry (P y-based n Gauge	mal M 5 iques- IV), D Techn 3 es- Wi rials, s	hou Las oppl ique hou ring Sing	er er s-
Module:4MeasureFundamentals, OtFlowmetersModule:5MeasurePressure-based VDoppler AnemoreGlobal VelocimetrShadowgraph, ScModule:6MeasureBasics, Basic TerWheatstone BridgForce Load CellsBalances.	surement of Flow Rates estruction Flowmeters., Rotameters, Turk surements of Flow Velocity felocity Measurements- Pitot-Static tube; etry/Velocimetry (LDA/LDV), Particle Ir y (DGV), and Laser Transit Velocimetry (hlieren Method, Interferometry, Optical T surements of Force and Moment ms of Balance Metrology, Mounting Va es, Strain Gauge Selection, Strain Gau	Particle-base nage Velocin (LTV); Density omography. riations, Strai	ed techn netry (P y-based n Gauge	mal M iques- IV), D Techn 3 es- Wi rials, s	hou Las oppl ique hou ring Sing	er er s- irs of le-

Construction of a validation experiment hierarchy, Statistical estimation of experimental error, Uncertainty quantification in computations, Validation metrics. Module:8 Contemporary Issues 2 ho Total Lecture hours: 30 ho Text Book(s) 1. Taewoo Lee., Thermal and flow measurements, 2008, CRC Press. 2. Roache, P.J., Verification and Validation in Computational Science and Engineering, 1998, Hermosa publishers, Albuquerque, NM. Reference Books 1. Cameron Tropea, Alexander L. Yarin, John F. Foss (Eds.) - Handbook of Experimer Fluid Mechanics, 2007, Springer. 2. Robert P. Benedict (auth.) - Fundamentals of Temperature, Pressure, and Flow Measurements, 1984, Third Edition, John Wiley & Sons. Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022			rogram verification and valida al error estimation in v			s of verification, Role of , Fundamentals of validatior
Module:8 Contemporary Issues 2 ho Total Lecture hours: 30 ho Text Book(s) 30 ho 1. Taewoo Lee., Thermal and flow measurements, 2008, CRC Press. 2. Roache, P.J., Verification and Validation in Computational Science and Engineering, 1998, Hermosa publishers, Albuquerque, NM. Reference Books 1. 1. Cameron Tropea, Alexander L. Yarin, John F. Foss (Eds.) - Handbook of Experimer Fluid Mechanics, 2007, Springer. 2. Robert P. Benedict (auth.) - Fundamentals of Temperature, Pressure, and Flow Measurements, 1984, Third Edition, John Wiley & Sons. Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022						
Total Lecture hours: 30 ho Text Book(s) 1. Taewoo Lee., Thermal and flow measurements, 2008, CRC Press. 2. Roache, P.J., Verification and Validation in Computational Science and Engineering, 1998, Hermosa publishers, Albuquerque, NM. Reference Books 1. Cameron Tropea, Alexander L. Yarin, John F. Foss (Eds.) - Handbook of Experimer Fluid Mechanics, 2007, Springer. 2. Robert P. Benedict (auth.) - Fundamentals of Temperature, Pressure, and Flow Measurements, 1984, Third Edition, John Wiley & Sons. Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022	error	r, Uncer		tations, Valid	lation	metrics.
Text Book(s) 1. Taewoo Lee., Thermal and flow measurements, 2008, CRC Press. 2. Roache, P.J., Verification and Validation in Computational Science and Engineering, 1998, Hermosa publishers, Albuquerque, NM. Reference Books 1. Cameron Tropea, Alexander L. Yarin, John F. Foss (Eds.) - Handbook of Experimer Fluid Mechanics, 2007, Springer. 2. Robert P. Benedict (auth.) - Fundamentals of Temperature, Pressure, and Flow Measurements, 1984, Third Edition, John Wiley & Sons. Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022	Mod	lule:8	Contemporary Issues			2 hour
Text Book(s) 1. Taewoo Lee., Thermal and flow measurements, 2008, CRC Press. 2. Roache, P.J., Verification and Validation in Computational Science and Engineering, 1998, Hermosa publishers, Albuquerque, NM. Reference Books 1. Cameron Tropea, Alexander L. Yarin, John F. Foss (Eds.) - Handbook of Experimer Fluid Mechanics, 2007, Springer. 2. Robert P. Benedict (auth.) - Fundamentals of Temperature, Pressure, and Flow Measurements, 1984, Third Edition, John Wiley & Sons. Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022						
Text Book(s) 1. Taewoo Lee., Thermal and flow measurements, 2008, CRC Press. 2. Roache, P.J., Verification and Validation in Computational Science and Engineering, 1998, Hermosa publishers, Albuquerque, NM. Reference Books 1. Cameron Tropea, Alexander L. Yarin, John F. Foss (Eds.) - Handbook of Experimer Fluid Mechanics, 2007, Springer. 2. Robert P. Benedict (auth.) - Fundamentals of Temperature, Pressure, and Flow Measurements, 1984, Third Edition, John Wiley & Sons. Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022						
 Taewoo Lee., Thermal and flow measurements, 2008, CRC Press. Roache, P.J., Verification and Validation in Computational Science and Engineering, 1998, Hermosa publishers, Albuquerque, NM. Reference Books Cameron Tropea, Alexander L. Yarin, John F. Foss (Eds.) - Handbook of Experimer Fluid Mechanics, 2007, Springer. Robert P. Benedict (auth.) - Fundamentals of Temperature, Pressure, and Flow Measurements, 1984, Third Edition, John Wiley & Sons. Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022 			Total	Lecture hou	ırs:	30 hour
 Taewoo Lee., Thermal and flow measurements, 2008, CRC Press. Roache, P.J., Verification and Validation in Computational Science and Engineering, 1998, Hermosa publishers, Albuquerque, NM. Reference Books Cameron Tropea, Alexander L. Yarin, John F. Foss (Eds.) - Handbook of Experimer Fluid Mechanics, 2007, Springer. Robert P. Benedict (auth.) - Fundamentals of Temperature, Pressure, and Flow Measurements, 1984, Third Edition, John Wiley & Sons. Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022 						
 Roache, P.J., Verification and Validation in Computational Science and Engineering, 1998, Hermosa publishers, Albuquerque, NM. Reference Books Cameron Tropea, Alexander L. Yarin, John F. Foss (Eds.) - Handbook of Experimer Fluid Mechanics, 2007, Springer. Robert P. Benedict (auth.) - Fundamentals of Temperature, Pressure, and Flow Measurements, 1984, Third Edition, John Wiley & Sons. Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022 	Text	Book(5)			
Engineering, 1998, Hermosa publishers, Albuquerque, NM. Reference Books 1. Cameron Tropea, Alexander L. Yarin, John F. Foss (Eds.) - Handbook of Experimer Fluid Mechanics, 2007, Springer. 2. Robert P. Benedict (auth.) - Fundamentals of Temperature, Pressure, and Flow Measurements, 1984, Third Edition, John Wiley & Sons. Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022	1.	Taewo	o Lee., Thermal and flow me	asurements,	2008,	, CRC Press.
Reference Books 1. Cameron Tropea, Alexander L. Yarin, John F. Foss (Eds.) - Handbook of Experimer Fluid Mechanics, 2007, Springer. 2. Robert P. Benedict (auth.) - Fundamentals of Temperature, Pressure, and Flow Measurements, 1984, Third Edition, John Wiley & Sons. Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022	2.					
 Cameron Tropea, Alexander L. Yarin, John F. Foss (Eds.) - Handbook of Experimer Fluid Mechanics, 2007, Springer. Robert P. Benedict (auth.) - Fundamentals of Temperature, Pressure, and Flow Measurements, 1984, Third Edition, John Wiley & Sons. Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022 				hers, Albuqu	erque,	, NM.
Fluid Mechanics, 2007, Springer. 2. Robert P. Benedict (auth.) - Fundamentals of Temperature, Pressure, and Flow Measurements, 1984, Third Edition, John Wiley & Sons. Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022	Refe					
 Robert P. Benedict (auth.) - Fundamentals of Temperature, Pressure, and Flow Measurements, 1984, Third Edition, John Wiley & Sons. Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022 	1.		• •	in, John F. F	oss (E	Eds.) - Handbook of Experimenta
Measurements, 1984, Third Edition, John Wiley & Sons. Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022						
Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies 27-05-2022	2.	Rober	t P. Benedict (auth.) - Fundar	nentals of Te	mpera	ature, Pressure, and Flow
assessment test Recommended by Board of Studies 27-05-2022		Measu	rements, 1984, Third Edition	, John Wiley	& Son	IS.
assessment test Recommended by Board of Studies 27-05-2022	Mod	o of Evr	Justion: Continuous assoss	ant toot writ	ton oo	and Final
Recommended by Board of Studies 27-05-2022					ien as	ssignment, Quiz and Final
	asse	ssment	ເບຣເ			
	Reco	ommend	led by Board of Studies	27-05-2022		
Approved by Academic Council NO. 00 Date 10-06-2022			Academic Council	No. 66	Date	16-06-2022

