

SCHOOL OF MECHANICAL ENGINEERING

M.Tech Manufacturing Engineering

Curriculum & Syllabai (2022-2023 batch onwards)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

• Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- **World class Education**: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- **Cutting edge Research**: An innovation ecosystem to extend knowledge and solve critical problems.
- **Impactful People**: Happy, accountable, caring and effective workforce and students.
- **Rewarding Co-creations**: Active collaboration with national & international industries & universities for productivity and economic development.
- **Service to Society**: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

• To be a leader in imparting world class education in Mechanical Engineering, leading to nurturing of scientists and technologists of highest calibre who would engage in sustainable development of the globe.

MISSION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

- To create and maintain an environment fostering excellence in instruction & learning, Research and Innovation in Mechanical Engineering and Allied Disciplines.
- To equip students with the required knowledge and skills to engage seamlessly in higher educational and employment sectors ensuring that societal demands are met.

M. Tech Manufacturing Engineering

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment.

PO_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information.

PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice.

PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems.

PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development.

PO_07: Having a clear understanding of professional and ethical responsibility.

PO_08: Having a good cognitive load management skills related to project management and finance.

M. Tech Manufacturing Engineering

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Manufacturing Engineering) programme, graduates will be able to

- **PSO_1:** Prepare process plan, simulate manufacturing processes and establish production systems for the physical realisation of components and products
 - **PSO_2:** Conduct experimental investigations and incorporate latest technologies for improving manufacturing processes
 - PSO_3: Independently carry out research / investigation to solve practical problems and write / present a substantial technical report/document

M. Tech Mechanical Engineering

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

Agenda Item 67/13

To consider and approve the revised programme credit structure, curriculum and course contents of Master of Technology in Manufacturing Engineering

ANNEXURE – 17

Master of Technology in Manufacturing Engineering School of Mechanical Engineering

Programme Credit Structure	Credits	Discipline Elective Courses	12
Discipline Core Courses Skill Enhancement Courses	24 05	MMAE601L Metrology and Non-destructive Testing	3 0 0 3
Discipline Elective Courses	12	MMAE602L Optimization Techniques	2103
Open Elective Courses	03	MMAE603L Micro and Nano Manufacturing	3003
Project/ Internship	26	MMAE604L Sustainable Manufacturing	3003
Total Graded Credit Requirement	70	MMAE605L Supply Chain and Logistics Management	3003
Discipline Core Courses	24	MMAE606L Maintenance Engineering	3003
	L T P C 3 0 0 3	MMAE607L Manufacturing Information Sys- tems	3003
MMAE501L Advanced Materials and Char- acterization		MMAE608L Design and Analysis of Experi- ments	2103
MMAE502L Finite Element Methods in Man-	3003	MMAE609L Advanced Tool Engineering	3003
ufacturing		MMAE610L Casting and Welding Technol-	3003
MMAE502P Finite Element Methods in Man- ufacturing Lab	0 0 2 1	ogy	
MMAE503L Additive Manufacturing Technol- ogy	3 0 0 3	MMAE610P Casting and Welding Technol- ogy Lab	0021
MMAE503P Additive Manufacturing Technol- ogy Lab	0 0 2 1	MMAE611L Quality and Reliability Engineer- ing	3003
MMAE504L Theory of Metal Forming	3003		
MMAE505L Mechatronics and Automation	3003	Open Elective Courses	03
MMAE505P Mechatronics and Automation Lab	0 0 2 1		
MMAE506L Modern Machining Processes	3003	Engineering Disciplines Social Sciences	
MMAE507L Computer Integrated Manufac-	3003		
turing		Project and Internship	26
Skill Enhancement Courses	05		
	05	MMAE696J Study Oriented Project	02
MENG501P Technical Report Writing	0 0 4 2	MMAE697J Design Project	02
MSTS501P Qualitative Skills Practice	0 0 3 1.5	MMAE698J Internship I/ Dissertation I	10
MSTS502P Quantitative Skills Practice	0 0 3 1.5	MMAE699J Internship II/ Dissertation II	12

Course Code	Course Title	L	Т	Р	С
MMAE501L	Advanced Materials and Characterization	3	0	0	3
Pre-requisite	NIL	Syll		versi	on
			1.	0	
Course Objectiv					
	e insight into the various material classes, their mechan	nical p	rope	rties, a	and
their appl					
	knowledge on various Materials and alloy selection. le acquire skills in the use and selection of adva	ncod	ovn	orimo	ntal
	es for characterization of materials and application of				
	oblems in materials science and engineering		10011	inquot	
Course Outcom	e				
	the mechanical behaviour of materials, their importance				
	arious engineering alloys in terms of specifications, ap	plicati	ons,	and h	eat
treatment					
	rate the acquired skills in analysing the properties and alloys	and a	ppiic	ations	OT
	nethods for use on characterization based on microscopy	/, mici	oana	alysis a	and
diffraction	techniques, and surface and spectroscopy analysi			•	
	vanced lighting, thermal, chemical and imaging techr				
	ization particularly of the most widely used thin films,	nano	mate	erials a	and
advanced	l materials				
Module:1 Mec	hanical Behavior of Materials			7 ho	ure
	ss - strain curve and true stress - strain curve, tensil		oertie		
	esting, factors affecting fatigue properties, structural				
	al nature of fatigue, low and high cycle fatigue. Imp				
	nificance of transition - temperature curve, DBTT, factor				
	es of fracture, Griffith's theory of brittle fracture, si	ze ef	fect,	effect	of
temperature, stre	ess raisers and strain rate on fracture behaviour.				
Module:2 Mate	erial and Alloy Selection			5 ho	urs
	y, property limits and material indices, function object	ives a	nd c		
	aximizing criteria, strengthening mechanisms. Materi				
	ity, strength - density, modulus - strength, specific				
strength, fracture	toughness etc. Materials selection- case studies.				
Module:3 Engi	neering Alloy			5 ho	urs
	ls, alloy steels and stainless steels – an overvie	w of	pha		
	pes, specifications applications, heat treatment, effect o		•		
	nesium and Titanium wrought and cast alloys us				
applications –Typ	pes, phases and microstructure, specifications, application	ons, h	eat tr	eatme	ent.
Module:4 Non-	-Metallic Materials			5 ho	urs
	erials, ceramics, plastics -Introduction, classification	n, an	ove		
	ir characteristic features (Mechanical, optical, elec				
behaviour), types	s and applications.				
	ern Materials and Alloys			5 ho	
	fractory metals - Shape memory alloys- Dual phase st				
•	v alloy steel, Transformation induced plasticity (TRIP) s				
	hite iron and Creep resistant aluminium alloys, SMAR	mate	erials	, Meta	allic
glass – Quasi cry	vstal and Nano crystalline materials, metal foams				
Module:6 Chai	racterization Techniques I			8 ho	urs
I	•				

Optical Microscopy, Elements of Image Analysis and Quantitative Metallography, Scanning Electron Microscopy, Modes of Operation, Fractography, Chemical Analysis using Energy Dispersive Analysis – Transmission Electron Microscopy Principles, Thin Film and Replication Techniques, Image Contrast, Bright Field and Dark Field Imaging, Selected Area Diffraction and Chemical Analysis – Thermal Analysis Methods

Module:7Characterization Techniques II8 hoursX-Ray Diffraction, Intensity of diffracted beam, Indexing of XRD patterns of cubic and non-
cubic crystals, precise lattice parameter determination, Introduction to Energy Dispersive
Spectroscopy (EDS)- quantification of elemental composition, Fourier transform infrared
Spectroscopy (FTIR) - measurement of chemical bonding, X-ray photoelectron spectroscopy
(XPS) - measurement of chemical state of the materials.

Module:8	Contemporary Issues

2 hours

Total Lecture hours: 45 hours

Text Book(s)

1. W.D. Callister, David G. Rethwisch, (2013) Materials Science and Engineering: An Introduction, 9th ed., Wiley & Sons

Michael F Ashby, "Materials Selection in Mechanical Design", Butterworth Heinemann, 2005.

Reference Books

- 1. William F. Hosford (2010), Mechanical Behavior of Materials, Cambridge University Press
- 2. Dieter, G. E., & Bacon, D. (1976). Mechanical metallurgy (Vol. 3). New York: McGrawhill.

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Lab / Seminar

Recommended by Board of Studies	27-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	L	Т	Ρ	С
MMAE502L	Finite Element Methods in Manufacturing	3	0	0	3
Pre-requisite	NIL	Sy	labus	versi	on
			1.	0	
Course Objectiv	es				
1. To teach	the mathematical and physical principles underlying	the	Finite	Elem	ent
Method (F	EM)				
2. To introd	uce the concepts of FEM and to apply in the field	d of	Manu	lfactu	ring
Engineeri	ng				-
Course Outcom	9				
1. Solve diff	erential equations using various weighted residual met	hods	and	use th	em
	lement analysis.				
2. Perform s	tructural analysis of using 1 D and 2 D elements				
Perform tl	nermal analysis using 1 D and 2 D elements				
Model var	ious nonlinearities to perform nonlinear finite element ar	nalys	is		
5. Model ar	d simulate manufacturing processes such as weld	ng,	castin	ig, m	etal
forming a	nd metal cutting	-		-	
Module:1 Math	ematical basis for FEM			6 ho	urs
General field pro	blems in engineering-Discrete and continuous mode	ls cł	naract	eristic	s –
Variational formu	lation of boundary value problems-Minimum potentia	l ene	ergy p	rincip	le -
The method of	weighted residuals-Solution of large system of equ	latio	ns -	Gauss	sian
elimination proce	dures.				
	eral theory of FEM			5 ho	
General theory	of FEM–Procedure for FEM - Discretization of dom	nain	- Sel	ection	of
interpolation po	lynomials–Convergence requirements- Shape func	tions	for	simp	blex
elements.					
	for one dimensional structural analysis			8 ho	
	eristic matrices and vectors for elasticity problem - As				
	atrices-Incorporation of boundary conditions - Solution				
	-Solving problems in structural mechanics using ba	r, tr	uss a	nd be	am
elements.					
	for two dimensional solid mechanics			6 ho	
	ne strain and axisymmetric stress analysis using cons			traina	ble
and rectangular e	element - Natural coordinate systems and numerical inter	grati	on.		
	for Heat transfer			6 ho	
Formulation of e	lement equation for heat transfer considering conduct	ion a	and co	onvect	tion
	ensional, two dimensional and axisymmetric steady			trans	sfer
analysis using sir	nplex elements – Introduction to transient heat transfer a	analy	sis.		
Module:6 Basi	c concepts of nonlinear FEM			6 ho	urs
Nonlinear problem	ns – Analysis of material nonlinearity - Analysis of geor	netri	c nonl	inearit	ty –
combined materia	al and geometric nonlinearity – nonlinear contact condition	ons.			
Module:7 App	lications of FEA in Manufacturing			6 ho	urs
	asting and Weldments solidification – special conside	ratio	ns, la	tent h	eat
incorporation - Ca					
FE analysis of r	netal forming and metal cutting, chip separation criter	ia, i	ncorpo	oration	n of
	dency- Case studies.		•		
	emporary Issues			2 ho	urs
I	· · ·				
	Total Lecture hou	irs:	4	45 ho	urs
Text Book(s)			1	-	-

1.	Reddy. J.N., An Introduction to Fi	inite Elemen	t Method,	, 2020, 4 th Edition, McGraw					
	Hill, Noida, India								
Re	Reference Books								
1.	Rao. S.S., The Finite Element N	lethod in E	ngineering	g, 2019, 6 th Edition, Elsevier,					
	Haryana, India								
2	Prakash Mahadeo Dixit, Uday S. Dixit, Modeling of Metal Forming and Machining								
	Processes: By Finite Element and	Soft Comput	ing Metho	ods, 2010, 1 st Edition, Springer-					
	Verlag Ltd. India.								
3	Reddy. J.N., An Introduction to No								
	heat transfer, fluid mechanics, and	solid mechar	nics, 2014	I, 2 nd Edition, OUP Oxford					
Мо	de of Evaluation: CAT, written assigr	nment, FAT,	Seminar /	/ Quiz					
_		07 07 0000							
_	commended by Board of Studies	27-07-2022							
App	proved by Academic Council	No. 67	Date	08-08-2022					

