

SCHOOL OF MECHANICAL ENGINEERING

M.Tech Mechatronics

Curriculum & Syllabai (2022-2023 batch onwards)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

• Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- **World class Education**: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- **Cutting edge Research**: An innovation ecosystem to extend knowledge and solve critical problems.
- **Impactful People**: Happy, accountable, caring and effective workforce and students.
- **Rewarding Co-creations**: Active collaboration with national & international industries & universities for productivity and economic development.
- **Service to Society**: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

• To be a leader in imparting world class education in Mechanical Engineering, leading to nurturing of scientists and technologists of highest caliber who would engage in sustainable development of the globe.

MISSION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

- To create and maintain an environment fostering excellence in instruction & learning, Research and Innovation in Mechanical Engineering and Allied Disciplines.
- To equip students with the required knowledge and skills to engage seamlessly in higher educational and employment sectors ensuring that societal demands are met.

M. Tech Mechatronics

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment.

PO_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information.

PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice.

PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems.

PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development.

PO_07: Having a clear understanding of professional and ethical responsibility.

PO_08: Having a good cognitive load management skills related to project management and finance.

M. Tech Mechatronics

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Mechatronics) programme, graduates will be able to

- **PSO_1:** Compute, Design, Simulate & analyse various Automotive engineering systems taken into account the social, economic and environmental implications for the current and future mobility.
- **PSO_2:** Practice a multidisciplinary approach to solve real-world automotive problems.
- **PSO_3:** Independently carry out research / investigation to solve practical problems and write / present a substantial technical report/document.

M. Tech Mechatronics

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

Agenda Item 67/14

To consider and approve the revised programme credit structure, curriculum and course contents of Master of Technology in Mechatronics

ANNEXURE – 18

Master of Technology in Mechatronics School of Mechanical Engineering

Programme Credit Structure	Credits	Discipline Elective Courses	12
Discipline Core Courses Skill Enhancement Courses Discipline Elective Courses Open Elective Courses Project/ Internship Total Graded Credit Requirement	24 05 12 03 26 70	MMHA601L Machine Vision Systems MMHA602L Mobile and Autonomous Robots MMHA603L MEMS and Microsystems MMHA604L Data acquisition and Digital Sig- nal Processing MMHA605L Embedded systems MMHA606L Autotronics and Vehicle Intelli-	3003
Discipline Core Courses	24 L T P C	gence MMHA607L Intelligent Systems	3003
MMHA501L Advanced Sensors and Instru- mentation	3 0 0 3	MMHA608L Wireless Sensor Networks MMHA609L Virtual Reality and Haptics	2 1 0 3 3 0 0 3
MMHA501P Advanced Sensors and Instru- mentation Lab	0 0 2 1	MMHA610L Condition Monitoring Tech- niques MMHA611L Bio-Mechatronics	3003 3003
MMHA502L Actuators and Drives MMHA503L Robot dynamics and Program-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MMHA612L Internet of Things and Smart Manufacturing	3003
ming MMHA503P Robot dynamics and Program- ming Lab	0 0 2 1	MMHA613L Manufacturing Automation MMHA613P Manufacturing Automation Lab	3 0 0 3 0 0 2 1
MMHA504L System Design and Control MMHA505L Industrial Controllers	3 0 0 3 3 0 0 3	MMHA614L Fluid Power System Design MMHA614P Fluid Power System Design Lab	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
MMHA505P Industrial Controllers Lab MMHA506L Advanced Control Systems	0 0 2 1 3 0 0 3	Open Elective Courses	03
MMHA507L Industrial Process Automation MMHA507P Industrial Process Automation Lab	2 0 0 2 0 0 2 1	Engineering Disciplines Social Sciences	
	05	Project and Internship	26
Skill Enhancement Courses	05	MMHA696J Study Oriented Project	02
MENG501P Technical Report Writing MSTS501P Qualitative Skills Practice MSTS502P Quantitative Skills Practice	0 0 4 2 0 0 3 1.5 0 0 3 1.5	MMHA697J Design Project MMHA698J Internship I/ Dissertation I MMHA699J Internship II/ Dissertation II	02 10 12
	0001.0		14

Course Code	Course Title	L	т	Ρ	С
MMHA501L	Advanced Sensors and Instrumentation	3	0	0	3
Pre-requisite	NIL	Syll		versi	ion
Course Objectiv			1.	0	
Course Objectiv	es: the course are to:				
	e with sensors used in engineering				
	id the signal conditioning circuits				
Z. Onderstar					
Course Outcom	e :				
On completion of	this course student should be able to:				
	nd the input-output configuration, static and dynamic	c cha	aracte	eristics	s of
	asurement systems.				
	e transduction principles of typical transducers				
	nent applications related to force, pressure, level, flow, a re, displacement, speed, etc.	accele	eratio	n, torc	que,
-	ate the principle of operation and applications of opto e	lectro	nic i	magne	etic
digital sen			/110, 1	nagn	0110,
•	ate the recent trends and advances in the measurement	t syste	ems.		
5. Comprehe	end the role of signal conditioning circuits and o	data	acqu	isition	n in
	nent systems.				
6. Apply the	typical sensors suitable for different industrial application	ns.			
Madulard Justice				0 1	
	duction to Instrumentation systems of instrumentation systems, Input-Output configuratio	n Er	ror o	6 ho	
	dards, static and dynamic characteristics of instruments		101 3	ource	- 55
	eral Transduction Principles for measurement cations			6 ho	ours
Transduction pri	nciple – Resistive, Capacitive, Inductive, Piezoresis	stive,	Piez	zoelec	ctric,
optical, Photovolt	aic, Thermoelectric, Acoustic and Hall effect.				
Madular2 Care	Amostice and exampling of the isolandaments			<u> </u>	
	struction and operation of typical instruments ement applications - temperature, pressure, vibration,	force	200	6 ho	
	velocity, angular velocity, humidity, tactile, flow and level		-		uon,
	mood compare technologies and explications			6 6 6	
	inced sensors technologies and applications ensors, Fiber optic sensor, Magnetic sensors, Digital ti	raned	licer	6 ho	
	s, Ultrasonic sensors, Micro sensors, Bio sensors.	lansu	ucers	S, LAC	
Module:5 Sma	rt sensor systems and applications			6 ho	ours
	ture of a smart sensor – Self calibration – Wireles	s se	nsors	s- ene	ergy
harvesting techni	ques – Web based instrumentation-Applications.				
Module:6 Sign	al conditioning and Data Acquisition			6 ho	ours
Operational Amp	lifiers, Amplifiers, bridges, filters, analog-to digital an	•			-
	ents of data acquisition system, basics of Virtual instrun	nenta	tion s	system	ns,
Data logging.					
Module:7 Indu	strial Applications of sensors and instrumentation			7 ho	ours
syste				7 110	

Speed measurement of road wheels in Automotive system, Environmental monitoring and biomedical applications- case studies

Мо	dule:8 Contemporary Issues	2 hours
	Total Lecture hours	45 hours
Тех	t Book(s)	
1.	Bentley JP, Principles of measurement systems, Pearson Publishers.,	2012.
2.	Ernest. O. Doebelin, "Measurement System Application & Design", (2 Book co 5 th edition, 2008.	2008), McGraw Hill
Ref	erence Books	
1.	D. Patranabis, "Principles of Industrial Instrumentation", (2010), Tata Edition,	McGraw-Hill, Third
2.	John G. Webster, HalitEren, "Measurement, Instrumentation, and Se (2014), Second Edition, CRC Press.	ensors Handbook",
3.	D. V. S. Murty, "Transducers and Instrumentation", (2010), PHI Learn	ing Pvt. Ltd.
4.	H.R. Taylor, "Data Acquisition for Sensor Systems", (2013), Springer S	Science &
	Business Media	
	de of Evaluation: CAT ,Written Assignment, Quiz and FAT	
Rec	commended by Board of Studies 27-07-2022	
App	proved by Academic Council No. 67 Date 08-08-20)22

Cour	rse Code		Course Title			L	Т	Ρ	С
MMF	IA501P	Advanced Sens	ors and Instru	mentation L	_ab	0	0	2	1
Pre-	requisite	NIL				Syll	abus	versi	on
	-						1.0	0	
	rse Objective								
		the course are to:							
		with sensors used i	0 0						
2	. Understand	the signal conditior	ning circuits						
	rse Outcome								
		his course student s			mia ahau	raata	riation	of	
I		d the input-output co surement systems.	iniguration, stat	ic and dynar	nic chai	acte	nsucs	01	
2		ransduction principle	s of typical tran	educere use	d in ind	uctri	al		
2		ent applications rela						tora	
		e, displacement, spe		ssure, level,	now, a	50010	auon	, וסוץ	ue,
3		te the principle of op		olications of	onto ele	octror	nic m	annet	ic
0	digital sens						110, 111	agnot	10,
4	v	te the recent trends	and advances i	n the measu	rement	svste	ems.		
		nd the role of signal							
	measureme	ent systems.	Ū		•				
6	6. Apply the ty	pical sensors suital	ole for different	industrial ap	plication	IS.			
	cative Experin								
1.		nt of speed and disp			otary sei	nsors	S.		
2.		orque measurement		uge.					
3.		asurement systems							
4.		measurement using							
5.		acceleration meas	-	. Using peizo	o electric	c ser	isor.		
6.		nidity measurement							
7.	U U	complete signal	condition circ	uit for ter	nperatu	re a	and	press	ure
0	sensors.	a acquisition evotor	a and interfacir	a concore w	ith com	nuto	~		
8. 9.		a acquisition system ynamic characterist							
9. 10.		t of data logging usi		· · ·		stern.			
10.	Developmen	t of data logging data	ng virtual motiu	nent sonwai	C				
			Total	Laboratory	Hours	30	hour	s	
Text	Book(s)								
1.	Bentley IP	Principles of measur	ement systems	Pearson Pi	Inlisher	s 20)12		
2.		Principles of measur							
	rence Books		emone by biomb			J., 20			
1.		is, "Principles of Ir	ndustrial Instrum	nentation" ((2010)	Tata	McG	Graw-H	Hill
	Third Edition	•			,				,
2.		, oster, HalitEren, "Me	asurement. Inst	rumentation	, and Se	enso	rs Har	ndboo	ok".
		and Edition, CRC Pre			,				,
3.		oster, HalitEren, "Me		rumentation	, and Se	enso	rs Har	ndboo	k",
	(2014), Seco	nd Edition, CRC Pre	ess.						
4.		"Data Acquisition for		ns", (2013), 3	Springe	r Sci	ence a	<u>&</u>	
	Business Me		-		-				
Mode	e of Assessme	ent: Continuous Ass	essment and Fi	nal Assessm	nent Tes	st			
Reco	ommended by	Board of Studies	27-07-202	2					

Course Code	Course Title	L	Т	Ρ	С
MMHA502L	Actuators and Drives	3	0	0	3
Pre-requisite	NIL	Sylla	abus	versi	on
			1.	0	
Course Objective					
The Objectives of t					
	the fundamental concepts of electro-mechanica	l and	l flui	d po	wer
	and pneumatics) systems				
	e the students with the actuators in the area of hydi chanical systems and associated equipment's used for			eumai	ics,
	knowledge of several drives for the different actu			ene	arav
	s, etc. and they come up with energy saving sol				
systems	, etc. and they come up with chergy caving co		,	maao	inai
2	and apply fundamental concepts to the modeling, and	alvsis.	and	contro	ol of
	C motors, stepper motors, brushless DC motors, soler				
	atic actuators.	,			
•					
Course Outcome	:				
The student should	l be able to:				
1. Identify key	concepts, architecture and principles concerning	the h	ydra	ulics a	and
pneumatic			-		
	ey concepts and principles concerning modeling, ana			contro	l of
	motors, stepper motors, brushless dc motors, and sole		S.		
	ethods of control algorithms, fault detection and diagn				
	set of potential mechanisms and control solutions for				
	reness about actuators, drives and control elements for				IS
	actuators and its associated drivers for several working				
	nowledge about the architecture and working prin-	ciples	of	the m	iost
	ectrical motor types				
o. Choose and	d use hydraulic, pneumatic, electrical actuators and dri	ves			
	ulic Actuators			<u>7 ho</u>	
	sification of actuators, Hydraulic pumps and supply				
	actuator – Types - Single acting, Double acting special				
packs –accumulate	vic, mounting details, cushioning mechanism, Rotar	y act	ualor	s, po	wer
packs –accumulate	JS.				
Module:2 Pneur	natic Actuators			7 ho	ure
	teristics and applications, Air generation, treatmen	te an	d dia		
	Iter, regulator, lubricator, Pneumatic cylinders, Pneun				
	of Pneumatic Actuators.		notoi	3, Ou	UNC
opood Rogalation					
Module:3 Contro	ol and Regulation Elements			7 ho	urs
	ation Elements – Basics of Direction control valves,	flow	and		
	sic structure of pneumatic and hydraulic systems – Ele			•	
	stems and controls.				
Module:4 Electr	ical DC actuators			6 ho	urs
	g principle, characteristics, classification, Speed con	trol te	chni		
	ns - Speed, direction and position control using H-				
mode.		5			
Module:5 Electr	ical AC actuators			6 ho	urs

AC Motor- Working principle, Speed torque characteristics, Speed control and braking, Single and three phases DC drives – Speed control of three phase induction motor – chopper drives – Need for V/ F drives – Energy saving AC drives Applications.

Module:6	Other Electrical actuators	5 hours
Stepper Mo	tor - Drive circuits for speed and position control - Servo m	notors – Linear
motors – Re	elays- Power convertors	

Module:7 Smart Materials Actuators

5 hours Smart materials and their application for sensing and actuation, Piezoelectric actuator -Linear actuators Hybrid actuators - Applications, shape memory alloys actuator, magnetostrictive actuators, Electrostrictive actuators, Electro - and magnetorheological fluid actuators – Case study.

Module:8	Contemporary Issues
----------	---------------------

2 hours

		Тс	otal Lect	ture hours:	45 hours
Tex	t Book(s)				
1.	Antony Esposito, Fluid Power Sys	stems and Control	(2013),	Prentice-Ha	ll.
Ref	erence Books				
1.	A. K. Gupta, S. K. Arora, Ind Science Press.	dustrial automatio	on and	Robotics (2	2013), University
2.	W. Bolton, Mechatronics: Electr Engineering (2011), Pearson Edu	5	stems ir	n Mechanica	al and Electrical
3.	Andre Veltman, Duco W.J. Pulle, (2007), Springer.	, R.W. De Doncke	er, Fund	amentals of	Electrical Drives
4.	D. Patranabis, Principles of Indus	trial Instrumentation	on (2010)), Tata McG	Graw-Hill.
Мос	de of Evaluation: CAT ,Written Ass	ignment, Quiz an	d FAT		
Rec	commended by Board of Studies	27-07-2022			
Арр	roved by Academic Council	No.67	Date	08-08-2022	2

Course Code	Course Title	L	Т	Р	С
MMHA503L	Robot Dynamics and Programming	3	0	0	3
Pre-requisite	NIL	-	-	versi	-
			1.		
Course Objective	s:				
The Objectives of t					
	ne modelling, simulation, and control of spatial multi-	degre	e-of-	freedo	m
robotic mar	1				
	inematics and dynamics of robotic manipulators. awareness about the trajectory planning and control of	frob	otio o	rm	
3. Flovide life	awareness about the trajectory planning and control c		Juc a	[[[].	
Course Outcome	:				
	g the course, the student will be able to:				
	specifications of various types of Industrial Robots.				
2. Design app	ropriate end effectors for various applications.				
	ematics of various manipulator configurations				
-	equired trajectory planning for the given task.				
	propriate control system for robotic arm.				
6. Prepare the	e program for various robotic applications.				
	luction to Industrial robot			<u>5 ho</u>	
	ustrial robotics – Components of robotics system – Ty II – Types of robotics configurations – DOF of serial ar			s – vv	ork
	c motion of robot manipulator – Tool centre point – Ro			ector.	
Grippers and Tools	· · ·			00101.	
Module:2 Robo	t Kinematics			6 ho	urs
	and finite rotation and translation - Homogeneous ma				
	s: Two link planner, PUMA 560, Stanford arm, S	CARA	anc	Stev	vart
Platform.					
Module:3 Veloc	ity and statics of robot manipulators			6 ho	urs
	r velocity vector and matrix – Forward and inverse	veloc	:itv k		
	s and force analysis of robot manipulator – Identifying				
space.					
	nics of robots			6 ho	
	of links - equation of motion – Forward and inverse				JOOL
manipulator – Lagi	angian formulation of motion – Rigid link Recursive Ac	celera	alion.		
Module:5 Trajec	tory planning			6 ho	urs
	rajectory planning – Joint space trajectory planning	– Ca	artesi		
	- Blending - Continuous trajectory recording (Trajector				
		T			
	ulator control			6 ho	urs
	ol method – Disturbance rejection – PD and PID contro				
torque control – Ac	laptive control – Feedback linearization for under actua	ated s	yster	ns.	
Module:7 RAPI	D Language			8 ho	lire
	basic commands-Motion Instructions-Pick and pla	ce or	perati		
0 0	anual mode, automatic mode, subroutine command b				•
		roblen		Indus	-
Applications of rob	oots - Pick and Place – Machine tending – Painting –	weldi	ing –	fettlin	ig –

Assembly – Service Robot application: Underwater robot –surgical robot – autonomous guided vehicle

Мо	dule:8 Contemporary Issues				2 hours
			Total Lect	ure hours:	45 hours
Тех	kt Book(s)				
1.	Craig, John J., Introduction to F Inc.	Robotics: Mecha	anics and C	Control (200	5), Prentice Hall
Re	ference Books				
1.	Mark W.Spong, M. Vidyasaga publication.	ar, Robotics I	Dynamics a	and contro	l (2008), Wiley
2.	AshitavaGhosal: Robotics- Fur University Press.	ndamental Cor	ncepts and	Analysis	(2014), Oxford
3.	S.R.Deb, Robotics Technology a	nd Flexible Auto	omation (20	10), Tata M	c-Graw Hill.
4.	J.P.Merlet, Parallel Robots (2005	5), Springer	,		
5.	S K SAHA: Introduction to Robot Digits): 978-93-329-0280-0. ISBN	· · · ·	<i>,</i> ·	raw Hill Edu	ication. ISBN (13
Мо	de of Evaluation: CAT ,Written Ass	signment, Quiz	and FAT		
	commended by Board of Studies	27-07-2022			
Ap	proved by Academic Council	No.67	Date	08-08-202	22