Cou	rse code			Course	Title				L	Τ	Ρ	С
MCF	-D604P	Expe	rimental	methods	s for Flui	d Flo	w Lab		0	0	2	1
Pre-	requisite	NIL						Syl	labı	is v	ersi	on
										1.0		
Cou	rse Objectiv	es										
1.	To teach	various meas	suring t	echnique	s suited	for	therma	l, flo	w a	and	for	се
	measureme											
2.		nowledge on I	now to ir	nterpret a	nd analy	se th	e experi	menta	al da	ita a	ind	its
0	error estima											
3.		e verification a	and valid	lation me	thods of	nume	erical mo	dels	in co	omp	ariso	on
	with experin	iental data.										
Cou	rse Outcom	<u> </u>										
		completion of t	he cours	e studer	te will be	ahla	to					
•		nperature, hea						ireme	nts	usin	a	
	standard ins	•								John	9	
2		essure, velocit	v and flo	w rate m	easureme	ents ir	ı a given	flowfi	eld			
	• •	v visualization					ra givon	110 111				
4.		experiments a	• •	•	•••	al dat	a and ur	certai	inties	s		
	Conductine		ind analy		pormona			loontai		0.		
	cative Exper											
1.		el study of flow	over an	airfoil at c	lifferent a	ngles	of attac	k-Surf	face	pres	sur	е
0	measureme											
2.		ents of lift and d			mmetric a	aeroto	oii in a iov	<i>N</i> spe	ea ti	ow		
3.		alization of flov										
4. 5.		ph visualizatior n of an under e			Sobligrou	n took	niquo					
5. 6.		ent of open flam						a com	ora			
0. 7.		ent of temperati						-	icia			
8.		n of flow over a					cimococ	ipico				
9.		easurements u										
10.		n of experiment	•				over a N/		012	airfo	il	
11.		ve velocity mea										
		y			Total La				0 hc			
Text	t Book(s)						,					
1.	Taewoo Lee	., Thermal and	flow mea	asuremer	its, 2008,	CRC	Press.					
	erence Book											
		opea, Alexande		in, John I	F. Foss (E	Eds.)	- Handb	ook o	f Ex	perir	nen	tal
		nics, 2007, Spr										
		enedict (auth.					ature, P	ressu	re, a	and	Flo	W
		nts, 1984, Thirc										
		nent: Continuou				Viva V	/oce					
		y Board of Stu		27-05-20			6 00 00	<u></u>				
Арр	loved by Aca	demic Council		No. 66	Date	1	6-06-20	22				

Course Code	Course Title		L	Т	Ρ	С
MCFD605L	Multiphase flows		3	0	0	3
Pre-requisite	NIL	Sy	llab	us v	ersi	on
				1.0		
2. To provide the pressure drop	omprehensive knowledge of various flow patterns in mo e physical insight and the mathematical aspects of mu and its different model/correlations. d the complex phenomenon underlying in multiphas	iltipha	ase	flow		us
Course Outcome						
Upon successful of	completion of this course students will be able to					
 problems. Analyse the dregime maps. Analyse the pathology. Analyse the pathology. Analyse the pathology. Analyse the pathology. 	cepts and quantitative description of multiphase flows i ifferent flow patterns in liquid-gas two-phase flows an articles motion in multiphase flows problems. nenomenon of growth of bubbles and collapses. various forces acting on the fluid particles that are a he knowledge of pool, flow boiling, and condensation.	d ex	amir	ne th	ne flo	
Basic definitions, Flow patterns a Lagrangian descri	view of Multiphase Flows Importance of dimensionless numbers, Classification nd regimes, Horizontal and vertical two-phase flo ption of fluid motion, Mass, momentum and energy cor	ows, nserv	Eul atior	hase eria n eq	n a uatic	ws, and ons
	nulti-phase flows, Mixture model equations, Two-flui ons in two-phase flow.	u mu	Juei	equ	allo	115,
	d-Gas Two-Phase Flows				hοι	
Slug flow, Churn instabilities. Frictio Weisbach equation	sification, Flow regime maps for vertical and horizonta flow, Annular flow, Dispersed flow, Flow regimes lin onal pressure drop in disperse, homogenous and sepa n. Pressure drop models by Lockhart-Martinelli, Barocz bubble dynamics flows.	nits, arateo	Sepa d flo	arate ws,	ed fl Daro	ow cy–
Module:3 Partie	cle Motion			6	hοι	urs
•	tion, Flow around a sphere, Free flow velocity, Grain's oct on free flow drag, Schiller-Naumann drag model, Hy w motion.			ansp	ort o	of
	le/Droplets dynamics			5	hοι	urs
•	arangoni effects and Bjerkes forces, Rayleigh-Plesset e pubble growth and collapse.	quati	on, ⁻	Ther	mal	
	-Lagrangian Model			6	hοι	Jrs
	law for single particle's motion, Lagrangian particle trac	kina	For			-
balance, Drag, lift	, buoyancy, gravitational and Brownian forces, Particle' article's trajectory.	•			me,	
				6	hou	ILE
Module:6 Euler	- Euler Model I for multiphase flows, Link momentum equation for e	each	pha		hοι Liau	

		id-solid mixing, Complex er effects.	multiphase flows	s with turl	oulence, compressibility and
Мо	dule:7	Boiling and Condensat	ion		5 hours
Но	rizontal	surfaces – Pool boiling, Nu	ucleate boiling, Fi	ilm boiling	, Critical heat flux (CHF) and
pos	st CHF h	eat transfer in flow boiling	, Flow boiling and	d CHF in r	nini and micro channels;
Ve	rtical sur	faces – Film boiling; Cond	lensation, Chokin	ig in two-p	hase flow
Mo	dule:8	Contemporary Issues			2 hours
					2 110013
			Total Lectu	ra haura	45 hours
			Total Lectu	ire nours.	45 Hours
Te	xt Book	(S)			
1.		en, C. (2005). Fundamenta	•		nbridge: Cambridge
_		sity Press. doi:10.1017/CE	30978051180716	69	
	ference				
1.		leng Yeoh, Jiyuan Tu. (20			
		(Second Edition). Butterwo			0081024539.
2.		doi.org/10.1016/B978-0-0			ad Condensation, Coordia
Ζ.		e of Technology, ISBN: 97		Dolling, al	nd Condensation, Georgia
	monut				
Мо	de of Ev	aluation: CAT, written ass	ignment, Quiz an	d FAT	
		ded by Board of Studies	27-05-2022		
Ар	proved b	y Academic Council	No. 66	Date	16-06-2022

Course Code	Course Title		L	Τ	Ρ	С
MCFD606L	Finite Element Analysis of Solids and Fluids		3	0	0	3
Pre-requisite	Nil	Syl	labu		ersi	on
			1	.0		
Course Objectiv						
	e students with an introduction to Finite Element Analy					
	nethod to solve problems in solid mechanics, heat trans	sfer, flu	id flo	ow a	and	
machine						
	how to convert the physical problem into an engineerin	g probl	em t	hro	ugh	
	al and numerical modelling capabilities.					
	ice students to various field problems and the discretiza				bler	n.
	the students drive finite element equations for simple a		plex	ζ.		
elements	and establish the computational model of the given pro	blem.				
Course Outcom						
	e student will be able to					
	able product data exchange techniques to convert geo	motric I	mod	ol ir	nto	
numerica		metrici	nou		110	
	knowledge of mathematics and engineering to solve p	roblem	e in d	etru	ctur	ol
	thermal engineering by approximate and numerical met		5 11 .	Suu	otui	a
	a 1D and 2D finite element equations at element and as		v lev	el fo	or	
	oplications		, 101	011		
	te element formulations using linear and quadratic share	be funct	tions	s to		
	desired results.					
	complex engineering problem, design engineering con	nponen	its ai	nd s	solv	е
	oblems using commercial FEM tools or develop FE co					
	duction to Approximation Methods				hou	
•	ne Finite Element Method-Material models-Direct formu			mur	n to	ta
	formulation-weighted residual formulation-variational ap	proach	۱.			
	er Order and Isoparametric Elements				hou	
	of interpolation functions- linear, quadratic and cubic					
	ts, Convergence requirements, Linear interpolation po			n te	rms	i C
	s and local coordinates of bar, triangular elements, CS					
	polation, Higher order one dimensional elements- qua					
	functions, properties of shape functions, Truss elemen					
•	angular element in natural coordinates, 2D quadrila					•
functions – linea	ar, quadratic element, Shape function of beam elem	nent. H	lerm	ite	sna	pe
	lication to Solid Mechanics- One			6	hou	
	ensional Analysis			0	1100	
	1D finite element equations –Truss, Beam -1D therm	nal prob	olem	_	Line	a
	atic elements- Natural coordinates - Isoparametric ele					
Integration.	'					
	lication to Solid Mechanics – Multi-			6	hou	Jr
	ensional Problems					
Generic form of	2D finite element equations - Triangular element - Re	ectangu	ılar (eler	nen	ts
Axisymmetric ele	ments- Vector variable problems such as plane stress,	plane s	straiı	n ar	nd a	xi-
	ms; Shell structures -Applications in structural and ther	mal pro	obler	ns.		
symmetric proble	d Machanical Applications			7	hou	Jr
symmetric proble						
symmetric proble	ni-discrete FEM for fluid flow -Split method and penal	Ity met	hod			
symmetric proble Module:5 Flui Discrete and set				- D	iscr	et
symmetric proble Module:5 Flui Discrete and se	ni-discrete FEM for fluid flow -Split method and penal on and energy conservation; Isothermal fluid flow prob			- D	iscr	et