Со	urse Code	C	Course Title			L	Т	Р	С
MN	IAE502P	Finite Element Me	thods in Ma	nufactur	ing Lab	0	0	2	1
Pre	e-requisite	NIL				Sy	labus	versi	on
							1.	.0	
Co	urse Objectiv				<u> </u>				
		e experience in perforr or by using a computer		ement Ar	nalysis usin	ig coi	mmero	cial	
		e capabilities to simula		nufacturii	na process	65 119	sina Fi	nite	
	Element A			naraotani	ig procees	00 00	, ng i i	into	
		•							
Co	urse Outcom								
		nite element analysis o							
	Z. Simulate a	and Analyse simplified	manulacium	ig proces	ses				
Ind	licative Exper	iments							
1.		nt Analysis of structura	I problem.						
2.	Finite Flemer	nt Analysis of Heat trar	nsfer problem	e					
				3					
3.	Finite Elemer	nt Analysis of fluid flow	problems						
4.	Finite Elemer	nt Analysis of nonlinea	r continuum r	nechanic	s problems	5			
5.	Dynamic and	normal Mode Dynami	ic Analysis us	ing FEA	Technique.				
6.	Finite elemer	nt analysis of contact a	nalysis						
7		welding as a moving l	•	roblem					
			-						
8	Simulation of	a simple upsetting pro	DCESS						
			Tot	al Labor	atory Hou	rs	30	hours	
	kt Book(s)				th				
1.		An Introduction to Fini	te Element M	ethod, 20)20, 4" Edi	tion,	McGra	aw Hill	,
Ro	Noida, India ference Book	c							
1.		s The Finite Element N	Aethod in Er	naineerin	g, 2019, 6	s th Eo	dition,	Elsev	vier.
••	Haryana, Ind			.g	, _o.o, o		,		,
2		hadeo Dixit, Uday S.							
		By Finite Element and	Soft Computi	ng Metho	ods, 2010,	1 st Ес	dition,	Spring	jer-
3	Verlag Ltd. In		plinger Finite		t Analysia:	with	onnli	ootion	. +0
3		An Introduction to No, fluid mechanics, and							5 10
Мо		nent: Continuous asses			, <u> </u>	, ৩0			
Re	commended b	y Board of Studies	27-07-2022						
٨٣	proved by Acc	demic Council	No. 67	Date	08-08-202	22			
Αh	proved by ACa	demic Council	110.07	Dale	00-00-20	<u> </u>			

Course Code	Course Title	L	Т	Р	С
MMAE503L	Additive Manufacturing Technology	3	0		3
Pre-requisite	NIL	Sylla	-	-	-
i io ioquioito		eyna	1.0		
Course Objectiv	/es				
	students with the concept of Additive Manufacturing	(AM)	vario	ous A	AM
	selection of materials for AM, modeling of AM p				
	n various fields.		, a.		.en
	n and print 3D components using various printing tools.				
	manufacturing technologies to various facets of human e	endeav	or.		
	5 5				
Course Outcom	е				
Upon successful	completion of the course, the students will be able to				
1. Understandin	g the concepts, capabilities and limitations of additive te	chnolo	gies a	and	
their varied a	pplications.		-		
2. Identifying the	e suitable file format and data processing technique for	AM sys	tems	using	3
software.		-			-
	itable material and AM systems for specific requirement				
	sign for additive manufacturing guidelines in designin	g mas	s cus	tomiz	zed
products.					
•••••	he appropriate post processing technique to improve t	he qua	lity of	print	ted
part.					
6. Designing ap	propriate rapid tools for any given medical and automob	ile app	licatio	ns.	
	oduction			<u>4 hoι</u>	
	M, AM evolution, Distinction between AM & CNC mac	•••			
	AM processes, Advantages of AM and Types of mate	rials to	ΓAΜ,	Des	ıgn
	Rapid Tooling and Reverse Engineering		,	7 6	
	creation, Concept of reverse engineering, Data colle	otion		7 hοι	
	nats: STL, OBJ, AMF, 3MF, CLI, STL file errors, Corre				
	zation of part orientation and support structure ge				
	parameters, Tool path generation.	neralio	, I	ypes	01
	itive Manufacturing Processes			8 hou	ire
I	of the Additive Manufacturing process, Generation of	of laver			
	les for layer generation. Elements for generating t				
	Additive Manufacturing processes, Overview of poly				
	Photopolymerisation, Selective Laser Sintering/Melting				
	Manufacturing (LLM), Three-Dimensional Printing (3DF				
-	ergy Deposition technologies, Material Jetting, Binder	,		•	
AM Processes.			,,	,	
Module:4 Mate	erials for AM		(6 hoι	urs
Multifunctional a	ind graded materials in AM, Atomic structure and	bondin	g, Na	ature	of
polymers, Therm	oplastics and thermosetting polymers, Types of polyme	rizatior	is, Pr	opert	ies
of polymers, De	gradation of polymers, Metal and Ceramic Powders, (Compos	sites,	Role	of
solidification rate	e, Evolution of non-equilibrium structure, microstructura	al studi	es, S	tructu	ure
	ship, and Case studies.				
	gn for Additive Manufacturing			6 hoι	
	eometric modelling, Modelling of synthetic curves like				
B-spline, Parame	etric representation of freeform surfaces, Design freedo	n with a	AM, N	leed	for
	ve Manufacturing (DfAM), CAD tools vs. DfAM tools, Re				
	al avvidable as for DFANA. The assessment of Additive Marke	· · ·	-	ooian	ו to
	al guidelines for DfAM, The economics of Additive Manu	Itacturi	ng, D	esign	
minimize print tin	ne, Design to minimize post-processing. 	lfacturi	ng, D	esigii	

me	pport structure removal, Surface tex tal, Heat treatment, HIP & residual s chining, Surface coating and Infiltrat	stress relievir			
-	odule:7 Rapid Tooling & Reverse		3		6 hours
Co	nventional tooling, Rapid tooling, I	Differences b	etween o	conventional and r	apid tooling,
Cla	assification of rapid tooling: Direct a	and indirect t	ooling m	ethods, Soft, Bridg	e (firm) and
Ha	rd tooling methods, Rapid tooling fo	r investment	casting,	Re-Engineering-H	ardware and
sof	tware: Contact methods, Noncon	tact method	s, Destr	uctive method, P	oint capture
dev	vices, Tracking systems, Interna	l measurem	ient syst	tems, X-ray Tom	ography, &
-	structive systems				
Мо	dule:8 Contemporary Issues				2 hours
		al Lecture ho	ours:		45 hours
	xt Book(s)				
1.	C P Paul , A N Jinoop, Additiv Applications, Mc Graw Hill Publicat		uring – F	Pricniples, technolo	ogies and
Re	ference Books				
1.	Additive Manufacturing, Second	Edition, Ami	t Bandyo	padhyay Susmita	Bose, CRC
	Press Taylor & amp; Francis Group	, 2020.	-		
2.	Olaf Diegel, Axel Nordin, Damie	n Motte, A	Practical	Guide to Design	for Additive
	Manufacturing, Springer Nature Sir	ngapore Pte I	_td., 2020).	
Мо	ode of Evaluation: CAT / Assignmer	nt / Quiz / FA	T / Lab / S	Seminar	
Re	commended by Board of Studies	27-07-2022			
Ар	proved by Academic Council	No. 67	Date	08-08-2022	
L		1		1	

Со	urse Code	Course Title	L	Т	Р	С
	IAE503P	Additive Manufacturing Technology Lab	0	0	2	1
Pre	-requisite	Nil	Syl	labus	versi	on
	-			1.0	0	
Co	urse Objectives	3				
1.	To acquaint st	udents with the concept of Additive Manufacturir	ig (Al	M), va	rious	AM
	technologies, s	selection of materials for AM, modeling of AM	oroces	sses, a	and tl	neir
	applications in v	/arious fields.				
2.	Able to design a	and print 3D components using various printing tools				
3.	Apply digital ma	anufacturing technologies to various facets of human	ende	avor.		
	urse Outcome					
•		ompletion of the course, the students will be able to				
		the concepts, capabilities and limitations of additive	techno	ologies	and	
	their varied app					
		suitable file format and data processing technique for	· AM s	ystem	s usin	g
	software.					
		ble material and AM systems for specific requirement				
		n for additive manufacturing guidelines in designi	ng m	ass cu	istomi	zed
	products.		41			4 - 1
	•• •	appropriate post processing technique to improve	the q	uality of	of prin	tea
	part.	enviete veniel tools for any siven medical and sutema	hile e	nnlingt	iono	
6.	Designing appr	opriate rapid tools for any given medical and automo	one a	ppiicat	ions.	
Ind	iaatiya Eynarin	aanta				
	icative Experin		~ m)			
<u>1.</u> 2.		3D CAD model by Reverse Engineering (UV-Scanne		7)		
<u>2.</u> 3.		complicated 3D model with freeform surface (Rhinod model and storing it in .STL format. Calculating the r			onalor	
з.		bre the model in .STL format. (Rhinoceros 7)	umpe		angles	\$
4.		e slicing operation on the .STL file generated in Prot	lom	2 Dror	ooina	
4.		art orientation and support structure design with soft		5. FIU	JUSING	
	(Repeiter/Cur	· · · · · · · · · · · · · · · · · · ·	waie			
5.		e build time required to print complicated 3D model		ning la	avor	
0.		infill density 0.2mm and 10% respectively. (Repeite				
6.		e dimensional accuracy of the part printed by FDM			<u>.</u>	
7.	· · ·	e dimensional accuracy of the part printed by SLA				
8.		e dimensional accuracy of the part printed by SLS				
9.		plit pattern for sand casting and printing it with FDM,	Prod	ucina	meta	al I
0.	0 0	ndry lab., using this 3D printed pattern.		aonigi		
10		build set-up for metal 3D printer				
11.		rocess parameter (Laser power, scan speed, hatch v	vidth.	hatch	space	
	etc.)	······ ·······························	,			,
12.		nd post processing of metal part (Support removal, s	urface	e treatr	nent.	
	etc.)				,	
		Total Laboratory Hou	rs	30 ł	ours	
		······································				
Тех	t Book(s)					
1.	C P Paul, A	N Jinoop, Additive Manufacturing - Pricniples,	techr	nologie	s and	ł
	,	lc Graw Hill Publication, 2021.		5-		
Ref	erence Books	1 -				
1.		facturing, Second Edition, Amit Bandyopadhyay	Susm	ita Bo	se, C	RC
		amp; Francis Group, 2020.			, -	
	,	• • • • •				

2.	Olaf Diegel, Axel Nordin, Damier Manufacturing, Springer Nature S	n Motte, A Practi Singapore Pte Lt	cal Guid td., 2020	e to Design for Additive
	de of assessment: Continuous as commended by Board of Studies		/ Oral ex	amination and others
Ар	proved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	<u>L</u>	T	P	<u>C</u>
MMAE504L	Theory of Metal Forming	3	0	0	3
Pre-requisite	NIL	Sy		s vers	lon
Course Obiecti			1	.0	
Course Objectiv					
	table forming techniques for various applications				
Z. Calculate	the forming limit for various processes				
Course Outcom	0				
	completion of the course the students will be able to				
	ate the application of the theory of plasticity and unders	tand	the m	hechar	nics
	s, temperature, and friction in metal forming processes.	lana		i e er i ei	
	ging load calculations to evaluate the flow stress and	thei	r impa	act on	the
	the product.				
	arious forces that occur in a rolling process				
	ne extrusion process in terms of deformation, lubrication	, an	d defe	ects	
	the wire and tube drawing processes in terms of flow s	stres	s, per	forma	nce
	ual stresses				
	e the application of various sheet metal forming methods				
	the flow stress and strains when forming a component	by c	onven	tional	and
unconver	tional forming methods.				
Madula 1 Fun	Jamantala of Matal working			0 h	
	damentals of Metal working ity - stress tensor – hydrostatic & deviator components o	fotr	000	8 ho	Jur
	s strain – yielding criteria – yield locus – octahedral she				000
	ts of stress strain – slip line field theory plastic deformat				IEal
	Forming Process, Mechanics of Metal working, Flow S				tion
	letalworking, Friction and Lubrication, Workability, Resid				lioi
Module:2 Forg				6 hc	our
	orging process, Forging equipment, Forging in plain st	rain	condit	ion, C)pei
	orging, Calculation of forging loads in closed-die forgi				
Powder Metallurg		0	0	0	
Module:3 Roll				6 ho	
Classification of	Rolling, Rolling mills, Hot-Rolling, Cold-Rolling, Rolling	of ba	ars an	id sha	pes
	netrical Relationship in rolling, Problems and defects in	rolle	d pro	ducts	
Module:4 Extr	usion			6 ho	our
	ktrusion equipment's, Deformation, Lubrication and E				sio
	of the extrusion process, Hydrostatic extrusion, extrusi	on o	f tubir	-	
	ving of Rods, Wires and Tubes			6 ho	
	wing, Analysis of wire drawing, Tube-drawing process	es, A	nalys	is of T	Tube
	I stresses in Rod, Wire and Tubes			0.6	
	et-Metal forming	ير ما يو		6 ho	
Forming ivietnos	s, Shearing and blanking, Bending, Stretch forming, Dee	ep ar	awing	, Form	ning
				5 ho	2115
Limit Criteria, De	vances in Metal Forming				
Limit Criteria, De Module:7 Adv	vances in Metal Forming	inor	nlacti		
Limit Criteria, De Module:7 Ad Explosive formin	g, Electro hydraulic forming, magnetic pulse forming, si	uper	plasti		my
Limit Criteria, De Module:7 Adv Explosive formin electro forming –	g, Electro hydraulic forming, magnetic pulse forming, si fine blanking HERF. FEM in metal forming	uper	plasti	c form	
Limit Criteria, De Module:7 Adv Explosive formin electro forming –	g, Electro hydraulic forming, magnetic pulse forming, si	uper	plasti		
Limit Criteria, De Module:7 Adv Explosive formin electro forming –	g, Electro hydraulic forming, magnetic pulse forming, si fine blanking HERF. FEM in metal forming	uper	plasti	c form	our
Limit Criteria, De Module:7 Adv Explosive forming – Module:8 Con	g, Electro hydraulic forming, magnetic pulse forming, si fine blanking HERF. FEM in metal forming temporary Issues	uper	plasti	c form 2 ho	our
Limit Criteria, De Module:7 Adv Explosive formin electro forming – Module:8 Con Text Book(s)	g, Electro hydraulic forming, magnetic pulse forming, si fine blanking HERF. FEM in metal forming temporary Issues			c form 2 ho 45 ho	our

