

SCHOOL OF MECHANICAL ENGINEERING

M. Tech Manufacturing Engineering

(M.Tech MMF)

Curriculum (2020-2021 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and impactful workforce and students.

Rewarding Co-Creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

To be a leader in imparting world class education in Mechanical Engineering, leading to nurturing of scientists and technologists of highest caliber who would engage in sustainable development of the globe.

MISSION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

The mission of the school is to create and maintain an environment for Excellence in Instruction, Learning and Applied Research in the area of Mechanical and allied disciplines so as to equip our students with necessary knowledge and skills for higher education / employment and to meet the social demands.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

PROGRAMME OUTCOMES (POs)

PO_1: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO_2: Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO_3: Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems

PO_4: Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO_5: The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO_6: Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO_7: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO_8: Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Manufacturing Engineering) programme, graduates will be able to

PSO_01: Prepare process plan, simulate manufacturing processes and establish production systems for the physical realisation of components and products

PSO_02: Conduct experimental investigations and incorporate latest technologies for improving manufacturing processes

PSO_03: Independently carry out research / investigation to solve practical problems and write / present a substantial technical report/document

CREDIT STRUCTURE

Category	Credits
University core (UC)	27
Programme core (PC)	19
Programme elective (PE)	18
University elective (UE)	06
Bridge course (BC)	-
Total credits	70

Category-wise Credit distribution

DETAILED CURRICULUM

University Core

S. No.	Course	Course Title	L	Т	Р	J	C			
	Code									
1.	MAT 5005	Advanced Mathematical Methods30003								
2.	MEE6099	Master's Thesis	Master's Thesis 10							
3.	SET5001	SET Project	-	-	-	-	2			
4.	SET5002	SET Project	-	-	-	-	2			
5.	EFL5097	English and Foreign Language	0	0	0	0	2			
Basket						1	1			
ENG50	01 - Fundamer	ntals of Communication Skills - LO								
ENG50	02 - Profession	nal and Communication Skills - LO								
FRE50	01 - Francais fo	onctionnel - TH								
GER50	01 - Deutsch f	uer Anfaenger - TH								
6.	STS6777	Soft Skills M.Tech.	0	0	0	0	2			
Basket					•	•				
STS500)1 - Essentials	of Business Etiquettes - SS								
STS500	STS5001 - Essentials of Business Etiquette and Problem Solving - SS									
STS500	STS5002 - Preparing for Industry - SS									
STS510)2 - Programm	ing and Problem Solving Skills - SS								

Programme Core

S. No.	Course	Course Title	L	Т	Р	J	C
	Code						
1.	MEE5001	Finite Element Methods in Manufacturing	3	0	2	0	4
2.	MEE5002	Computer Integrated Manufacturing	2	0	0	4	3
3.	MEE5003	Advanced Materials and Characterization	3	0	0	0	3
4.	MEE5004	Modern Machining Processes	2	0	0	4	3
5.	MEE5005	Quality and Reliability Engineering	3	0	0	0	3
6.	MEE5025	Mechatronics & Automation	2	0	2	0	3

Programme Elective

S. No.			L	Т	Р	J	C
	Code						
1.	MEE6001	Metrology and Non-destructive Testing	2	0	0	4	3
2.	MEE6002	Optimization Techniques	2	2	0	4	4
3.	MEE6003	Micro and Nano Manufacturing	3	0	0	0	3
4.	MEE6004	Casting and Welding Technology	3	0	2	0	4
5.	MEE6005	Virtual Manufacturing	3	0	0	0	3
6.	MEE6006	Theory of Metal Forming	2	0	0	4	3
7.	MEE6007	Sustainable Manufacturing	3	0	0	0	3
8.	MEE6008	Supply Chain and Logistics Management	3	0	0	0	3
9.	MEE6009	Manufacturing System Simulation	2	0	2	0	3
10.	MEE6010	Maintenance Engineering	3	0	0	0	3
11.	MEE6011	Manufacturing Information Systems	2	0	0	4	3
12.	MEE6012	Design and Analysis of Experiments	2	2	0	4	4
13.	MEE6013	Advanced Tool Engineering	3	0	0	4	4
14.	MEE6014	Laser Material Processing	2	0	0	4	3
15.	MEE6015	Additive Manufacturing Technology	2	0	0	4	3
16.	MEE6052	Industrial Surface Engineering	2	0	0	4	3