Module:6 Steady State Heat Conduction with Applications	6 hours
Heat Transfer through Plane and Composite walls- Radial	
Conduction and Convections Systems; Two-dimensional plane p	
and axisymmetric problems- Finite element solution to convection	
Module:7 Transient Heat Conduction Analysis with	6 hours
Applications	
Lumped Heat Capacity System- Numerical Solution- Transier	
boundary and initial conditions -The Galerkin method -One-d	
Problem - Multi-dimensional Transient Heat Conduction - Phase	e Change Problems—
Solidification and Melting.	
Module:8 Contemporary Issues	2 hours
Total Lecture ho	urs: 45 hours
Text Book(s)	
1. Rao S. S., Finite Elements Method in Engineering, 5th Editio	n, Elsevier, 2010.
2 Ronald W Lewis, P. Nithiyaarasu and K.N.Seetharamu, Fund	damentals of Finite Element
Method for Heat and Fluid Flow, John Wiley & sons, 2004.	
Reference Books	
1. J.N.Reddy, Introduction to Finite Element Method, McGrav	v -Hill International Edition,
2019.	,
2 Tirupathi R. Chandrupatla and Ashok D. Belugundu, Introduc	tion to Finite Elements in
Engineering, 4th Edition, Prentice Hall, 2011.	
3 Seshu. P, Finite Element Analysis, Prentice Hall of India, 201	3
4 Saeed Moaveni, Finite Element Analysis, Theory and Applic	
Fifth Edition, 2021	,
Mode of Evaluation: CAT, written assignment , Quiz, FAT	
•	
Recommended by Board of Studies 27-05-2022	
Approved by Academic Council No. 66 Date 16	-06-2022

Course code	Course Title			Т	Ρ	С
MCFD607L	High Performance Computing		2	0	г 0	2
Pre-requisite	NIL		∠ Syllat	-	-	
rie-iequisite		0	-	.0	v CI 3	
Course Objectives				.0		
	nderstanding of programming best practices, pro	aductivit	ty too		nd li	
•	tem in general.	Juuctivii		лъа	nu ii	IUX
	he knowledge on working of modern computers	and pro	aran	n ov	ecuti	on
	ency and optimization procedures.	and pro	yran		ecui	ΟΠ,
	e our students with debugging, performance	evalua	tion	tech	nniai	es
	instrumentation to identify bottlenecks					of
	i in programs.	and o	ppor	Carm		01
	ic knowledge of OpenMP in the context of share	d mem	orv a	rchit	ectu	re.
	ate the basics of MPI in the context of distributed					
	with GPGPU device architecture and accelerate					
				0		
Course Outcome						
Upon successful con	pletion of the course the students will be able to)				
1. Demonstrate	basic familiarity with linux operating system and	prograr	nmin	g to	ols.	
2. Analyze time,	profile, benchmark and optimize serial codes.					
3. Demonstrate	ability to use documentation system, debuggin	g syste	m, b	uild	syste	em,
	ol system, profiler, program analyzer, etc.					
	arallelizing mechanisms in modern computer ar					
	branch-prediction, virtual memory etc and shall	be able	e to e	expl	oit th	em
	performing programs.					
	llel program on a shared memory architecture us			∍.		
	program for a distributed memory architecture u					
7. Use GPGPU	to accelerate program performance using SIMD	archited	cture			
Module:1 HF	C and Linux Environment				4 ho	urs
	and computers, Moore's law and saturation,	Multico	ore-n			
	r-computers, Amdahl's law, top500.org, Challen					
	ow to get Linux? Linux on a USB stick, dual b					
	cd, mkdir, cut, curl, indirection, tee, pipe, top, he					
scp, .bashrc, .bash_p				,		,
Module:2 Pro	ofessional Code Development Practices				6 ho	urs
Editors: vim, emacs,	compilers: gcc, g++, gfortran, nvcc, debugging:	gdb, do	dd, I[DEs:	ecli	pse
(,netbeans, Visual S	tudio), version control system: git (,svn), build	system	n: ma	ake,	cma	ıke,
	gen (,sphinx), scripting: shell scripting, awk scri					
	s, job scheduling, environment modules, best p	ractices	; for i	repro	oduc	ible
	· · · · · · · · · · · · · · · · · · ·			•		
research				-		
Module:3 Mo	odern Computers and Program Optimization				4 ho	
Module:3ModuleClock cycle, Memory	odern Computers and Program Optimization y types (Registers, L1 cache, L2 cache, L3 ca	ache, R	AM,	SSE	D, HI	DD,
Module:3Module:3Clock cycle, Memory intranet, internet) and	odern Computers and Program Optimization y types (Registers, L1 cache, L2 cache, L3 ca d its significance in latency, virtual memory, pa	ache, R	AM,	SSE	D, HI	DD,
Module:3Module:3Clock cycle, Memory intranet, internet) and prediction, architecture	odern Computers and Program Optimization y types (Registers, L1 cache, L2 cache, L3 ca d its significance in latency, virtual memory, pa re based optimization.	ache, R aging, p	AM, ipelir	SSE ning,	D, HI bra	DD, nch
Module:3Module:3Clock cycle, Memoryintranet, internet) anprediction, architecturyCompiler Flags: inlin	odern Computers and Program Optimization y types (Registers, L1 cache, L2 cache, L3 ca d its significance in latency, virtual memory, pa re based optimization. ing, loop-unrolling, data-contiguity, improving la	ache, R. aging, p atency	AM, ipelir by d	SSE ning, ata	D, HI bra local	DD, nch ity,
Module:3Module:3Clock cycle, Memory intranet, internet) an prediction, architectu Compiler Flags: inlin gdb- debugging the	odern Computers and Program Optimization y types (Registers, L1 cache, L2 cache, L3 ca d its significance in latency, virtual memory, pa re based optimization. ing, loop-unrolling, data-contiguity, improving la code, .gdbinit, preprocessor directives, Appro	ache, R. aging, p atency	AM, ipelir by d	SSE ning, ata	D, HI bra local	DD, nch ity,
Module:3Module:3Clock cycle, Memory intranet, internet) an prediction, architectur Compiler Flags: inlin gdb- debugging the structures and algorities	odern Computers and Program Optimization y types (Registers, L1 cache, L2 cache, L3 ca d its significance in latency, virtual memory, pa re based optimization. ing, loop-unrolling, data-contiguity, improving la code, .gdbinit, preprocessor directives, Appro thms, timing and profiling: time, gprof.	ache, R. Iging, p atency priate s	AM, ipelir by d	SSI ning, ata tion	D, HI bra local of d	DD, nch ity, ata
Module:3Module:3Clock cycle, Memory intranet, internet) an prediction, architectur Compiler Flags: inlin gdb- debugging the structures and algoritModule:4An	odern Computers and Program Optimization y types (Registers, L1 cache, L2 cache, L3 ca d its significance in latency, virtual memory, pa re based optimization. ing, loop-unrolling, data-contiguity, improving la code, .gdbinit, preprocessor directives, Appro hms, timing and profiling: time, gprof. alysis Tools and Optimization of Serial Code	ache, R. Iging, p atency priate s	AM, ipelir by d	SSE ning, ata tion	D, HI bra local of d 4 ho	DD, nch ity, ata urs
Module:3Module:3Clock cycle, Memory intranet, internet) an prediction, architectu Compiler Flags: inlin gdb- debugging the structures and algoritModule:4An Instrumentation of the	dern Computers and Program Optimization y types (Registers, L1 cache, L2 cache, L3 ca d its significance in latency, virtual memory, pa re based optimization. ing, loop-unrolling, data-contiguity, improving la code, .gdbinit, preprocessor directives, Appro thms, timing and profiling: time, gprof. alysis Tools and Optimization of Serial Code ne code: google-tools, scorep, TAU, Use of	ache, R aging, p atency priate s	AM, ipelir by d selec	SSE ning, ata tion	D, HI bra local of d 4 ho PAC	DD, nch ity, ata urs K,
Module:3Module:3Clock cycle, Memory intranet, internet) an prediction, architectur Compiler Flags: inlin gdb- debugging the structures and algoriteModule:4An Instrumentation of the SCALAPACK, netlibe	dern Computers and Program Optimization y types (Registers, L1 cache, L2 cache, L3 ca d its significance in latency, virtual memory, pa re based optimization. ing, loop-unrolling, data-contiguity, improving la code, .gdbinit, preprocessor directives, Appro thms, timing and profiling: time, gprof. alysis Tools and Optimization of Serial Code ne code: google-tools, scorep, TAU, Use of Benchmarking and its importance, Interoperab	ache, R aging, p atency priate s Librari ility bet	AM, ipelir by d selec es - weer	SSE ning, ata tion	D, HI bra local of d 4 ho PAC	DD, nch ity, ata urs K,
Module:3Module:3Clock cycle, Memory intranet, internet) an prediction, architectur Compiler Flags: inlin gdb- debugging the structures and algoritModule:4An Instrumentation of the SCALAPACK, netling C-Fortran, creating line	dern Computers and Program Optimization y types (Registers, L1 cache, L2 cache, L3 ca d its significance in latency, virtual memory, pa re based optimization. ing, loop-unrolling, data-contiguity, improving la code, .gdbinit, preprocessor directives, Appro thms, timing and profiling: time, gprof. alysis Tools and Optimization of Serial Code ne code: google-tools, scorep, TAU, Use of	ache, R aging, p atency priate s Librari ility bet	AM, ipelir by d selec es - weer	SSE ning, ata tion LA n lan	D, HI bra local of d 4 ho PAC	DD, nch ity, ata urs K, ges