2.	Helmi A. Youssef, Hassan A. El-Hofy, Mahmoud H. Ahmed, (2011), Manufacturing Technology: Materials, Processes, and Equipment, CRC Press, Taylor & Francis Group									
Ret	Reference Books									
1.	1. Heinz Tschaetsch, (2005), Metal Forming Practise, Springer Berlin Heidelberg New York									
2.	B.L.Juneja, (2012), Fundamentals of Metal Forming Processes, Second Edition, New Age International,									
3.	Marciniak,Z., Duncan J.L., Hu S Butterworth-Heinemann, An Imprint		Mechar	nics of Sheet Metal Forming',						
4.	Hingole Rahulkumar Shivajirao. (2 Metal Forming, Springer Publication		ces in M	letal Forming Expert System for						
	Authors, book title, year of publicati	on, edition n	umber, p	oress, place						
Мо	de of Evaluation: CAT, Written assig	nment, Quiz	and FAT	-						
Ree	commended by Board of Studies	27-07-2022								
Арр	proved by Academic Council	No. 67	Date	08-08-2022						

Course Code	Course Title	L	Т	Ρ	С
MMAE505L	Mechatronics and Automation	3	0	0	3
Pre-requisite	NIL	Sylla	abus	versi	on
			1.	0	
Course Objectiv	/es				
1. To provid	le the interdisciplinary knowledge in mechanical, ele	ctrical	, and	d con	trol
	or developing mechatronic components in automation.				
2. To introdu	uce sensing, actuating and control elements of a mechat	ronics	syst	em.	
To provid	e hands on experience in automation with hydraulics, p	neuma	atics	and F	ĽC
controls.					
Course Outcom					
	table elements for mechatronics application.				
	elect the controller for mechatronic systems for industrial	contro	ol		
applicatio					
	table drives for a mechatronic application.				
0	hydraulic and pneumatic circuit for a automaton applicat				
	nd the operation and programming of CNC machines an			robot	s.
6. Explore a	nd comprehend the newer technologies in industrial auto	omatio	n.		
	nents of Mechatronics			5 ho	
	y elements - applications in manufacturing- design p				
	echatronics elements - sensors, signal processing ar	nd dai	ta co	onvers	lon
	contactors, and timers.			7 6 4	
	rollers in Mechatronic Systems			7 ho	
	applications of single board microprocessors, mi	crocol	ntroll	ers, I	JD
	rogrammable logic controllers.			7 6 4	
	es and Mechanisms	rivere		7 ho	urs
	C/DC motors, stepper motors, servo motors and motor d			aozina	
	ear motion bearing, cam, electronic cam, indexing mech	anism	, mag	yazıne	;,
	em in machine tools. raulic Systems			7 ho	
	: Flow, pressure, and direction control valves. Hydraulic	actuat	ore	7 110	urs
5	and power packs - Design of hydraulic circuits.	aciuai	.015 -		
	umatic Systems			6 ho	ure
	ibution and conditioning of compressed air, pneumatic s	vetom	com		
Design of pneum	•	ysiem	COIII	ponei	113-
	Technology and Robotics			6 ho	urs
	components and control system - part programming.	Indust	trial F		
	nematics, and programming methods.	muus		10000	03-
	hatronics in Industrial Automation			5 ho	urs
	echatronics industrial automation - Automated material h	nandlii	na sv		
	nbly, and automated inspections system. Digital/smart m				
				•	
Module:8 Cont	temporary Issues			2 ho	urs
	Tatal Lastres bar	70		15	
	Total Lecture hou	rs:	4	45 ho	urs
Text Book					
	on (2018). Mechatronics: Electronic control systems in	mech	anic	al and	
	gineering, Pearson Education Ltd. UK.				I
Reference Book					
	, Khoshnoud F, Saman K. Halgamuge, Maoqing Li. (2	015)	Mech	atron	ice.
	, Khoonhoud i , Camari K. Haiyaniuye, Maoqiny Li. (2	515)		auon	03.

	Fundamentals and Applications. United Kingdom: CRC Press.								
2.	. Bradley, D. (2018). Mechatronics: Electronics in Products and Processes. United Kingdom: CRC Press.								
Мо	de of Evaluation: CAT / Assignment	/ Quiz / FAT	/ Semina	ar					
Re	commended by Board of Studies	27-07-2022	2						
Ар	proved by Academic Council	No. 67	Date	08-08-2022					

Со	urse Code		Course Title			L	Т	Ρ	С
	IAE505P	Mechatron	ics and Autor	nation La	ab	0	0	2	1
Pre	e-requisite	NIL				Sylla	abus	versi	ion
							1.0	0	
Со	urse Objectiv	/es							
	1. Understa	nd the basic hydraulio	and pneumat	ic system	and their te	echnic	ques		
	2. To under	stand the concept an	nd principle op	eration of	automatio	n syst	ems a	and t	heir
	controls.								
Co	urse Outcom								
		e the concepts of diff					on sys	stems	5.
	2. Understa	nd the concepts of dif	ferent electrica	al controls	s in fluid pow	ver.			
Ind	licative Exper	rimonte							
1.		ramming for simple	industrial co	ntrol pro	hlame with	logic	- tim	ore	and
1.		lata manipulation and				logic	, um		anu
2.		digital input and outp			C hardware				
3.		analog field devices							
4.		conveyor and materia		tem usinc	PLC svste	m			
5.		AC/DC/Servo motor o							
6.		ol of electro-pneumati							
7.		ent and analysis of flu				N ST	UDIO		
	software	,	·						
8.	Industrial re	obot programming for	⁻ a material ha	ndling an	d processin	g appl	licatio	ns	
9.	Developme	ent HMI and SCADA	system for sim	ple indus	trial applica	tion.			
10.		odeling and analysis	of mechanical	systems	with MATL/	AB\SII	MULI	NK ۱	
	SIMSCAPE	E software.							
			To	tal Labor	atory Hour	S	3	30 ho	urs
	kt Book(s)	· · · · · · ·							
1.		thony. Fluid power wi	th applications	5. Upper S	Saddle Rive	r, Nev	v Jers	ey:	
0	Prentice Hall						dala - F	-1	
2.	Parr, Andrew 2011.	 Hydraulics and pne 	umatics: a tec	nnician's	and enginee	ers gu	lide. E	Isevi	ier,
Pot	ference Book	~C							
1.		nes. Introduction to fl	uid nower. Ce	a l anenn	arning 200	2			
2.		n. Modelling, monitori			-		Nerev	/stem	19
۷.		ence & Business Mec					wei sy	Jacon	13.
		nent: Continuous ass		/ Oral ex	amination a	and ot	hers		
Re	commended b	y Board of Studies	27-07-2022						
۸	proved by Acc	domic Council	No. 67	Data	08-08-202	2			
нμ	proved by ACa	demic Council	No. 67	Date	00-00-202	2			

MMAE506L	Course Title	L	Т	Ρ	С
	Modern Machining Processes	3	0	0	3
Pre-requisite	NIL	Sy	llabus	s vers	ion
			1	.0	
Course Objectiv					
	stand the influence of various machining parameters	on	the n	nachii	ning
processes					
	op models for modern machining processes to anal	yse	the n	nachii	ning
performa					
3. To provid	e knowledge in applied aspects of various modern mach	ining	g proce	esses	
<u> </u>					
Course Outcom					
•	completion of the course the students will be able to:			-	
	he working principle, process capabilities and appli-	catio	ons of	r moo	dern
	y / finishing processes			1	
	models for estimation of cutting forces, power requir			001 W	ear,
	emoval and surface roughness for various machining pro the inter-relationship between the process paramete			nachi	nina
performa		515	anu n	nachii	mig
	appropriate modern machining / finishing process for	n m	anufa	cturin	n of
	cro / micro components / features	, ,,,	anula	ciunn	y u
given ma					
Module:1 Ana	ysis of conventional machining			6 hc	ours
	rial removal in conventional machining – shear angle s	oluti	ons s		
	deformation zone; heat generation in machining, tool				
machinability	defermation zone, near generation in maenining, teer				mo,
	speed machining (HSM)			6 hc	ours
	of HSM, Machine tools requirements for HSM, Cutting	a to	ol mat		
	f tools for HSM, Tool clamping systems, Application				
performance mad				,	0
Module:3 Unco	onventional machining processes – I			7 hc	ours
	ing, Abrasive water jet machining, Ultrasonic machining	- w	orking	princ	iple,
machining syste	m, process variables, parametric analysis, proces	s c	apabili	ities	and
applications.			-		
Module:4 Unce	onventional machining processes – II			8 hc	ours
Electrochemical	machining, Electric discharge machining, Laser beam r	nacl	hining,	, Elec	tron
	, Ion beam machining - working principle, machinin	a sv	/stem	proc	ess
beam machining		J	,,		
beam machining variables, param	etric analysis, process capabilities and applications.	3	, etem,	, .	
beam machining variables, param Module:5 Hyb i	id machining processes			5 hc	
beam machining variables, param Module:5 Hybr Electro chemica	id machining processes grinding, Electro chemical honing, Electrical discharg	je g	rinding	5 hc g, Ele	
beam machining variables, param Module:5 Hyb Electro chemica chemical dischar	id machining processes grinding, Electro chemical honing, Electrical discharg ge grinding, Laser assisted machining, Cryogenic assiste	je g	rinding	5 hc g, Ele ing	ctro
beam machining variables, param Module:5 Hybri Electro chemica chemical dischar Module:6 Adva	id machining processes grinding, Electro chemical honing, Electrical discharg ge grinding, Laser assisted machining, Cryogenic assisted anced Finishing Processes	ge g ed m	rinding nachini	5 hc g, Ele ing 5 hc	ctro
beam machining variables, param Module:5 Hybrid Electro chemica chemical dischar Module:6 Adva Abrasive flow fin	id machining processes grinding, Electro chemical honing, Electrical discharg ge grinding, Laser assisted machining, Cryogenic assisted anced Finishing Processes shing, Magnetic abrasive finishing, Magneto rheologica	ge g ed m	rinding nachini shing,	5 hc g, Ele ing 5 hc Magi	ours neto
beam machining variables, param Module:5 Hybrid Electro chemical chemical dischar Module:6 Adva Abrasive flow fin float polishing, o	id machining processes grinding, Electro chemical honing, Electrical discharg ge grinding, Laser assisted machining, Cryogenic assisted anced Finishing Processes shing, Magnetic abrasive finishing, Magneto rheologica elastic emission machining and chemo-mechanical	ge g ed m I finis	rinding achini shing,	5 hc g, Ele ing 5 hc Magi - wor	ours neto
beam machining variables, param Module:5 Hyb Electro chemica chemical dischar Module:6 Adva Abrasive flow fin float polishing, o principle, machin	id machining processes grinding, Electro chemical honing, Electrical discharg ge grinding, Laser assisted machining, Cryogenic assisted anced Finishing Processes shing, Magnetic abrasive finishing, Magneto rheologica elastic emission machining and chemo-mechanical e tool set up, process variables, process performance ar	ge g ed m I finis	rinding achini shing,	5 hc g, Ele ing 5 hc Magi - wor tions.	ours neto king
beam machining variables, param Module:5 Hybri Electro chemica chemical dischar Module:6 Adva Abrasive flow fin float polishing, o principle, machin Module:7 Micr	id machining processes grinding, Electro chemical honing, Electrical discharg ge grinding, Laser assisted machining, Cryogenic assisted anced Finishing Processes shing, Magnetic abrasive finishing, Magneto rheological elastic emission machining and chemo-mechanical e tool set up, process variables, process performance ar o and ultraprecision machining	ge g ed m I finis finis nd a	rinding hachini shing, hing - pplicat	5 hc g, Ele ing 5 hc Magr - wort tions. 6 hc	ours neto king
beam machining variables, param Module:5 Hybrid Electro chemical chemical dischar Module:6 Adva Abrasive flow fin float polishing, oprinciple, machin Module:7 Micr Introduction to r	id machining processes grinding, Electro chemical honing, Electrical discharg ge grinding, Laser assisted machining, Cryogenic assisted anced Finishing Processes shing, Magnetic abrasive finishing, Magneto rheologica elastic emission machining and chemo-mechanical e tool set up, process variables, process performance ar o and ultraprecision machining nicro fabrication, micro-turning, micro-milling, micro-d	ge g ed m I finis finis nd a	rinding hachini shing, hing - pplicat	5 hc g, Ele ing 5 hc Magr - wort tions. 6 hc	ours neto king
beam machining variables, param Module:5 Hybrid Electro chemical chemical dischar Module:6 Adva Abrasive flow fin float polishing, oprinciple, machin Module:7 Micr Introduction to r micro-WEDM, micro	id machining processes grinding, Electro chemical honing, Electrical discharg ge grinding, Laser assisted machining, Cryogenic assisted anced Finishing Processes shing, Magnetic abrasive finishing, Magneto rheologica elastic emission machining and chemo-mechanical e tool set up, process variables, process performance ar o and ultraprecision machining nicro fabrication, micro-turning, micro-milling, micro-d cro ECM.	ge g ed m finis nd ap rilling	rinding hachini shing, hing - oplicat g, mic	5 hc g, Ele ing 5 hc Magr - wort tions. 6 hc cro E	ours neto king DM,
beam machining variables, param Module:5 Hybri Electro chemica chemical dischar Module:6 Adva Abrasive flow fin float polishing, o principle, machin Module:7 Micr Introduction to r micro-WEDM, mi Ultra Precision tu	id machining processes grinding, Electro chemical honing, Electrical discharg ge grinding, Laser assisted machining, Cryogenic assisted anced Finishing Processes shing, Magnetic abrasive finishing, Magneto rheologica elastic emission machining and chemo-mechanical e tool set up, process variables, process performance ar o and ultraprecision machining nicro fabrication, micro-turning, micro-milling, micro-d cro ECM. urning and grinding, mechanism of ductile cutting, chip	ge g ed m finis nd ap rilling	rinding hachini shing, hing - oplicat g, mic	5 hc g, Ele ing 5 hc Magr - wort tions. 6 hc cro E	ours neto king DM,
beam machining variables, param Module:5 Hybri Electro chemica chemical dischar Module:6 Adva Abrasive flow fin float polishing, o principle, machin Module:7 Micr Introduction to r micro-WEDM, mi Ultra Precision ta ultraprecision ma	id machining processes grinding, Electro chemical honing, Electrical discharg ge grinding, Laser assisted machining, Cryogenic assisted anced Finishing Processes shing, Magnetic abrasive finishing, Magneto rheologica elastic emission machining and chemo-mechanical e tool set up, process variables, process performance ar o and ultraprecision machining nicro fabrication, micro-turning, micro-milling, micro-d cro ECM.	ge g ed m finis nd ap rilling	rinding hachini shing, hing - oplicat g, mic	5 hc g, Ele ing 5 hc Magr - wort tions. 6 hc cro E	ours neto king DM, DM,