Course Code	Course Title	L	T	Ρ	С
MMHA503P	Robot Dynamics and Programming Lab	0	0	2	1
Pre-requisite	NIL	Syll	abus		ion
			1.0)	
Course Objecti					
•	of the course are to:			_	
	e the modelling, simulation, and control of spatial mult	i-degr	ee-of-	freed	dom
	nanipulators.				
	e kinematics and dynamics of robotic manipulators.	<i>.</i> .			
	he awareness about the trajectory planning and control c	of robo	otic ar	m.	
Course Outcon					
	ting the course, the student will be able to:				
	the specifications of various types of Industrial Robots.				
	ppropriate end effectors for various applications.				
,	kinematics of various manipulator configurations				
	e required trajectory planning for the given task.				
	appropriate control system for robotic arm.				
	the program for various robotic applications				
Indicative Expe		Deels		مادمة	
-	Simulation of Four Bar Crank-Rocker, Crank- Crank, and	ROCK	er-Ro	cker	
	n using MTAB Sim-mechanics and ADAMS	b			
	the DH parameters for the Two link planner using Mat-La				
	inverse kinematic problem for two link planner using Mat-				
	position, velocities and acceleration for given manipulator				
	of Robot for Arc Welding applications using Work Space	ירוני	Reclar	iguia	lſ
and Circul					
	he Tool centre point for the given tool or gripper he Industrial robot to follow the contour surface				
	he Industrial robot to draw the given profile in a plain				
	he Industrial robot to draw the given profile in a finite profile in an Incline p	lain			
	vork cell for CNC tending using Rapid Programming	lalli			
	vork cell for CNC tending using Rapid Programming				
11. Simulate v	vork cell for Pelletizing and De-Pelletizing using Rapid P	rograr	nming	I	
I	Total Laboratory Hours	5	30 h	ours	
Text Book(s)					
-	n J., Introduction to Robotics: Mechanics and Control (2	2005)	, Pren	tice	Hall
Inc. Reference Boo	ks				
	Spong, M. Vidyasagar, Robotics Dynamics and cor	ntrol	(2008). W	/ilev
publication			(,,	,
	hosal: Robotics- Fundamental Concepts and Analysis (2)	014).	Oxfor	d	
University		e <i>)</i> ,	0/1101		
	Robotics Technology and Flexible Automation (2010), Ta	ta Mc	-Graw	Hill	
	, Parallel Robots (2005), Springer	1110	2.47		
	.: Introduction to Robotics 2 nd Edition (2016), McGraw Hill	Educ	ation	ISB	N
(13 Diaite)	: 978-93-329-0280-0. ISBN: 93-329-0280-1.	Luuu		100	N.
	ment: Continuous Assessment and Final Assessment Te	st			
		5.			
	by Board of Studies 27-07-2022				

	Course Title	L	Т	Ρ	С
MMHA504L	System Design and Control	3	0	0	3
Pre-requisite	NIL	Sylla	abus v	versi	on
			1.0		
Course Objective					
The Objectives of t					
1. Create an a	wareness about the mechatronics design process	,			
•	students to system modelling and system identification	n of m	echat	ronic	
systems.			: f		
	nterest in students for mathematical simulation of the d	iynam	ICS OF		
systems.	lents to apply the above in a real time industrial applica	ation			
	aents to apply the above in a real time industrial applica	alion			
Course Outcome	:				
	nis course student should be able to:				
	mechatronic system.				
0	e concepts of system and modelling techniques				
	oftware for simulating dynamic systems				
4. Outline the	principles and analysis of basic control systems.				
	timization methods in physical systems				
Examine th	e above for various industrial measurement and control	ol app	licatio	ns	
	uction to Mechatronics systems			6 ho	urs
	chatronics system – Key elements – Mechatronics Des	ign pr	ocess	-	
Traditional and Me	chatronics designs – Model based system design.				
				0 1	
	epts of system and modelling			6 ho	
Concept of system	s - modelling of systems - model representations - blo	ck ula	uram.	uans	sier
function state en	aco roprosontation evetom identification technique				
	ace representation - system identification techniques				
function, state spa nonlinear models.	ace representation - system identification techniques				
nonlinear models.			neariz		of
nonlinear models. Module:3 Model	ace representation - system identification techniques ling of physical systems hathematical models: mechanical, electrical, electrome	s – lii	neariz	ation	of urs
nonlinear models. Module:3 Model	ling of physical systems athematical models: mechanical, electrical, electrome	s – lii	neariz	ation	of urs
nonlinear models. Module:3 Model Development of m Hydraulic and Pne	ling of physical systems athematical models: mechanical, electrical, electrome umatic systems.	s – lii	neariz	ation	of urs
Nonlinear models.Module:3ModelDevelopment of mHydraulic and PnerModule:4Simul	ling of physical systems hathematical models: mechanical, electrical, electrome umatic systems. ation	s – lii echan	ical, 1	ation 6 ho Thern 6 ho	of urs nal, urs
Module:3ModelDevelopment of mHydraulic and PnerModule:4Simulation-basics	l ling of physical systems hathematical models: mechanical, electrical, electrome umatic systems. ation – types – hardware in loop simulations – time respons	s – lii echan e para	ical, 1	ation 6 ho Thern 6 ho rs - ti	of urs nal, urs
Module:3ModelDevelopment of mHydraulic and PnerModule:4Simulation-basics	ling of physical systems hathematical models: mechanical, electrical, electrome umatic systems. ation	s – lii echan e para	ical, 1	ation 6 ho Thern 6 ho rs - ti	of urs nal, urs
nonlinear models. Module:3 Model Development of m Hydraulic and Pner Module:4 Simul Simulation-basics response of 1 st and	ling of physical systems hathematical models: mechanical, electrical, electrome umatic systems. ation – types – hardware in loop simulations – time respons d 2 nd order systems - simulation of systems in software of	s – lii echan e para	ical, 1	ation 6 ho Γhern 6 ho rs - ti t.	of urs nal, urs me
Module:3ModelDevelopment of mHydraulic and PnerModule:4SimulSimulation-basicsresponse of 1 st andModule:5Basic	ling of physical systems hathematical models: mechanical, electrical, electrome umatic systems. ation – types – hardware in loop simulations – time respons d 2 nd order systems - simulation of systems in software of control systems	s – lii echan e para enviro	ical, 1	ation 6 ho Thern 6 ho rs - ti t. 6 ho	of urs nal, me urs
Nonlinear models.Module:3ModelDevelopment of mHydraulic and PneModule:4SimulSimulation-basicsresponse of 1 st andModule:5BasicBasic Elements of	Iling of physical systems hathematical models: mechanical, electrical, electrome umatic systems. ation - types – hardware in loop simulations – time respons d 2 nd order systems - simulation of systems in software of control systems Control System – Open loop and Closed loop system	s – lii echan e para enviro	ical, 1 amete nmen	6 ho 6 ho 6 ho 7 - ti 6 ho cteris	of urs nal, urs me urs
Module:3 Model Development of m Hydraulic and Pner Module:4 Simul Simulation-basics - response of 1 st and Basic Elements of of on-off, P, PI, PD	Iling of physical systems athematical models: mechanical, electrical, electrome umatic systems. ation - types – hardware in loop simulations – time respons 1 2 nd order systems - simulation of systems in software of control systems Control System – Open loop and Closed loop system o and PID Controllers –Implementation issues of PID C	s – lii echan e para enviro	ical, 1 amete nmen	6 ho 6 ho 6 ho 7 - ti 6 ho cteris	of urs nal, urs me urs
Module:3 Model Development of m Hydraulic and Pner Module:4 Simul Simulation-basics - response of 1 st and Basic Elements of of on-off, P, PI, PD	Iling of physical systems hathematical models: mechanical, electrical, electrome umatic systems. ation - types – hardware in loop simulations – time respons d 2 nd order systems - simulation of systems in software of control systems Control System – Open loop and Closed loop system	s – lii echan e para enviro	ical, 1 amete nmen	6 ho 6 ho 6 ho 7 - ti 6 ho cteris	of urs nal, urs me urs
Nonlinear models.Module:3ModelDevelopment of mHydraulic and PnerModule:4SimulSimulation-basicsresponse of 1 st andModule:5BasicBasic Elements of of on-off, P, PI, PDPID Controller – Tu	Iing of physical systems athematical models: mechanical, electrical, electrome umatic systems. ation - types – hardware in loop simulations – time respons 2 nd order systems - simulation of systems in software of control systems Control System – Open loop and Closed loop system and PID Controllers –Implementation issues of PID Control systems.	s – lii echan e para enviro	ical, 1 amete nmen Charao	6 ho Thern 6 ho rs - ti t. 6 ho cteris Modif	of urs nal, me tics fied
Nonlinear models. Module:3 Model Development of m Hydraulic and Pner Module:4 Simulation-basics - Simulation-basics - response of 1 st and Basic Elements of of on-off, P, PI, PD PID Controller – Tu Module:6 Analyst	Iing of physical systems athematical models: mechanical, electrical, electrome umatic systems. ation - types – hardware in loop simulations – time respons 12 nd order systems - simulation of systems in software of control systems Control System – Open loop and Closed loop system and PID Controllers –Implementation issues of PID Control systems sis of systems	s – lii echan e para enviro ns – C Control	ical, 1 amete nmen Charao Iler –	6 ho 6 ho 7 hern 6 ho 7 s - ti t. 6 ho 6 ho 6 ho 8 ho	of urs nal, me urs fied urs
Nonlinear models. Module:3 Model Development of m Hydraulic and Pner Module:4 Simul Simulation-basics - response of 1 st and Module:5 Basic Basic Elements of of on-off, P, PI, PD PID Controller – Tu Module:6 Analys Time domain and f	Iing of physical systems athematical models: mechanical, electrical, electrome umatic systems. ation - types – hardware in loop simulations – time respons 2 nd order systems - simulation of systems in software of control systems Control System – Open loop and Closed loop system and PID Controllers –Implementation issues of PID Control of systems sis of systems requency domain analysis of the systems using Routh	s – lii echan e para enviro ns – C Control Hurwi	ical, 1	6 ho 6 ho 7 hern 6 ho 7 s - ti t. 6 ho 6 ho 6 ho 1 s 8 ho 1 erion	of urs nal, me urs fied urs
Nonlinear models.Module:3ModelDevelopment of mHydraulic and PnerModule:4SimulSimulation-basics - response of 1st andModule:5BasicBasic Elements of of on-off, P, PI, PDPID Controller – TuModule:6AnalyTime domain and f – Root locus – Free	ling of physical systems athematical models: mechanical, electrical, electrome umatic systems. ation - types – hardware in loop simulations – time respons 2 nd order systems - simulation of systems in software of control systems Control System – Open loop and Closed loop system and PID Controllers –Implementation issues of PID Control of controllers. sis of systems requency domain analysis of the systems using Routh quency domain analysis –Gain margin – Phase margin	s – lii echan e para enviro ns – C Control Hurwi	ical, 1	6 ho 6 ho 7 hern 6 ho 7 s - ti t. 6 ho 6 ho 6 ho 1 s 8 ho 1 erion	of urs nal, me urs fied urs
Module:3 Model Development of m Hydraulic and Pner Module:4 Simul Simulation-basics - response of 1 st and Module:5 Basic Basic Elements of of on-off, P, PI, PD PID Controller – Tu Module:6 Analys Time domain and f	ling of physical systems athematical models: mechanical, electrical, electrome umatic systems. ation - types – hardware in loop simulations – time respons 2 nd order systems - simulation of systems in software of control systems Control System – Open loop and Closed loop system and PID Controllers –Implementation issues of PID Control of controllers. sis of systems requency domain analysis of the systems using Routh quency domain analysis –Gain margin – Phase margin	s – lii echan e para enviro ns – C Control Hurwi	ical, 1	6 ho 6 ho 7 hern 6 ho 7 s - ti t. 6 ho 6 ho 6 ho 1 s 8 ho 1 erion	of urs nal, me urs fied urs
Nonlinear models. Module:3 Model Development of m Hydraulic and Pner Module:4 Simul Simulation-basics - response of 1 st and Module:5 Basic Basic Elements of of on-off, P, PI, PD PID Controller – Tu Module:6 Analy Time domain and f – Root locus – Free Polar Plot – Nyquis Module:7 Desig	Iing of physical systems aathematical models: mechanical, electrical, electrome umatic systems. ation - types – hardware in loop simulations – time respons 2 nd order systems - simulation of systems in software of control systems Control System – Open loop and Closed loop system 0 and PID Controllers –Implementation issues of PID Control get controllers. sis of systems requency domain analysis of the systems using Routh quency domain analysis –Gain margin – Phase margin stability criterion.	s – lii echan e para enviro ms – C Control Hurwi n - Boc	ical, 1 amete nmen Charao Iler – 1 itz crit	6 ho 6 ho 7 hern 6 ho 7 s - ti t. 6 ho 6 ho 7 s - ti 8 ho 8 ho 9 erion t – 5 ho	of urs nal, me urs fied urs urs
Module:3 Model Development of m Hydraulic and Pnen Module:4 Simul Simulation-basics - response of 1 st and Module:5 Basic Basic Elements of of on-off, P, PI, PD PID Controller – Tu Module:6 Analy Time domain and f – Root locus – Free Polar Plot – Nyquis Module:7 Desig Optimization – production	Iing of physical systems athematical models: mechanical, electrical, electrome umatic systems. ation - types – hardware in loop simulations – time respons 2 nd order systems - simulation of systems in software of control systems Control System – Open loop and Closed loop system and PID Controllers –Implementation issues of PID Control systems and PID Controllers. sis of systems requency domain analysis of the systems using Routh quency domain analysis –Gain margin – Phase margin at stability criterion. noptimization oblem formulation - constraints – overview of optimination	s – lii echan e para enviro ms – C Control Hurwi n - Boc	ical, 1 amete nmen Charao Iler – 1 itz crit	6 ho 6 ho 7 hern 6 ho 7 s - ti t. 6 ho 6 ho 7 s - ti 8 ho 8 ho 9 erion t – 5 ho	of urs nal, me urs fied urs urs
Module:3ModelDevelopment of mHydraulic and PnetModule:4SimulSimulation-basics - response of 1st andModule:5BasicBasic Elements of of on-off, P, PI, PDPID Controller – TuModule:6AnalysTime domain and f – Root locus – Free Polar Plot – NyquisModule:7Desig Optimization – pro optimal design of n	Iing of physical systems aathematical models: mechanical, electrical, electrome umatic systems. ation - types – hardware in loop simulations – time respons 2 nd order systems - simulation of systems in software of control systems Control System – Open loop and Closed loop system 0 and PID Controllers –Implementation issues of PID Control get controllers. sis of systems requency domain analysis of the systems using Routh quency domain analysis –Gain margin – Phase margin stability criterion.	s – lii echan e para enviro ms – C Control Hurwi a - Boo	ical, 1 amete nmen Charao Iler – I itz crit le Plo	ation 6 ho Fhern 6 ho rs - ti t. 6 ho cteris Modif 8 ho terion t – 5 ho	of urs nal, me tics fied urs es-

app	lications					
Мо	dule:8	Contemporary Issues				2 hours
				Total Lectu	re hours:	45 hours
Тех	t Book	s)				
1.		sshetty and Richard A. Ko ge learning India Pvt. Ltd		cs System De	sign (2012),	2 nd edition,
Ref	erence	Books				
1.		ton, Mechatronics - Ele ering (2010), Pearson Ec		l systems in	Mechanical	and Electrical
2.	-	a, Modern Control Engine		Prentice Hall o	f India Pvt. I	Ltd.
3.	FaridG India P	olnaraghi, Benjamin C. K vt Ltd	uo, Automatic	Control system	ns (2014), 9	th edition, Wiley
4.		C Karnopp, Donald L. John Wiley & Sons.	Margolis Ro	onald C. Rose	enberg, Sys	stem dynamics"
		aluation: CAT ,Written As		z and FAT		
		ded by Board of Studies y Academic Council	27-07-2022 No.67	Date	08-08-2022	2

Course Code	Course Title	L	Т	Ρ	С
MMHA505L	Industrial Controllers	3	0	0	3
Pre-requisite	NIL	Svl	labus	vers	ion
		- J.	1.0		
Course Objective	s:			-	
The Objectives of					
	functions of various controllers used in industrial auto	omatio	on svs	tems	
	architecture, programming of microcontroller and				
devices.			5		
3. Discuss the	e architecture and functions of PLC systems and lear	n PLC	progr	amm	ning.
					Ū
Course Outcome):				
The student should	d be able to				
1. Compare t	ne architecture and functions of micro-computing sys	tems f	or indu	ustria	al
application	S.				
2. Explain the	architecture 8051 Microcontroller.				
Create mic	rocontroller assembly language programs.				
Outline the	interfacing techniques with 8051 microcontroller				
	architecture and functions of PLC and program PLC				
	ection of industrial controllers, communications stand	ards a	and dis	stribu	ted
control sys					
	luction to programmable controllers				ours
	ollers for industrial automation – General description of				
	essors, microprocessors, microcontrollers, Programm	able L	ogic C	Contr	oller
(PLC) and soft PL	Cs.				
	tecture of Microcontrollers				ours
	rchitecture of typical microcontroller. Overview of the	e arch	itectur	e of	high-
end processors.					
Module:3 Micro	controller programming			6 h	ours
	ruction sets; Addressing modes; Timers and counters	s' Ass	embly		
programs with algo		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ennerg	lang	aage
Module:4 Interfa	acing with 8051			6 h	ours
	nterrupt programming, interfacing with keyboards,	LEDs	LCD		
	ensors, motor drivers, etc.		,	-, -	
Module:5 Progr	ammable Logic Controllers			6 h	ours
	LC; Configuring I/O modules; memory, programmi	ng de	vices.	pro	gram
scan; Soft PLCS; ⁻		0		•	0
Module:6 PLC F	Programming			6 h	ours
Programming met	nods; Timers and counters, math instructions, data m	anipu	lations	and	
PID control function	ns.				
	trial Communication standards and HMI				ours
	tandards; HMI/MMI, overview of supervisory an				
-	Studies:Study ofmicrocontroller and PLC control	syster	ns fo	r va	rious
industrial cases.					
		<u> </u>			
Module:8 Conte	mporary Issues			2 h	ours