mos depe Aton omp secti OMF Acce upda	t compliers is endency, out nic operation get_wtime, ions for, priv section, sir elerator off-le ate, teams,	parallelisation, OpenMP of ack the implementation, of put dependency, Granula is,omp_set_num_threads omp_get_wtick, omp_set ate, firstprivate, lastprivate ogle, master, critical, task pading (simd, declare si distribute simd, distribut elized. Performance eval	data dependanc arity of parallelis s, omp_get_num et_nested, OMP ate, reduction, s k, barrier, taskwa imd, loop simd, ce parallel), Det	ies: flow depe m: fine vs coa threads, om _ parallel, par chedule, colla ait, flush, can target data, pugging, Prof	endency, anti- arse, Synchronization, np_get_max_threads, rallel loop, parallel apse, ordered, nowait, cel, cancellation point, declare target, target
	lule:6	Distributed Memory A			3 hours
Bloc MPI	king and no _Init, MPI_Fi	y and how to build it. k on-blocking communication nalize, MPI_Comm_rank ssor_name, MPI_Send, N	on, Importance , MPI_Comm_s	of minimizing	g communication, MM_WORLD,
Mad	lule:7	Uvbrid Computing			3 hours
		Hybrid Computing e, SIMD instruction, NV	/idia and CUDA	A, (OpenCL -	
GPL appl host algo	J architectur icability but code, local rithms and d	e, SIMD instruction, NV complex), thread, block, data, shared data, glo esign patterns	grid, warp conc bal data, data	epts, Nsight I	- much broader DE, GPU kernels and
GPL appl host algo	J architectur icability but code, local	e, SIMD instruction, NV complex), thread, block, data, shared data, glo	grid, warp conc bal data, data	epts, Nsight I	- much broader DE, GPU kernels and
GPL appl host algo	J architectur icability but code, local rithms and d	e, SIMD instruction, NV complex), thread, block, data, shared data, glo esign patterns	grid, warp conc bal data, data	epts, Nsight I	- much broader DE, GPU kernels and nchronization, parallel
GPL appli host algo Mod	J architectur icability but code, local rithms and d	e, SIMD instruction, NV complex), thread, block, data, shared data, glo esign patterns	grid, warp conc bal data, data	epts, Nsight I transfers, syr	- much broader IDE, GPU kernels and nchronization, parallel 2 hours
GPL appli host algo Mod	J architectur icability but code, local rithms and d lule:8 t Book(s) George Ha	e, SIMD instruction, NV complex), thread, block, data, shared data, glo esign patterns	grid, warp conc bal data, data Total Le ntroduction to Hi	epts, Nsight I transfers, syr cture hours gh Performan	- much broader IDE, GPU kernels and nchronization, parallel 2 hours 30 hours nce Computing for
GPU appli host algo Mod	J architectur icability but code, local rithms and d lule:8 t Book(s) George Ha	e, SIMD instruction, NV complex), thread, block, data, shared data, glo esign patterns Contemporary Issues ger, Gerhard Wellein - Ir and Engineers, CRC Pres	grid, warp conc bal data, data Total Le ntroduction to Hi	epts, Nsight I transfers, syr cture hours gh Performan	- much broader IDE, GPU kernels and nchronization, parallel 2 hours 30 hours nce Computing for
GPU appli host algo Mod	J architectur icability but code, local rithms and d lule:8 t Book(s) George Ha Scientists a erence Book Jason San	e, SIMD instruction, NV complex), thread, block, data, shared data, glo esign patterns Contemporary Issues ger, Gerhard Wellein - Ir and Engineers, CRC Pres	grid, warp conc bal data, data Total Le ntroduction to Hi ss, Taylor & Fra CUDA by Examp	epts, Nsight I transfers, syr ecture hours gh Performan ncis Group, 2	- much broader IDE, GPU kernels and nchronization, parallel 2 hours 30 hours nce Computing for 2010.
GPU appli host algo Mod Text 1. Refe 1. Mod	J architectur icability but code, local rithms and d lule:8 t Book(s) George Ha Scientists a erence Book Jason San Purpose G	e, SIMD instruction, NV complex), thread, block, data, shared data, glo esign patterns Contemporary Issues ger, Gerhard Wellein - Ir and Engineers, CRC Pres s ders, Edward Kandrot - C <u>PU Programming 1st Ed</u> ion: Continuous assessm	grid, warp conc bal data, data Total Le ntroduction to Hi <u>ss, Taylor & Fra</u> CUDA by Examp ition.	epts, Nsight I transfers, syr ecture hours gh Performan ncis Group, 2 ole: An Introdu	- much broader IDE, GPU kernels and nchronization, parallel 2 hours 30 hours nce Computing for 2010.
GPU appli host algo Mod Text 1. 1. Refe 1. Mod Fina Reco	J architectur icability but code, local rithms and d lule:8 t Book(s) George Ha Scientists a erence Book Jason San Purpose G le of Evaluati l assessmer ommended b	e, SIMD instruction, NV complex), thread, block, data, shared data, glo esign patterns Contemporary Issues ger, Gerhard Wellein - Ir and Engineers, CRC Pres s ders, Edward Kandrot - C <u>PU Programming 1st Ed</u> ion: Continuous assessm	grid, warp conc bal data, data Total Le ntroduction to Hi <u>ss, Taylor & Fra</u> CUDA by Examp ition.	epts, Nsight I transfers, syr ecture hours gh Performan ncis Group, 2 ole: An Introdu	- much broader IDE, GPU kernels and nchronization, parallel 2 hours 30 hours nce Computing for 2010.

Со	urse code		Course Ti	tle			L	Т	Ρ	С
	FD607P	High P	erformance Co		Lab		0	0	2	1
Pre	e-requisite	NIL				Syl	labı	ls v	ersi	ion
	•							1.0		
Со	urse Objecti ^v	ves								
		o understanding of p	rogramming be	est practic	es, produc	tivity te	ools	an	d lin	iux
		system in general.	5 5	•	<i>i</i> 1	,				
2.	To impart l	knowledge on worki	ng of modern o	omputers	and progra	am ex	ecu	tion	,	
		ficiency and optimiza			-					
3.	To teach pa	arallel code developr	nent using Ope	nMP, MP	I and GPG	PU.				
_										
	urse Outcom									
		I completion of the co								
	•	ne, profile, benchmar								
2.		Ilelizing mechanisms		•					, da	ta-
	•	anch-prediction, virtu	•					S.		
		arallel program on a s	•		•	•	Ρ.			
4.	Write paral	lel program for a dist	ributed memory	/ architect	ure using N	ЛРI.				
Ind	licative Expe	riments								
1.		development enviror	nment Install c	ompiler e	clipse doxy	vaen (oran	hviz	7	
		, gdb, cmake, nvidia-				, gon, s	grap		-,	
2.		plete program for 1				e Diffe	rend	ce M	leth	od
		st cases. demonstrat			•					
3.		debug and fix issues								
4.	Time and p	rofile provided serial	codes and ider	tify the bo	ottlenecks -	- oppo	rtun	ities	of	
	parallelizati	on.		-						
5.		Poisson's equation								
		ifferent solver algorit								s.
6.	Ų	unsteady LDC probl	em, time and ir	strument	the code a	nd ana	alyse	e it v	vith	
	scorep /TAl									
7.		a SIMPLE program ւ		Compare	timing and	comp	ute	spe	edu	р.
		and Analyze the cod					<u>, </u>			
8.		ta locality using MET	IS graph-partiti	oning libra	ary. Compa	ire per	form	nanc	ce o	ra
0	0	uctured FE code.	ALTIC and impo	a ma a mat NAF		ation	Can			
9.	performanc	esh-partition using N	ie no and impl	ement wir	^o r paralleliz	ation.	Con	npa	e	
10		e IO operations in a g	ivon program t		ry road wri	to to in	nnrc	~~~~		
10	performanc	e. Comment on the i	mprovement		iry reau-wii		npre	Jve	0	
	periormane			tal Labor	atory Hou	rs 30) ho	urs		
Tex	kt Book(s)				atory nou		/ 110	aro		
1.		er, Gerhard Wellein	- Introduction	to High	Performanc	e Cor	mpij	tina	for	
••		nd Engineers, CRC F					npu	ung	101	
Re	ference Bool					-				
1.		lers, Edward Kandr	ot - CUDA by	Example	e: An Intro	ductio	n to	G	ener	al-
		U Programming 1st						-		
Мо		ment: Continuous as		FAT / Viv	/a voce					
Re	commended l	by Board of Studies	27-05-2022	2						
Арр	proved by Aca	ademic Council	No. 66	Date	16-06-202	22				
	•			•	•					