		Tota	I Lecture ho	ours:	45 hours					
Тех	Text Book(s)									
1.			005), Fundan	nentals o	f Metal Machining and Machine					
	,	CRC Press, Third Edition								
2.	Pande	y, P.S. and Shah.N., "Moo	lern Manufa	cturing F	Processes", Tata McGraw Hill,					
	2017.									
Re	ference	Books								
1.		ough,J.A.,"Advanced method								
2.		ict,G.F.,"Non Traditional mar								
3.		Supta, Paulo Davim, High Sp								
4.	Jain V.	K, (2010), Introduction to Mid	cromachining	, Narosa	Publishers					
Мо	de of Ev	valuation: CAT, assignment,	seminar, FA1	Γ						
Re	commer	nded by Board of Studies	27-07-2022							
Арр	Approved by Academic Council No. 67 Date 08-08-2022									

Course Code	Course Title	L	Т	Ρ	С	
MMAE507L						
Pre-requisite	Nil	Sy	llabus		ion	
			1	.0		
Course Objectiv					Angl	
	nderstanding of classical and state-of-the-art producti		•	s, cor	itrol	
	agement technology, cost systems, and evaluation tech			mnad	ton	
	nderstanding of computer-integrated manufacturing (CII roduct cost, and quality.	vi) ai	iu its i	трас	l on	
	erview of computer technologies including computers,	data	hase	and c	lata	
	tworks, machine control, etc, as they apply to factor					
factory floor of		y inc	inagoi	none	unu	
Course Outcom	6					
1. Understand th	e effect of integrated and intelligent manufacturing auto	matio	on stra	itegies	s in	
a collaborative	e environment to derive production metrics.			-		
	nated technologies and systems in a manufacturing flow	line	s and	assem	nbly	
systems						
	puter-based production monitoring system for a typical p			systen	n	
	igent process planning systems for rotational and prisma				.	
	e knowledge of basics, drivers and enablers of Industry	4.0 \	NNICN	leads	to	
smart connect	ted factory.					
Module:1 Con	cont of CIM			5 ho	ure	
	nd its types – Definition of CIM, Elements of CIM, Benet	ite o	F CIM			
	and software. Concurrent Engineering: Definition, Sec					
	ent Engineering, Benefits of Concurrent Engineering					
concurrent Engin		,				
	Technologies and Systems			6 ho	urs	
Design for Manu	ufacturability (DFM): Component Design, Design for A	ssem	nbly. C	compu	iter-	
	Planning: Variant and Generative Process Planning, Ma					
0 ()	, Manufacturing Resource Planning (MRP -II), Cell				<u> </u>	
•	ogic Controllers, Flexible Manufacturing Systems: Phys	sical	Comp	onent	s of	
an FMS, FMS be	nefits and limitations of FMS.		1			
	grated and intelligent product and process design			<u>7 ho</u>		
	systems, integrating product and process design, ma					
	ntegration, design methodology for automated manufac					
	es control on product design, and fuzzy knowledge-base ed system for material selection – Intelligent proces					
	n for equipment selection - Intelligent system for proj					
factory monitoring		COL	manay	Jemen	n a	
	-					
	puter Monitoring			7 ho		
	tion monitoring systems-structure model of manufactur					
	gies direct digital control-supervisory computer control					
	on methods non-contact inspection method - comp	uter-	aided	testin	g -	
	QC with CAD/CAM.			7 60		
Introduction to	luct Lifecycle Management	ot vi		7 ho		
	PLM, Need for PLM, opportunities of PLM, Differe a Management (EDM), Product Data Management (I					
	n Management (cPDm), Collaborative Product Comme					
	ement (PLM).PLM/PDM Infrastructure – Network an					
	nt, Heterogeneous data sources and applications- Cas					
	sial PLM/PDM tools.			24000		

Modu	le:6	Cloud-based design and	manufacturi	ng			5 hours	
		f design and manufacturing						
based design and manufacturing systems, Cloud-based design and manufacturing example								
scenario, Cloud-Based Desktop Factory.								
Modu	le:7	Industry 4.0 a connected	factory				6 hours	
Introduction to Industry 4.0, Basic principles and technologies of a Smart Factory, Cyber-								
		Production Systems, Digit						
		ing, Interoperability: Commu					dustry 4.0 and	
		ations, cyber security in net	worked produ	uction	en\	/ironments.		
Modu	le:8	Contemporary Issues					2 hours	
					1			
		Tota	I Lecture ho	urs:			45 hours	
Text E	Book(s)			1			
1. M	likell	Groover, (2016), Automatio	n, Productio	n Sys	stem	is and Computer	-Integrated	
Μ	lanufa	cturing, 4th. Ed., ISBN # 0-1	13-349961-8,	Pear	son	, New Jersey	-	
Refer	rence	Books						
10	C. Ch	ang, R. Wysk and H.P. W	'ang, (2009),	Con	nput	er aided Manufa	cturing, Third	
E	dition	Pearson Education						
2. M	lichae	I Grieves, "Product Life Cyc	le Manageme	ent", T	ata	McGraw Hill, 200	6	
	lahan	atra, P.B.," Computer-Aided	Droduction N	Jona	aom	ont" Drontino Ho	ll of India Dut	
		, 2004	FIGULCUOIT	vialia	yem	ent, rientice-na		
	IIIIICU	, 2004						
Mode	of Ev	aluation: CAT / written assig	nment / Quiz	/ FA	T/F	Proiect / Seminar /	aroup	
		field work (include only the						
		ons. Eg. CAT, Quiz and FA					,	
Recor	mmen	ded by Board of Studies	27-07-2022					
		y Academic Council	No. 67	Date	,	08-08-2022		
1.20.0		,		_ 4.0	-			

Course Code	Course Title	L	Т	Р	С
MMAE601L	Metrology and Non-destructive Testing	3	0	0	3
Pre-requisite	NIL	Sy	llabus	s versi	on
			1	.0	
Course Objectiv	/es				
	the evolution of quality standards and metrology				
	key points and timelines for the evolution of the quality s	syste	m as \	ve kno	W
it today				_	
	re the graduates with a strong foundation in basic scien	-	•	•	
	y so as to become effective innovators and entrepret	neurs	s in a	ddress	sing
	ng challenges in the field of non-destructive testing.				
Course Outcom			oobnic		
	ent will reproduce the fundamental knowledge on metrol dent will apply statistical process control and ac				lina
	es in a manufacturing environment to improve qua				
products.	•	iity v		00330	37
	dent will identify suitable metrological methods t	for	measi	ırina	the
compone					
•	ent will understands the inspection procedures for detec	tion,	evalu	ation a	and
analysis o	of defects in engineering components to meet the nee	d of	qualit	y thro	ugh
	d standards for public safety and human life.				
	ent will investigate and find solutions for complex engine			mpone	ents
	tures using theoretical and practical knowledge acquired				
	ent will obtain in-depth knowledge and hands on experie				
	nced techniques in the field of non-destructive testing	attr	he nat	ional a	and
global lev	eis.				
Module:1 Intro	duction to Metrology			6 ho	ure
	letrology, Fundamental principles and definitions, meas	urem	ent st		
	ary standards, distinction between precision and accur				
	rance grades, Types of fits, IS919, GO and NO G				
principle, design	of GO and NO GO gauges, filler gauges, plug gauges a	nd si	nap ga	auges.	
Module:2 Com				7 ho	urs
Comparators-Co			nical,	opti	
	nics and pneumatic comparators, advantages, limita				
	nciples of interference, concept of flatness, flatness t				
	neter and laser interferometer. Surface Texture Measur				
	itions, roughness and waviness, surface roughness s				
•	ss parameters- Ra, Ry, Rz, RMS value etc., surface ro mlinson and Taylor Hobson versions, surface roughness	•		leasu	ing
	ead Measurement	5 3 y 11		6 ho	ure
	Measurement - Two wire and three wire methods	s flo	oating	carria	
micrometer.		,	bulling	ourn	ago
Gear Measureme	ent - Gear tooth comparator, Master gears, measureme	ent u	sing re	ollers a	and
Parkinson's Test	er. Special Measuring Equipments - Principles of meas	surer	nent u	sing T	ool
Maker's microsco	ope profile projector & 3D coordinate measuring machine	Э			
	iid Penetrant Testing and Magnetic Particle Te		-	6 ho	
•	nt Testing Principles – types and properties of li				
	lvantages and limitations of various methods - Preparati				
	penetrants to parts, removal of excess penetrants, post				
	ent of penetrant process variables –selection of penetrar				
	er washable, post emulsifiable – Units and lighting for rpretation and evaluation of test results - dye penetrant	•		•	
	dards. Magnetic particle testing, Basic theory of magnet				
	darde. Magnetie particle testing, basic theory of magnet	<u>1011</u> ,	mayn	Juzan	