Course code	Advanced Mathematical Methods	L		Т	P	J	С
MAT5005		3		0	0	0	3
Pre-requisite	NIL	S	yll	ab	us v	vers	
							2.0
Course Objectiv							
	the students with sufficient exposure to advanced i	nathei	mat	tica	ıl n	heth	ods
	at are relevant to engineering research.						
	the computational skills of students by giving su						
	and numerical techniques useful for solving	proble	ems	S a	aris	ing	1n
	Engineering. he knowledge of real time applications of Autono	mour		vot	ame	N	on
	ms of ordinary differential equations and partial diff						011-
inical syste	ins of ordinary differential equations and partial diff		11 0	<u> </u>	and	<i>ms</i> .	
Course Outcom	e(CO):						
	and analyse a variety of tools for solving linear	svste	ms	s ai	nd	find	ing
-	of these systems.	5,500					8
U	d use the numerical techniques needed for the	solut	ion	0	fa	gi	ven
engineering	•					U	
3. Understand	and correlate the analytical and numerical methods						
4. Demonstrat	e their ability to write coherent mathematical	proofs	s a	nd	sc	ient	ific
arguments	needed to communicate the results obtained from	ı diffe	rer	ntia	l e	quat	ion
models.							
	e the understanding of how physical phenomena an	e moo	del	led	by	par	tial
differential	equations						
	mentes Dechleme					· 1	
0	envalue Problems value problems–Eigenvalues and Eigenvectors–Gers	ahaar	in (Cir.		5 ho	urs
	user method, Power method, Inverse Power method				168	•	
uleoreni–Kuusha	user method, I ower method, mverse I ower method	•					
Module:2 Iter	ation Methods					6 ho	11 r 6
	Jacobi method, Given's method, Householder meth	od De	fla	atio		0 110	urs
Lanczo's method		<i>J</i> u , <i>D</i> u	711u	0	<i>,</i>		
Module:3 Cal	culus of Variations				9) ho	urs
	s equation –Isoperimetric problems, Rayleigh–Rit	z me	tho	d ·		-	
method.							
Module:4 Sys	tem of First Order Ordinary					6 ho	
v	tem of First Order Ordinary ferential Equations				C	0 110	urs
	- Homogeneous linear systems with constant coeff	icient	s -	A۱	itor	nom	0116
-	Plane Phenomena - Critical Points - Stability for line					ioni	Jus
				-10.			
N. 1 1. # 1.	P					- 1	
	nlinear systems pints of nonlinear systems-Stability by Liapunov's n	.1	1		6	6 ho	urs
C:1							

Non	- Linea	r Mechanics: Conservative sys	10			
Mod	lule:6	Pontial Differential Equation	9			5 hours
		Partial Differential Equation		tions	Significance	
char		on of Second-Order Partial Diffe c curves, Canonical Form, Sturr				
Mod	lule:7	Wave equation				6 hours
Disp	laceme	nts in a long string – a long strin	ng under its v	veight	a - a bar with p	rescribed
		e end – free vibrations of a string	g. Method of	Separ	ration of variab	oles, Solution
by n	nethod o	f Laplace transforms				
Mod	lule:8	Contemporary Issues				2 hours
Indu	stry Ex	pert Lecture				
		Total L	ecture hour	s: 4	5 hours	
Tex	t Book((2				
		ntial Equations: Theory, Techni	que and Pra	ctice	G.F. Simmons	S. G. Krantz
1		cGrawHill Publishing, 2007. (T	1			b. G. Intalitz,
2		ts of Partial differential equation				ications. New
-		006. (Topics from Chapters 3, 5		nouu	, 2000 Tuoi	104410115, 1100
3		cal Methods for Scientific and		Com	outation, M. K.	Jain, S. R. K.
		, R. K. Jain, New Age Internat				
		from Chapter 3, 7)				
4	Introdu	ctory Methods of Numerical An	alysis, S.S.	Sastr	y, PHI Pvt. Ltd	l., 5th Edition,
	New D	elhi, 2015. (Topics from Chapte	er 11)			
5	The Ca	lculus of Variations, Bruce van	Brunt, Sprin	nger, 2	2004. (Topics f	from Chapters
	2, 4, 5)					
Refe	erence I					
1		ential Equations and Dynamical	l Systems, L	awren	ice Perko, 3rd	ed., Springer-
_	Verlag,					~
2		oduction to Ordinary Different	-	s, Jan	nes C. Robinso	n, Cambridge
2		sity Press, New York, 2008 (4th		D' 1	1 TT 1	
		tary Applied Partial Differentia	u Equations,	K1Ch	aru Haberman,	Frentice Hall
		tional, 1998. cal Analysis, R. L. Burden and	I D Egirag	10 th E	dition Congo	a Loomina
4		lition, 2015.	J. D. Falles,	10 E	Sunton, Cengag	e Leannig,
Mod		aluation: Continuous Assessme	nt Tests, Fina	al Ass	essment Test, I	Digital
		s, Quizzes.			- 7	J
	0	luation:				
Reco	ommenc	led by Board of Studies	03-06-2019			
App	roved b	y Academic Council	No. 55	Date	13-06-2019	