Course Code	Course Title	L	Т	Ρ	С
MCFD608L	Numerical Simulation of Environmental and Atmospheric Flows	3	0	0	3
Pre-requisite	NIL	Syllab		ersi	on
O sum a Ohia a			1.0		
Course Objec	ide students with sufficient background to understand the i	mathom	otio	<u></u>	
represe 2. To enal 3. To help	ntation of the governing equations of Environmental and At ole students to understand cutting edge global issues in a w o students learn research trends through a research com environmental and atmospheric flows.	mosphe /arming	eric F plan	lows et.	
Course Outco	me				
	on of the course the students will be able to				
	s knowledge of heat and mass transfer applications in e	environr	nent	al a	nd
	neric flows. and the principles of environmental and atmospheric flows.				
 Interpre Demon 	t energy climate data pools sourced globally and write rese strate how atmospheric processes are linked to the dyna Il understanding of the physico-chemical processes lead	arch pa amics a	nd g	ain	an
Module:1 Ov	erview		5	hou	urs
mechanics, grevolcanic and se Module:2	Indamental physical processes that shape climate. Solatenhouse gases, Scales of motion, atmospheric and ocea bil aerosols. Indamentals of Atmospheric Processes Coriolis force. Rossby number. Equations of motion in Car	nic circ	ulatio 5	on, a hou	and u rs
The <i>f</i> -plane, t	he β -plane. Geostrophic flows. Vorticity and potential vortici	ty.			
Module:3 Er	ergy Climate Dynamics		6	hοι	Jrs
and diffusion	ance. Derivation of the Potential Temperature. States of sta problems. Parcel Concepts. Thermal wind equation. G iniques in large-scale flows.				
Module:4 Th	ermodynamical Processes		8	hοι	Jrs
Thermodynam	nergy, Entropy and Enthalpy. The First and Second law of c Energy Equations. Vertical structure and change of st and Pseudo-adiabatic processes.				
	undary Layer Processes			hοι	
	inuity equations. Cloud-fog physics. Boundary layer physi equation in urban boundary layer.	cs. App	licat	ions	of
	allow Water model theory			hοι	
	to N-S equations: Shallow Water (SW) equations, Boussir Potential vorticity and conservation properties.	nesq an	d Ar	elas	tic
	merical methods in Boundary layer Processes		7	hοι	Jrs
Coriolis accele	ration configuration. Mass conservation equation implement oduction of zonal jets and currents. Large scale perturbation				•
		ne and (1000		110

equ	uilibrium				
Мо	dule:8	Contemporary issues			2 hours
			Total Le	ecture hou	urs: 45 hours
Tex	ktbook(5)			
1.					^{2nd} Edition (2005). Publisher: BN-13: 978-0521548656.
2.	Spring	Modelling for Beginners. er, Berlin, Heidelberg. ISB			n (2009). Publisher:
Re	ference	Books			
1.		ysical Fluid Dynamics. Jo ork. ISBN 978-0-387-9638		2 nd Edition	(1987). Publisher: Springer,
2.	Cushm		Beckers (2011). P	ublisher: A	d Numerical Aspects. Benoit Academic Press, Cambridge,
3.		tational Methods in Enviro Publisher: Springer, Berli			
4.	Atmos	ohere, Ocean, and Climate Elsevier Academic Press	e Dynamics. Johr	n Marshall	and Alan Plumb. 1 st Edition
Мо	de of Ev	aluation: CAT, written ass	ignment, Quiz ar	d FAT	
		ded by Board of Studies	27-05-2022		
Ap	proved b	y Academic Council	No. 66	Date	16-06-2022

Course Code	Course Title		L.	ГР	С
MCFD609L	Modeling and Simulation of Energy System	S	3 (0 (3
Pre-requisite	NIL		labus	vers	ion
-			1.0		
Course Objectiv	es				
1. To impart kno	wledge on various energy conversion technologies.				
	dynamic, linear and geometric programming for solvir	ng proble	ems r	elated	d to
energy syster	ns.	•			
	e mathematical aspects and optimization of various th	ermody	namio	;	
systems.					
-					
Course Outcom					
	completion of this course students will be able to				
	arious parameters for optimization in workable system	ne			
	hematical concepts to carry out the system simulation				
	gy systems and their related components.				
	e relations between thermodynamic properties involv	ed in en	eravs	syster	ms
	ematical models for various energy systems and com			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
ı					
Module:1 Over	view of Energy Systems			6 ho	urs
	ous technologies and energy conversion, Workable a				
	Energy Systems, Polynomial representations, La	agrange	inte	polat	ion,
Exponential Form	is, Equation fitting.				
Module:2 Svst	em Simulation			4 ho	urs
	tion, Sequential and simultaneous calculations, Succ	essive s	ubsta		
	id Newton Raphson methods.	000110 0	abola	cion,	
Module:3 Opti				7 ho	urs
	presentation of optimization problems, Optimization	procedu	ire. L	adrar	nae
	nstrained and constrained optimization, Sensitivity				arch
	tomous search, Fibonacci search, Lattice search, Univ				
	rmal System Analysis			7 ho	urs
	aracteristics of Dynamic programming solutions, A	pparent	v co	nstrai	ned
	etric programming, Mechanics of Solutions for one				
	ning, Mathematical statement and Geometric Visual				,
	blem, Simplex algorithm.				
Module:5 Mod	eling of Thermodynamic Properties			6 ho	urs
Need for mat	hematical Modeling, Linear and non-linear l	Regressi	ion	analy	/sis,
Thermodynamic	properties, Internal energy and entropy, pressure-ter	nperatur	e rela	ations	hip
at saturated cond	itions, Maxwell relations.				
	gn of Heat Exchangers			6 ho	
	exchangers – parallel flow, counter flow, Evaporat	ors and	Con	dense	ers,
-	U, Pressure drop and Pumping power.				
	erical analysis of thermodynamic ems			7 ho	urs
Simulation and o	otimization of thermal power plant components, Solar	- collecto	or, W	ind	
	turbine and draft tubes, Gas turbine and compressor	S.			
Module:8 Con	temporary Issues			2 ho	urs
	Total Lecture hours:			45 ho	ours
Text Book(s)	er, Design of Thermal Systems, 4 th Edition, McGraw-F		_		
1. W.F. Stoecke		1211 D 1			

	2003, ISBN 9780072373431								
2.	2. Y, Jaluria, Design and Optimization of Thermal Systems, 2 nd Edition, McGraw Hill,								
	2007		-						
Ref	erence Books								
1.	Hoseyn Sayyaadi, Modeling, As Academic Press, 2021, ISBN 978-0	sessment, ar)-12-816656-	nd Optin 7.	nization of Energy Systems,					
Mo	de of Evaluation: CAT / written assig	nment / Quiz	/ FAT / F	Project					
Mo	Mode of assessment: Continuous assessment / FAT / Oral examination and others								
Red	Recommended by Board of Studies 27-05-2022								
Арр	Approved by Academic Council No. 66 Date 16-06-2022								

Cour	rse code	Course Title	L	Т	Ρ	С			
	G501P	Technical Report Writing	0	0	4	2			
Pre-I	requisite	Nil	S	yllabu	s ve	rsion			
	•				1.0				
Cour	rse Objective	9S							
1.To	develop writi	ng skills for preparing technical reports.							
2. To	analyze and	evaluate general and complex technical information							
	•	ciency in drafting and presenting reports.							
Cour	rse Outcome								
		course, the student will be able to							
		ree sentences using appropriate grammar, vocabula	ary and	style.					
		nced rules of grammar for proofreading reports.	,	,					
		ation and concepts in preparing reports.							
		e structure and function of technical reports.							
		lity of presenting technical reports.							
้ <u>ว</u> . แก									
India	ative Experi	mente							
maic		echnical Communication							
1.		Technical communication,							
1.		communication, Levels of communication							
	Vocabulary								
2.	-	: confusing words, Phrasal verbs							
		and Proof reading							
	Advanced								
3.	Shifts: Voice, Tense, Person, Number								
		oun reference, Misplace and unclear modifiers							
		f Technical writing							
4.		paragraphs, Eliminating unnecessary words, Avoidir	ng clich	iés an	d sla	ng			
		arity and combining							
_		condensation							
5.		ective precis writing,							
		g and summarizing							
6.		Reports: Meaning, Objectives, Characteristics and C							
7.	organizing t	reports and Prewriting: purpose, audience, source	es or in	Iorma	lion,				
	Data Visua								
8.		Data - Graphs - Tables – Charts - Imagery - Info g	raphic	5					
-		ation of Information: Preparing Questionnaire		-					
9.	Techniques to Converge Objective-Oriented data in Diverse Technical Reports								
40		nd Analyses: Writing introduction and literature rev		•		vles.			
10.		e Technical Details from Magazines, Articles and e-c				,			
	Structure o								
11		ce - Acknowledgement - Abstract/Summary - Intro	ductior	n - Ma	terial	s and			
	Methods – F	Results – Discussion - Conclusion - Suggestions/Re	comme	endati	ons				
12.		Report: First draft, Revising,							
۲۷.		ment, Developing unity and coherence							
13.		entific abstracts: Parts of the abstract, Revising the	abstra	act					
10.		agiarism, Best practices for writers							
14.	Supplemen								
		Index – Glossary – References – Bibliography - Not	es						
15	Presentatio	n							