	L II: 10 11: 6
methods, Field indicators, Particle application, Inspection. Advantages a techniques.	nd limitations of
Module:5 Ultrasonic Testing	6 hours
Principle of pulse echo method, through transmission method, reso	nance method -
Advantages, limitations - contact testing, immersion testing, couplants- Da	ta presentation A,
B and C scan displays, comparison of contact and immersion met	nod. Pulse Echo
instrumentation, controls and circuits, pulse generation, signal detec	ion, display and
recording methods, gates, alarms and attenuators, detectability of defects.	-
Module:6 Radiographic Testing and Safety	6 hours
X-ray film – structure and types for industrial radiography – sensitometric p film, characteristic curves (H & D curve) – latent image formation on film – exposure, reciprocity law, photographic density – X-ray and gamma ray ex exposure time calculations – film handling and storage – Effect of film proc characteristics – Processing defects and their appearance on films – contro Unsatisfactory radiographs – Automatic film processing. Module:7 Thermographic NDE Introduction and fundamentals to infrared and thermal testing– Heat trar passive techniques – Lock in and pulse thermography– Contact and no inspection methods– Heat sensitive paints – Heat sensitive papers – th phosphors liquid crystals – techniques for applying liquid crystals – o sensitive coatings – Inspection methods – Infrared radiation and infrared	adiographic posure charts – essing on film I and collection of 7 hours sfer – Active and n-contact thermal ermally quenched ther temperature
mechanical behavior of materials- IR imaging in aerospace applic components, Honey comb and sandwich structures- Case studies.	
Module:8 Contemporary Issues	1 hours
Total Lecture hou	rs: 45 hours
	rs: 45 hours
Text Book(s)	rs: 45 hours
Text Book(s) 1. Gupta, I.C., Engineering Metrology, Dhanpat Rai & Sons, 2004.	rs: 45 hours
Text Book(s) 1. Gupta, I.C., Engineering Metrology, Dhanpat Rai & Sons, 2004.	
Text Book(s)1.Gupta, I.C., Engineering Metrology, Dhanpat Rai & Sons, 2004.2.Doeblin E.O., Measurement Systems, Mc Graw-Hill, 2004.	
Text Book(s)1.Gupta, I.C., Engineering Metrology, Dhanpat Rai & Sons, 2004.2.Doeblin E.O., Measurement Systems, Mc Graw-Hill, 2004.3.B.Raj, T. Jayakumar and M. Thavasimuthu, Practical Non Destructive	
Text Book(s) 1. Gupta, I.C., Engineering Metrology, Dhanpat Rai & Sons, 2004. 2. Doeblin E.O., Measurement Systems, Mc Graw-Hill, 2004. 3. B.Raj, T. Jayakumar and M. Thavasimuthu, Practical Non Destructive Science International Limited, 3rd edition (2007).	Festing, Alpha
Text Book(s) 1. Gupta, I.C., Engineering Metrology, Dhanpat Rai & Sons, 2004. 2. Doeblin E.O., Measurement Systems, Mc Graw-Hill, 2004. 3. B.Raj, T. Jayakumar and M. Thavasimuthu, Practical Non Destructive Science International Limited, 3rd edition (2007). Reference Books	Festing, Alpha
Text Book(s) 1. Gupta, I.C., Engineering Metrology, Dhanpat Rai & Sons, 2004. 2. Doeblin E.O., Measurement Systems, Mc Graw-Hill, 2004. 3. B.Raj, T. Jayakumar and M. Thavasimuthu, Practical Non Destructive Science International Limited, 3rd edition (2007). Reference Books 1. N.V. Raghavendra and L. krishnamurthy, Engineering Metrology and State Stat	Гesting, Alpha d Measurements,
Text Book(s) 1. Gupta, I.C., Engineering Metrology, Dhanpat Rai & Sons, 2004. 2. Doeblin E.O., Measurement Systems, Mc Graw-Hill, 2004. 3. B.Raj, T. Jayakumar and M. Thavasimuthu, Practical Non Destructive Science International Limited, 3rd edition (2007). Reference Books 1. N.V. Raghavendra and L. krishnamurthy, Engineering Metrology an Oxford university press 2013. 2. C. Hellier, Handbook of Non-Destructive Evaluation, McGraw-Hill Profeedition (2001).	Festing, Alpha d Measurements, ssional, 1st
 Text Book(s) Gupta, I.C., Engineering Metrology, Dhanpat Rai & Sons, 2004. Doeblin E.O., Measurement Systems, Mc Graw-Hill, 2004. B.Raj, T. Jayakumar and M. Thavasimuthu, Practical Non Destructive Science International Limited, 3rd edition (2007). Reference Books N.V. Raghavendra and L. krishnamurthy, Engineering Metrology an Oxford university press 2013. C. Hellier, Handbook of Non-Destructive Evaluation, McGraw-Hill Profeedition (2001). Mode of Evaluation: CAT / written assignment / Quiz / FAT / Project / Semi 	Festing, Alpha d Measurements, ssional, 1st
Text Book(s) 1. Gupta, I.C., Engineering Metrology, Dhanpat Rai & Sons, 2004. 2. Doeblin E.O., Measurement Systems, Mc Graw-Hill, 2004. 3. B.Raj, T. Jayakumar and M. Thavasimuthu, Practical Non Destructive Science International Limited, 3rd edition (2007). Reference Books 1. N.V. Raghavendra and L. krishnamurthy, Engineering Metrology an Oxford university press 2013. 2. C. Hellier, Handbook of Non-Destructive Evaluation, McGraw-Hill Profeedition (2001).	Festing, Alpha d Measurements, ssional, 1st
 Text Book(s) Gupta, I.C., Engineering Metrology, Dhanpat Rai & Sons, 2004. Doeblin E.O., Measurement Systems, Mc Graw-Hill, 2004. B.Raj, T. Jayakumar and M. Thavasimuthu, Practical Non Destructive Science International Limited, 3rd edition (2007). Reference Books N.V. Raghavendra and L. krishnamurthy, Engineering Metrology an Oxford university press 2013. C. Hellier, Handbook of Non-Destructive Evaluation, McGraw-Hill Profeedition (2001). Mode of Evaluation: CAT / written assignment / Quiz / FAT / Project / Semi discussion / field work (include only those that are relevant to the course. L 	Festing, Alpha d Measurements, ssional, 1st

Course code	Course Title	L	Т	Ρ	С
MMAE602L	Optimization Techniques	2	1	0	3
Pre-requisite	Nil	Syll	abus	versi	on
			1.0)	
Course Objective	es				
1. To unders	tand the role of optimization in engineering design and	its imp	ortan	ce.	
	ce the different optimization algorithm in linear program				ear
programm		0			
3. To introdu	ce the non-traditional optimization algorithm in non-line	ar prol	olem.		
Course Outcome	9				
Upon completion	of this course, the student shall be able to:				
	unconstrained and constrained optimization proble	ms fo	r eng	jineer	ing
	ns and derive optimality conditions.		•		•
2. Apply sui	table methods for solving unconstrained and con	strain	ed no	on-line	ear
optimizatio	on problems.				
Apply qua	dratic programming approach to solve quadratic fun	ctions	with	equa	lity
	s covering wide range of applications.				
4. Interpret	the nature of posynomial function and apply geon	netric	progi	ramm	ing
	in solving engineering design problems.				
	apply genetic algorithm for solving optimization proble			_	_
	and implement artificial neural networks for vari	ous	manut	factur	ing
engineerir	g applications.				
Module:1 Class	sical Optimization			6 hou	irs
Introduction, engi	neering applications of optimization-classification of op	timizat	tion pr	roblen	ns-
Single variable of	optimization-Multivariable optimization with no constr	raints-	Multi	varia	ble
optimization with	equality and in equality constraints: Lagrange multiple	iers n	nethoo	d, Kul	າn-
Tucker conditions					
	nstrained Nonlinear Optimization			6 hoι	
	ethods: Pattern directions, Hook and Jeeves' method				
	ethods: Gradient of a function, Cauchy method, Fletche	r-Ree			
	trained Non-linear Optimization			8 hou	
	f a constrained optimization problem - Direct meth				
	of feasible directions - Indirect methods: Interior a	ind ex	terior	pena	alty
function methods					
	Iratic Programming			5 hou	
	cations-necessary conditions-solution to quadratic pro	ogram	ming	proble	эm
using Wolfe's m				C Is a s	
	netric programming	f		<u>5 hοι</u>	
	olution from differential calculus point of view-Solution	on tro	om ar	Ithme	(IC-
geometric inequal				Chai	
Module:6 Gene		fite o		6 hou	
	working principle – encoding – different methods - rent methods. Genetic modelling-inheritance- Cr			nutatio	
-	•	05500	er n	lutatio	JII-
convergence of g	cial Neural Networks			7 hou	ire
	leural network Architectures-Single layer feed forward	1 note			
	twork-Recurrent Networks-Characteristics of Neural				
	tron networks-Back Propagation networks-Radial bas				<u> </u>
	Kohonen Self organizing maps-ART				· //-
Module:8 Cont				2 hou	irs
	Total Lecture h	ours	4	5 hou	ırs
Text Book(s)					

1. Singiresu S. Rao, (2019), Engineering Optimization - Theory and Practice, John Wiley & Sons, Inc. 5th Edition.

Reference Books

1. Arora, R.K., (2015). Optimization: algorithms and applications. Chapman and Hall/CRC.

- 2. S.Rajasekharan, G.A.VijayalakshmiPai,(2017), Neural Network, Fuzzy Logic and Genetic Algorithms Synthesis and Applications, Prentice Hall India, 2nd Edition.
- 3. Kalyanmoy Deb, (2012), Optimization for Engineering Design: Algorithms and Examples, PHI Learning Pvt. Ltd., 2nd edition

Mode of Evaluation: CAT / written assignment / Quiz / FAT / Project / Seminar / group discussion / field work (include only those that are relevant to the course. Use ',' to separate the evaluations. Eg. CAT, Quiz and FAT

Recommended by Board of Studies27-07-2022Approved by Academic CouncilNo. 67Date08-08-2022

Course Code	Course Title	L	Т	Р	С
MMAE603L	Micro and Nano Manufacturing	3	0	0	3
Pre-requisite	NIL	Sylla	abus	versi	on
			1.	0	
Course Objectiv	/es				
1. To compi	rehend the principles of various micro and nano manuf	acturi	ng pr	ocess	es,
basic ma	chine tools and recent developments in micro and i	nano	manu	ufactur	ing
technolog	jies				
2. To inspir	e the students for developing the models of micro a	nd na	no n	nachin	ing
processes	S.				
	t knowledge about nano finishing and metrology for new	vly de	velop	ed mi	cro
compone	nts used in industries and research organizations.				
Course Outcom					
	he basic micro machining processes				
	he various conventional and advanced micro machining	proce	sses		
	the microfonishing concepts and application.				
	he process of Micro-fabrication, forming and micro weldi				
Distinguis	sh the recent trends and applications of micro casting an	d micr	o mo	lding	
Module:1 Intro				8 ho	
	Micro-manufacturing, Classification of Micromanufa				
	Types of Scaling laws - Scaling in Geometry, Scaling in				
	ces, Scaling in Electrostatic Forces, Scaling in Elect				
	Mechanics, Scaling in Heat Transfer; Salient Features of				
	ostructure effect, Tool design effect - Crystallographic	Orie	ntatio	on Effe	ect,
	ect and Minimum Chip thickness.				
	ventional and Advanced Micromachining Processes			6 ho	
	romilling, Microgrinding, Diamond Turning, Micro- and				
	Beam, Electric discharge micromachining, Electrochemi	cal mi	crom	achini	ng,
	et micromachining and laser beam micro machining			<u>.</u>	
	o and Nanofinishing processes			<u>6 ho</u>	
	nishing – Magnetic Abrasive Finishing – Magneto rhe				
•	gical abrasive flow finishing - Magnetic Float polishing	– Ela	ISTIC	Emiss	lon
<u>v</u>	momechanical Polishing.				
	ojoining and allied processes[N 41		6 ho	
	microjoining, Laser Microwelding, Electron Beams	WICC	oweic	aing a	and
Applications .				Cha	
	roforming Processes	(alann	ant	6 ho	
	Microforming ,Micro- and Nanostructured Surface Dev				
with Laser	and Roller imprinting. Micro-hydroforming, Microextrus	sion,	IVIICI	openo	ing
	ocasting and Micromolding			5 ho	
	icromolding, Net Shape Manufacture of Freestand		orom		
		ng C	eram		CIO
	ugh Soft Lithography.			6 ho	
	rology for Micro/Mesoscale Manufacturing on for process monitoring, Robotics in Micromanuf	acturir			
	I Coherence Tomography for the characterization				
-	istic emission-based tool wear compensation – Machin				
	cro pins – Applications.	ing c	1 111	oro ye	<i>,</i> ,
	temporary Issues			2 ho	lire
		l		2 110	ai 3
 	Total Lecture hou	irs:		45 ho	ure

Text Book(s)								
1.	J. Paulo Davim, Mark J. Jacks	onNano and M	licromach	ining,John Wiley & Sons, 2013				
2.	Mark. J. Jackson, Micro and Nano-manufacturing, Springer, 2006.							
3.	V.K.Jain, Micro-manufacturing Processes, CRC Press, 2012.							
4.	Yi Qin, Micro-manufacturing E	ngineering and	Technol	ogy, William Andrew, 2015				
5.	Kapil Gupta, Micro and Precisi	Kapil Gupta, Micro and Precision Manufacturing, Springer, 2017						
6.	Non-traditional Micromachining	g Processes F	undamen	tals and Applications edited by				
	Golam Kibria, B. Bhattacharyy	a and J. Paulo	Davim, S	Springer.				
			,					
Refere	ence Books							
1.	1. N. P. Mahalik, Micromanufacturing & Nanotechnology, Springer, 2010.							
2.	Mark J. Jackson, Microfacbrication & Nanomanufacturing, 1st ed., CRC Press, 2005.							
3.	Manas Das, V. K. Jain and P. S. Ghoshdastidar, Nanofinishing Process using							
	Magnetorheological Polishing Medium, Lambert Academic Publishing, 2012.							
4.	Richard Leach, Characterisati	on of Areal Su	urface Te	exture, 1st ed., Springer-Verlag				
	Berlin Heidelberg, 2013.							
5.	Richard Leach, Optical Meas	surement of S	Surface T	opography, 1st ed., Springer-				
	Verlag Berlin Heidelberg, 2011							
Author	Authors, book title, year of publication, edition number, press, place							
Mode of Evaluation: CAT / written assignment / Quiz / FAT / Project / Seminar / group								
discussion / field work (include only those that are relevant to the course. Use ',' to separate								
the ev	the evaluations. Eg. CAT, Quiz and FAT							
Recon	Recommended by Board of Studies 27-07-2022							
	ved by Academic Council	No. 67	Date	08-08-2022				
1,444,0			24.0					