		То	otal Lecture	e hours:	45 hours
Тех	kt Book(s)				
1.	David Calcutt, Frederick Cowa Applications Based Introduction (rchizadeh,	8051 I	Microcontroller: An
2.	Manish K Patel, The 8051 Mic McGraw-Hill Publishing Co Ltd.	rocontroller Base	ed Embedo	led Sys	tems, (2017), Tata
3.	Frank D Petruzella, Programma McGraw-Hill Higher Education.	able Logic Contr	ollers Pape	erback (2010), 4th edition,
Ref	ference Books				
1.	Yu-Cheng Liu, Glenn A. Gibson Architecture, Programming and I				
2.	Mohamed Ali Mazidi, Janice Gi and Embedded Systems: Using Education.	llispieMazidi, Rol	inMcKinlay	, The 8	051 Microcontroller
3.	W. Bolton, Programmable Logic edition.	Controller (2015)	, Elsevier-N	lewnes p	oublication, 6th
4.	A. K. Gupta, S. K. Arora, Industri Publications, India.	al Automation an	d Robotics	(2013),	3 rd edition, Lakshmi
Mo	de of Evaluation: CAT ,Written Ass	signment, Quiz a	ind FAT		
	, ,	27-07-2022			
Арр	proved by Academic Council	No.67	Date	08-08-20)22

Cou	rse Code		Course Title)		L	Т	Ρ	С
	A505P		ial Controlle			0	0	2	1
	requisite	NIL				Syll	abus	versi	on
	•						1.0)	
Cou	rse Objective	S							
The	Objectives of t	the course are to:							
		functions of various							
2		architecture, progra	mming of m	icrocont	roller and ir	nterfac	cing v	vith fi	eld
	devices.			. .		-			
		e architecture and fur	ictions of PL	C system	is and learn	PLC p	progra	mmin	g.
	rse Outcome								
	student should		unations of m	ioro oom	puting over	ma fa	rindu	otrial	
I	application:	he architecture and fu		icro-com	iputing syste	ms io	rinau	sinai	
2		s. e architecture 8051 M	icrocontroller						
		rocontroller assembly							
		interfacing technique							
		architecture and fun				vith lao	dder lo	ogic.	
		ection of industrial co							ted
	control syst								
	cative Experi								
1.		amming of microcontr							
2.		display interfacing wi							
3.		ycle and motor speed		g microc	ontroller.				
5.		unications using micr							
6.		nming for simple con		ons with I	ogic, timers,	coun	ters,		
7	data manipulation and math instructions. Interfacing input and output field devices with PLC systems.								
7. 8.		of electro-pneumatic							
о. 9.		ottle filling system usi		Iyuraulic	systems.				
9. 10.		nalog field devices w							
10.	Interfacing A				atory Hours	20	hour	-	
Taxt	Book(c)		101		atory nous	5 30	nour	>	
	Book(s)	utt, Frederick Cowa		Dorohizo	dob 9051	Mioro	oontra	llor	۸n
1.		Based Introduction (2				IVIICIO	contro	лег.	AII
2.		atel, The 8051 Micro			bedded Sv	stems	(201	7) T	ata
۷.		Publishing Co Ltd			ibedded Cy	Sterns	, (201	<i>r)</i> , r	ala
3.		truzella, Programmal	ole Logic Co	ntrollers	Paperback	(2010)), 4th	editi	on.
•.		Higher Education.				(_0.0	,,		,
Refe	rence Books								
1.	Yu-Cheng Li	iu, Glenn A. Gibson,	Microcompu	ter Syste	ems: The 80	86 / 8	8088	Famil	y —
	Architecture,	Programming and D	esign (2007)	, Second	l Edition, Pre	entice	Hall o	f India	а.
2.		li Mazidi, Janice Gillis							۶r
		led Systems: Using A	ssembly and	I C (2011	I), Second E	dition,	, Pear	son	
-	Education.								
3.		Programmable Logic	Controller (2	2015), E	lsevier-New	nes p	ublica	tion,	6th
	edition.		:		:) ord			
4.		S. K. Arora, Industria	a Automation	and Ro	DOTICS (2013), 3 rd e	altion	,	
Maria		olications, India.	ooment and	Tinal Ar		ot			
		ent: Continuous Asse			Sessment 16	รเ			
	oved by Acad	Board of Studies	27-07-2022 No.67	Date	08-08-202	2			
ЧЧЧ	oved by Acau		110.07	Dale	00-00-202	<u> </u>			

Course Code	Course Title	L	Т	Ρ	С
MMHA506L	Advanced Control Systems	3	0	0	3
Pre-requisite	NIL	Sylla	bus	vers	sion
-			1.0)	
Course Objective	es :				
	the continuous time control system design wit	h rea	listic	sys	stem
	a digital control system for a continuous system model.				
	e knowledge of state variable models and fundamen		ions	of	state
feedback o	•				
4. To provide	e understanding of different control algorithms consid	ering r	nonlir	eari	ities,
uncertainit	ies and robustness.	_			
Course Outcome	:				
On the completior	of this course the student will be able to:				
	ntinuous time control system design with realistic syster	n spec	ificat	ions	
	f discrete system response using Z-Transform.				
	ollability/ observability of a system.				
	igital Controller with realistic system specifications.				
0	state feedback control law for a time domain specificat	tion.			
	d control system design for for non linear systems.				
	nd the basics of optimal control, robust control, predicti	ve con			
	ical Control Systems				ours
	ck systems and design of PID Controllers - Design		trolle	rs u	ising
Root Loci and Boo	le plots – Lead, Lag, Lag-lead and parallel compensate	ors.			
Module:2 Digita	I Control Systems				ours
	ding – Z-transform - Correlation between time respons	e and I	root I	ocat	tions
in S plane and Z p	lane – Direct design in Z and W plane.				
	I Controller Design			<u>6 h</u>	ours
State space desig	<u>n – Design via pole placement - digital PID controller de</u>	esign			
Module:4 State					ours
	esentations – conversion from transfer function mo	del –	solvir	ng t	ime-
invariant state equ	iations – Controllability – Observability.				
	ol System Design in State Space				ours
	ontrollers in state space - design of servo and regulator	y conti	roller	s – s	state
observers.					
	near and Predictive Control				ours
	non-linear system, phase plane method - Liapunov's				
	criterion - Model reference and predictive control	syste	ms -	- st	ate
estimators – Kalm	an algorithm.				
-					
	visory Level Systems				ours
	daptive control, optimal control, robust control, m	ulti-var	iable	CO	ntrol
systems.					
Case studies: Cor	trol of motion and other dynamics of mechatronics syst	tems			
Module:8 Conte	mporary Issues			2 h	ours

	Total Lecture hours:	45 hours
Тех	t Book(s)	
1.	K. Ogata, Modern Control Engineering, (2010) Prentice Hall of India Pr Delhi.	vt. Ltd., New
Ref	erence Books	
1.	Gene F. Franklin, J. D. Powell, A E Naeini, Feedback Control of Dyr (2008) Pearson India.	namic Systems,
2.	K. Ogata, Discrete-Time Control Systems, (2009) Prentice Hall of India Delhi.	a Pvt. Ltd., New
3.	Alok Sinha, Linear Systems: Optimal and Robust Control, (2007) Taylor &	& Francis.
4.	Brian D. O. Anderson and John B. Moore, Optimal Control: Linear Qua (2007) Dover Publications	dratic Methods,
5.	H.K. Khalil, Nonlinear Systems, (2001) Prentice Hall.	
Mo	de of Evaluation: CAT ,Written Assignment, Quiz and FAT	
Red	commended by Board of Studies 27-07-2022	
App	proved by Academic Council No.67 Date 08-08-2022	

Course Code		Course Title		L	Т	Ρ	С	
MMHA507L	Industr	rial Process Autor	mation	2	0	0	2	
Pre-requisite	NIL			Syllabus versio				
				- June	1.0			
Course Objectives	:					-		
The Objectives of th								
1. Impart know	ledge on PLC, Su	pervisory control a	nd factory auto	mation)			
Course Outcome								
At the end of the co	ourse, students sh	ould be able to						
1. Explain the l	ndustrial process	automation and its	strategy					
		mputer control in a						
		ystem using PLC a						
		s for developing the	e communicatio	on Infra	struc	ture	Į.	
	II for industry auto							
6. Apply autom	ation systems in c	different industrial p	processes					
Module:1 Indus	trial Process Aut	tomation				4 h	ours	
Need for process			automation s	ystem,	Cor	icep	ts of	
process automation								
Module:2 Autor	mation strategy					4 h	ours	
Physical architectur	e of an automatior	n system- Plant wid	le control syste	ems, Pi	roces	s co	ontrol	
systems-continuous				ew.				
		ontrol strategies 8					ours	
Modes of computer		troduction, Archite	cture and com	ponent	ts, Co	ontro	ollers	
and functional featu					-			
Module:4 SCAE							ours	
Introduction, Archit technology, Interfac			rs and function	onal te	eatur	es,	RIU	
		tion Infrastructure	<u>م</u>			4 h	ours	
Serial communication				Inetwo	nrks .			
Device Net - Profibu				1 1101110	Since	112		
	ator consoles and					4 h	ours	
HMI Basics, Type			e Interface -	HMI F	roce			
Interaction styles a								
conceptual models	HCI and the Wo	orld Wide Web HC	CI - security a	ccessib	oility	ofι	iser	
interfaces, evaluation		computing.						
	Studies						ours	
Case studies on ap		nation systems in d	ifferent industri	al proc	cesse			
Module:8 Conte	emporary Issues						ours	
		To	tal Lecture ho	urs:		<u>30 h</u>	ours	
Text Book(s)								
1. B. R. Mehta and Y. J. Reddy, Industrial Process Automation Systems Design and						and		
· · ·	, Elsevier Inc. 201	5.						
Reference Books								
1. K.L.Sharma, Ov	erview of Industria	al Process Automa	tion, Elsevier, 2	2011				
2. Frank Lamb, In	dustrial Automatic	on: Hands On, McG	Graw-Hill Profes	sional	, 201	3		
Mode of Evaluation	CAT ,Written Ass	signment, Quiz and	d FAT					
Recommended by E	Board of Studies	27-07-2022						
Approved by Acade		No.67	Date 08-0	8-202	2			
		·	•					

Cours	e Code	Course Title	L	Τ	Ρ	С
MMHA	507P	Industrial Process Automation Lab	0	0	2	1
Pre-re	quisite	NIL	Sylla	bus	vers	ion
				1.	0	
	e Objecti					
		of the course are to:				
1.	Impart kr	owledge on PLC, Supervisory control and factory autor	nation			
•	0.1					
	e Outcom					
		course, students should be able to				
		ne Industrial process automation and its strategy				
		rate the Modes of computer control in automations	المما مطا	tm /		
		simple automation system using PLC and SCADA for t			ure	
		ne Industrial networks for developing the communicatio	nimas	SUUCI	ure	
		HMI for industry automation system				
0.	Apply au	comation systems in different industrial processes				
Indica	tive Expe	riments				
1.		on of bottle filling system using PLC				
2.		nent of HMI interface with PLC Programming				
3.		gramming for Elevator control applications				
4.		ntation of SCADA for supervisory control of Boiler	plant	in si	mula	ation
	environm	• •	•			
5.	Impleme	ntation of DCS for overall control of cement fa	ctory i	n si	imula	ation
	environm		,			
6.	Interfacir	g HMI with internet for controlling a remote process				
		Total Laboratory Ho	ours 3	80 hc	ours	
Text B						
1.	B. R. Me	hta and Y. J. Reddy, Industrial Process Automation S	Systems	s De	sign	and
		ntation, Elsevier Inc. 2015.				
Refere	nce Bool	(S				
1.	K.L.Shar	ma, Overview of Industrial Process Automation, Elsevie	er, 2011	1		
2.		mb, Industrial Automation: Hands On, McGraw-Hill Pro			013	
Mode of	of Assess	ment: Continuous Assessment and Final Assessment T	est			
Recom	mended I	by Board of Studies 27-07-2022				
		ademic Council No.67 Date 08-08-20	022			

Course Code	Course Title	L	т	Ρ	С
MMHA601L Machine Vision Systems			0	0	3
Pre-requisite	NIL	Syll	abus		ion
Course Objectiv			1.	0	
Course Objectiv	the course are to:				
2	students to the fundamentals of image formation;				
	hage processing techniques for computer vision				
	nd the shape and region analysis.				
	an appreciation for various issues in the design of c	compu	iter v	ision	and
	ognition systems; and				
	he student with programming experience from imp	lemen	iting	comp	outer
	object recognition applications.				
Course Outcom					
	this course student should be able to:				
	ate the image processing and image analysis techn	iques	by a	mac	hine
vision sys	tem. ate the possibilities and limitations of application of im		rooo	noina	and
computer		laye p	noce	ssing	anu
	arious image enhancement and restoration techniques.				
	colour image processing, image compression, image	e sea	menta	ation	and
representa		3			
	he techniques for image enhancement and image resto	oratior	ı.		
Interpret in	mage segmentation and representation techniques.				
Module:1 Intro				5 ho	ours
Human Vision - M	lachine Vision and Computer Vision – HMI				
Madula 0 Uland	and a second a			7 1	
	ware Components	<u> </u>			ours
Manual & Auto sh	nalog, Digital- CID, CCD, CMOS, Camera Calibration	n - FI	ame	Grad	bber,
Mariual & Auto Si					
Module:3 Lighti	ng System			5 h	ours
	ers, Lighting sources, selection - Lighting Techniques -	Type	and s		
g					
Module:4 Image	Acquisition			7 h	ours
	erfaces, Camera Computer Interfaces, Specifications a	ind se	lectio		
Module:5 Image	e Processing			8 ho	ours
	Digital Image-Filtering technique -Processing of bir				
	ation- thresholding-connectivity-noise reduction-edg	je d	etecti	on-re	gion
growing and region	on splitting - binary and gray morphology operations.				
Meduler	Anchesia			7 1-	
Module:6 Image		lutio			ours
	on-Texture Analysis -Pattern recognition, image rea rocessing, Template Matching -Decision Making, 3				
Techniques	ocessing, remplate matching -Decision making, 5			5 VIS	
Module:7 Pract	ical Applications			4 h	ours
	achine vision in Automotive Industries, Manufacturing,	Electr	onics		
	Biomedical, Robotics, Agricultural Applications.		2.1100	,	
	, , , , , , , , , , , , , , , , , , ,				
Module:8 Conte	emporary Issues			2 ho	ours

		Тс	otal Lectu	ire hours:	45 hours				
Тех	Text Book(s)								
1.	E. R. Davies, ,(Machine Vision Press.	: Theory, A	Algorithms	s, Practica	lities (2014Academic				
Ref	ference Books								
1.	Alexander Hornberg, Handbook on	Machine Vi	sion (200	6), Wiley.					
2.	Milan Sonka, Vaclav Hlavac, Roge Vision (2014), Cengage Learning.	r Boyle, Ima	ge Proce	ssing Analy	sis and machine				
3.	Rafael C. Gonzalez, Richard Euge	ne Woods, [Digital Ima	age Proces	sing (2009), Pearson.				
4.	Herbert Freeman, Machine Vision: Academic Press.	Algorithms,	Architect	ures and S	ystems (2012),				
Mo	de of Evaluation: CAT ,Written Assig	gnment, Qu	iz and FA	T					
Red	commended by Board of Studies	27-07-2022	2						
App	proved by Academic Council	No.67	Date	08-08-202	22				

Course Code	Course Title	L	Т	Р	С
MMHA602L	Mobile and Autonomous Robots	3	0	0	3
Pre-requisite	Syll	abus	vers	sion	
			1	.0	
Course Objectiv					
	the course are to; e basic concepts of Mobile Robot and its types.				
	ous types of locomotion and its kinematics behavior.				
5	id the important of localization and its associated sensor	svst	em		
	ous path planning algorithm and task allocation.	0,01	•••••		
Course Outcom	e:				
After completing t	he course, the student will be able to:				
	e various types of autonomous system and its challenge	s.			
-	e types of locomotion and its kinematic constrain.				
	e suitable sensors for localizations in mobile robotics sys		- - - v		
robotic sys	path planning with various algorithm and task allocation	on pr	opier	n in I	multi
	arious application of service and industrial autonomous	roboti	ic sve	stem	
0. Diocuco vi		0000	lo oyc		
Module:1 Introd	duction			6 h	ours
Tele-operated R	obot – Master and slave - Autonomous Robot	- C	ompo	onent	s of
	otic system – challenges in autonomous robot – redur				
types of autonom	ous robotic system.				
Module:2 Loco				-	ours
	ion – Key issues in locomotion –Wheeled mobile robot	. – typ	pes o	of whe	el –
wheel stability – v	vheel configurations - biomimetic locomotion				
Module:3 Kinen	natics			7 h	ours
	ot – car-link mobile robot – Degree of mobility- Insta	ntane	ous		
Rotation					
Module:4 Perce					ours
	- Heading Sensors- Ground-Based RF Beacons and				
	ioning- Odometry- Active Beacon Navigation Systems	- Lar	ndma	rk, S	izing
and Torque Calcu	liations.				
Module:5 Local	ization			7 h	ours
	and mapping - Challenges in localizations – IR based lo	ncaliz	ation		
	is – Ultrasonic based localizations -Map representation				
	zation scheme – other localization systems				
•					
Module:6 Plann	ing, Navigation and Collaborative Robots			7 h	ours
	ompetences for Navigation: Planning and Reacting: P				
	position , Potential field – Obstacle avoidance: Bug algo			[•] algor	ithm
- Vector field hist	ogram – Dynamic window approach - Navigation Archit	ectur	es		
Modula:7 Mult:	robote and its application			1 6	0
	robots and its application Ilti robot system – leader less mobile robot system - ta		ocati		ours
	m robotics. Applications - Military mobile robots – U				
	urveillance robots – Nano robots – Case study.		-alci	1000	
	antemarico roboto mario roboto Gado diady.				