	Planning, creating anddigital pres			ory hours :	60 hours
Text	t Book(s)	Totari	Laborat	ory nours .	00 110015
1.	Raman, Meenakshi and Sange Principles and Practice, Third edit				
Refe	erence Books				
1.	Aruna, Koneru, (2020). Englisl Education, Noida.	h Language S	Skills fo	r Engineers.	McGraw Hill
2.	Rizvi,M. Ashraf (2018)Effective Hill Education, Chennai.	Technical Com	nmunicat	ion Second E	Edition. McGraw
3.	Kumar, Sanjay and Pushpalatha, for Engineers, Oxford University F	· · ·	n Langua	age and Com	nunication Skills
4.	Elizabeth Tebeaux and Sam Communication, Fifth Edition, Oxf			e Essentials	s of Technical
	le of Evaluation : Continuous Asses essment Test	sment Tests, Q	uizzes, <i>i</i>	Assignment, F	Final
	ommended by Board of Studies	19-05-2022			
Ann	roved by Academic Council	No. 66 🛛 🛛 🗠	Date	16-06-2022	

Course Co	de	Course Title	L	Т	Ρ	С
MSTS501P		Qualitative Skills Practice	0	0	3	1.5
Pre-requisi	te	Nil	Sylla	abus	ver	sion
				1.	0	
Course Ob						
		p the quantitative ability for solving basic level problems				
2. To	improv	e the verbal and professional communication skills.				
Course Ou	tcome	:				
At the end	of the	course, the student will be able to				
1. Exe	ecute a	ppropriate analytical skills.				
2. Sol	ve pro	blems pertaining to quantitative and reasoning ability.				
3. Lea	arn bet	ter vocabulary for workplace communication.				
4. Dei	monstr	ate appropriate behavior in an organized environment.				
	Busi	ness Etiquette: Social and Cultural Etiquette; Writing	3			
Module:1	Com	pany Blogs; Internal Communications and Planning	:		9 hc	ours
	Writi	ng press release and meeting notes				
Value, Man	ners-	Netiquette, Customs, Language, Tradition, Building a	blog	, De	velo	ping
brand mess	sage, F	AQs', Assessing Competition, Open and objective Cor	nmur	nicati	ion, [·]	Two
way dialogu	le, Un	derstanding the audience, Identifying, Gathering Infor	matic	n,. /	Analy	ysis,
Determining	g, Sele	cting plan, Progress check, Types of planning, Write	eas	short	, ca	tchy
headline, G	et to th	ne Point –summarize your subject in the first paragrapl	h., Bo	ody–	Mak	ke it
relevant to y	/our au	idience.				
Module:2	Time	management skills			3 ho	ours
Prioritization	n, Proc	rastination, Scheduling, Multitasking, Monitoring, Workir	ng un	der p	oress	sure
and adherin	ig to de	adlines				
	Prese	entation skills – Preparing presentation; Organizing				
Module:3		rials; Maintaining and preparing visual aids; Dealing questions	l		7 hc	ours
10 Tips to	prepar	e PowerPoint presentation, Outlining the content, Pas	sing	the	Elev	ator
•	•	inking, Introduction , body and conclusion, Use of Fo	•			
	•	ation, Importance and types of visual aids, Animation				
		of posters, Setting out the ground rules, Dealing with i		-	-	
-	•	of the questions, Handling difficult questions.		•	,	
Module:4		titativeAbility-L1–Numberproperties; Averages;		1	1 hc	ours
Number of	-	ressions; Percentages; Ratios	Tone	diait	ne	itier
		, Factorials, Remainder Theorem, Unit digit position,		•	•	
-	-	ed Average, Arithmetic Progression, Geometric Prog				
•		ease and Decrease or Successive increase, Types o	1 1 1 1	us a	ШÜ	
proportions.					<u>.</u> .	
Module:5		oning Ability - L1 – Analytical Reasoning				ours
-		(Linear and circular & Cross Variable Relationship), Blc	od R	elatio	ons,	
		/ grouping, Puzzle test, Selection Decision table.				
Module:6	Verba	al Ability -L1 – Vocabulary Building			<u>7 h</u> c	ours

Synonyms & Antonyms, One word substitutes, Word Pairs, Spellings, Idioms, Sentence completion, Analogies.

	Total Lecture hours: 45 hours
Refe	erence Books
1.	Kerry Patterson, Joseph Grenny, Ron McMillan and Al Switzler, (2017).2 nd Edition,
	Crucial Conversations: Tools for Talking when Stakesare High .McGraw-Hill
	Contemporary, Bangalore.
2.	Dale Carnegie,(2016).How to Win Friends and Influence People. Gallery Books, New York.
3.	Scott Peck. M, (2003). Road Less Travelled. Bantam Press, New York City.
4.	SMART, (2018). Place Mentor, 1 st edition. Oxford University Press, Chennai.
5.	FACE, (2016). Aptipedia Aptitude Encyclopedia. Wiley publications, Delhi.
6.	ETHNUS, (2013). Aptimithra. McGraw – Hill Education Pvt .Ltd, Bangalore.
Web	osites:
1.	www.chalkstreet.com
2.	www.skillsyouneed.com
3.	www.mindtools.com
4.	www.thebalance.com
5.	www.eguru.ooo
Mod	le of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final Assessment
Test	•
	ommended by Board of Studies 19-05-2022
Арр	roved by Academic Council No.66 Date 16-06-2022

Course Coo	de	Course Title	L	т	P	С
MSTS502P	-	Quantitative Skills Practice	0	0	3	1.5
Pre-requisit	te	Nil	Sv	llabu	s vers	-
· ·			,		.0	
Course Obj	ective	S:				
1. To (develo	p the students' advanced problem solving skills.				
2. To e	enhano	ce critical thinking and innovative skills.				
Course Out	come					
		of the course, the student will be able to				
1 Crea	ite nos	itive impression during official conversations and inte	rviov	Ve		
	•	te comprehending skills of various texts.		və.		
		vanced level thinking ability in general aptitude.				
4. Deve	elop el	notional stability to tackle difficult circumstances.				
Module:1		me skills – Resume Template; Use of power s of resume; Customizing resume	verb	s;	2 h	ours
Structure of		dard resume, Content, color, font, Introduction to Po	- wer	verhs	and	Write
		of resume, Frequent mistakes in customizing res				, me
	• •	erent company's requirement, Digitizing career portfo		, L uy	out	
Module:2	•				2 6	ours
wodule.z		view skills – Types of interview; Techniques to fa ote interviews and Mock Interview	ace		31	iours
Structured	and u	nstructured interview orientation, Closed questio	ns a	and h	ypoth	etical
questions, I	ntervie	wers' perspective, Questions to ask/not ask during	g an	interv	view, `	Video
interview, R	ecorde	ed feedback, Phone interview preparation, Tips to c	ustor	nize p	repar	ation
for personal	intervi	ew, Practice rounds.				
	Emot	ional Intelligence - L1 – Transactional Analysis;	Brair	n		
Module:3		ning; Psychometric Analysis; SWOT analysis		-	12 h	ours
		tracting, ego states, Life positions, Individual E			•	-
Brainstormir	ng, Ste	epladder Technique, Brain writing, Crawford's Sl	lip w	riting	appr	oach,
Reverse bra	instorr	ning, Star bursting, Charlette procedure ,Round robi	n bra	instor	ming,	Skill
Test, Persor	nality T	est, More than one answer, Unique ways, SWOT an	alysi	s.		
Module:4	Prob	ntitative Ability - L3–Permutation - Combin ability; Geometry and menstruation; Trigono nrithms; Functions; Quadratic Equations; Set The	met		14 h	ours
Counting, G	Groupin	g, Linear Arrangement, Circular Arrangements, Co	onditi	onal	Proba	bility,
Independen	t and	Dependent Events, Properties of Polygon, 2D &	3D	Figure	es, Ar	ea &
Volumes, He	eights	and distances, Simple trigonometric functions, Intro	ducti	on to	logari	thms,
Basic rules	of loga	rithms, Introduction to functions, Basic rules of func	ctions	s, Unc	lersta	nding
Quadratic E	quatio	ns, Rules & probabilities of Quadratic Equations, Ba	sic c	oncep	ts of	Venn
Diagram.						
Module:5		oning ability - L3 – Logical reasoning; Data Analy nterpretation	ysis		7 h	ours