Course Code	Course Title	I	Т	Р	С
MMAE604L	Sustainable Manufacturing	3	0	0	3
Pre-requisite					
			1.0		
2. To impart kno	es actical level understanding of key factors in sustainable i wledge on sustainable models and frameworks ne practice of sustainability in manufacturing	manuf	acturii	ng	
Course Outcom	9				
 Identify key re Apply sustaina Demonstrate Map the possi 	of this course, Students will be able to: quirements in sustainable manufacturing ability concepts in manufacturing systems the life cycle analysis and costing in production process bilities in remanufacturing and circular economy in man stainability assessment in firms	ufactu	ring		
Module:1 Sust	ainability			5 hou	Jrs
Concept of sus resources in ma	tainability, Sustainable Development goals, manufa nufacturing. Concept of triple bottom line, environme s of sustainability. Need for sustainable manufacturing.		g ope	eratio	ns,
Module:2 Stan	dards			7 hou	Jrs
2050 standards,	pact assessment methods - CML, EI 95 and 99, ISO 14 environmental impact parameters. Sustainability a us approaches, product sustainability and risk assessm	ssess	ment-	conc	ept
	Cycle Analysis			7 hou	Jrs
	is-tools for LCA, optimization for achieving sustainabili inalysis for carbon footprint-software packages for su nalysis				
Module:4 Rem	anufacturing			6 hou	urs
and R6 cycles	and disposal - Environmental conscious- quality functi – Remanufacturing case studies, EoL Waste valor sis, Circular economy-strategies.				
Module:5 Sust	ainable Manufacturing			6 hoı	ırs
Environmental In Lubrication in Ma	mpacts of Manufacturing, Cutting tool sustainability, chining.	Minin	num	Quan	tity
	gn for Sustainability			6 hoı	
Facilitating Disas	conscious quality function deployment (ECQFD), sembly, System Design for Eco-efficiency, Environment /, Product Lifetime Optimisation				
Module:7 Proc	ess Sustainability			6 hoı	
Extending the Lif	sumption and Production, Selecting Low Impact Resour espan of Materials, Process analysis – Sustainability mplementation – Energy studies – Case studies.				
Module:8 Con	temporary Issues			2 hou	ırs
			-	E kai	
Total Lecture ho Text Books	purs:		4	<u>5 hοι</u>	ırs
1 S.Vinodh, Su	ustainable Manufacturing Concepts, Tools, Methods ar Stober 27, 2020 by CRC Press	nd Cas	se Stu	ıdies,	
	Sustainable Manufacturing, Elsevier Science Publishi	na Co	Inc.	2021	
••••••••••••••••••••••••••••••••		5 2 3	, .	,	

	Springer Publications						
Reference Books							
1.	Dornfeld, David.(2012), Green Manufacturing, Springer-Verlag, New York						
2.	Davim, J.P.(2010), Sustainable Manufacturing, John Wiley & Sons.						
3.	Gupta, S.M. and Lambert, A.J.D.(2008), Environment Conscious Manufacturing, CRC						
З.	Press						
Mode of Evaluation: CAT, Written assignment, Quiz, FAT.							
Recommended by Board of Studies 27-07-2022							
Approved by Academic Council No. 67 Date 08-08-2022							

Course Code	Course Title	L	Т	Ρ	С			
MMAE605L								
Pre-requisite	Syllabus version							
•		1.0						
Course Objective	Course Objectives:							
1. To introduce va	rious supply chain and logistics principles and system	s.						
2. To demonstrate	e the application of supply chain and logistics conce	epts,	meth	nodolo	ogies,			
and techniques	to solve real-life problems.				-			
Course Outcome								
	ompletion of the course the students will be able to		_					
	he importance of value proposition and effective		e of	eme	rging			
	nnologies in the operations of supply chain and logistic							
•	oblems of inventory management in a holistic appr	oach	n usii	ng su	itable			
models and stra	0	rf o rec		e ef C	<u> </u>			
	portation and warehouse systems for improving the pe twork based on drivers and total cost approach	nom	ance	3 01 2	C			
5. Analyse the per	••							
•	portance of global supply chains and trends							
Module:1 Supp	ly Chain and Logistics Management			5 h	nours			
	evelopment- Integrated Supply Chain - Value Perspe	ctive	s – (
	ons – SC Processes – SC Value Proposition – Strateg							
– Barriers – Globa		5						
	ue Proposition – Integrated Logistics – Logistical Ope	ratio	ns –	Integ	ration			
Objectives – Logis	tical System Arrangements - Flexible Operations - So	C Syr	nchro	nizati	on.			
Module:2 Infor					nours			
	lution – IS Functionality – Different levels – IS Frame							
	rce Planning – Enterprise SC Operations – Enter				and			
Monitoring – Com	nunication Technology – Blockchain – Logistics Opera	ations	s Sys	tem				
Madula 2 June	4- m - M - n - n - n - n - n			7 4				
	ntory Management	ontor			nours			
	unctionality - Definitions – Costs – Planning Inv				0 0			
	and, Performance Cycle, Safety Stock, Fill Rate - Inv Reactive, Planning, Collaborative Replenishmen							
	ment Practices: Classification, Segmentation	ι, ι ι	Jaipe	neme	, nu —			
	ment i radioes. Olassindation, degmentation							
Module:4 Trans	sportation and Warehouse Management Systems			7 h	nours			
	nctionality and Participants – Modal Structure – Sp	eciali	zed					
Economics and Pricing – Transportation Management Systems – Documentation								
Strategic Warehousing – Arrangements – Decisions – Operations: Primary and Secondary –								
Systems – Packaging for efficiency								
Module:5 Netw	ork Design	I		7 4	ours			
	ouse Requirements: Drivers for Procurement, Manu	Ifacti	Iring					
Relationship and Warehouse – Total Cost Integration: Transportation and Inventory – Formulation of Strategy – Application – Strategy Drivers								
Module:6 Perfo	ormance Measurement			5 h	nours			
	erational Assessment: Functions, Customer Relat	ionsh	nips.					
	inancial Assessment: Analysis, Model and Reporting		· [],					
	, , <u></u> ,							

Мо	dule:7	Global Supply Chain and	l Trends				6 hours	
Introduction – Global Economics – Integration: Logistics and Strategies – Sourcing:								
	Guidelines and Characteristics – Compliance							
		SCM – Managing Risk and	Complexity	– Managi	ing Threats	s and	Environmental	
Cha	allenges							
Мо	dule:8	Contemporary Issues					2 hours	
				Total Le	ecture hou	rs:	45 hours	
Тех	t Book(5)						
1.	Donald	J. Bowersox, David J. Clos	ss, M. Bixby	Cooper, a	and John (C. Bov	wersox (2020),	
		Chain Logistical Manageme					(),	
Ref	erence	Books						
1.		. Coyle, C. John Langley,						
	Supply Chain Management: A Logistics Perspective, 10 th edition, Cengage learning,							
	New De							
2.								
	Strategy, Planning & Operations, 6 th edition, Pearson Education (Singapore) Pvt. Ltd.							
3.	3. David Simchi-Levi, Philip Kaminsky, and Edith Simchi-Levi, (2022), Designing &							
Managing the Supply Chain: Concepts, Strategies & Case Studies, 4 th edition, McGraw-								
Hill Education								
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar								
Mode of assessment:								
Red	commen	ded by Board of Studies	27-07-2022					
Арр	Approved by Academic Council No. 67 Date 08-08-2022							

Course Code	Course Title	L	Т	Р	С
MMAE606L	Maintenance Engineering			0	3
Pre-requisite	NIL		Syllabus version		-
				.0	•
Course Objectiv	/es	J	-		
1. To enable	e the student to understand maintenance principles, fun n industry	ction	is and	practi	ces
	erstand basic concepts of maintenance categorie	es li	ike F	reven	tive
	nce, condition monitoring and repair methods for sc				
elements	•				
3. To have a	an introductory idea about maintenance management				
Course Outcom	e				
Upon successful	completion of the course the students will be able to				
	rate the methods and techniques for planning, schedunaintenance.	uling	, carry	/ out a	and
2. Understa	nd the maintenance function and its objectives and kr out the maintenance function	iow	how to	o prep	are
3. Demonsti	rate the basic knowledge of various condition mor ce with the established procedures	nitori	ng m	ethods	in
	step-by-step procedure for conducting a failure analysi	is of	failed	mach	ine
5. Predict a	opropriate condition monitoring (CM) techniques and ins	trum	ents		
Apply the	replacement plan of parts on any machine in an econor	nical	way.		
Module:1 Prin	ciples and Practices of Maintenance Planning			6 ho	urs
	of maintenance planning – Objectives and prir	ncinle	es of		
maintenance act	ivity – Importance and benefits of sound Maintenance s ilability – MTBF, MTTR and MWT – Factors of availabili	syste			
Module:2 Mair	itenance Policies – Preventive Maintenance			6 ho	urs
	egories – Comparative merits of each category – Preve				
Modes Effects a	nedules, repair cycle - Principles and methods of lubrica nd Criticality Analysis (FMECA), Implementation of FM sk Priority Number for FMECA.				
	dition Monitoring			6 ho	urs
	ring – Cost comparison with and without CM – Vibratio	n M	onitori		
	mography Wear Debris Analysis, Machine Tool Conditio				
	neering Failure Analysis			6 ho	urs
	erview of Failure Analysis, Failure Modes, Failure Analy	/sis -	- Man	ufactu	ring
	Defects, Assembly at Factory/Installation at Site, F				
Procedure.				Ũ	
Module:5 Mair	tenance Organization, Economics, Optimization Mo	dels		6 ho	urs
Maintenance o	rganization – Maintenance economics-Introduction	i to	ma	intena	nce
optimization mod	els: Age replacement, Block replacement models				
Module:6 Repa	air Methods For Basic Machine			6 ho	urs
_	for beds, slideways, spindles, gears, lead screws and be	aring	gs		
	air methods for Material handling equipment	`	-	6 ho	urs
	for Material handling equipment, Some examples - Up	keep	o Of E		
Module:8 Case			1	3 ho	
	are Analysis, Root Cause Analysis of Torsion Shaft Fail		Failura		
-	System Support Structure, Vibration Measurements on			•	
Gearbox drive se	• • • • • • • • • • • • • • • • • • • •	aw		viultiSta	age
	· (

				Tot	al Lecture hours:	45 hours			
Tex	xt Book	(s)							
1.	 Amiya Ranjan Mohanty, Machinery Condition Monitoring Principles and Practices, (2017) ISBN 9781138748255, CRC Press 								
2.	2. A. Davies, (2012), Hand book of condition monitoring Techniques and methodology – Springer science & Business Media								
3.	. Donald J. Bowersox and David J. Closs, (2006), Logistical Management: The Integrated Supply Chain Process, TMH								
Re	ference	Books							
1.		a, S. and Meindl, P., (2014) ions, 6th edition, Pearson E				lanning &			
2.		d J Bradi, John J Coyle: ement, Cengage learning, N	`	Logistics	Approach to Sup	oly Chain			
dis	Mode of Evaluation: CAT / written assignment / Quiz / FAT / Project / Seminar / group discussion / field work (include only those that are relevant to the course. Use ',' to separate the evaluations. Eg. CAT, Quiz and FAT								
Re	commer	nded by Board of Studies	27-07-202	2					
			No. 67						

Course Code	Course Title	L	T	Ρ	С
MMAE607L	Manufacturing Information Systems	3	0	0	3
Pre-requisite	NIL	Syll	abus	versi	on
•			1.		
Course Objectiv	ves				
1. To provid	e an importance of databases and its application in ma	nufact	uring	syste	ems
that prep	are students for their engineering practice by organiza	ation	by co	nvers	ant
with or	ler policies, data base terminologies, designi	ng,	manu	Ifactu	ring
considera					
	nd explain basic terms in the area of manufacturing, a			structu	ure,
	onfiguration and practical use of IT systems for manufac				
	e specialist knowledge in the area of manufacturing info				
	de of the basic knowledge about information systems p	provid	ed in	the c	ore
courses.					
	-				
Course Outcom					
•	completion of the course the students will be able to	rmatia		otom	for
	e simple to moderately complex manufacturing info uring industry	malio	n sy	stem	101
	critically the role of management information sy	etem	for	des	ian
	ng and manufacturing	Storna	5 101	ucs	ıgıı,
0	ate an appreciation of the complex relationship b	etwee	n inf	forma	tion
	and organization	011100		onna	
	ystem analysis and design tools				
	, ision support systems for various issues.				
11.2					
Module:1 Repe	etitive Manufacturing			5 ho	urs
Run Schedule Q	uantities, Material Usage, Reporting Point Statistics, He	ader	Maste	er Dat	a –
	OM) -BOM Header-BOM Positions				
	gration and Routing			7 ho	
	ning (PP) and Material Management – PP and Sales				
	ccounting & Controlling(FICO) - pp and project syste				
	P and maintenance- Routing Group Header-Routing			equer	ice-
	perations-Production Order Header-Production Order Pe	ositior	1	<u> </u>	
Module:3 Proc		DOI		<u>6 ho</u>	
	is (FERT)/ Externally produced- material type (ROH			Types	
	nters – Categories- Standard routing - Task lists-Produ o orders – Types- Material availability – Rules - Capacity				
Sizes -Froduction	i orders – Types- Material availability – Rules - Capacity	checr	(- Ca	liegoi	ies
Module:4 Sche	eduling and Costing			6 ho	urs
Scheduling - Typ	es - Costing - Formulas -Releasing - Reservations -Goo	ds iss	ue - I	Materi	al
	on - Variance -Goods receipt - Inventory -Settlement - A				
	mate release process - Automate GI process -Automate	GR p	roces	SS	
	luction Types			7 ho	
•	roduction -Make to order production -Planning with fina		•		
	duction - Plan to produce & sell - Planning with Pla				
• •	R) -Plan with Variant configuration -Master production s	schedu	Iling -	- Mate	erial
	ning - Consumption-based planning.			<u>Cha</u>	
	luction Planning	o d· · - + '		<u>6 ho</u>	urs
	es operation plan-Long-term planning- By-products in pro				ith
	ction - Scrap in production process- Produce with Batch		ouuc	uon w	111
	with WM - Production with (handling unit management) I			6 hc	
Module:7 Cont		tion	vith a	6 ho	
	riant Configuration (VC)-Production with MES - Produc		viui S		1001

data - Production with serial numbers - Repetitive manufacturing -PP-PI (process industry)-Process management - PCS Interface