	Science, Eng	gineering and Te	chnology	Project– I	L	T	Р	J	С
SET5001					-	-	-	-	2
Pre-requisite					Syllab	us	Ver	sic	n
								1	.1(
Course Objectives	:								
The Objectives of	the course are:								
1. To provide opp	ortunity to involve ir	n research related	to science	/ engineering	5				
2. To inculcate res	earch culture								
3. To enhance the	rational and innovat	ive thinking capa	bilities						
Expected Course (Jutcomo								
.	de the university, in	any magaanah area	000000000000000000000000000000000000000	ding to their		1100			
							1		
$Z_{\rm e} = E \Pi D \Pi C A \Pi O \Pi S \Pi \Gamma$	Publications in the peer reviewed journals / International Conferences will be an added advantage It motivates and encourage research culture in the young minds of graduate engineers								
							ava	nta	age
3. It motivates and	l encourage research	culture in the yo	ung minds	of graduate e	ngineer	5			
 It motivates and Students are ma 	l encourage research ade aware of plagian	culture in the yo rism checking an	ung minds	of graduate e	ngineer	5			
 It motivates and Students are ma 	l encourage research	culture in the yo rism checking an	ung minds	of graduate e	ngineer	5			
 It motivates and Students are ma 	l encourage research ade aware of plagian academic regulations	culture in the yo rism checking an	ung minds	of graduate e	ngineer	5			-
 It motivates and Students are main 12% as per the and Modalities / Require 	l encourage research ade aware of plagian academic regulations rements	culture in the yo rism checking an s	ung minds	of graduate e	ngineer	5			
 It motivates and Students are mains 12% as per the and Modalities / Require Individual of 	l encourage research ade aware of plagian academic regulations rements r group projects can	culture in the yo rism checking an s be taken up	ung minds	of graduate e	ngineer	5			-
 It motivates and Students are mains 12% as per the and Modalities / Require Individual of Involve in literation of the second second	l encourage research ade aware of plagian academic regulations rements r group projects can terature survey in th	culture in the yo rism checking an s be taken up e chosen field	ung minds d they are	of graduate e advised not	ngineer	5			
 It motivates and Students are mains 12% as per the and Modalities / Requisition Individual of Involve in line Use Science 	l encourage research ade aware of plagian academic regulations rements r group projects can terature survey in th c/Engineering princip	culture in the yo rism checking an s be taken up e chosen field ples to solve iden	ung minds d they are	of graduate e advised not	ngineer to excee	s ed n	nore	e tl	hai
 It motivates and Students are main 12% as per the and Modalities / Requires Individual of 2. Involve in his Use Sciences Adopt relev 	l encourage research ade aware of plagian academic regulations rements r group projects can terature survey in th /Engineering princip ant and well-defined	culture in the yo rism checking an s be taken up e chosen field ples to solve iden	ung minds d they are tified issue hodologies	of graduate e advised not	ngineer to excee	s ed n	nore	e tl	hai
 It motivates and Students are main 12% as per the and Modalities / Requires Individual of 2. Involve in his Use Sciences Adopt relev 	l encourage research ade aware of plagian academic regulations rements r group projects can terature survey in th c/Engineering princip	culture in the yo rism checking an s be taken up e chosen field ples to solve iden	ung minds d they are tified issue hodologies	of graduate e advised not	ngineer to excee	s ed n	nore	e tl	hai
 It motivates and Students are main 12% as per the and Modalities / Requires Individual of 2. Involve in his Use Sciences Adopt relev 	l encourage research ade aware of plagian academic regulations rements r group projects can terature survey in th /Engineering princip ant and well-defined	culture in the yo rism checking an s be taken up e chosen field ples to solve iden	ung minds d they are tified issue hodologies	of graduate e advised not	ngineer to excee	s ed n	nore	e tl	ha
 It motivates and Students are main 12% as per the and Modalities / Required 1. Individual of 2. Involve in line Use Science Adopt relev Submission 	l encourage research ade aware of plagian academic regulations rements r group projects can terature survey in th /Engineering princip ant and well-defined	culture in the yo rism checking an s be taken up e chosen field ples to solve iden l / innovative met n a specified form	ung minds d they are tified issue hodologies nat (after p	of graduate e advised not	ngineer to excee	s ed n	nore	e tl	hai
 It motivates and Students are main 12% as per the and Modalities / Requires Individual of 2. Involve in li Use Science Adopt relev Submission 	l encourage research ade aware of plagian academic regulations rements r group projects can terature survey in th /Engineering princip ant and well-defined of scientific report in	culture in the yo rism checking an s be taken up e chosen field ples to solve iden l / innovative met n a specified form	ung minds d they are tified issue hodologies nat (after p	of graduate e advised not	ngineer to excee	s ed n	nore	e tl	hai