Svllo	oaisms	Binary logic, Sequential output tracing, Crypto arithmetic, Data Suffic	iency Data
	0	on-Advanced, Interpretation tables, pie charts & bar chats.	·····j, _ ····
	-		
Мос	lule:6	Verbal Ability - L3 – Comprehension and Critical	7 hours
<u></u>		reasoning	aluaian
	•	mprehension, Para Jumbles, Critical Reasoning (a) Premise and Con tion & Inference, (c) Strengthening & Weakening an Argument.	ciusion,
(0)7	Soump		
		Total Lecture hours:	45 hours
Refe	erence	Books	
1.		el Farra and JIST Editors,(2011).Quick Resume & Cover Letter Book se an Effective Resume in Just One Day. Jist Works, Saint Paul, Min	
2.	Flage	Daniel E, (2003).The Art of Questioning: An Introduction to Cri ng. Pearson, London.	
3.		Allen, (2015).Getting Things done: The Art of Stress-Free productivit in Books, New York City.	у.
4.	SMAR	T, (2018). Place Mentor 1 st edition. Oxford University Press, Chennai	
5.	FACE	(2016).Aptipedia Aptitude Encyclopedia. Wileypublications, Delhi.	
6.	ETHN	US, (2013).Aptimithra. McGraw-Hill Education Pvt Ltd, Bangalore.	
Web	osites:		
1.	<u>www.c</u>	halkstreet.com	
2.	www.s	killsyouneed.com	
3.	www.r	nindtools.com	
4.	<u>www.t</u>	hebalance.com	
5.	<u>www.e</u>	eguru.ooo	
Ass	essmen		
		ded by Board of Studies 19-05- 2022	
Арр	roved b	y Academic Council No.66 Date 16-06-2022	

Course coo	le	Course Title		L	Т	Ρ	С
MFRE501L		Français Fonctionnel		3	0	0	3
Pre-requisi	te	NIL	Svl	labı	-	-	-
			- 5		.0		-
Course Ob	ectives				-		
		ompetence in reading, writing, and speaking bas	ic Fre	ench	. ind	clud	ina
		vocabulary (related to profession, emotions					
		classroom and family).	,	,		1	,
		ency in French culture oriented view point.					
Course Out	tcome	· ·					
At th	e end of th	e course, the student will be able to					
1. Rem	ember the	daily life communicative situations via personal p	pronol	ıns,	em	phat	tic
		ations, negations, interrogations etc.					
		nicative skill effectively in French language via	regu	lar /	irre	egul	ar
verb		,	0			U	
3. Dem	onstrate c	omprehension of the spoken / written language ir	n trans	slatir	ng s	simp	le
	ences.				0		
4. Und	erstand an	d demonstrate the comprehension of some partie	cular	new	rar	nge	of
	en written					0	
5. Dem	ionstrate a	clear understanding of the French culture thro	bugh	the	lang	qua	qe
stud		J.	U				5
	Saluer, Se	e présenter, Etablir des contacts. Compétence	s				
Module:1	•	e - consulter un dictionnaire, appliquer des			9	hou	irs
	stratégies	de lecture, lire pour comprendre.					
Les nombre	es cardinat	ux- Les 7 jours de la semaine-Les 12 mois de l'	année	e- La	a da	ate-L	_es
saisons-Les	Pronoms	personnels sujets-Les Pronoms Toniques- La con	jugais	on o	des	verk	bes
réguliers- er	- / - ir /-re v	erbes (Le présent)- La conjugaison des verbes irre	égulie	rs- a	ivoii	r /êti	re /
aller / venir	/ faire /voul	oir /pouvoir etc.					
Savoir-faire	pour: salu	ier, et se présenter – épeler en français – comm	uniqu	er e	n cl	asse	е —
utiliser des	stratégies p	oour comprendre un texte en français.					
Module:2		quelqu'un, Chercher un(e) correspondant(e	e),		7	hou	ure
		r des nouvelles d'une personne.					
		erbes Pronominaux (s'appeler/ s'amuser/ se prom			Nég	gatio	on-
		st-ce que ou sans Est-ce que'- Répondez négative	ement				
		objet ou un lieu, Poser des questions				hou	
	•	ndéfini)- Les prépositions (à/en/au/aux/sur/dans/			,		
contracté- L	'heure- La	Nationalité du Pays- Les professions- L'adjectif (l					
possessif,	l'adjectif				s/qı	lelle	es)-
U U		Comment/ Combien / Où etc., Pronoms relatifs s	simple	es			
(qui/que/dor	/						
Module:4		dre et traduire un texte court, Demander e	et		5	hou	urs
	indiquer l				•		
La traductio		un texte/ dialogue :(français-anglais / anglais –fra					
		es questions, Répondre aux questions général					
Module:5		is, Écouter des vidéos (site internet, YouTub			6	hou	urs
	-	t à améliorer leur prononciation/ vocabulaire	et				
		pétences orales		,			
	•	e la / de l'/ des) -Faites une phrase avec les mots					
		culin/féminin ; singulier/pluriel- Associez les phras	ses- le	es ac	iver	pes	de
1 a marz = /							
temps (ensu			-				
. ,	Comment	écrire un passage - développer des					
temps (ensu Module:6	Comment ompétenc				5	hou	urs

		leurs idées)				
		Famille -La Maison -L'unive	rsité -Les Loisirs	s-La Vie c	quotidienne	- La ville natale-
		age célèbre				
-		Comment écrire un dialog	ue			5 hours
	ogue					
		r un billet de train				
		ix amis qui se rencontrent au	ı café			
		membres de la famille				
		atient et le médecin				
,		professeur et l'étudiant(e)				0 h e
IVIOC	dule:8	Contemporary Topics				2 hours
		1				
			Tot	tal Lectu	re hours:	45 hours
Tex	t Book(s)				
4	Adoma	ania 1, Méthode de frança	ais, CelineHimb	er, Corir	na Brillant,	Sophie Erlich.
1.	Publis	her HACHETTE, February 20	016.			
2.	Encha	nté 1 !, Méthode de français,	Rachana Sagai	r Private I	_imited, Jai	n 2017.
Ref	erence	Books				
1.	Le frar	nçais pour vous 1, Méthode	de français, Vin	odSikri, A	Anna Gabri	el Koshy,
1.	Prozo	oublishing, Jan 2019.	-			
2.	Accue	il 1, Méthode de français, Ra	chana Sagar Pr	ivate Limi	ited, Janua	ary 2016
3.	Apprei 2019	nons le français 1 Méthode	de français, M	ahitha R	anjit & Mo	nica Singh, Jan
Maa		Justion & Continuous Assass	mont Tooto Oui	7700 100	ianmont F	inal
		luation : Continuous Assess	ment rests, Qui	zzes, Ass	ignment, F	IIIdi
	essmen		10.05.0000			
		ded by Board of Studies	19-05-2022	Data	40.00.000	00
Арр	roved by	y Academic Council	No. 66	Date	16-06-202	22

-		Item 66/	8 - Annexi	
Course code	Course Title		TP	C
MGER501L	Deutsch für Anfänger	3	0 0	3
Pre-requisite	NIL	Sy	/llabus ve	ersion
			1.0	
Course Objective				
	te competency in reading, writing and speaking in I	Basic Ge	erman.	
	oficiency in German culture oriented view point.			
	sic vocabulary in the technical field.			
Course Outcome				
	ourse, the student will be able to			
1. Communica	ate in German language in their daily life communic	ative sit	uations.	
2. Apply the G	erman language skill in writing corresponding lette	rs, E-Ma	ailsetc.	
3. Create the	talent of translating passages from English-Germ	an and	vice versa	a and
to				
frame simp	le dialogues based on given situations.			
4. Understand	I and demonstrate the comprehension of some p	articular	new ran	ge of
unseen				-
written mate	erials.			
5. Develop a g	general understanding of German culture and socie	ety.		
	rste Begegnung		6	hours
	issungs formen, Länder und Sprachen, Alp	habet.	Buchstat	pieren.
	n, Zahlen (1-100), Telefonnummer und E-Mail Add			
	men – Singular und Plural und Artikel			J ,
Lernziel:				
Verständnisvon De	eutsch, Genus- Artikelwörter			
	bys und Berufe		6	hours
	chen, Wochentage, Jahreszeiten, und Monatene	ennen l	Ihrzeitens	saden
	ife und Arbeitszeitensprechen, Zahlen (Hunde			
	stimmter), Plural der Substantive, Konjugation de			
	a-/Nein- Frage, Imperativmit Sie.		in (rogoin	labbig
Lernziel :				
	berHobbyserzählen, über Berufesprechenusw.			
	g und Familie		7	hours
	prechen, eineWohnungbeschreiben, Tagesablau	fschreib		zeiten,
	ränke Possessivpronomen, Negation, Kasus-			Dativ
		alverber		ektive,
Präpositionen			i, 7.aj	cittive,
Lernziel :				
	verben, Verwendung von Artikel, über F	amilies	prechen,	eine
Wohnungbeschreil	.	annics	precinen,	Ciric
	itions gespräche		6	hours
Dialoge:				nouis
-	Familienmitgliedern, am Bahnhof,			
, .	im Einkaufen, in einem Supermarkt, in einer Buch	handlun	a	
	einem Hotel/ in einem Restaurant, Treffen im Cáfe			7 †
/	espondenz	, remm		hours
	Aindmapmachen, Korrespondenz- Briefe, Postkart			nouis
	windmapmachen, Konespondenz- Bheie, Postkard		311	
Lernziel : Wortschatzbildung	und aktiverSprachashraush			
	und aktiverSprachgebrauch		6	houro
	atzschreiben		Ø	hours
Aufsätze :	Des Fesen mein Freund adamseine Freun "	oine E-	nilia di E	
Meine Universität,	Das Essen, mein Freund odermeine Freundin, m	eine Far	nilie, einF	est in
Meine Universität, Deutschlandusw.		eine Far		
Meine Universität, Deutschlandusw. Module:7 Über	setzungen	eine Far		est in hours
Meine Universität, Deutschlandusw. Module:7 Über		eine Far		