Module:8	Contemporary	ssues

2 hours

				То	tal Lecture hours:	45 hours
Tex	kt Book	(s)				
1.	. Dickersbach Jörg Thomas and Gerhard Keller. Production Planning and Control with SAP ERP. Galileo Press, 2011.					
2.	 Weber, Björn. First Steps in the SAP Production Processes (PP). Espresso Tutorials GmbH, 2018. 					utorials
3.	3. Akhtar, Jawad. Production Planning with SAP S/4HANA. Rheinwerk Publishing, 2021.					
Ret	ference	Books				
1.	Lawlor	, William. Common SAP R/3	Functions M	anual. Sp	pringer, 2004.	
2.		, Bastin, Nigel King, and Dar Chain Management. McGra				facturing &
dise	Mode of Evaluation: CAT / written assignment / Quiz / FAT / Project / Seminar / group discussion / field work (include only those that are relevant to the course. Use ',' to separate the evaluations. Eg. CAT, Quiz and FAT					
Re	commer	nded by Board of Studies	27-07-2022			
		y Academic Council	No. 67	Date	08-08-2022	

Course Code		(ourse Title		L	T	Р	С
MMAE608L		Design and A		periments	2	1	0	3
Pre-requisite	NIL	U		•	Syll	abus	s versi	on
						1.	.0	
Course Object								
•	owledge	on the principle	s and method	s of statistical and	alysis c	of exp	erimei	ntal
designs.								
2. To provide k	nowledge	on process/pro	oduct optimiza	tion through statis	tical co	oncep	ots.	
Course Outee								
Course Outco		ion of the course	a the student	s will be able to				
1. Apply the pri				s will be able to				
				l and check its ad	equacy	,		
3. Analyze the					cquaoj	/		
				table resolution				
				surfaces for pro	cess p	oredio	ction a	and
optimization	0		•					
Module:1 Ex							7 ho	urs
Basic Principle	s and Q	Guidelines of	Design of Ex	xperiments - Hy	pothes	is Te	esting	
				e Factor Experime				
			npie Size - Co	omparing Pairs o	r Treat	ment	Mear	is -
Introduction to I		tware.						
Module:2 Ra	ndomize	d Block Desig	ns				5 ho	urs
				esigns - Graeco-I	atin se	nuare		
Balanced incon						1		,
		0						
Module:3 Fa							7 ho	
				sign - Fitting Re				
				design - Addition	of cen	ter po	oints to	י 2
factorial design	- Blocking	g and Confound	ling in 2° facto	orial design				
Module:4 Tv		Tractional Foot	arial Designs				7 ho	
		Fractional Fact		sign - General 2 ^{k⊣}	^o Erac	tional	7 ho	
Design - Alias s				•	Trac	lionai	Tacio	nai
	bust Des					<u> </u>	5 ho	
				- Orthogonal de	signs	- 5/1	n rati	o -
Application to F	ocess ar		esign.					
Module:6 Fi	tina Rea	ression Mode	S				6 ho	urs
				ression paramete	rs - M	ultiple		
Regression Mo								
		1 2	0					
Module:7 Re	sponse :	Surface Metho	ds and Desig	ins			6 ho	urs
		•		rder response su	rface ·	- Exp	erime	ntal
designs for fittir	g first-orc	ler and second	order respons	se surfaces				
		•					<u>.</u>	
Module:8 C	ontempo	orary Issues					2 ho	urs
				Total Lecture ho	ure		15 ho	ure
				i otal Lecture no	ur5.		45 ho	u15
I								

Text Book							
1.	Douglas C. Montgomery, (2020), I	Design and	Design and Analysis of Experiments, John Wiley				
	& Sons, Inc., 10th edition	-	-				
Reference Books							
1.	Philip J. Rose, (2000), Taguchi Techniques for quality Engineering, Prentice Hall						
2.	Charles R. Hicks, Kenneth V. Turn	R. Hicks, Kenneth V. Turner (1999) Jr., Fundamental concepts in the Design riments, Oxford University Press, 5 th edition					
	of Experiments, Oxford University I	Press, 5 th ed	ition				
Mode	e of Evaluation: CAT, Assignment, C	Quiz, FAT					
Reco	ommended by Board of Studies	27-07-2022	2				
Appr	oved by Academic Council	No. 67	Date	08-08-2022			
	-						

Course Code	Course Title	L	Т	Р	С
MMAE609L	Advanced Tool Engineering	3	0	0	3
Pre-requisite	NIL	Sv	llabus	versi	-
				.0	
Course Objectiv	'es	<u> </u>			
	p competency in understanding different cutting tools ar	าd its	worki	ina	
principles				5	
	proper material for the design of the tool, dies and fixtur	es.			
	the students to analyze and optimize the design of too		ies, jig	s and	
fixtures					
Course Outcom					
	nd the design considerations in different cutting and form	ning	tools.		
	various cutting tools, holding tools.				
	propriate work holding devices based geometry of work	piece			
	nd analyze different dies and press tools.				
•	tool holding and workpiece holding for various unconve	ntion	al ma	chining	J
processes					
6. Design of	tools and work holding for non-manufacturing application	ons.			
Module:1 Intro	duction to Tool Design and Tool Engineering			4 ho	ure
	ectives, Tool engineering, tool classification, tool design	n in	manu		
	equirements, standards in tool design, tool drawings,				
tooling Materials		into .		lorane	,
•	gn of Cutting tools			6 ho	urs
	ents, Design of Single Point Cutting Tools, Design of Mil	lina	Cutter		
	rs, Taps and Inserts, Determining Shank Size for S				
	ng Insert Thickness for Carbide Tools, Design of Chip B				
of Form Tools.					0
Module:3 Desi	ign of Locators and Clamps			7 ho	urs
	locating and clamping devices, difference between				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	is and fixture, materials used in jigs and fixture, locatin	•••			•
	rices, standard parts, clamping – analysis of clamping for				and
	onsideration of Safety factor while designing of Jig Fixtur	re an	d Gau	ige.	
	ign of Fixtures			7 ho	
	xtures, Economics of fixtures, Types of fixtures & App				
	lling fixtures ,boring fixtures, broaching fixtures , Lath			•	ing
	fixture, indexing fixture, Design of fixtures for the given of	comp	onent		
Module:5 Desi				<u>6 ho</u>	
	rill jigs, Economics of drill jig, General considerations				
	, Drill bushings, Method of constructions , clearance -				
•	fluid clearances, burr grooves Methods of inserting bu	shes	, Desi	gn of l	Jrill
jigs for given com				7 1	
	ign of Press Tools Dies		ity no	7 ho	
•	erminologies, Types of presses, Computation of press of	•	•		
	ed, Introduction to Inverted Dies, function of various parts of C				
	, Progressive dies, function of various parts of Co Design of compound, progressive and Inverted Dies.	Jubo	Junu		DITE
	ign of Forming Dies			6 ho	lire
	orming dies, Selection of material for Dies, Draw Die	<u> </u>	Rendir		
	Extrusion dies - Drawing dies - Design and drafting				
	anufacturing methods of forming and Drawing Dies.	, Ja	Jung	000 0	AT IO
	emporary Issues			2 ho	urs
			<u> </u>		

				То	tal Lecture hours:	45 hours
Tex	kt Book	(s)				
1.	Donald	lson, C., LeCain, G. H., Go	old, V. C., &	Ghose,	J. (2017). Tool desig	gn. Tata
	McGra	w-Hill Education., Fifth Editic	on.			
Ret	ference	Books				
1.	1. Joshi, P. H. (2017). Jigs and fixtures. Tata McGraw-Hill Education, Third Edition					
2.	Balach	andran, V. (2015). Design of	f Jigs, Fixture	s and Pre	ess Tools	
3.	Hoffma	an, E. (2012). Jig and fixture	design. Cenç	gage Leai	rning.	
4.	PSG C	ollege of Technology, Coimb	patore - Desig	gn Data ⊦	landbook.	
Мо	de of E\	aluation: CAT / written assig	nment / Quiz	: / FAT / F	Project / Seminar / gr	oup
		/ field work (include only tho:		levant to	the course. Use ',' to	o separate
the	evaluat	ions. Eg. CAT, Quiz and FA	Г			
		nded by Board of Studies	27-07-2022			
Ар	proved k	y Academic Council	No. 67	Date	08-08-2022	

Course Code	Course Title	L	Т	Ρ	С
MMAE610L	Casting and Welding Technology	3	0	0	3
Pre-requisite	NIL	Sy	llabus		on
			1.	.0	
 To teach To impar welding ir Course Outcom	e students to acquire knowledge on foundry and casting students about various casting and welding processes. t knowledge on contemporary developments and iss idustries.	-			and
casting ar 2. Analyze t 3. Identify th 4. Apply the 5. Identify h	ate the knowledge of principles, operations and app nd welding processes. The effects of process parameters on the quality of cast a e techniques for the evaluation of cast and weld compo knowledge of welding in Heavy Engineering and nuclea eat treatment processes for various applications ar is in industries	and v nent ar inc	veld pr s lustries	oducts	5.
Module:1 Cast	ing Design			6 ho	urs
directional solidif	ween metal and mould – Design considerations in cas cation and minimum stresses – Principles and design c cteristics of the mould.				
Module:2 Cast	ing Metallurgy			6 ho	urs
cast metals - F	oure metal and alloys – Freezing of pure metals and a Progressive and directional solidification – Degasifica el, Cast Iron, Al alloys, Babbit alloy and Cu alloy				
Module:3 Rece	ent Trends in Casting and Foundry Layout			6 ho	urs
Continuous casti processes. Layou	recision investment casting, CO2 moulding, centrifugal ng, Counter gravity low pressure casting, Squeeze ca ut of mechanized foundry – sand reclamation – materia n foundry – Computer aided design of casting.	asting	g and	semis	olid
Module:4 Heat	Flow in Welding			6 ho	urs
based on heat	bry of heat flow cooling rate determination, selection of flow analysis, residual stresses and distortion. Joint ue of welded joints.		• •		
Module:5 Stre	sses in Welding			6 ho	urs
thermal cycle and	and distortion, residual stress, causes of residual st d shrinkage on residual stresses, Reaction stresses, st ation, Measurement techniques of residual stresses in w	resse	es gen	erated	
phase transforma					
	Treatment			6 ho	urs
Module:6 Heat	Treatment st weld heat treatment, Methods of Pre-heating, Advant re & post weld heat treatment for carbon steel, cast iron	•	s and I		
Module:6 Heat Pre-heat and pos of pre-heating. P	et weld heat treatment, Methods of Pre-heating, Advant re & post weld heat treatment for carbon steel, cast iron	•	s and I		ons
Module:6 Heat Pre-heat and pos of pre-heating. P Module:7 Web	et weld heat treatment, Methods of Pre-heating, Advant re & post weld heat treatment for carbon steel, cast iron			imitatio	ons urs

structure, properties of weld metals, fusion boundary zone, heat affected zone, properties of heat affected zone.