Мо	dule:8 Contemporary Issues	2 hours
Tot	tal Lecture hours:	45 hours
Тех	xt Book(s)	
1.	Roland Siegwart, Illah Reza Nourbakhsh, Davidescaramuzza: Autonomous Mobile Robots, (2011). The MIT Press. ISBN: 9780262	
Re	ference Books	
1.	FarbodFahimi, Autonomous Robots Modeling, Path Planning a Springer. ISBN: 9780387095370.	nd control, (2009),
2.	Bruno Siciliano, OussamaKhatib, Handbook of Robotics 2ndeditio ISBN: 9783319325507.	n, (2016), Springer.
3.	Shuzhi Sam Ge, Autonomous Mobile Robots: Sensing, Control, D Applications (2006), CRC Press, Taylor and Francis Group.	ecision making and
4.	Jitendra R. Rao, Ajith K. Gopal, Mobile Intelligent Autonomous Sys Press, Taylor and Francis Group. ISBN: 9781439863008.	stems, (2012), CRC
5.	Krzysztof Kozlowski, Robot Motion and Control, (2012), 9781447123422.	Springer. ISBN:
	de of Evaluation: CAT ,Written Assignment, Quiz and FAT	
	commended by Board of Studies 27-07-2022	-
Ар	proved by Academic Council No.67 Date 08-08-202	2

Course Code	Course Title	L	т	Ρ	С
MMHA603L	MEMS and Microsystems	3	0	0	3
Pre-requisite	NIL	Sy	labus		sion
Course Objective	e '		1	.0	
The Objectives of					
	ling the concept of MEMS and Microsystems.				
	he diverse technological and functional approaches				
3. Provide an	insight on micro sensors, actuators and micro fluidics				
0.1					
Course Outcom	: nis course student should be able to:				
•	te the micro fabrication techniques				
	ether using a MEMS based solution is the relevant and	bes	t appr	oach	
3. Select the	nost suitable manufacturing process, actuators, senso				
micro fabri					
	e knowledge on general properties of Microfluidics and	phy	sics ir	volve	ed in
liquid flow	nalyze the microfabrication techniques in Bio electro m	echa	anical	svste	eme
	MEMs Fluid structure interaction in Microflow devices	COIR	anioai	Syst	51115
	uction to MEMS and micro system design			-	ours
	system definition, Material Properties, Structural be	ehav	ior, F	abric	ation
technologies.					
Module:2 Sense	ors used in MEMs and microsystems			6 h	ours
	sensors used for MEMS and microsystems, sensir	ng n	netho		
transduction, feed	back systems.				
Module:3 Micro	actuatora			6 h	0.1170
	nd working of micro-actuators-Thermal actuators-SM	<u>1Δ</u> 2	Inctuate		ours
	Electrostatic actuators-micro grippers-micro motors.		lotaut	5101	1020
	• • •				
Module:4 Micro				6 h	ours
Fluid flow ,micro s	cale transport, different components of a micro fluidic s	yste	m		
Module:5 Desig	n aspects of MEMs and microsystems			7 h	ours
	ccelerometers-vibration control of a plate -part of a n	nicro	o syste		
0	o dispenser design.		,	,	
mirror design -Mic					
Module:6 Bio el	ectro mechanical systems				ours
Module:6 Bio el Bio-MEMS and n	icro systems, -examples of micro systems in biolo	ogy-	lab-or		
Module:6 Bio el Bio-MEMS and n		ogy-	lab-or		
Module:6 Bio el Bio-MEMS and n Diagnostics at the	icro systems, -examples of micro systems in biolo	ogy-	lab-or	i-a c	
Module:6 Bio el Bio-MEMS and n Diagnostics at the Module:7 Optica	icro systems, –examples of micro systems in biolo micro scale with examples.			1-a c 5 h	hip- ours
Module:6 Bio el Bio-MEMS and n Diagnostics at the Module:7 Optica Micro opto-electro	icro systems, –examples of micro systems in biolo micro scale with examples. Al MEMs and micro systems nic devices, micro optical switches, micro optical arrays			n-a c 5 h panel	hip- ours Is
Module:6 Bio el Bio-MEMS and n Diagnostics at the Module:7 Optica Micro opto-electro	icro systems, –examples of micro systems in biolo micro scale with examples. Al MEMs and micro systems			n-a c 5 h panel	hip- ours
Module:6 Bio el Bio-MEMS and n Diagnostics at the Module:7 Optica Micro opto-electro	icro systems, –examples of micro systems in biolo micro scale with examples. Al MEMs and micro systems nic devices, micro optical switches, micro optical arrays	s in s	solar	n-a c 5 h panel	ours ours ours
Module:6 Bio el Bio-MEMS and n Diagnostics at the Module:7 Optica Micro opto-electro	icro systems, –examples of micro systems in biolo micro scale with examples. Al MEMs and micro systems nic devices, micro optical switches, micro optical arrays mporary Issues	s in s	solar	5 h 5 h panel 2 h	ours ours ours

Reference Books							
1.	James J. Allen, Micro Electro Mechanical System Design (2005), CRC Press, Taylor & Francis Group.						
2.	Jacopo Iannacci, Practical Guide to RF-MEMS (2013), John Wiley & Sons Ltd.						
3.	MinhangBao, Analysis and Desig	n Principles of M	EMS dev	/ices (2005), Elsevier.			
4.	Marc J. Madou, Fundamentals of	Microfabrication	and Nan	otechnology, (2011), CRC			
5.	Tai-Ran Hsui, MEMS & Microsystems: Design, Manufacture and Nano scale Engineering (2008), John Wiley and Sons Ltd.						
6.	 V. Choudhary, K. Iniewski, MEMS: Fundamental Technology and Applications, CRC Press, (2017). 						
Mo	Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT						
Red	Recommended by Board of Studies 27-07-2022						
App	proved by Academic Council	No.67	Date	08-08-2022			

	Course Title	L T P					
MMHA604L	Data Acquisition and Digital Signal Processing	3			3		
Pre-requisite	Syllabus version						
			1.0				
Course Objectiv							
Course Objectiv	es. stand the mathematical representations of continuou	is tim	e disi	rete	time		
	representations.		c, uio	51010	unic		
9	e Discrete time systems using Z - transform.						
	and implement IIR filters and FIR filters						
	knowledge and ability to use the appropriate to	ols lik	e dig	ital s	ignal		
processor	s to build DSP systems for real time problems.						
0							
Course Outcome	a : n of this course the student will be able to:						
	Ind the continuous time, discrete time and digital repres	entati	ons a	nd its			
limitations	•	ontati			,		
	d the Z transform and analyze the System response.						
	d implement IIR filtering operations with the real time	constr	aints.				
9	-IR filter for specific digital signal applications.						
	iding the DAQ Hardware and Software requirements a	and its					
implement							
	ns of Signal processing techniques to speech signals.			noori	na		
7. Identify the techniques, skills and modern technical tools necessary for engineering							
practice to		July lo	or engi	neen	ng		
practice to	design and simulate a DSP systems.		or engi	neen	ng		
· · · · · · · · · · · · · · · · · · ·					ours		
Module:1 Discr Systems and Sig	ete Systems and Signals nals – classification –continuous and discrete system			4 h	ours		
Module:1 Discr	ete Systems and Signals nals – classification –continuous and discrete system			4 h	ours		
Module:1 Discr Systems and Sig and Digital to ana	ete Systems and Signals ete Systems and Signals nals – classification –continuous and discrete system logconvertors			4 h to d	ours ligital		
Module:1 Discr Systems and Sig and Digital to ana Module:2 Data	ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems:	ns – <i>F</i>	Analog	4 h to d 5 h	ours ligital		
Module:1 Discr Systems and Sig and Digital to ana Module:2 Data	ete Systems and Signals ete Systems and Signals nals – classification –continuous and discrete system logconvertors	ns – <i>F</i>	Analog	4 h to d 5 h	ours ligital		
Module:1 Discr Systems and Sig and Digital to ana Module:2 Data Basics of DAQ Ha	ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems:	ns – <i>F</i>	Analog	4 h to d 5 h ogy	ours		
Module:1DiscrSystems and Sigand Digital to anaModule:2DataBasics of DAQ HaModule:3DAQ	ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems: ardware and Software –Concepts of Data Acquisition a	ns – A	Analog	4 h to d 5 h ogy 6 h	ours ours ours		
Module:1 Discr Systems and Sig and Digital to ana Module:2 Data Basics of DAQ Ha Module:3 DAQ Installing Hardwa	ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems: ardware and Software –Concepts of Data Acquisition a system Implementation	ns – A and te	Analog	4 h to d 5 h ogy 6 h	ours ours ours		
Module:1DiscrSystems and Sigand Digital to anaModule:2DataBasics of DAQ HaModule:3DAQInstalling HardwaDigital and Analog	ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems: ardware and Software –Concepts of Data Acquisition a system Implementation re, Installing drivers -Configuring the Hardware – ado gl/O function – Buffered I/O – Real time Data Acquisiti	ns – A and te	Analog	4 h to d 5 h ogy 6 h hard	ours igital ours ours ware		
Module:1DiscrSystems and Sigand Digital to anaModule:2DataBasics of DAQ HaModule:3DAQInstalling HardwaDigital and AnalogModule:4Discr	ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems: ardware and Software –Concepts of Data Acquisition a system Implementation re, Installing drivers -Configuring the Hardware – ado gl/O function – Buffered I/O – Real time Data Acquisiti etization of signals	ns – A and te dressir	Analog rminol	4 h to d 5 h ogy 6 h hard	ours ours ours ware ours		
Module:1DiscrSystems and Sigand Digital to anaModule:2DataBasics of DAQ HaModule:3DAQInstalling HardwaDigital and AnalogModule:4DiscrIntroduction to Di	ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems: ardware and Software –Concepts of Data Acquisition a system Implementation re, Installing drivers -Configuring the Hardware – ado gl/O function – Buffered I/O – Real time Data Acquisiti etization of signals gitizing Analog Signals, Z-Transformation- Fast Fourie	ns – A and te dressir	Analog rminol	4 h to d 5 h ogy 6 h hard	ours ours ours ware ours		
Module:1DiscrSystems and Sigand Digital to anaModule:2DataBasics of DAQ HaModule:3DAQInstalling HardwaDigital and AnalogModule:4Discr	ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems: ardware and Software –Concepts of Data Acquisition a system Implementation re, Installing drivers -Configuring the Hardware – ado gl/O function – Buffered I/O – Real time Data Acquisiti etization of signals gitizing Analog Signals, Z-Transformation- Fast Fourie	ns – A and te dressir	Analog rminol	4 h to d 5 h ogy 6 h hard	ours ours ours ware ours		
Module:1DiscrSystems and Sigand Digital to anaModule:2DataBasics of DAQ HaModule:3DAQInstalling HardwaDigital and AnalogModule:4DiscrIntroduction to Digutation nois	ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems: ardware and Software –Concepts of Data Acquisition a system Implementation re, Installing drivers -Configuring the Hardware – adc gl/O function – Buffered I/O – Real time Data Acquisiti etization of signals gitizing Analog Signals, Z-Transformation- Fast Fourie e;Thermal noise.	ns – A and te dressir	Analog rminol	4 h to d 5 h ogy 6 h hard ; Alia	ours ours ours ware ours		
Module:1DiscrSystems and Sigand Digital to anaModule:2DataBasics of DAQ HaModule:3DAQInstalling HardwaDigital and AnalogModule:4DiscrIntroduction to DiQuantization noisModule:5Filter	ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems: ardware and Software –Concepts of Data Acquisition a system Implementation re, Installing drivers -Configuring the Hardware – ado gl/O function – Buffered I/O – Real time Data Acquisiti etization of signals gitizing Analog Signals, Z-Transformation- Fast Fourie e;Thermal noise.	ns – A and te dressir ion.	Analog rminol ng the	4 h to d 5 h ogy 6 h hard ; Alia 9 h	ours ours ours ware ours sing; ours		
Module:1 Discr Systems and Sig and Digital to ana Module:2 Data Basics of DAQ Ha DAQ Module:3 DAQ Installing Hardwa Digital and Analog Module:4 Discr Introduction to Diguantization nois Module:5 Module:5 Filter Multiple band opt Discr	ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems: ardware and Software –Concepts of Data Acquisition a system Implementation re, Installing drivers -Configuring the Hardware – adc gl/O function – Buffered I/O – Real time Data Acquisiti etization of signals gitizing Analog Signals, Z-Transformation- Fast Fourie e;Thermal noise.	ns – A and te dressir ion. er tran	Analog rminol ng the sform	4 h to d 5 h ogy 6 h hard 8 h ; Alia 9 h time	ours ours ours ware ours sing; ours and		
Module:1 Discr Systems and Sig and Digital to ana Module:2 Data Basics of DAQ Ha Module:3 DAQ Installing Hardwa Digital and Analog Module:4 Discr Introduction to Diguantization nois Module:5 Module:5 Filter Multiple band opt frequency respon FIR filter. Filter	ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems: ardware and Software –Concepts of Data Acquisition a system Implementation re, Installing drivers -Configuring the Hardware – ado gl/O function – Buffered I/O – Real time Data Acquisiti etization of signals gitizing Analog Signals, Z-Transformation- Fast Fourie e;Thermal noise. Design imal FIR filters – design of filters withsimultaneous co se – Optimizationmethods for designing IIR filters, co	ns – A and te dressir ion. er tran	Analog rminol ng the sform	4 h to d 5 h ogy 6 h hard 8 h ; Alia 9 h time f opti	ours ours ours ware ours sing; ours and mum		
Module:1 Discr Systems and Sig and Digital to ana Module:2 Data Basics of DAQ Ha Module:3 DAQ Installing Hardwa Digital and Analog Module:4 Discr Introduction to Dig Quantization nois Module:5 Filter Multiple band opt Firequency respon FIR filter.	 design and simulate a DSP systems. ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems: ardware and Software –Concepts of Data Acquisition a system Implementation re, Installing drivers -Configuring the Hardware – add gl/O function – Buffered I/O – Real time Data Acquisitie etization of signals gitizing Analog Signals, Z-Transformation- Fast Fourie e;Thermal noise. Design imal FIR filters – design of filters withsimultaneous conse – Optimizationmethods for designing IIR filters, constant and FIR filters – design of filters withsimultaneous conse – Optimizationmethods for designing IIR filters, constant 	ns – A and te dressir ion. er tran	Analog rminol ng the isform ints in son o	4 h to d 5 h ogy 6 h hard 8 h ; Alia 9 h time f optin	ours ours ours ware ours sing; ours and mum		
Module:1 Discr Systems and Sig and Digital to ana Module:2 Data Basics of DAQ Ha Module:3 DAQ Installing Hardwa Digital and Analog Module:4 Discr Introduction to Dig Quantization nois Module:5 Filter Multiple band opt frequency responder FIR filter. Module:6 Signa Multipliers, divide	ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems: ardware and Software –Concepts of Data Acquisition a system Implementation re, Installing drivers -Configuring the Hardware – ado gl/O function – Buffered I/O – Real time Data Acquisiti etization of signals gitizing Analog Signals, Z-Transformation- Fast Fourie e;Thermal noise. Design imal FIR filters – design of filters withsimultaneous co se – Optimizationmethods for designing IIR filters, co	ns – A and te dressir ion. er tran	Analog rminol ng the isform ints in son o	4 h to d 5 h ogy 6 h hard 8 h ; Alia 9 h time f optin	ours ours ours ware ours sing; ours and		
Module:1 Discr Systems and Sig and Digital to ana Module:2 Data Basics of DAQ Ha Module:3 DAQ Installing Hardwa Digital and Analog Module:4 Discr Introduction to Dig Quantization nois Module:5 Filter Multiple band opt frequency responder FIR filter. Module:6 Signa Multipliers, divide	ete sign and simulate a DSP systems. ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems: ardware and Software –Concepts of Data Acquisition a system Implementation re, Installing drivers -Configuring the Hardware – adc gl/O function – Buffered I/O – Real time Data Acquisition etization of signals gitizing Analog Signals, Z-Transformation- Fast Fourie e;Thermal noise. Design imal FIR filters – design of filters withsimultaneous cord se – Optimizationmethods for designing IIR filters, cord I Processing Hardware rs, different forms of FIRHardware, De-multiplexing ar	ns – A and te dressir ion. er tran	Analog rminol ng the isform ints in son o	4 h to d 5 h ogy 6 h hard 8 h ; Alia 9 h time f optil 6 h	ours ours ours ware ours sing; ours and mum		
Module:1 Discr Systems and Sig and Digital to ana Module:2 Data Basics of DAQ Ha Module:3 DAQ Installing Hardwa Digital and Analog Module:4 Discr Introduction to Dig Quantization nois Module:5 Filter Multiple band opt frequency respon FIR filter. Module:6 Signa Multipliers, divide realization of freq Module:7 Appli	 design and simulate a DSP systems. ete Systems and Signals nals – classification –continuous and discrete system logconvertors Acquisition systems: ardware and Software –Concepts of Data Acquisition a system Implementation re, Installing drivers -Configuring the Hardware – add gl/O function – Buffered I/O – Real time Data Acquisiti etization of signals	ns – A and te and te dressir ion.	Analog rminol ng the isform ints in son o	4 h to d 5 h ogy 6 h hard 8 h ; Alia 9 h time f optin 6 h ng, 5 h	ours ours ours ware ours sing; ours and mum ours ours		