Gram	nmatik -	·Wortschatz – Übung						
Modu	ule:8	Trainierung den Spracht	fähigkeiten			2 hours		
				Total L	ecture hours:	45 hours		
Text	Book(s)						
4	Netzw	erk A1, Stefanie Dengler, F	Paul Rusch,	Helen So	chmitz, Tanja Si	eber, Ernst Klett		
1.	Sprachen GmbH, Stuttgart, 2017							
Refe	rence E	looks						
1.		d A1 Deutsch als Fremds		mann Fu	ınk, Christina K	uhn, Silke		
		e: Heuber Verlag, Muench						
2.	0	e ,Hartmut Aufderstrasse,			•	•		
3.		che SprachlehrefürAusländ	•					
4.		en Aktuell 1, Hartmurt Aufd elmut Müller, 2010, Muencl		eiko Bocl	k, MechthildGer	des, Jutta Müller		
		<u>joethe.de</u>						
	wirtsc	naftsdeutsch.de						
		r.de, klett-sprachen.de						
		leutschtraning.org						
		aluation: Continuous Asses	ssment Tests	s, Quizze	s, Assignment,	Final		
	ssment							
		ed by Board of Studies	19-05-2022					
Appro	oved by	Academic Council	No.66	Date	16-06-2022			

Cours	se Code	Со	urse Title		L	Т	Ρ	С
MCFD696J		Study O	Study Oriented Project					02
Pre-re	equisite	NIL	-		Syll	abus		ion
						1.0	0	
	se Objectiv							
1.		nt will be able to analyse	and interpret publishe	ed literatur	e for	inforr	natio	n
		to niche areas.						
2.	Scrutinize	technical literature and a	rrive at conclusions.					
3.	Use insigh	t and creativity for a bette	er understanding of th	e domain	of int	erest.		
Cours	se Outcome):						
		analyse, and interpret pu	blished literature/boo	ks providii	ng in	forma	tion	
	related to	niche areas/focused dom	ains.	·	•			
2.	Examine t	echnical literature, resolv	e ambiguity, and deve	lop conclu	usion	s.		
		e knowledge and use ins	0,1	•			dom	nain
	of interest	•	5					
4		e findings in the peer r	eviewed iournals / N	ational / I	ntern	ationa	əl	
	Conference	•				ation		
Modu	le Content		(Proje	ct duratio	on: O	ne se	mes	ter)
		towards reading publish s under the guidance of a		s related	to ni	che a	areas	or
studer and pr	nt has regist	ion: Evaluation involves ered. Assessment on the vs – Presentation in the N nology.	e project – Report to b	e submitte	ed, pr	resent	ation	
studer and pr Engine	nt has regist roject reviev eering Tech	ered. Assessment on the vs – Presentation in the N	e project – Report to b	e submitte	ed, pr	resent	ation	

Course Code		Cou	Course Title		L	т	Р	С	
MCFD	697J	Desig	Design Project						02
Pre-re	equisite	NIL				Sylla	abus	vers	ion
_	_						1.0	0	
Cours	se Objectiv	es:							
1.	Students v	vill be able to design a pro	ototype or p	process of	r experime	ents.			
2.	Describe a	and demonstrate the tech	niques and	skills nec	essary for	^r the p	roject		
3.	Acquire kr	nowledge and better unde	rstanding o	of design s	systems.				
Cours	se Outcome	9:							
1.	Develop r	new skills and demonstra	te the abil	ity to upg	rade a pro	ototyp	e to a	a des	sign
	prototype	or working model or proce	ess or expe	eriments.					
2.	Utilize the	techniques, skills, and mo	odern tools	necessa	ry for the p	project	t.		
3.	Synthesiz	e knowledge and use insi	ight and cr	eativity to	better un	dersta	and a	nd	
	improve d	esign systems.							
4.	Publish th	e findings in the peer re	eviewed jo	urnals / N	Vational /	Intern	ation	al	
	Conference	ces.							
Modu	le Content			(Proj	ect durati	on: O	ne se	mes	ter
	ypes to des	pected to develop new sign prototype or working							
		tion: Evaluation involves	s periodic	reviews b	by the fac				
stude and p	nt has regis	stered. Assessment on th ws – Presentation in the	e project -	-			•		
studei and p Engin	nt has regis project revie eering Tech	stered. Assessment on th ws – Presentation in the	e project -	/ Internati			•		

									,
Course Code		Course Title			L	т	Ρ	С	
MCFD	698J	Interi	Internship I/ Dissertation I					10	
Pre-re	quisite	NIL				Syll	abus	vers	ion
							1.0)	
	e Objective					-	-		
		ent hands-on learn	•		•		•		
-		le product / process		ce the tec	hnical skil	I sets	in the	e cho	sen
field ar	nd also to g	ive research orienta	ation.						
Cours	e Outcome):							
	_					_			
1.		bly more in-depth k	-			of stud	y, inc	luding	g
	•	ight into current res		•					
2.		oility to use a holistic	•	-	dently and	d crea	tively		
		rmulate and deal w	•						
		usness of the ethica	•		-				
4.		ns in the peer review	wed journals / Int	ernational	Conferer	ices w	ill be	an	
	added adv	antage.							
Modul	e Content		(F	Project du	iration: o	ne se	mest	er)	
1.	Dissertatio	on may be a theore	tical analysis, mo	deling &	simulation	, expe	erimer	ntatio	n &
		prototype design, fa							
	data, softw	vare development, a	applied research	and any o	ther relate	ed act	ivities	•	
2.	Dissertatio	on should be individ	ual work.						
3.	Carried ou	ut inside or outside	e the university,	in any r	elevant ir	ndustr	y or	resea	arch
	institution.								
4.	Publication	ns in the peer rev	iewed journals /	Internatio	onal Conf	erenc	es wi	ill be	an
	added adv	antage.							
				D : <i>i</i>					
		tion: Assessment ect reviews and Fin			tion repoi	rt to I	be su	bmitt	ed,
Recom	nmended by	/ Board of Studies	27-05-2022						
Approv	/ed by Acad	demic Council	No. 66	Date	16-06-20)22			

Course Code		Course Title				L	т	Ρ	С
MCFD699J		Internship II/ Dissertation II						12	
Pre-requis	site	NIL	-			Syll	abus		ion
							1.0	0	
Course O				- - 4 4				4	1
		ent hands-on learning le product / process s			•		•		
field.	Suitabi	e product / process s				i seis			Sen
neiu.									
Course O		: completion of this cou	rea etudante w	ill ha ahla	to				
•		specific problem sta				oroble	me w	/ith	
		e assumptions and co		I-defined			1115 W		
		erature search and / c		h in the ar	ea of inte	rest			
		xperiments / Design a	•				rumei	nt the	
	ults.	Apeniniento / Design e					Junici		•
		ror analysis / benchm	arking / costine	a.					
		e the results and arrive	•		s / produc	ts / so	lution		
•		the results in the form			•				
Module C	ontent			(Proj	ect durat	ion: o	ne se	mes	ter)
	alysis, p	n may be a theoretic rototype design, fabri are development, app	cation of new	equipmer	nt, correla	tion a	nd an	alysi	
data 2. Dis 3. Ca ins 4. Pu	sertatic rried ou titution. blicatior	ns in the peer review	l work. the university,	•			-		
data 2. Dis 3. Ca ins 4. Pu	sertation rried ou titution.	ut inside or outside	l work. the university,	•			-		
data 2. Dis 3. Ca ins 4. Pu ado	sertatic rried ou titution. blicatior led adva	ut inside or outside	l work. the university, wed journals / n the project -	Internatio	onal Conf	erenc	es w	ill be	an
data 2. Dis 3. Ca ins 4. Pu ado Mode of presentatio	ssertatic rried ou titution. blicatior led adva Evalua on, proje	ut inside or outside ns in the peer review antage. tion: Assessment or	l work. the university, wed journals / n the project -	Internatio	onal Conf	erenc	es w	ill be	an