Course code	Science, Engi	neering and Tech	nology P	Project– II	L	T	Ρ.	J	С
SET5002					-	-		-	2
Pre-requisite	SET I				Sylla	ıbu	s ve	rsi	on
•					v			1.	.10
Course Objectiv	es:								
The Objectives of	f the course are:								
 analysis, prosoftware dev 2. The SET projects will 3. It improves individual repapers. 4. A conscious improvement 	t may be of theoretic ototype design, fabricative lopment, etc. or a co- roject is intended to get a explore innovations i the research culture a esearch article in the f eness of the ethical asp nt is carried along with o	ation of new eque ombination of thes give each student n technology, syst and gives confide form of national a pects of research a	ipment, c e. the func- tems and nce for thand intern nd develo	orrelation an lamental rese business strat he student to lational confe opment work	d anal earch c egy. practic erences needec	ysis conc ce a an fo	of cept. and d jo r soo	da T wr urr	uta, The rite nal
Expected Cours	e Outcome:								
1. Carried out in	side the university, in	•	-	0					
	in the peer reviewed	l journals / Inter	national	Conferences	will t	be a	an a	dd	led
advantage.	nd an aayma aa maaaamah	aulture in the year	n a min d	of anoduoto	anaina				
	nd encourage research nade aware of plagiar						nore	th	าวท
	e academic regulation	-	incy are a		JUNCE	Juli		ul	an
	- actualité régulation	~							
Student Assessm	ent : Mid reviews & S	SET International	Conferen	ce Presentati	on (Or	al o	r Po	ste	er)
	y Board of Studies	17-08-2017							
Approved by Aca	domio Council	No. 47	Date	05-10-2017	-				

Course code		Master's The	sis		L	Т	Р	J	С
MEE6099					0	0	0	0	16
Pre-requisite	As per the acade	emic regulations	5		-	-	-	•	sion
					J				1.0
Course Objectiv	es:			I					
To provide suffic	ient hands-on learn	ning experience 1	related to	the design	, devel	opm	ent	and	
	le product / process		e the tec	hnical skill	sets in	the	cho	sen	
field and also to g	give research orient	tation.							
Expected Course									
	ably more in-depth	•			d of stu	dy,	incl	udiı	ng
1	sight into current re		1				_		
-	oility to use a holist		•	ependently	and cre	ative	ely		
	formulate and deal	-				1			
	ousness of the ethic								
4. Publication added adv	ons in the peer revie	ewed journals / 1	mernan	onal Conter	ences v		je a	11	
Contents	antage								
	ect may be a theore	etical analysis n	nodeling	& simulatio	on exn	erim	ent	atio	n &
- •	otype design, fabric	-	-		-				
• • •	lopment, applied re	-	-			inary	515 (лu	ata,
	for two semesters	•				or of	cre	dite	25
5	nic regulations.	based on the con	npiction	orrequired	munito	1 01	cic	ans	as
3. Should be indi	0								
	side or outside the	university, in any	v relevar	t industry o	or resea	rch	inst	ituti	ion.
	n the peer reviewed			•					
advantage	-								
Mode of Evaluat	tion: Periodic revi	ews, Presentatio	n, Final	oral viva, P	oster su	ıbm	issio	on	
Recommended by	y Board of	10.06.2016							
Studies									
Approved by Aca	damia Caunail	41 st AC	Date	17.06.201	1				