Мо	dule:8 Contemporary Issues				2 hours
			Total L	ecture hours:	45 hours
Tex	rt Book(s)				
1.	Patrick H. Garrett, Advanced Instr Accuracy Decision	rumentation	and Co	mputer I/O Desig	n: Defined
2.	Control and Process Applications (2 John G. Proakis, Dimitris G. Manola Prentice Hall.	, .		•	3rd edition
Re	ference Books				
1.	John Park and Steve Mackay, Pract Systems(2006), Elsevier	tical Data A	cquisition	for Instrumentatic	n and Control
2.	S. Gupta and J P Gupta, Data A Society of America	cquisition a	ind Proc	ess Control (1994	 Instrument
3.	Dimitris G. Manolakis, Vinay K. Ingle Processing(2005) Artech House, Inc		M. Kogor	n, Statistical and A	daptive Signal
4.	S.K.Mitra, Digital Signal Processing	(2006), 3rd	edition,	Tata Mc-graw Hill	
	de of Evaluation: CAT ,Written Assign			Т	
	commended by Board of Studies	27-07-202			
Ар	proved by Academic Council	No.67	Date	08-08-2022	

Course Code	Course Title	L	Т	Ρ	С				
MMHA605L	Embedded Systems	3	0	0	3				
Pre-requisite		s versi	on						
	1.0								
Course Objective									
	emphasis on the characteristics and hardware archited real time operating systems.	ectur	e of e	mbed	bec				
	essential knowledge on various steps involved in exe	outin	a a hi	aher le	اصرد				
	and development of required software.	Juin	gan	grier ic	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	e the essential knowledge in the operating sys	stem	s an	d des	sian				
	gies for embedded system development.				Ũ				
Course Outcome									
	of this course the student will be able to:								
	the characteristics and concepts of embedded system	n.							
	d the architecture of hardware embedded system								
	e bus protocols involved in interfacing with memory blo	CKS.							
	d the steps of embedded system programming. The concepts of RTOS with general purpose OS.								
	dware components/architecture for embedded system	appl	icatior	าร.					
	omponent or a product applying all the relevant standa								
0	in practical case studies.								
	luction to Embedded Systems			3 ho					
	and applications of Embedded System - Concept of F	Real	time \$	Systen	าร -				
Embedded Systen	n Design - Design Process - Quality Attributes.								
Modulo:2 Embo	dded System Architecture			7 ho					
	chitecture - CISC and RISC instruction set architecture	- B	asic F						
	ontroller Architecture - DSP Processors – Harvard Arc								
	ure - I/0 Sub-system – Coprocessors and Hardw								
Processor Perform	nance Enhancement								
	ning Embedded Computing Platform			7 ho					
Bus Protocols – B	us Organization - Memory Devices and their Characte //, Flash Memory, DRAM - I/O Devices – Component Ir	ristic	s –RA	AM, RC	JM,				
and I/O device Inte		nena	acing -	- wen	ory				
	Shading								
Module:4 Progr	amming Embedded Systems			7 ho	urs				
	- Design Patterns for Embedded Systems - Program	nmin	g Lar	nguage	- 2¢				
	e Characteristics - Object Oriented Programming -								
Languages - Com	piling, Assembling, Linking, Debugging - Program Valio	latio	n and	Testin	g.				
Module:5 Opera				7 ho					
	an Operating System - Kernel Features - Real-time I Intext Switching –Scheduling - Inter-process Commu								
Memory Manager	o o 1	nicai	1011 -	Real-l	me				
Module:6 Embe	dded System Development			7 ho	urs				
	gies – Requirement Analysis and Use case Modeling	- S	tatic N						
	Structuring - Dynamic Modeling - Architectural D								
Software Partition	ning - Hardware-software Integration - Fault-tolera								
Reliability Evaluati	on Techniques								

Мо	dule:7 Case Studies	5 hours
	sign examples of embedded systems such as Inkjet Printer, Set-top Box, Elev stem, Automated Teller Machine (ATM) system.	ator Control
Мо	dule:8 Contemporary Issues	2 hours
	Total Lecture hours:	45 hours
Tex	t Book(s)	
1.	Wayne Wolf, Computers as Components – Principles of Embedded Comput Design, (2009), Morgan Kaufmann Publishers.	ing System
Re	erence Books	
1.	Ball S.R., Embedded microprocessor Systems – Real World Design, (2002), Newness, Elsevier Science	3rd Ed,
2.	C.M. Krishna, Kang G. Shin, Real Time systems, (2009), McGraw Hill	
3.	Frank Vahid, Tony Givagis, Embedded System Design. (2009), Wiley Edition	ז.
Мо	de of Evaluation: CAT ,Written Assignment, Quiz and FAT	
Re	commended by Board of Studies 27-07-2022	
Δn	proved by Academic Council No.67 Date 08-08-2022	

Course Code	Course Title	L	Т	Ρ	С
MMHA606L	Autotronics and Vehicle Intelligence	3	0	0	3
Pre-requisite	NIL	Sylla	abus		on
One of the stilles			1.0		
Course Objective					
The Objectives of t	I the automotive electronics				
	ne different vehicle systems				
	nportance of vehicle intelligence system				
,,,	······································				
Course Outcome					
 Compreher used in aut Ability to ur 	his course student should be able to: nsive fundamental and technical knowledge of sense o vehicles and vehicle intelligence. nderstand, analyze and use various SI and CI Manager se numerical coding for system modelling and simulatic	ment s			ers
	f automotive sensors and actuators for a specific appli				
	a suitable controller for energy management in electric			vehic	les
	owledge on several intelligent vehicle system and safe				
Module:1 Auton	notive Fundamentals			6 ho	urs
	ts – Drive train – suspension system, ABS, Steering S	ystem			
	· · · · · ·				
Module:2 Fuel S				6 ho	
Injection - MPFI-	tem - components, electronic fuel injection –Throttle CRDI. Fuel Ignition System – Electronic ignition sy agneto ignition systems – Electronic spark timing contr	stem			
Module:3 Autom	notive Sensors			6 ho	urs
speed sensor, Pre crash sensor, Co	kygen sensors, crankshaft angular position sensor, t ssure sensor, Mass air flow sensor, Manifold Absolute polant level sensors, Brake fluid level sensors – vantage and their applications	Pres	sure S	Senso	ors,
Module:4 Engin	e Management system			6 ho	urs
On-board diagnost	ics, Exhaust emission control, Catalytic Converters, Ne nt, adaptive Cruise control	ew De	velop		
Module:5 Contro	ol of Electric and hybrid vehicles			6 ho	urs
	batteries electric motor and controller, regenerative b	orakin	g – C		
	NG electric hybrid vehicle – Hybrid Vehicle case studi				
Module:6 Autom	notive Safety Sensor applications			6 ho	urs
	nsing/wiper activation system, drowsy-driver sensing s ems, Passive Sensor Safety system - Side Impact Ser				t
Module:7 Intelli	gent Vehicle System			7 ho	lire
MEMS and Micro Collision warning a	osystems.Vision based autonomous road vehicles, and avoidance system – Tyre pressure warning system onic braking. Intelligent Vehicle Systems – Unmanne	n, sec	curity s	etecti systei	on, ms,

Мо	dule:8 Contemporary Issues	2 hours
	Total Lecture hours:	45 hours
Тех	t Book(s)	
1.	William B.Ribben, Understanding Automotive Electronic: An Engineering F (2012), Elsevier Science.	Perspective
Ref	erence Books	
1.	Tom Denton, Automobile Electrical and Electronic systems (2013), Roule & Francis Group.	tedge, Taylor
2.	Tom Denton, Automobile Mechanical and Electrical Systems (2011), Tay Group	lor & Francis
3.	Gianfranco Pistoia, Electric and Hybrid Vehicles: Power Sources, Models, S Infrastructure and the Market (2010), Elsevier.	Sustainability,
4.	Ronald K.Jurgen, Electric and Hybrid-electric vehicles (2011), SAE International	tional.
Mo	de of Evaluation: CAT ,Written Assignment, Quiz and FAT	
Red	commended by Board of Studies 27-07-2022	
App	proved by Academic Council No.67 Date 08-08-2022	

Course Code	Course Title	L	Т	Ρ	С
MMHA607L	Intelligent Systems	3	0	0	3
Pre-requisite	NIL	Sy	llabus		sion
			1.	.0	
Course Objective					
The Objectives of					
	owledge about different searching techniques and defir				
•	concept of representing knowledge of ANN architect	ure,	tuzzy	logic	and
genetic alg	orithm				
0					
Course Outcome	* •				
	ourse, students should be able to		taabai	~	ممط
	e characteristics of AI systems with different search	ing	lechni	ques	and
algorithms	male Alexatem				
	mple AI system te the Genetic algorithms programming				
		otor	~~		
	id techniques for Industrial Applications of intelligent sy a applications of types of AI algorithms for real time inc			alicat	ione
	e applications of types of Al algorithms for real time inc	มนธแ	iai ap	Jiicai	10115
Module:1 Fuzzy	set theory and fuzzy logic system			6 h	ours
	Fuzzy Set theory – Operations of Fuzzy sets – Fuzzy	rola	tional		
	 Fuzzification – Defuzzification –Decision making I 			equa	rehin
functions – Rule ba		ogic	- 1010	mbe	isiiip
Module:2 Adapt	ive fuzzy systems			6 h	ours
	x – Modification of rule base – Modification of memb	per s	ship fu		
	ification of rule base and membership functions			motic	110
Module:3 Introd	uction to artificial neural networks			7 h	ours
	Neural networks - Neural network architectures -	Lear	nina		
	rons -Back propagation algorithm and its variants -				
learning				-71-	
Module:4 Mappi	ing and recurrent networks			7 h	ours
Counter propagat	ion – Cognitron and Neocognitron - Hopfield Ne	t- K	ohonn	ien l	Nets-
	daptive Resonance Theory.				
	· · ·				
Module:5 Genet	ic algorithms			6 h	ours
Introduction to g	enetic algorithminitialization, selection, mutatior	n ar	nd te	rmina	ation-
	netic programming				
Module:6 Hybrid	d Techniques			7 h	ours
Neuro-fuzzy syste	ems – genetic neuro systems – genetic fuzzysyste	ms.	Prob	abili	stic
	search - Monte-carlo techniques - Radial basis fund	tion	– Ga	ussia	ın —
Probabilistic neura	l networks				
	trial Applications of intelligent systems				ours
Application of fuzz	y logic, Neural network and Genetic algorithm in Mech	atror	nics ap	oplica	ition.
Module:8 Conte	mporary Issues			2 h	ours
	Total Lecture hours	s:		45 h	ours

Tex	kt Book(s)			
1.	Timothy J.Ross, Fuzzy Logic wi	th Engineering A	pplication	s (2016), Wiley 4 th edition.
Re	ference Books			
1.	David E. Goldberg, Genetic Algo (2013), Pearson Education.	orithm in Search	Optimizati	on and Machine Learning
2.	Rajasekaran, S., Vijayalakshmi algorithms (2011), Prentice Hall		al networ	ks, Fuzzy logic and Genetic
Мо	de of Evaluation: CAT ,Written As	signment, Quiz	and FAT	
Ree	commended by Board of Studies	27-07-2022		
Арр	proved by Academic Council	No.67	Date	08-08-2022

Course Code	Course Title	L	Т	Ρ	С
MMHA608L	Wireless Sensor Networks	2	1	0	3
Pre-requisite	NIL	Sy	llabus		ion
Course Objectiv			1.	.0	
Course Objective	the course are to:				
	the characteristics, basic concepts and systems issues	in \	Mirolo	cc cor	isor
networks		,		33 301	1301
	rchitecture and protocols in wireless sensor networks				
	e trends and latest development of the technologies in t	he a	rea		
	broad coverage of challenges and latest research re	sult	s relat	ed to	the
design and	management of wireless sensor networks				
Course Outcom	۵.				
	completing the course the student should be able to:				
	e sensor networks for various application setups.				
	ate the design space and conduct trade-off analysis be	etwe	en per	forma	nce
and resou					
	e suitable medium access protocols and radio hardward				
	id analysis of energy efficiency and power control in WS e Operating system and Sensor Network Platforms And		ale		
	e Operating system and Sensor Network Flationn's And	1100	515		
Module:1 Introd	luction to Wireless Sensor Networks			4 ho	urs
	ications of Wireless Sensor Networks, WSN Standar				
	Architectures and Protocol Stack - Network arch	itect	ures 1	for W	SN,
classification of W	SN, protocol stack for WSN.				
Module:2 Wirel	ess Transmission Technology and Systems			4 ho	urs
	y, Available Wireless Technologies Wireless Sensor	Tecł	nnolog		
	, Hardware and Software, Sensor Taxonomy, WN Oper				
Module:3 Mediu Netwo	Im Access Control Protocols for Wireless Sensor orks			4 ho	urs
	MAC Protocols, MAC Protocols for WSNs, Contention				
	Aulti-Access with Signaling - Data-Gathering MAC				
Protocol for Large	Energy Adaptive Clustering Hierarchy, B-MAC, S-N	IAC.	DISS	emina	lion
There early a					
Module:4 Deplo	yment and Configuration			4 ho	urs
0	ocalization and Positioning, Coverage and Connectiv	′ity,	Single	e-hop	and
	tion, Self-Configuring Localization Systems.		•		
	es and Design Issues in Wireless Sensor Networks, R				
	Networks, Routing protocols: data centric, hierarchi uting etc. Querying, Data Dissemination and Gathering		locali	on pa	sea
energy enicient to	ding etc. Querying, Data Dissertination and Cathering	•			
Module:5 Energ	y Efficiency and Power control			4 ho	urs
Need for energy	efficiency and power control in WSN, passive p	owe	er cor	nserva	tion
mechanisms, activ	ve power conservation mechanisms				
Module:6 Opera	ating Systems For Wireless Sensor Networks			4 ho	urs
	n Design Issues, TinyOS, Contiki – Task managem	ent.	Proto		
Memory and IO m		-,			,

Мо	dule:7	Sensor Network Platforms And Tools		4 hours
		de Hardware – Tmote, Micaz, Programming Node-level Simulators, State-centric Programm		le-level Software
па	uonno,		Ining	
Мо	dule:8	Contemporary Issues		2 hours
		Tot	al Lecture hours:	30 hours
		Tota	al Tutorial hours:	15 hours
Tex	kt Book	(s)		
1.		Sohraby, Daniel Minoli, TaiebZnati, "Wireless ols and Applications", Wiley, 2007	s Sensor Networks	s, Technology,
Re	ference	Books		
1.		Karl, Andreas Willig, "Protocols And A rks", John Wiley, 2005	rchitectures for \	Wireless Sensor
2.	Jun Zh Wiley,	neng, Abbas Jamalipour, "Wireless Sensor Ne 2009.	etworks: A Network	ing Perspective",
3.	lan F.	Akyildiz, Mehmet Can Vuran, "Wireless Senso	r Networks", Wiley	, 2010
4.	Ibrahie	m M. M. El Emary, S. Ramakrishnan, "Wirele lications", CRC Press Taylor & Francis Group,	ess Sensor Networ	
Мо		valuation: CAT ,Written Assignment, Quiz and		
		nded by Board of Studies 27-07-2022		
App	proved b	by Academic Council No.67 Da	te 08-08-2022	