Мо	dule:8	Contemporary Issues				2 hours
			Tota	al Lecture	e hours:	45 hours
Tex	kt Book	(s)			I	
1.	Carrry	B., Modern Welding Techno	ology, Prentic	e Hall Pvt	Ltd., 2002.	
2.	2. Heineloper & Rosenthal, Principles of Metal Casting, Tata McGraw Hill, 2000					
3.	Lancas	ster J. F. – Metallurgy of We	lding – Geor	ge Alien &	Unwin Publis	shers,1980.
Re	ference	Books				
1.		riz, M.M. – Source book on (OHIO), 1981.	innovative w	elding pro	ocesses – Arr	nerican Society for
2.	P.N. R Edition	ao, Manufacturing Technolo , 2003	gy Foundry,	Forming a	and Welding,	TMH-2003; 2nd
Мо	de of Ev	aluation: CATs / Digital assi	gnments / Q	uizes / FA	Т	
Re	commer	nded by Board of Studies	27-07-2022	2		
		y Academic Council	No. 67	Date	08-08-2022	

Cou	rse Code		Course Title			L	Τ	Р	С
MM	AE610P	Casting a	nd Welding Tech	nology L	ab	0	0	2	1
Pre-	requisite	NIL	0			Sylla	bus	vers	ion
	-						1.	0	
Cou	rse Objective	S							
,	I. To enable s	students to acquire p	ractical knowledg	e on foun	dry and castir	ng pro	ocess	ses.	
		udents about the me							
		e effect of welding p							
2		knowledge of unc	lerlying principles	s, mecha	nisms related	to to	fusio	n-joir	ning
	technologie			.					
		e effect of FSW para	meters and its ef	fect on joi	nt characteris	tics.			
	rse Outcome			4					
Upo	n successful co	ompletion of the lab	course the studer	its will be	able to				
	IIndorstand	I the principles of ca	sting and wolding						
		ctical knowledge on	0 0		ing processes	2			
		its gain the knowled					its e	offect	on
	microstruct		igo about the init	pontantoo	or nout input		100	511000	
2	1. The studen	ts can understand th	e working princip	le of FSW	process and	its pa	aram	eters	
	cative Experir		51 1		1				
1.		n of permeability, she	ear strength and o	compress	on strength o	f the	giver	ו	
	foundry sand		C C	•	U				
2.	Determination	n of the grain finenes	s of the given fou	indry sand	d				
3.	Determination	n of clay content for	the given mouldin	g sand sa	mple and als	o to s	tudy	the	
		ompression strength							
4.		nould for the given p	attern with the co	re using t	wo boxes and	l three	e - bo	X	
	moulding pro								
5.		n of flowability for the		and					
6.		ing practice – demor			·				
7.		microstructure of we	ld metal and HAZ	of alumir	num alloys pe	rform	ied u	nder	
		ss (Heat input).							
8.		o hardness testing a						ov (7	
9.		effect of FSW proces ed, Axial load and tr		the bull v	veloing of alur	niniui	n alle	oy. (1	001
10		W welding paramet		of staiple	se stool				
11		lding gases on the p							
12.		microstructure of we						nd	
12.	stainless-stee					nu su		iu -	
			-	Fotal I ab	oratory Hour	s	30	hour	s
Text	Book(s)				<u></u>	-			-
1.		inciples of Foundry	Technoloav'. 3rd	Edition. Ta	ata McGraw F	- 	995		
2.		Ivanced Welding Pro				,			
	erence Books		,						
1.		K., 'Foundry Techne	ology', Khanna Pi	ublication	s, 1986				
2.		le, Welding and weld							
Mod	e of assessme	nt: Internal assessm	ent / FAT						
		Board of Studies	27-07-2022						
		emic Council	No. 67	Date	08-08-2022	2			

Course Code	Course Title	L	Т	Р	С
MMAE611L	Quality and Reliability Engineering	3	0	0	3
Pre-requisite	NIL	Svlla	bus	versi	on
		j	1.0		
Course Objectiv	es	<u> </u>			
	e knowledge on the various techniques to assess and	improv	ve the	e qua	litv
	ility of the product and process.	mprov		944	
	t the underlying concepts, methods and applicatio	ons of	Qua	litv a	and
	in industries.		444	ing e	
Course Outcom	 0				
Upon successful	completion of the course the students will be able to				
	pplications of quality and reliability concepts.				
	quality and reliability issues in the industrial applications	3.			
	he quality and reliability of a product and process.				
•					
Module:1 Qual	ity Control			5 hou	Jrs
Evolution of qual	ty control - Quality control vs. assurance - Quality plann	ning - C	Cost o	f qua	lity
- Economics of q	uality - Quality loss function.	-		-	
Module:2 Stati	stical Process Control			6 hou	Jrs
Causes of variati	ons - Process control charts for variables - Process co	ontrol fo	or atti	ribute	:s -
Cusum charts - M	/lulti-vari charts - Process capability analysis using cont	trol cha	arts -	Proce	ess
capability (Cp, Cp	ok, Pp, Ppk) - Six Sigma.				
Module:3 Acc	eptance sampling			6 hou	Jrs
Acceptance sam	pling- fundamental - OC curve - sampling plans for a	attribute	es – :	single) —
double - multiple	and sequential - sampling plans for variables - MIL-STI	D-105E) - M	IL-ST	D-
414E and IS2500	standards.				
Module:4 Stra	tegic tools and Techniques			6 hou	Jrs
	deployment - Deming's PDCA cycle – Poka-Yoke - Failu	ure mo	des 8	k effe	cts
	marking - 5S concepts.		-		
	erimental Design and Optimization			7 hou	
	factorial experiments - random design, Latin square				
method – Loss f	unction – experiments – S/N ratio and performance me	asure	– Ort	hogo	nal
array.					
Module:6 Reli				7 hou	
	ion – quality and reliability– life cycle curve - reliab				
	ons - MTBF - MTTF - Hazard rate - measures of				
	es –parallel – mixed configuration systems – sys	stem v	with	stanc	lby
component.			-		
	ability Improvement			6 hou	
	ntime – Repair time distribution – System repair tim			inabi	lity
	sures of maintainability – Inspection decisions –System	Availat			
Module:8 Cont	emporary Issues			2 hou	Jrs
	Total Lecture h	iours:	4	5 hou	Jrs
Text Book(s)					
	ra, "Fundamentals of Quality Control and Improven	nent",	2016,	Fol	ırth
Edition, Wile					
Reference Book					
-	Montgomery, "Introduction to Statistical Quality Cor	ntrol",	2019,	Eig	nth
2. Charles E. E	-india. beling, "An introduction to Reliability and Maintainability	Fnain	eerin	n" 2∩	19
		Lingin	Joint	<u>ں</u> کے ر	10,

	Third Edition, Tata McGraw Hill.							
Мо	Mode of Evaluation: CAT / written assignment / Quiz / FAT.							
Re	Recommended by Board of Studies 27-07-2022							
Ар	proved by Academic Council	No. 67	Date	08-08-2022				

Cours	se Code	Co	urse Title		L	Т	Ρ	С
MMAE	E696J	Study O	riented Project					02
Pre-re	equisite	NIL			Syllabus vers			sion
						1.	0	
	se Objectiv							
1.		ent will be able to analys	e and interpret p	ublished litera	ature	for inf	orma	tion
		to niche areas.						
2.	Scrutinize	technical literature and a	arrive at conclusio	ns.				
3.	Use insigh	nt and creativity for a bett	er understanding	of the domair	n of in	terest	•	
Cours	se Outcom	9:						
		analyse, and interpret	published literat	ure/books pr	ovidir	ng inf	orma	tion
	-	niche areas/focused don	•			Ŭ		
2.	Examine t	echnical literature, resolv	e ambiguity, and	develop cond	lusior	าร.		
		e knowledge and use ins	• •				e dor	nair
0.	of interest	U U					- uoi	
4		he findings in the pee	er reviewed iou	nals / Natio	nal	/ Inte	rnati	ona
	Conference	U				into	matr	ona
Modu	le Content		(F	Project durati	on: C)ne se	emes	ster
	s oriented	towards reading publish		books related	to r	niche	area	s oi
		s under the guidance of a	a faculty.					
focuss	sed domains	s under the guidance of a ion: Evaluation involves	•	by the faculty	with v	vhom	the	
focuss Mode	of Evaluat		periodic reviews l					<u></u>
focuss Mode studer	sed domains of Evaluat nt has regis	ion: Evaluation involves	periodic reviews l e project – Report	to be submit	ted, p	resen	tatior	
focuss Mode studer and pr	sed domains of Evaluat nt has regis	ion: Evaluation involves tered. Assessment on the vs – Presentation in the N	periodic reviews l e project – Report	to be submit	ted, p	resen	tatior	
focuss Mode studer and pr Engine	sed domains of Evaluat nt has regis roject reviev eering Tech	ion: Evaluation involves tered. Assessment on the vs – Presentation in the N	periodic reviews l e project – Report	to be submit	ted, p	resen	tatior	

	se Code	Сог	urse Title			L	т	Р	С
MMAE697J Desi		ign Project						02	
Pre-requisite NIL				Syllabus version					
Course Objectives:						1.0	1.0		
		vill be able to design a pr	,		•				
	2. Describe and demonstrate the techniques and skills necessary for the project.								
3.	Acquire kr	owledge and better unde	erstanding o	f design s	ystems.				
Cours	e Outcome	<u>):</u>							
1.	•	ew skills and demonstra or working model or proc		, , ,	ade a pr	ototyp	e to	a de	sign
2.	Utilize the	techniques, skills, and m	odern tools	necessary	y for the p	orojec	t.		
3.	2	e knowledge and use	insight and	creativity	to bett	er un	derst	and	and
	improve design systems.								
4.		ne findings in the pee	er reviewed	l journals	/ Natio	onal /	Inte	rnatio	n n n l
	Conference								ла
	Conterent	es.							ла
Modu	le Content	es.		(Proje	ct durati	on: O	ne se	emes	
Stude	le Content nts are ex ypes to des	pected to develop new sign prototype or working		demonst	trate the	abilit	ty to	deve	ter) elop
Studer prototy proces Mode studer and p	le Content nts are ex ypes to des ss. of Evalua nt has regis	pected to develop new sign prototype or working tion: Evaluation involve tered. Assessment on the ws – Presentation in the	g models ro s periodic r ne project -	elated to a reviews by Report to	trate the an engine the fac be sub	abilit eering ulty w mitted	y to proc vith w	deve luct d hom	ter) elop or a the tion
Studer prototy proces Mode studer and p Engine	le Content nts are ex ypes to des ss. of Evalua nt has regis roject revieve eering Tech	pected to develop new sign prototype or working tion: Evaluation involve tered. Assessment on the ws – Presentation in the	g models ro s periodic r ne project -	demonst elated to a reviews by Report to Internatio	trate the an engine the fac be sub	abilit eering ulty w mitted	y to proc vith w	deve luct d hom	ter) elop or a the tion

Cours	e Code		Course Title			L	т	Р	С
MMAE	698.1	Interr	nship I/ Disserta	tion I					10
	quisite	NIL				Syllabus vers			
					1.0				
Cours	e Objective	es:							
To pro	vide sufficie	ent hands-on learn	ing experience r	elated to t	the desig	n, dev	elopn	nent :	and
analys	is of suitabl	e product / process	s so as to enhan	ce the tec	hnical ski	ll sets	in the	e cho	sen
field ar	nd also to g	ive research orienta	ation.						
Cours	e Outcome	.							
Cours	e Outcome	·							
1.		bly more in-depth k ight into current res	•	-	•	of stud	dy, inc	ludin	g
2.	The capab	ility to use a holistic	c view to critically	, indepen	dently and	d crea	tively		
	identify, fo	rmulate and deal w	ith complex issue	es.					
3.	A consciou	usness of the ethica	al aspects of rese	arch and	developm	ent w	ork.		
4.	4. Publications in the peer reviewed journals / International Conferences will be an								
	added adv	antage.							
Modu	e Content		(1	Project du	iration: o	ne se	mest	er)	
	 Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities. Dissertation should be individual work. 								
2. 3.				in onv r	olovant ir	aductr	vor	rocor	arch
	 Carried out inside or outside the university, in any relevant industry or research institution. 								
4.	4. Publications in the peer reviewed journals / International Conferences will be an added advantage.								
Mode	of Evalua	tion: Assessment	on the project	- Disserta	tion repo	ort to	be su	ubmit	ted,
preser	ntation, proje	ect reviews and Fin	al Oral Viva Exa	mination.					
Recom	nmended by	/ Board of Studies	27-07-2022						
Approv	ved by Acad	demic Council	No. 67	Date	08-08-20	022			

Cours	e Code	(Course Title			L	т	Р	с
MMAE	E699J	Internship II/ Dissertation II							12
Dro_ro	Pre-requisite NIL					Svil	abus	vors	ion
						Syn	<u>abus</u> 1.(
Cours	e Objectiv	es:						-	
To pro	ovide suffici	ent hands-on learning	g experience r	elated to	the desig	n, dev	elopn	nent	and
analys	sis of suitab	le product / process s	o as to enhan	ce the tec	hnical ski	ll sets	in the	e cho	sen
field.									
Cours	e Outcome):							
		completion of this cou	rse students w	ill be able	to				
1.		specific problem s				life p	roble	ms v	with
		e assumptions and co				•			
2.		erature search and / c		h in the a	rea of inte	erest.			
3.	Conduct experiments / Design and Analysis / solution iterations and document the								
	results.		2						
4.	Perform error analysis / benchmarking / costing.								
5.	Synthesize	e the results and arrive	e at scientific c	onclusion	s / produc	cts / so	olutior	۱.	
6.	-	the results in the form			-				
Modu	le Content			(Proj	ect durat	ion: o	ne se	mes	ter)
1. 2.	 Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities. 								
3.				in any r	elevant ir	ndustr	y or	resea	arch
	 Carried out inside or outside the university, in any relevant industry or research institution. 								
4.	4. Publications in the peer reviewed journals / International Conferences will be an added advantage.								
		tion: Assessment or ect reviews and Final	• •		ition repo	ort to	be si	ibmit	ted,
Recor	nmended by	y Board of Studies	27-07-2022						
Appro	ved by Acad	demic Council	No. 67	Date	08-08-20	022			