Course code	Fundamentals of Communication Skills	L T P J C
ENG5001		0 0 0 0 2
Pre-requisite	Not cleared EPT (English Proficiency Test)	Syllabus version
•		v. 1.0
Course Objective	S:	
× ×	rners learn basic communication skills - Listening, Speaking,	Reading and
Writing		C
U	ers apply effective communication in social and academic con	ntext
-	ents comprehend complex English language through listening	
Expected Course	Outcome:	<u> </u>
1. Ability to cor	nmunicate effectively in social and academic contexts	
	ctive writing skills	
	their understanding the communication Skills	
Module:1 Liste		8 hours
Understanding Co		
Listening to Speec		
Listening for Spec		
Module:2 Speal		4 hours
Exchanging Inform	0	
00	ies, Events and Quantity	
Module:3 Read		6 hours
Identifying Inform	ation	
Inferring Meaning		
Interpreting text		
Module:4 Writ	ng: Sentence	8 hours
Basic Sentence Str	ucture	
Connectives		
Transformation of	Sentences	
Synthesis of Sente	nces	
Module:5 Writi	ng: Discourse	4 hours
Instructions		
Paragraph		
Transcoding		
	Total Lecture hou	irs: 30 hours
Text Book(s)		
1. Redston, Ch	ris, Theresa Clementson, and Gillie Cunningham. Fa	ice2face Upper
Intermediate .	Student's Book. 2013, Cambridge University Press.	
D 0 D 1		
		10 1
	Stepping Stones: A guided approach to writing sentences ar	nd Paragraphs
1 Chris Juzwiak (Second Edition	on), 2012, Library of Congress.	
1 Chris Juzwiak (Second Edition		
 Chris Juzwiak (Second Edition Clifford A With Communication 	on), 2012, Library of Congress.	eam
 Chris Juzwiak (Second Edition) Clifford A With Communication ArunPatil, H 	on), 2012, Library of Congress. hitcomb & Leslie E Whitcomb, <i>Effective Interpersonal and Te</i> on Skills for Engineers, 2013, John Wiley & Sons, Inc., Hobo enk Eijkman & Ena Bhattacharya, New Media Commun.	leam ken: New Jersey.
 (Second Edition Clifford A With Communication ArunPatil, H Engineers and 	on), 2012, Library of Congress. hitcomb & Leslie E Whitcomb, <i>Effective Interpersonal and To</i> on Skills for Engineers, 2013, John Wiley & Sons, Inc., Hobo	eam ken: New Jersey. nication Skills for

- 5. John Langan, Ten Steps to Improving College Reading Skills, 2014, 6th Edition, Townsend Press:USA
- 6. Redston, Chris, Theresa Clementson, and Gillie Cunningham. *Face2face Upper Intermediate Teacher's Book*. 2013, Cambridge University Press.

Authors, book title, year of publication, edition number, press, place

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

List	of Challenging Experiments (Ind	licative)			
1.	Familiarizing students to adjective all letters of the English alphabet a starts with the first letter of their n	es through brainst and asking them t			2 hours
2.	Making students identify their peed during presentation and respond u		Clarity and	d Volume	4 hours
3.	Using Picture as a tool to enhance	ng skills	2 hours		
4.	Using Music and Songs as tools t language / Activities through VIT			the target	2 hours
5.	Making students upload their Self	neo.com	4 hours		
6.	Brainstorming idiomatic expression writings and day to day conversat	ose in to their	4 hours		
7.	Making students Narrate events b add flavor to their language / Acti	y adding more de	-	0	4 hours
8	Identifying the root cause of stage to make their presentation better				4 hours
9	Identifying common Spelling & S day to day conversations	entence errors in	Letter Wri	ting and other	2 hours
10.	Discussing FAQ's in interviews w better insight in to interviews / Ac			0	2 hours
		ן	fotal Labo	oratory Hours	32 hours
	le of evaluation: Online Quizzes, Pri i Project	resentation, Role	play, Grou	p Discussions, A	Assignments,
	ommended by Board of Studies	22-07-2017			
App	roved by Academic Council	No. 46	Date	24-8-2017	