	Course Title	L	Т	Ρ	
MMHA609L	Virtual Reality and Haptics	3	0	0	3
Pre-requisite	NIL	Sylla		versi	on
Course Objective			1.	.0	
The Objectives of 1. Provide an and develo web-based multimodal 2. Demonstra 3. Understand particular t 4. Demonstra 5. Study the t 6. Discuss the	the course are to: overview of the opportunities and the main issues re- ping VR/AR systems architectures, both in local and i) contexts, and to the development of VR/AR a perspective and approach. te the principles and multidisciplinary features of virtual d the technology for multimodal user interaction and p ne visual, audial and haptic interface and behavior. te the VR system framework and development tools. numan touch perception and Tactile Proprioception. e haptic components and virtual models.	in dis opplica realit percep	tribut ations y. otion	ted (ev s with	er a
7. Analyse the	e significance of knowledge on haptic and augmented r	eality.			
 Identify, ex design and Describe h 	his course student should be able to: amine, and develop software that reflects fundamenta deployment of VR experiences. ow VR systems work using modern technology. levelop, explain, and defend the use of particula				
 Evaluate th Identify an industry an Design an perception 	e benefits and drawbacks of specific VR techniques on d examine state-of-the-art VR design problems and d academia. d control haptic devices and learn the salient properti- that are necessary to be recreated in virtual environme te the use of modeling software that used in	soluties of nts.	ions hum	n bod <u>y</u> from nan tou	r. the
 Evaluate th Identify an industry an Design an perception Demonstrated evelopment 	te benefits and drawbacks of specific VR techniques on d examine state-of-the-art VR design problems and d academia. d control haptic devices and learn the salient properti that are necessary to be recreated in virtual environme te the use of modeling software that used in nt.	soluties of nts.	ions hum	n body from nan tou c dev	r. icł
 Evaluate th Identify an industry an Design an perception Demonstra developme Module:1 Introd	e benefits and drawbacks of specific VR techniques on d examine state-of-the-art VR design problems and d academia. d control haptic devices and learn the salient properti- that are necessary to be recreated in virtual environme te the use of modeling software that used in	solution fes of ints. the h	ions hum napti	n body from an tou c dev 6 ho	r. iche ice
 Evaluate th Identify an industry an Design an perception Demonstrated evelopme Module:1 Introd Virtual reality condoutputs) – Types of	the benefits and drawbacks of specific VR techniques on d examine state-of-the-art VR design problems and d academia. d control haptic devices and learn the salient properti that are necessary to be recreated in virtual environme te the use of modeling software that used in nt. duction to Virtual reality cepts – virtual world and real world – Interface to virtual of interaction – Applications.	solution solutita solutita solutita solutita solutita solutita solutita sol	ions hum napti Id (ir	n body from aan tou c dev <u>6 ho</u> nputs a 6 ho	
 Evaluate th Identify an industry an Design an perception Demonstrated evelopme Module:1 Introd Virtual reality condoutputs) – Types of Module:2 Hapti Definition - Impo Kinesthetic Interfet	the benefits and drawbacks of specific VR techniques on d examine state-of-the-art VR design problems and d academia. d control haptic devices and learn the salient properti that are necessary to be recreated in virtual environme te the use of modeling software that used in nt. duction to Virtual reality cepts – virtual world and real world – Interface to virtual of interaction – Applications.	solutions. the local states of ants. the local wor	ions hum hapti Id (ir	n body from nan tou c dev <u>6 ho</u> genesi	
 Evaluate th Identify an industry an Design an perception Demonstra developme Module:1 Introd Virtual reality condoutputs) – Types of Module:2 Hapti Definition - Impo Kinesthetic Interfapplications. Module:3 Design	 benefits and drawbacks of specific VR techniques on d examine state-of-the-art VR design problems and d academia. d control haptic devices and learn the salient propertion that are necessary to be recreated in virtual environme te the use of modeling software that used in nt. duction to Virtual reality cepts – virtual world and real world – Interface to virtual of interaction – Applications. cs rtance of Touch - Tactile Proprioception - Tactual aces - Tactile Interfaces - Human Haptics - Over not the other tects - Network - Network	solution solutita solutita solutita solutita solutita solutita solutita sol	ions hum napti Id (ir eo ç v of	n body from aan tou aan tou c dev 6 hoo genesi exist 6 hoo	
 4. Evaluate th 5. Identify an industry an 6. Design an perception 7. Demonstradevelopme Module:1 Introd Virtual reality condoutputs) – Types of Module:2 Hapti Definition - Impo Kinesthetic Interfapplications. Module:3 Design Virtual Reality Input	the benefits and drawbacks of specific VR techniques on d examine state-of-the-art VR design problems and d academia. d control haptic devices and learn the salient properti that are necessary to be recreated in virtual environme te the use of modeling software that used in nt. duction to Virtual reality cepts – virtual world and real world – Interface to virtual of interaction – Applications. cs rtance of Touch - Tactile Proprioception - Tactual aces - Tactile Interfaces - Human Haptics - Over	solution	ions hum napti Id (ir eo ç v of	n body from aan tou aan tou c dev 6 hoo genesi exist 6 hoo	
 4. Evaluate th 5. Identify an industry an 6. Design an perception 7. Demonstrated evelopme Module:1 Introd Virtual reality concount of the second of the	The benefits and drawbacks of specific VR techniques on d examine state-of-the-art VR design problems and d academia. d control haptic devices and learn the salient properti that are necessary to be recreated in virtual environme te the use of modeling software that used in nt. Huction to Virtual reality Septs – virtual world and real world – Interface to virtual f interaction – Applications. Cs rtance of Touch - Tactile Proprioception - Tactual aces - Tactile Interfaces - Human Haptics - Over mof Haptic devices ut and Virtual Reality Output parameters - Computing A architecture - Haptic Interface Design – Kinesthetic devi matics and dynamics ansformation Matrices - Transformation Invariants - Fer	solution	ions hum napti Id (ir eo ç v of	n body from aan tou aan tou c dev <u>6 hou</u> genesis exist <u>6 hou</u> es for <u>6 hou</u>	
 4. Evaluate th 5. Identify an industry and 6. Design an perception 7. Demonstrated evelopme Module:1 Introd Module:1 Introd Virtual reality condouters) – Types of Module:2 Haptic Definition - Impo Kinesthetic Interfapplications. Module:3 Design Virtual Reality Inplications. Module:4 Kiner Homogeneous Transformed for the second	The benefits and drawbacks of specific VR techniques on d examine state-of-the-art VR design problems and d academia. d control haptic devices and learn the salient properti that are necessary to be recreated in virtual environme te the use of modeling software that used in nt. Huction to Virtual reality Septs – virtual world and real world – Interface to virtual f interaction – Applications. Cs rtance of Touch - Tactile Proprioception - Tactual aces - Tactile Interfaces - Human Haptics - Over mof Haptic devices ut and Virtual Reality Output parameters - Computing A architecture - Haptic Interface Design – Kinesthetic devi matics and dynamics ansformation Matrices - Transformation Invariants - Fer	solution	ions hum napti Id (ir eo ç v of	n body from aan tou aan tou c dev <u>6 hou</u> genesis exist <u>6 hou</u> es for <u>6 hou</u>	v. the ice <u>urs</u> in v/F

Module:6	Virtual Reality Program	ning			6 hours
Human Fa	ctors in Virtual Reality, Prog	ramming Hapti	ic Virtual En	vironments, ca	alibration.
Module:7	Teleoperation				6 hours
	ation and Transparency, Tra	aditional Applic	ations and E	Emerging Appl	lications of VR
– Master a	nd slave mechanism				
	-				
Module:8	Contemporary Issues				2 hours
		Т	otal Lectur	re hours:	45 hours
Text Book	:(s)				
1. John	vince, Essential Virtual Real	ity East (2012)	Springer		
Reference	*	ity i ast (2012),	opiniger.		
Reference	Books				
1. Grigo	eBurdea, Philippe Coiffet,	Virtual Reality	Technology	/ (2006), 2nd	edition. Wiley
India.		•			-
2. John	vince, Virtual Reality System	ns (2007), Pear	son Educati	ion.	
3. Matja	Mihelj, Jonezpodobnik, Har	otics for virtual	reality and t	ele operation	(2012),
Spring			,	I I	
4. B. Ha	nnaford, A. M. Okamura, Ha	andbook of Rob	otics (2008)), Springer	
Mode of E	valuation: CAT ,Written Ass	ignment, Quiz	and FAT		
Recomme	nded by Board of Studies	27-07-2022			
Approved	by Academic Council	No.67	Date	08-08-2022	

Course Code	Course Title	L	Т	Ρ	С
MMHA610L	Condition Monitoring Techniques	3	0	0	3
Pre-requisite	Nil	Sy	llabus		sion
			1.	.0	
Course Objective					
The Objectives of					
	d the basics of various condition monitoring methods selection of condition monitoring techniques for variou	10 AN	nlicati	one	
	basic understanding with case studies on different fault				bod
5. 1 TONGC & L		ulay	10313	meu	100.
Course Outcome):				
	his course student should be able to:				
1. Demonstra	te the basic knowledge about various condition mo	nitor	ing m	etho	ds in
accordance	e with the established procedures.		-		
	e different types of sensor design and its application				
	e signal processing methods and its working prin	ciple	es in	time	and
frequency				-	
	d the basic knowledge of surface, subsurface and d				
	which enables to carry out various inspection in a	iccor	dance	e witi	n the
	t procedures. Ite the various types of machine learning algoriti	hme	annli	icatio	n in
	nonitoring methods	11113	арріі	Call	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Condition I					
Module:1 Cond	tion monitoring techniques			6 h	ours
Condition Monito	ring in manufacturing industries; Noise monitoring,	We	ear ar		
	ring in manufacturing industries; Noise monitoring, graphy, Cracks monitoring, Ultrasonic techniques - Cas				
Analysis, Thermoo	graphy, Cracks monitoring, Ultrasonic techniques - Cas			nd d	lebris
Analysis, Thermoo Module:2 Senso	graphy, Cracks monitoring, Ultrasonic techniques - Cas	e sti	udies.	nd d 6 h	lebris ours
Analysis, Thermoo Module:2 Senso Accelerometers,	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for	e stu	udies. easure	nd d 6 h emer	lebris ours
Analysis, Thermoo Module:2 Senso Accelerometers, displacement, velo	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia	e stu	udies. easure	nd d 6 h emer	lebris n ours
Analysis, Thermoo Module:2 Senso Accelerometers,	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia	e stu	udies. easure	nd d 6 h emer	lebris ours
Analysis, Thermog Module:2 Sense Accelerometers, displacement, velo thermal imaging d	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for ocity and acceleration; Temperature transducers, radia evices.	e stu	udies. easure	nd d 6 h emer eters	lebris i ours nt of s and
Analysis, Thermog Module:2 Sense Accelerometers, displacement, velo thermal imaging d Module:3 Signa	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia evices.	e stu	udies. easure pyrom	nd d 6 h emer eters 6 h	lebris ours nt of s and ours
Analysis, Thermoo Module:2 Sense Accelerometers, displacement, velo thermal imaging d Module:3 Signa Study of periodic	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for ocity and acceleration; Temperature transducers, radia evices.	e stu	udies. easure pyrom	nd d 6 h emer eters 6 h	lebris ours nt of s and ours
Analysis, Thermoo Module:2 Sense Accelerometers, displacement, velo thermal imaging d Module:3 Signa Study of periodic	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for poity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical p	e stu	udies. easure pyrom	nd d 6 h emer eters 6 h	lebris ours nt of s and ours
Analysis, Thermood Module:2 Sense Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for ocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical p and power spectral density functions.	e stu	udies. easure pyrom	nd d 6 h emer eters 6 h auto	lebris ours at of s and ours o and
Analysis, Thermood Module:2 Sense Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for ocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical p and power spectral density functions.	e stu me tion	udies. easure pyrom	nd d 6 h emer eters 6 h auto	lebris ours at of s and ours o and
Analysis, Thermood Module:2 Sense Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa	graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for poity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical p and power spectral density functions.	e stu me tion	udies. easure pyrom	nd d 6 h emer eters 6 h auto	lebris ours at of s and ours o and
Analysis, Thermood Module:2 Sense Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical p and power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance	e stu	easure pyrom erties,	6 h auto 6 h	lebris nt of s and o and o and o and
Analysis, Thermood Module:2 Sensor Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince	graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for ocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical p and power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time an	e stu	easure pyrom erties,	6 h auto 6 h	lebris nt of s and o and o and o and
Analysis, Thermood Module:2 Sensor Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical p and power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance	e stu	easure pyrom erties,	6 h auto 6 h	ebris
Analysis, Thermood Module:2 Senso Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince analysis - condition	 graphy, Cracks monitoring, Ultrasonic techniques - Cas brs for condition monitoring strain gauges, eddy current probes, LVDT for brity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical pand power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance biples, Failure mode analysis - Equipment down time and based maintenance.	e stu	easure pyrom erties,	6 h auto 6 h reako	ebris
Analysis, Thermood Module:2 Senso Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince analysis - condition Module:6 Machine	 graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radiatevices. I processing and random signals, probability distribution, statistical power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time and nased maintenance. n based maintenance 	e stu ion	udies. easure pyrom erties, sis - B	6 h 6 h auto 6 h reako	iours ours down
Analysis, Thermood Module:2 Sensor Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince analysis - conditio Module:6 Machin Vibration, Acoustio	graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for ocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical p and power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time an on based maintenance.	e stu ion	udies. easure pyrom erties, sis - B	6 h 6 h auto 6 h reako	iours ours down
Analysis, Thermood Module:2 Senso Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince analysis - condition Module:6 Machine	graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for ocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical p and power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time an on based maintenance.	e stu ion	udies. easure pyrom erties, sis - B	6 h 6 h auto 6 h reako	iours ours down
Analysis, Thermood Module:2 Senso Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince analysis - condition Module:6 Machia Vibration, Acoustic system, Case stude	graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for ocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical p and power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time and on based maintenance. ne Condition monitoring c emission and vibro-acoustics signal analysis; intelligentiates.	e stu ion	udies. easure pyrom erties, sis - B	6 h emer eters 6 h auto 6 h reako	ebris
Analysis, Thermood Module:2 Senso Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince analysis - condition Module:6 Machi Vibration, Acoustic system, Case stud	graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pointy and acceleration; Temperature transducers, radial evices. I processing and random signals, probability distribution, statistical pand power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time and on based maintenance. ne Condition monitoring c emission and vibro-acoustics signal analysis; intellige lies. ne Learning	e stu ion tion prop is. nalys nt fa	udies. easure pyrom erties, sis - B	6 h emer eters 6 h auto 6 h reako 6 h	iours ours ours ours ours ours ours
Analysis, ThermoodModule:2SensorAccelerometers, displacement, veloc thermal imaging dModule:3SignaStudy of periodic a cross correlation aModule:4SignaTime domain andModule:5Failur Maintenance Princi analysis - conditionModule:6Machi Vibration, Acoustion system, Case studyModule:7Machi Vibration, Acoustion Vibration, Acoustion	graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical pand power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time and on based maintenance. ne Condition monitoring c emission and vibro-acoustics signal analysis; intellige lies.	e stu ion tion prop is. nalys nt fa	udies. easure pyrom erties, sis - B	6 h emer eters 6 h auto 6 h reako 6 h	iours ours ours ours ours ours
Analysis, Thermood Module:2 Senso Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince analysis - condition Module:6 Machi Vibration, Acoustic system, Case stud	graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical pand power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time and on based maintenance. ne Condition monitoring c emission and vibro-acoustics signal analysis; intellige lies.	e stu ion tion prop is. nalys nt fa	udies. easure pyrom erties, sis - B	6 h emer eters 6 h auto 6 h reako 6 h	iours ours ours ours ours ours
Analysis, Thermood Module:2 Senso Accelerometers, displacement, veloc displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Module:5 Failur Maintenance Princ analysis - condition Vibration, Acoustic system, Case stude Module:7 Machin Vibration, Acoustic system, Case stude	graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical pand power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time and on based maintenance. ne Condition monitoring c emission and vibro-acoustics signal analysis; intellige lies.	e stu ion tion prop is. nalys nt fa	udies. easure pyrom erties, sis - B	6 h emer eters 6 h auto 6 h reako 6 h cectic	iours ours oand ours oand ours down

	Total Lec	ture hours:				45 hours
Tex	kt Book(s)					
1.	EthemAlpaydin, Introduction t Cambridge, London.	to Machine	Learning	(2010), T	The MIT	Press,
Ret	ference Books					
1.	K. P. Soman, Data mining theor	y and practic	e (2006), P	rentice-Hall	of India.	
2.	Amiya RanjanMohanty , Machine (2015), CRC Press	ery Condition	Monitoring	Principles	and Pra	ctices
3.	Mishra, R.C., Pathak, K., Mainte Hall of India.	enance Engi	neering and	I Managem	ent (201	2), Prentice
4.	Clarence W. De Silva, Sensors CRC Press – Taylor and Francis		rs: Control	System Ins	trumenta	ation (2007),
5.	BoualemBoashash, Time Frequency Signal Analysis and Processing: A Comprehensive Reference (2015), Elsevier.					
Мо	de of Evaluation: CAT ,Written As	signment, Q	uiz and FA	Γ		
Re	commended by Board of Studies	27-07-2022				
App	proved by Academic Council	No.67	Date	08-08-20)22	

Course Code	Course Title	L	т	Ρ	С
MMHA611L	Bio-Mechatronics	3	0	0	3
Pre-requisite	NIL	Sy	llabus		sion
Course Obiestius			1.	.0	
Course Objective The Objectives of					
	c knowledge about Bio mechanics, Bio sensors and ac	tuato	ors an	nd hic) _
mechatroni		luan	515, al		,
	bio assist devices.				
3. Know the d	ifferent types, bio imaging and processing.				
4. Understand	about bio mechatronics devices and their functions.				
Course Outcome					
	his course student should be able to: te the basic knowledge about the Bio mechanics	Ri	0 00	eore	and
	and bio- mechatronics devices.	, DI	0 301	15015	anu
-	e different bio imaging and processing.				
	e Signal processing with bio sensors and actuators.				
4. Analyze mo	odern medical measurement devices.				
	the properties of bio assist devices.				
6. Understand	d modern bio-mechatronics devices and its requiremen	ts.			
Module:1 Bio M	lechanics			6 6	ours
	omechanics, Musculoskeletal and orthopedic bio	mer	hanics	-	
ergonomic, Rehab		mee	names	, n	inan
longonomio, ritorido					
Module:2 Bio S	ensors and Actuators			6 h	ours
Introduction to Bio	mechatronics, Electrodes - Types, - Measurement	of b	lood p	ress	ure -
Blood Gas analyze	ers: pH of blood,Smart actuators for biological applicat	ions			
	al Measurements	. <u>.</u>			ours
- ESR, GSR meas	sound -Pulmonary function measurements -spiromete	r -tin	ger-tip	o oxir	neter
- ESR, GSR meas	urements				
Module:4 Signa	I Processing			7 h	ours
	s, Signal acquisition and signal processing-Isolation	barı	iers, E		
processing			,		U
	bry Assist Devices				ours
	Implants, Optical Prosthetics, VisualNeuroprosthese	es -	- Son	ar b	ased
systems, Respirate	bry aids, Tactile devices for visually challenged.				
Module:6 Active	e and Passive Prosthetic Limbs			7 h	ours
	sthetics, Passive Prosthetics – walking dynamics, Knee	and	l foot	,	ours
•	prosthesis - Control of Prosthetic Arms and Hands, Le			sms.	
-	nisms, Prosthesis Suspension	0		,	
					
	able mechatronics devices				ours
	Kidney, Wireless capsule endoscope, Wearable Exos	ĸele	tal reh	abilit	ation
system, wearable	hand rehabilitation,				
Module:8 Conte	mporary Issues			2 h	ours
				- 11	5013

			fotal Lect	ure hours:	45 hours
Тех	t Book(s)				
1. Ref	Graham M. Brooker, " <u>Introduction</u> erence Books	n to Bio-Mechatro	<u>nics</u> ", Sci	Tech Publis	hing, 2012.
1.	Leslie Cromwell, Fred J. Weibel Measurements", II edition, Pearso		-	ledical Instr	umentation and
2.	Raymond Tong Kaiyu . "Bio-mech Publishing, CRC Press, 2011.	natronics in Medic	ine and H	ealthcare" F	Pan Stanford
Mo	de of Evaluation: CAT ,Written Ass	ignment, Quiz an	nd FAT		
Red	commended by Board of Studies	27-07-2022			
Арр	proved by Academic Council	No.67	Date	08-08-202	2

Course Code	Course Title	L	т	Ρ	С
MMHA612L	Internet of Things and Smart Manufacturing	3	0	0	3
Pre-requisite	NIL	Sylla		/ersi	on
Course Objective	e '		1.0		
The Objectives of					
,	d our MES environment in the context of the ISA95 star	ndards.			
2. Introduces	the concepts of Industrial Internet of Things, and Clo	oud Co	mputi	ing. [·]	The
	e exposed to the architectures, and various frameworl	ks in IIc	oT an	d Cl	oud
Computing	a installed index allow any literations of should be any discussed.	•		4	•
	n insight into the application of cloud computing gh level integration of product development phases. It				
	ols and methodologies used for cloud based product m			aa	out
	o offer learners an introduction to Industry 4.0 (or the			ntern	et),
	ions in the business world. Learners will gain dee				
	is being harnessed from data and appreciate what n	eeds to	o be	done	e in
	ercome some of the challenges.				
5. Implement	Virtualization.				
Course Outcome	<u>, , , , , , , , , , , , , , , , , , , </u>				
	his course student should be able to:				
	anufacturing operations and determine the lines o	f respo	nsibi	lity a	and
technical ir	tegration between operations and logistics systems.			-	
	loud concepts in a sustainable and global product deve				_
3. Understand	1	envir	onme	ent	for
	ve manufacturing.	du otra d	10 0	nd k	
	d the opportunities, challenges brought about by Inc ns and individuals should prepare to reap the benefits.		+.0 a	nu i	IOW
	line the various systems used in a manufacturing plan		eir ro	ole ir	an
Industry 4.					
	a prototype of the IoT/cloud system design.				
	the smartness in Smart Factories, Smart cities, smart	produc	ts an	id sn	nart
services.in	dustrial controllers				
	luction			<u>6 ho</u>	
view.	et of Things (IoT), common definitions, IoT applicati	ons, ar	na tu	nctic	nai
Module:2 Intern	et of Things and Internet Technology			6 ho	urs
	Semantic Technologies, Networking and Communicati	on Tec	hnolc	gies	j.
	mporary Manufacturing Paradigms			6 ho	urs
Concept of Agile, I	Networked, Reconfigurable and Cloud manufacturing.				
Module:4 IoT Er	nabled Manufacturing System			6 ho	ure
	-MS, Integration framework of Real-time manufacturin	a inform			
logic of IoT-MS.		9	natio	., .,	UIN
U					
	based Manufacturing Resource configuration			6 ho	
	manufacturing,Real-time production information perce	ption ai	nd ca	aptur	ing,
Cloud service sele	ction, Cloud Machine model.				
Modulo: 6 Smart	Eastony and Smart Manufacturing			7 6 -	
Module:6 Smart	Factory and Smart Manufacturing			7 ho	urs

Concepts of Industry 4.0 standard, Real-time information based scheduling, capacity planning, material planning, Real-time production monitoring techniques with smart sensors, Configuration of smart shop floor, traceability and call back of defective products

MC	dule:7 Case Studies				6 hours
Са	se studies on applications of IoT in turity model etc.	n different indu	ustrial prog	gressions like	
				[
MC	dule:8 Contemporary Issues				2 hours
		т	otal Lectu	ire hours:	45 hours
Te	kt Book(s)			I	
1.	Yingfeng Zhang, Fei Tao, Optimiz Things, Academic Press- Technolo				g the Internet of
Re	ference Books	0, 0			
1.	Jiafu Wan, IztokHumar, Daqiang Springer, 17-Aug-2016.	Zhang, Industr	rial loT Te	chnologies a	nd Applications,
2.	K. Wang, Y. Wang, J.O. Strandha V, WIT Press, 2016	gen, T. Yu, Ac	lvanced M	anufacturing	and Automation
3.	OvidiuVermesan and Peter Friess		nings – Fr	om Research	and Innovation
Ma	to Market Deployment, River Publi de of Evaluation: CAT ,Written Assig	•	and EAT		
IVIC	commended by Board of Studies				
	commended by Board of Studies				

Course Code	Course Title	L	Т	Р	С
MMHA613L	Manufacturing Automation	3	0	0	3
Pre-requisite	NIL	Syll		vers	ion
Course Objective			1	.0	
The Objectives of					
1. Impart the	fundamentals of automation strategy in manufacturing.				
	computer aided process planning and CNC part	prog	gram	ming	for
	g components.		+	ما ما:	aita
manufactu	n manufacturing support systems and outline intering	eiliger	it ar	ia ai	gila
manufactu	ing.				
Course Outcome					
	of this course, the student will be able to:				
	concept of automation and assess the degree of auto		n		
	ocess planning for industrial components for production IC technology for computer aided manufacturing and		are th	ne Mo	hile
	pmous RoboticsCNC codes for part programming.	prope			
4. Select the	material handling / storage systems and automated ins		n sy	stems	6.
	acturing support systems for productivity improvement				
6. Critique on	intelligent manufacturing system and digital enterprise	S.			
Module:1 Autor	nation			5 hc	ours
Introduction, auto	mation principles and strategies, basic elements of a	advan	ced	functi	ons,
levels modeling of	manufacturing systems				
	uter Aided Dresses Dispering			<u>Ch</u>	
	outer Aided Process Planning rocess planning, Generative, variant, hybrid CAPP, Ma	atorial	ror	6 ho	
	Anufacturing resource planning (MRP II), production p				
	oduction schedule, Capacity planning, Shop floor contr		5		
				<u>Ch</u>	
	puter Aided Manufacturing y, Part family, Sensor technologies, Automated insp	ection) an	6 ho	
	ring machines, Machine vision, Rapid prototyping.		i an	u les	ung,
	nated handling and storage system			<u>7 ho</u>	
	al handling systems – AGV, Transfer mechanism - sfer lines, Robots in material handling, Automated st				
	– carousel storage – Automatic data capture – ba				
Automated assem					- 37,
-		1			
	ling and Simulation for Manufacturing Plant nation			7 hc	ours
	for system Modeling, Building Mathematical Model				
	ols- Use of Fuzzy decision making and Artificial I	veura	Ne	twork	s in
manufacturing aut	omation, AI in manufacturing systems				
Module:6 Manu	facturing support Systems			6 ho	ours
Flexible manufact	uring, Building blocks of FMS, FMS layout, F	•		•	
•	issues, Just-in-Time Manufacturing, lean mar	lufacti	uring	, ag	gile
manutacturing, Ce	Ilular manufacturing,				
Module:7 Intelli	gent Manufacturing Systems			6 ho	lire
		1		5 110	

Artificial Intelligence based systems, Knowledge - Based Systems, Expert Systems Technology, Agent Based Technology, Virtual Business, e-Commerce Technologies, Global Manufacturing Networks, Digital enterprise technologies. Introduction to PLM.

Mo	dule:8	Contemporary Issues				2 hours
			То	tal Lecture	e hours:	45 hours
Тех	t Book	(s)				
1.		P. Grover, Automation acturing (2016), Fourth Edi		•	nd Com	puter Integrated
Ref	erence	Books				
1.	P. Rad Interna	hakrishnan, S. Subramany ttional.	/an, V. Raju, CAD	/CAM/CIM	(2011), N	lew age
2.	Mikell	P. Grover, Enory W. Jr Zim	mers, CAD/CAM	(2006), Pe	arson Ed	ucation.
3.	P. N. R	ao, CAD/CAM: Principles	and Applications (2010), Tat	a Mc Gra	w Hill.
4.		hein Chang, Richard A. W acturing (2009), Pearson E) Wang, C	omputer A	Aided
Mod	de of Ev	aluation: CAT, Written Ass	signment, Quiz ar	nd FAT		
Rec	commer	ided by Board of Studies	27-07-2022			
App	proved b	y Academic Council	No.67	Date	08-08-20	22

Cou	rse Code	Course Title		L	Т	Р	С
	A613P	Manufacturing Autom	ation Lab	0	0	2	1
Pre-I	requisite	NIL		Sylla	abus	versi	on
				-	1.0)	
Cou	rse Objective	5					
		he course are to:					
		undamentals of automation strategy					,
2		omputer aided process planning	and CNC part	prog	gramm	ning	tor
S	<u> </u>	components. manufacturing support systems	and outline inte	alliaen	t and	h dia	ital
0	manufactur			Singen	t and	a uig	nai
Cou	rse Outcome						
		f this course, the student will be able					
		concept of automation and assess	0		n		
		cess planning for industrial compon	•				.,
3		C technology for computer aided n mous RoboticsCNC codes for part p		prepa	re the		JIIE
4		naterial handling / storage systems		nectio	n svet	ems	
		acturing support systems for product			ii oyot	.01110.	
		intelligent manufacturing system an					
	ative Experi						
1.		ogramming – Step Turning, taper tu		ng, gr	oovin	g, line	ear
2		nterpolation through canned cycle p					
2. 3.		gramming – Mirroring and pocket m gram generation using 3D model.	lilling				
3. 4.		automated production system sin	nulation for a cas	tina i	oducti	N 110	ina
ч.	simulation pa	• •		ung n	luusi	y us	ing
5.		sembly sequence for a bearing ass	sembly unit using a	assem	bly si	mulat	ion
	package.				-		
6.	Simulate and	analyze any one material handling	system using mate	erial flo	ow sin	nulatio	on
		Total	Laboratory Hours	30	hours	5	
Text	Book(s)			L			
1.	Mikell D (Frover, Automation, Production	Systems and Ca	mout	or In	toara	tod
1.		g (2016), Fourth Edition, Pearson E		mput		legia	leu
Refe	rence Books						
				(004	<u> </u>		
1.	P. Radhakri International	shnan, S. Subramanyan, V. Raju	u, CAD/CAM/CIM	(201	1), N	ew a	ıge
2.		ver, Enory W. Jr Zimmers, CAD/CA	M (2006) Pearson	Educ	ation		
2. 3.		AD/CAM: Principles and Application					
4.		hang, Richard A. Wysk, Hsu-Pin (B	· /				
		g (2009), Pearson Education.	,				
Mode		nt: Continuous Assessment and Fir	nal Assessment Te	st			
Reco	ommended by	Board of Studies 27-07-2022					
Appr	oved by Acad	emic Council No.67 D)ate 08-08-2022	2			

Course Code	Course Title	L	T	P	C
MMHA614L	Fluid Power System Design	3	0	0	3
Pre-requisite	NIL	Sy	llabus	<u>s ver:</u> .0	sion
Course Objective	s :		- 1	.0	
The Objectives of t					
 Provide construction hydraulics Acquire the fluid, 	mprehensive introduction to fluid power system de and pneumatics. knowledge on the fundamental elements of fluid pow f fluid power and differentiate hydraulic and pneumat	/er a	nd pro	operti	es c
Course Outcom					
 Understand component Acquire knowski Study the transmission Demonstra Understand and working Understand Design an applications Module:1 Introd Definition- Hydrau Transmission and	his course the students will be able to the fundamental principles and analytical model s and its symbols, circuits, and systems. bwledge of the applications of fluid power in various en benefits and limitations of fluid power compared in technologies and Interface PLC with hydraulic and p te the production of compressed air and its distribution about hydraulics filters and sealers, types of filter eler g of filter in hydraulic unit components of hydraulic systems and its advantages d analyze the pneumatic system and its advantages	igine wit meni itage	ering h oth matic ts,- co es in 	fields her p syste nstru indu <u>5 h</u> al's tatic	s. owe ms. oution stria
•		jas 1	aws- v		
Hydraulic Pump -	ulic and Pneumatic Power Supply Source graphic symbol- pump types -pump flow and pressure pefficiency –air compressor- graphic symbol-co vacuum pumps			ive to	
Module:3 Contro	ol Flements			8 h	our
Directional control components - Valv forces on spool v	valves - Pressure control valves - Flow control Valve e configurations, General valve analysis, valve lap, flo valves. Series and parallel pressure compensation ysis and Design, Time delay valve, Proportional and S	ow fo flow	rces a contr	nic co and la ol va	ontro atera
Module:4 Circui	ts			6 h	our
circuits, Synchroni out and Bleed-off	ingle acting, double acting cylinder - Regenerative zation circuits, and accumulator sizing. Intensifier circu circuits; Fail Safe and Counter balancing circuits- circuits - AND and OR valve circuit	uits, I	Meter	-in, N	letei
Module:5 Desig	n of Circuits			6 h	our
Design and anal consideration for	ysis of typical hydraulic and pneumatic circuits sequential circuits-intuitive circuit design method ircuit design using KV method- compound circuit o	d-cas	scade	n me me	etho thod

INIC	odule:6 Electro-Hydraulic and Elect	ro-Pneumatic systems	7 hou
Pro var	ectrical control of pneumatic and hy ogrammable logic control of hydraulic rious circuits, motion controllers, Se sembly, Feeding, Metalworking, materia	and pneumatic circuits, PLC is vo systems – fundamentals.	adder diagram for Applications in
/ 10	seniory, receing, wetaworking, materia		•
Мс	odule:7 Fluid Power System Mainte	nance	5 houi
Filt	roduction, Sealing Devices - Reservo ters - Wear of Moving Parts - Gase publeshooting		
Мо	odule:8 Contemporary Issues		2 hou
		Total Lecture ho	ours: 45 hour
	xt Book(s)	d nowor(2002), Dolmor Thomas	
1			
1.	James L.Johnson, Introduction to Flu	a power(2003), Deimar monisc	on Learning Inc.
1. Re	ference Books		on Learning Inc.
Re			
Re 1.	ference Books James R. Daines, Fluid Power: Hyd	raulics and Pneumatics (2012)	, Goodheart-willco
Re 1. 2.	ference Books James R. Daines, Fluid Power: Hyd Publishers. Ahmed Abu Hanieh, Fluid Power	raulics and Pneumatics (2012) Control (2012), Cambridge Int	, Goodheart-willco ternational Scienc
Re 1. 2. 3.	ference Books James R. Daines, Fluid Power: Hyd Publishers. Ahmed Abu Hanieh, Fluid Power Publishing Ltd.	raulics and Pneumatics (2012) Control (2012), Cambridge Inf pplications (2010), Pearson Hig	, Goodheart-willco ternational Scienc
Re 1. 2. <u>3.</u> 4. Mo	ference Books James R. Daines, Fluid Power: Hyd Publishers. Ahmed Abu Hanieh, Fluid Power of Publishing Ltd. Anthony Esposito, Fluid Power with A M GalalRabie, Fluid power engineerin ode of Evaluation: CAT ,Written Assignr	raulics and Pneumatics (2012) Control (2012), Cambridge Inf pplications (2010), Pearson Hig ig (2009), Mc-Graw Hill. nent, Quiz and FAT	, Goodheart-willco ternational Scienc
Re 1. 2. 3. 4. Mc Re	ference Books James R. Daines, Fluid Power: Hyd Publishers. Ahmed Abu Hanieh, Fluid Power of Publishing Ltd. Anthony Esposito, Fluid Power with A M GalalRabie, Fluid power engineerin ode of Evaluation: CAT ,Written Assignr	raulics and Pneumatics (2012) Control (2012), Cambridge Inf pplications (2010), Pearson Hig ig (2009), Mc-Graw Hill. nent, Quiz and FAT 07-2022	, Goodheart-willco ternational Scienc gher Ed.