Course code ENG5002		L T P J C
	ENG5001	Syllabus version
		v. 1.1
Course Objectives		
	ents to develop effective Language and Communication Ski	lls
	udents' Personal and Professional skills	
3. To equip the st	tudents to create an active digital footprint	
Expected Course C		
1. Students will b	be able to apply the acquired skills and excel in a professiona	l environment
Module:1 Perso	onal Interaction	2hours
Introducing Oneself-	one's career goals	
	1	
Activity: SWOT Ana Module:2 Inter		21
	personal Interaction	2 hours
interpersonal Commu	nication with the team leader and colleagues at the workplace	
Activity: Role Plays/N	Mime/Skit	
Module:3 Socia	l Interaction	2 hours
	Social Networking, gender challenges	
Activity: Creating Lin		
Module:4 Résul	mé Writing	4 hours
Identifying job requir		
Activity: Prepare an E		
Module:5 Inter	view Skills	4 hours
Placement/Job Intervi	iew, Group Discussions	
Activity: Mock Interv	view and mock group discussion	
Module:6 Repo	rt Writing	4 hours
Language and Mecha	nics of Writing	
	-	
Activity: Writing a Re		
	y Skills: Note making	2hours
Summarizing the repo		
	accutive Summary, Synopsis	21
	preting skills	2 hours
Interpret data in table		
Activity: Transcoding		
Module:9 Prese	entation Skills	4 hours
Oral Presentation usir	ng Digital Tools	
Activity: Oral present	ation on the given topic using appropriate non-verbal cues	
Module:10 Prob	lem Solving Skills	4 hours
Problem Solving & C	conflict Resolution	
Activity: Case Analys	sis of a Challenging Scenario	

Text Book(s) 1 BhatnagarNitin and MamtaBhatnagar, Communicative English For Engineers And Professionals, 2010, Dorling Kindersley (India) Pvt. Ltd. Reference Books 1 Jon Kirkman and Christopher Turk, Effective Writing: Improving Scientific, Technical an Business Communication, 2015, Routledge 2 Diana Bairaktarova and Michele Eodice, Creative Ways of Knowing in Engineering, 20 Springer International Publishing 3 Clifford A Whitcomb & Leslie E Whitcomb, Effective Interpersonal and Tr Communication Skills for Engineers, 2013, John Wiley & Sons, Inc., Hoboken: New Jers A ArunPatil, Henk Eijkman &Ena Bhattacharya, New Media Communication Skills Engineers and IT Professionals, 2012, IGI Global, Hershey PA. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. SWOT Analysis – Focus specially on describing two strengths and two weaknesses 2 hours 2. Role Plays/Mime/Skit Workplace Situations 4 hours 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 4 hours 4. Prepare an Electronic Résumé and upload the same in vimeo 2 hours 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract				Total Lecture ho	ours:		30 hours	
Engineers And Professionals, 2010, Dorling Kindersley (India) Pvt. Ltd. Reference Books 1 Jon Kirkman and Christopher Turk, Effective Writing: Improving Scientific, Technical an Business Communication, 2015, Routledge 2 Diana Bairaktarova and Michele Eodice, Creative Ways of Knowing in Engineering, 20 Springer International Publishing 3 Clifford A Whitcomb & Leslie E Whitcomb, Effective Interpersonal and T. Communication Skills for Engineers, 2013, John Wiley & Sons, Inc., Hoboken: New Jers 4 ArunPatil, Henk Eijkman &Ena Bhattacharya, New Media Communication Skills Engineers and IT Professionals, 2012, IGI Global, Hershey PA. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. SWOT Analysis – Focus specially on describing two strengths and two weaknesses 2. Role Plays/Mime/Skit Workplace Situations 4 hours 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 4 hours 4. Prepare an Electronic Résumé and upload the same in vimeo 2 hours 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 <td>xt Bo</td> <td>Book(s)</td> <td></td> <td></td> <td></td> <td></td> <td></td>	xt Bo	Book(s)						
Reference Books 1 Jon Kirkman and Christopher Turk, Effective Writing: Improving Scientific, Technical and Business Communication, 2015, Routledge 2 Diana Bairaktarova and Michele Eodice, Creative Ways of Knowing in Engineering, 20 Springer International Publishing 3 Clifford A Whitcomb & Leslie E Whitcomb, Effective Interpersonal and T. Communication Skills for Engineers, 2013, John Wiley & Sons, Inc., Hoboken: New Jers ArunPatil, Henk Eijkman &Ena Bhattacharya, New Media Communication Skills Engineers and IT Professionals, 2012, IGI Global, Hershey PA. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. SWOT Analysis – Focus specially on describing two strengths and two weaknesses 2. Role Plays/Mime/Skit Workplace Situations 4 hours 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 2 hours 4. Prepare an Electronic Résumé and upload the same in vimeo 2 hours 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10								
Business Communication, 2015, Routledge 2 Diana Bairaktarova and Michele Eodice, Creative Ways of Knowing in Engineering, 20 3 Clifford A Whitcomb & Leslie E Whitcomb, Effective Interpersonal and T Communication Skills for Engineers, 2013, John Wiley & Sons, Inc., Hoboken: New Jerss 4 ArunPatil, Henk Eijkman & Ena Bhattacharya, New Media Communication Skills Engineers and IT Professionals,2012, IGI Global, Hershey PA. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. SWOT Analysis – Focus specially on describing two strengths and two weaknesses 2. Role Plays/Mime/Skit Workplace Situations 4 hours 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 2 hours 4. Prepare an Electronic Résumé and upload the same in vimeo 2 hours 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues <			Ŷ	, U	2 `	,	I	
2 Diana Bairaktarova and Michele Eodice, Creative Ways of Knowing in Engineering, 20 3 Clifford A Whitcomb & Leslie E Whitcomb, Effective Interpersonal and To Communication Skills for Engineers, 2013, John Wiley & Sons, Inc., Hoboken: New Jers 4 ArunPatil, Henk Eijkman &Ena Bhattacharya, New Media Communication Skills Engineers and IT Professionals, 2012, IGI Global, Hershey PA. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. SWOT Analysis – Focus specially on describing two strengths and two weaknesses 2. Role Plays/Mine/Skit Workplace Situations 4 hours 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 2 hours 4. Prepare an Electronic Résumé and upload the same in vimeo 2 hours 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research at hours 4 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 9 Oral presentation on the given topic using appropriate non-verbal	Jo	on Kirl	kman and Christopher Tur	k, Effective Writin	ng: Impro	ving Scientific, 2	Technical and	
Springer International Publishing Clifford A Whitcomb & Leslie E Whitcomb, Effective Interpersonal and Tecommunication Skills for Engineers, 2013, John Wiley & Sons, Inc., Hoboken: New Jers ArunPatil, Henk Eijkman &Ena Bhattacharya, New Media Communication Skills Engineers and IT Professionals, 2012, IGI Global, Hershey PA. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. SWOT Analysis – Focus specially on describing two strengths and two weaknesses 2. Role Plays/Mime/Skit Workplace Situations 4 hours 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 2 hours 4. Prepare an Electronic Résumé and upload the same in vimeo 2 hours 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours 10 Problem Solving Case Analysis of a Challeng	B	Busines	s Communication, 2015, I	Routledge				
3 Chifford A Whitcomb & Leslie E Whitcomb, Effective Interpersonal and Tecommunication Skills for Engineers, 2013, John Wiley & Sons, Inc., Hoboken: New Jers ArunPatil, Henk Eijkman &Ena Bhattacharya, New Media Communication Skills Engineers and IT Professionals, 2012, IGI Global, Hershey PA. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. SWOT Analysis – Focus specially on describing two strengths and two weaknesses 2. Role Plays/Mime/Skit Workplace Situations 4 hours 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 2 hours 4. Prepare an Electronic Résumé and upload the same in vimeo 2 hours 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours 10					Ways of L	Knowing in Eng	gineering, 2017,	