application in industry Course Outcome On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid powe components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power in various engineering fields. 3. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems 4. Demonstrate the production of compressed air and its distribution. 5. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic unit 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industr applications. 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder 3. Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switt manually 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of basic pneumatic and hydraulic circuits. 7. Simulation of Electro-Hydraulic systems. 9. Simulation of PLC based electro pneumatic sequencing circuits	Cour	se Code	Course Title	L	Т	Ρ	С		
Course Objectives The Objectives of the course are to: 1. Provide comprehensive introduction to fluid power system design including be hydraulics and pneumatics. 2. Acquire the knowledge on the fundamental elements of fluid power and properties fluid, 3. Understand fluid power and differentiate hydraulic and pneumatic systems for the application in industry Course Outcome On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid pow components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power compared with other pow transmission technologies and Interface PLC with hydraulic and pneumatic systems 4. Demonstrate the production of compressed air and its distribution. 5. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic usit 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industr applications. 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder using electrical push button switch using met out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch using met out circuit 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of Electr	MMH	IA614P		0	0	2	1		
Course Objectives The Objectives of the course are to: 1. Provide comprehensive introduction to fluid power system design including be hydraulics and pneumatics. 2. Acquire the knowledge on the fundamental elements of fluid power and properties fluid, 3. Understand fluid power and differentiate hydraulic and pneumatic systems for the application in industry Course Outcome On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power in various engineering fields. 3. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems 4. Demonstrate the production of compressed air and its distribution. 5. Understand about hydraulics filters and sealers, types of filter elements, - construction and working of filter in hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industr applications. 1 Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder using electrical push button switch using met out circuit 4. Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit 5. Or gate & AND gate operation using single acting cylinder.	Pre-r	requisite	NIL	Sylla			on		
 The Objectives of the course are to: Provide comprehensive introduction to fluid power system design including be hydraulics and pneumatics. Acquire the knowledge on the fundamental elements of fluid power and properties fluid, Understand fluid power and differentiate hydraulic and pneumatic systems for the application in industry Course Outcome On completion of this course the students will be able to Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. Acquire knowledge of the applications of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems Understand about hydraulics filters and sealers, types of filter elements, - constructive and working of filter in hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industr applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using metoduc circuit Simulation of basic pneumatic and hydraulic circuits. Simulation of Electro-Pneumatic aystems. Simulation of Electro-pneumatic aystems. 					1.0)			
 Provide comprehensive introduction to fluid power system design including bothydraulics and pneumatics. Acquire the knowledge on the fundamental elements of fluid power and properties fluid, Understand fluid power and differentiate hydraulic and pneumatic systems for the application in industry Course Outcome On completion of this course the students will be able to Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. Acquire knowledge of the applications of fluid power compared with other pow transmission technologies and Interface PLC with hydraulic and pneumatic systems Demonstrate the production of compressed air and its distribution. Understand about hydraulics filters and sealers, types of filter elements, - constructival and working of filter in hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industr applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button swith using metoduct circuit. Simulation of basic pneumatic and hydraulic circuits. Simulation of Electro-Hydraulic systems. Simulation of Electro-Hydraulic systems. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits									
 hydraulics and pneumatics. Acquire the knowledge on the fundamental elements of fluid power and properties fluid, Understand fluid power and differentiate hydraulic and pneumatic systems for the application in industry Course Outcome On completion of this course the students will be able to Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. Acquire knowledge of the applications of fluid power in various engineering fields. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems Demonstrate the production of compressed air and its distribution. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industr applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder using electrical push button switch using met out circuit Controlling the hydraulic rotary actuator using electrical push button switt manually O or gate & AND gate operation using single acting cylinder. Simulation of Electro-Hydraulic systems . Simulation of PLC based electro pneumatic sequencing circuits				aian i	ام يام م	ina h	ath		
 Acquire the knowledge on the fundamental elements of fluid power and properties fluid, Understand fluid power and differentiate hydraulic and pneumatic systems for the application in industry Course Outcome On completion of this course the students will be able to Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. Acquire knowledge of the applications of fluid power in various engineering fields. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems Demonstrate the production of compressed air and its distribution. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industr applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder using DCV Automatic reciprocation of double acting cylinder using electrical push button swith manually Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic systems. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits 	1.			sign i	nciua	ng b	oth		
fluid, 3. Understand fluid power and differentiate hydraulic and pneumatic systems for the application in industry Course Outcome On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power in various engineering fields. 3. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems 4. Demonstrate the production of compressed air and its distribution. 5. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic unit 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industr applications. 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder 3. Controlling the double acting hydraulic cylinder using electrical push button switch using met out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switt manually 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of sequencing circuits. 8.	2			er and	d nror	ertied	s of		
 Understand fluid power and differentiate hydraulic and pneumatic systems for the application in industry Course Outcome On completion of this course the students will be able to Understand the fundamental principles and analytical modeling of fluid powe components and its symbols, circuits, and systems. Acquire knowledge of the applications of fluid power in various engineering fields. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems Demonstrate the production of compressed air and its distribution. Understand about hydraulics filters and sealers, types of filter elements,- constructive and working of filter in hydraulic unit Understand components of hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industr applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the double acting hydraulic cylinder using electrical push button switch using met out circuit Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of Electro-Hydraulic systems. Simulation of Electro-pneumatic systems. 	<u> </u>		nite medge on the fundamental elements of hald per			ornoc	, 0,		
Course Outcome On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid powe components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power in various engineering fields. 3. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems 4. Demonstrate the production of compressed air and its distribution. 5. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industr applications. 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder 3. Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch using met out circuit 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of sequencing circuits. 7. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-Pneumatic systems. 9. Simulation of PLC based electro pneumatic sequencing circuits	3	3. Understand fluid power and differentiate hydraulic and pneumatic systems for their							
On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid powe components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power in various engineering fields. 3. Study the benefits and limitations of fluid power compared with other powe transmission technologies and Interface PLC with hydraulic and pneumatic systems 4. Demonstrate the production of compressed air and its distribution. 5. Understand about hydraulics filters and sealers, types of filter elements,- constructive and working of filter in hydraulic unit 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industr applications. 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder 3. Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch using met out circuit 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of sequencing circuits. 8. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-Pneumatic systems. 10 Simulation of PLC based electro pneumatic sequencing circuits		application	in industry	-					
On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid powe components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power in various engineering fields. 3. Study the benefits and limitations of fluid power compared with other powe transmission technologies and Interface PLC with hydraulic and pneumatic systems 4. Demonstrate the production of compressed air and its distribution. 5. Understand about hydraulics filters and sealers, types of filter elements,- constructive and working of filter in hydraulic unit 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industr applications. 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder 3. Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch using met out circuit 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of sequencing circuits. 8. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-Pneumatic systems. 10 Simulation of PLC based electro pneumatic sequencing circuits									
 Únderstand the fundamental principles and analytical modeling of fluid pow components and its symbols, circuits, and systems. Acquire knowledge of the applications of fluid power in various engineering fields. Study the benefits and limitations of fluid power compared with other pow transmission technologies and Interface PLC with hydraulic and pneumatic systems Demonstrate the production of compressed air and its distribution. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic unit Understand components of hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industr applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Single acting the hydraulic rotary actuator using electrical push button switch using met out circuit Controlling the double acting hydraulic cylinder using electrical push button switch using met auticircuit Simulation of basic pneumatic and hydraulic circuits. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits									
 components and its symbols, circuits, and systems. Acquire knowledge of the applications of fluid power in various engineering fields. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems Demonstrate the production of compressed air and its distribution. Understand about hydraulics filters and sealers, types of filter elements, - construction and working of filter in hydraulic unit Understand components of hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industr applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits 				ling o	f fluiz		Nor		
 Acquire knowledge of the applications of fluid power in various engineering fields. Study the benefits and limitations of fluid power compared with other pow transmission technologies and Interface PLC with hydraulic and pneumatic systems Demonstrate the production of compressed air and its distribution. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic unit Understand components of hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industr applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit Controlling the double acting hydraulic cylinder using electrical push button switch using met out circuit Simulation of basic pneumatic and hydraulic circuits. Simulation of Electro-Hydraulic systems. Simulation of Electro-Pneumatic systems. Simulation of PLC based electro pneumatic sequencing circuits 	1.			ing o	i nuk	i pov	WEI		
 Study the benefits and limitations of fluid power compared with other pow transmission technologies and Interface PLC with hydraulic and pneumatic systems Demonstrate the production of compressed air and its distribution. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic unit Understand components of hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industr applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits 	2			ginee	ring fie	elds.			
 Demonstrate the production of compressed air and its distribution. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic unit Understand components of hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industrapplications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit Controlling the double acting hydraulic cylinder using electrical push button switch using met out circuit Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits 							wer		
 Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic unit Understand components of hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industrapplications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using method to circuit Controlling the double acting hydraulic cylinder using electrical push button switch using method. Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits 					atic sy	/stem	IS.		
 and working of filter in hydraulic unit 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industr applications. Indicative Experiments 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder 3. Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch using met out circuit 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of basic pneumatic and hydraulic circuits. 7. Simulation of Electro-Hydraulic systems. 9. Simulation of PLC based electro pneumatic sequencing circuits 									
 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industr applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using metout circuit Controlling the double acting hydraulic cylinder using electrical push button switch using metout circuit Controlling the double acting hydraulic cylinder using electrical push button switch using metout circuit Controlling the double acting hydraulic cylinder using electrical push button switch using metout circuit Controlling the double acting hydraulic cylinder using electrical push button switch using metout circuit Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of sequencing circuits. Simulation of Electro-Hydraulic systems. Simulation of Electro-pneumatic systems. Simulation of PLC based electro pneumatic sequencing circuits 	5.			ments	,- con	struct	lion		
 7. Design and analyze the pneumatic system and its advantages in industr applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch using met out circuit 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of basic pneumatic and hydraulic circuits. 7. Simulation of sequencing circuits. 8. Simulation of Electro-Hydraulic systems. 9. Simulation of PLC based electro pneumatic sequencing circuits 	6								
applications. Indicative Experiments 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder 3. Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switten using met out circuit 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of basic pneumatic and hydraulic circuits. 7. Simulation of sequencing circuits. 8. Simulation of Electro-Hydraulic systems. 9. Simulation of PLC based electro pneumatic sequencing circuits					in i	ndust	rial		
Indicative Experiments 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder 3. Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch using met out circuit 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of basic pneumatic and hydraulic circuits. 7. Simulation of sequencing circuits. 8. Simulation of Electro-Hydraulic systems. 9. Simulation of PLC based electro pneumatic sequencing circuits	• •	•	• •	lagee					
 Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit Controlling the double acting hydraulic cylinder using electrical push button switch manually Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits 									
 Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit Controlling the double acting hydraulic cylinder using electrical push button switch manually Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of sequencing circuits. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits 	1								
 Controlling the hydraulic rotary actuator using electrical push button switch using met out circuit Controlling the double acting hydraulic cylinder using electrical push button switch manually Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of sequencing circuits. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits 									
out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button swith manually 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of basic pneumatic and hydraulic circuits. 7. Simulation of sequencing circuits. 8. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-pneumatic systems. 10 Simulation of PLC based electro pneumatic sequencing circuits				- ovvita	huair		tor		
manually 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of basic pneumatic and hydraulic circuits. 7. Simulation of sequencing circuits. 8. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-pneumatic systems. 10 Simulation of PLC based electro pneumatic sequencing circuits	3.		le hydraulic rotary actuator using electrical push buttor	1 SWILC	in usir	ig me	eler		
 Simulation of basic pneumatic and hydraulic circuits. Simulation of sequencing circuits. Simulation of Electro-Hydraulic systems. Simulation of Electro-pneumatic systems. Simulation of PLC based electro pneumatic sequencing circuits 	4.	•	he double acting hydraulic cylinder using electrical	push	butto	n swi	tch		
 7. Simulation of sequencing circuits. 8. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-pneumatic systems. 10 Simulation of PLC based electro pneumatic sequencing circuits 	5.								
8. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-pneumatic systems. 10 Simulation of PLC based electro pneumatic sequencing circuits	6.	Simulation of	basic pneumatic and hydraulic circuits.						
 9. Simulation of Electro-pneumatic systems. 10 Simulation of PLC based electro pneumatic sequencing circuits 	7.	Simulation of	sequencing circuits.						
10 Simulation of PLC based electro pneumatic sequencing circuits	8.	Simulation of	Electro-Hydraulic systems.						
	9.	Simulation of	Electro-pneumatic systems.						
Total Laboratory Hours 20 hours	10	Simulation of	PLC based electro pneumatic sequencing circuits						
	I		Total Laboratory Hours	s 30	hours	3			
Text Book(s)	Text								
1. James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc.			nson, Introduction to Fluid power(2003), Delmar Thom	ison Le	earnir	ıg Inc	·		
Reference Books	Refe	rence Books							
1. James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willow Publishers.	1.		nines, Fluid Power: Hydraulics and Pneumatics (2012)), Goo	dheai	t-willo	cox		
2. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd.	2.			ationa	l Scie	nce			
3. Anthony Esposito, Fluid Power with Applications (2010), Pearson Higher Ed.	3.			ligher	Ed.				

4.	M GalalRabie, Fluid power engineering (2009), Mc-Graw Hill.					
Mod	e of Assessment: Continuous Ass	sessment and	Final Ass	essment Test		
Reco	ommended by Board of Studies	27-07-2022				
Appr	Approved by Academic Council No.67 Date 08-08-2022					

Cours	e Code	Co	urse Title			L	Т	Р	С
MMHA696J		-	riented Pro	ject			-	-	02
Pre-requisite N		NIL					labus	vers	sion
	•						1.0	0	
	e Objectivo								
1.		nt will be able to analys	e and inter	oret publi	shed litera	ture	for inf	orma	ition
		to niche areas.							
		technical literature and a							
3.	Use insigh	t and creativity for a bett	er understa	nding of t	he domain	of in	terest		
Cours	e Outcome	<u>)</u>							
		analyse, and interpret	published	literature	/books pr	ovidir	ing inf	orma	ation
	related to	niche areas/focused dom	nains.		•		0		
2.	Examine to	echnical literature, resolv	e ambiguity	, and dev	elop conc	lusior	ıs.		
		e knowledge and use ins			•			e don	nain
	of interest.		•	•					
4.	Publish th	ne findings in the pee	er reviewe	d journal	s / Natio	nal /	Inte	rnati	onal
	Conferenc	es.							
Modu	le Content			(Project duration: One semester)					
		towards reading publish s under the guidance of a		e or boo	ks related	to n	iche	area	s or
		on: Evaluation involves	•	2	-				
	•	ered. Assessment on the							
-	-	vs – Presentation in the N	National / In	ternationa	al Confere	nce o	n Scie	ence,	
Engine	eering Tech	nology.							
Recon	nmended by	/ Board of Studies	27-07-202	2					
		demic Council	No. 67	Date	08-08-20	22			

Cours	se Code	Cou	rse Title			L	т	Р	С
ММН	4697J	Desig	n Project						02
Pre-re	equisite	NIL	•			Sylla	abus	vers	ion
							1.0)	
Cours	se Objectiv	es:							
1.	Students v	vill be able to design a pro	ototype or pr	rocess or	experime	ents.			
2.	Describe a	and demonstrate the techn	niques and s	skills nece	essary foi	r the p	project	t.	
3.	Acquire kr	owledge and better under	rstanding of	design sy	ystems.				
Cours	se Outcome	:							
	prototype	ew skills and demonstrat or working model or proce	-	iments.	p.				
3.	Synthesize	techniques, skills, and mo e knowledge and use ir esign systems. ne findings in the peer es.	nsight and	creativity	to bett	erun	derst		
3. 4.	Synthesize improve de Publish th	e knowledge and use ir esign systems. ne findings in the peer	nsight and	creativity journals	to bett	er [°] un onal /	idersta Inte	rnatio	onal
3. 4. Modu Stude	Synthesize improve de Publish th Conference Ie Content nts are ex ypes to des	e knowledge and use ir esign systems. ne findings in the peer	nsight and reviewed	creativity journals (Projet	to bett / Natic <u>ct durati</u> trate the	er [°] un onal / <u>on: O</u> abilit	idersta Inte Inte	rnatio	onal ter)
3. 4. Modu Stude prototy proces Mode studer and p	Synthesize improve de Publish th Conference Ie Content Its are ex ypes to des ss. of Evalua nt has regis	e knowledge and use in esign systems. he findings in the peer es. bected to develop new sign prototype or working tion: Evaluation involves tered. Assessment on the ws – Presentation in the	skills and models re periodic re	creativity journals (Proje demonst lated to a eviews by Report to	to bett / Natic ct durati trate the an engine the fac be sub	er un onal / on: O abilit eering ulty w mitted	idersta Inte Inte ty to proc	emes deve luct o hom	ter) ter) br a the
3. 4. Modu Stude prototy proces Mode studer and p Engine	Synthesize improve de Publish th Conference Ie Content Its are ex ypes to des ss. of Evalua nt has regis roject review eering Tech	e knowledge and use in esign systems. ne findings in the peer es. bected to develop new sign prototype or working tion: Evaluation involves tered. Assessment on the ws – Presentation in the nology.	skills and models re periodic re	creativity journals (Proje demonst lated to a eviews by Report to Internation	to bett / Natic ct durati trate the an engine the fac be sub	er un onal / on: O abilit eering ulty w mitted	idersta Inte Inte ty to proc	emes deve luct o hom	ter) elop or a the tion

Cours	e Code		Course Title			L	т	Ρ	С
MMHA698J		Interr	rnship I/ Dissertation I					10	
Pre-requisite NIL						Syll	abus	vers	
							1.0		-
Cours	e Objective	es:							
-		ent hands-on learn	• .		-		-		
-		e product / process		ce the tec	hnical ski	ll sets	in the	e cho	sen
field ar	nd also to g	ive research orienta	ation.						
Cours	e Outcome):							
1.		bly more in-depth k ight into current res	•	-	•	of stud	dy, inc	ludin	g
2.	•	ility to use a holistic rmulate and deal wi	•		dently and	d crea	tively		
З		usness of the ethica	•		develonm	ent w	ork		
		ns in the peer review	-		-			an	
	added adv	•	neu jeumaie / m	ernational	Connoron			an	
Modul	e Content		(1	Project du	iration: o	ne se	mest	er)	
1.	analysis, p	n may be a theored prototype design, fa /are development, a	brication of new	equipmer	nt, correla	tion a	nd an	alysi	
2.	Dissertatio	n should be individ	ual work.						
3.	Carried ou institution.	ut inside or outside	e the university,	in any r	elevant ir	ndustr	y or	resea	arch
4.	Publicatior added adv	ns in the peer revi antage.	iewed journals /	Internatio	onal Cont	ferenc	es wi	ill be	an
Mode	of Evalua	tion: Assessment	on the project	- Disserta	tion repo	ort to	be sı	ıbmit	ted,
preser	tation, proje	ect reviews and Fin	al Oral Viva Exa	mination.					
Recom	nmended by	/ Board of Studies	27-07-2022						
Approv	ed by Acad	demic Council	No. 67	Date	08-08-20	022			

Cours	e Code	(Course Title			L	т	Р	С
ММНА	A699J	Internsh	nip II/ Disserta	tion II					12
			•						
Pre-requisite NIL						Syll	abus		ion
Cours	Course Objectives:								
To provide sufficient hands-on learning experience related to the design, development and									
•		le product / process s	, i		0				
field.									
1									
Cours	e Outcome	.							
		completion of this cou	rse students w	ill be able	to				
1.		specific problem s				life p	roble	ms v	with
		e assumptions and co				•			
2.		erature search and / c		h in the a	rea of inte	erest.			
3.	Conduct e	experiments / Design	and Analysis	/ solution	iterations	and	docur	ment	the
	results.	-	-						
4.	Perform er	ror analysis / benchm	arking / costin	g.					
5.	Synthesize	e the results and arrive	e at scientific c	onclusion	s / produc	cts / so	olutior	۱.	
6.	Document	the results in the form	n of technical r	eport / pre	esentation	۱.			
Modu	le Content			(Proj	ect durat	ion: o	ne se	emes	ter)
1.	analysis, p data, softw	on may be a theoretica prototype design, fabr are development, app	ication of new blied research a	equipmer	nt, correla	ition a	nd ar	alysi	
2.		on should be individua				• •			
3.	institution.	ut inside or outside	the university,	in any r	elevant ir	ndustr	y or	resea	arch
4.		ns in the peer review	ved iournals /	Internatio	onal Cont	ferenc	es w	ill be	an
	added adva	•	,		_				
	Mode of Evaluation: Assessment on the project - Dissertation report to be submitted, presentation, project reviews and Final Oral Viva Examination.								
Recor	nmended by	/ Board of Studies	27-07-2022						
Appro	ved by Acad	demic Council	No. 67	Date	08-08-20	022			