Communication Skills for Engineers, 2013, John Wiley & Sons, Inc., Hoboken: New Jerss ArunPatil, Henk Eijkman &Ena Bhattacharya, New Media Communication Skills Engineers and IT Professionals, 2012, IGI Global, Hershey PA. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. SWOT Analysis – Focus specially on describing two strengths and two weaknesses 2 hours 2. Role Plays/Mime/Skit Workplace Situations 4 hours 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 2 hours 4. Prepare an Electronic Résumé and upload the same in vimeo 2 hours 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours 32 hours 32 hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project	S	Springer	r International Publishing					
4 ArunPatil, Henk Eijkman &Ena Bhattacharya, New Media Communication Skills Engineers and IT Professionals,2012, IGI Global, Hershey PA. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. SWOT Analysis – Focus specially on describing two strengths and two weaknesses 2 hours 2. Role Plays/Mime/Skit Workplace Situations 4 hours 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 2 hours 4. Prepare an Electronic Résumé and upload the same in vimeo 2 hours 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours 32 hours 32 hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project 22-07-2017								
Engineers and IT Professionals,2012, IGI Global, Hershey PA. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. SWOT Analysis – Focus specially on describing two strengths and two weaknesses 2. Role Plays/Mime/Skit Workplace Situations 4 hours 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 2 hours 4. Prepare an Electronic Résumé and upload the same in vimeo 2 hours 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours 32 hours 32 hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project 22-07-2017								
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. SWOT Analysis – Focus specially on describing two strengths and two weaknesses 2 hours 2. Role Plays/Mime/Skit Workplace Situations 4 hours 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 2 hours 4. Prepare an Electronic Résumé and upload the same in vimeo 2 hours 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours Total Laboratory Hours 32 hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project 22-07-2017							ation Skills for	
List of Challenging Experiments (Indicative) Image: Second se	E	Enginee	rs and IT Professionals,2	012, IGI Global, H	Iershey P.	А.		
1. SWOT Analysis – Focus specially on describing two strengths and two weaknesses 2 hours 2. Role Plays/Mime/Skit Workplace Situations 4 hours 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 2 hours 4. Prepare an Electronic Résumé and upload the same in vimeo 2 hours 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours Total Laboratory Hours 32 hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project 32-07-2017	ode o	of Eval	uation: CAT / Assignmen	t / Quiz / FAT / Pr	oject / Se	minar		
weaknesses 4 hours 2. Role Plays/Mime/Skit Workplace Situations 4 hours 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 2 hours 4. Prepare an Electronic Résumé and upload the same in vimeo 2 hours 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 32 hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project Recommended by Board of Studies 22-07-2017	st of	f Challe	enging Experiments (Ind	licative)				
weaknesses 4 hours 2. Role Plays/Mime/Skit Workplace Situations 4 hours 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 2 hours 4. Prepare an Electronic Résumé and upload the same in vimeo 2 hours 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 32 hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project Recommended by Board of Studies 22-07-2017					o strengt	hs and two	2 hours	
 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 4. Prepare an Electronic Résumé and upload the same in vimeo 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 7 Writing an Abstract, Executive Summary on short scientific or research articles 8 Transcoding – Interpret the given graph, chart or diagram 9 Oral presentation on the given topic using appropriate non-verbal cues 9 hours 9 Problem Solving Case Analysis of a Challenging Scenario 9 Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project Recommended by Board of Studies 22-07-2017 					Ũ			
 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on areas of interest 4. Prepare an Electronic Résumé and upload the same in vimeo 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 7 Writing an Abstract, Executive Summary on short scientific or research articles 8 Transcoding – Interpret the given graph, chart or diagram 9 Oral presentation on the given topic using appropriate non-verbal cues 9 hours 9 Problem Solving Case Analysis of a Challenging Scenario 9 Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project Recommended by Board of Studies 22-07-2017 							4 hours	
4. Prepare an Electronic Résumé and upload the same in vimeo 2 hours 5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours Total Laboratory Hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project Recommended by Board of Studies 22-07-2017					d also wri	te a page or	2 hours	
5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours Total Laboratory Hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project Recommended by Board of Studies						1 0		
5. Group discussion on latest topics 4 hours 6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours Total Laboratory Hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project Recommended by Board of Studies	Pı	Prepare	an Electronic Résumé an	d upload the same	in vimeo		2 hours	
6 Report Writing – Real-time reports 2 hours 7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours Total Laboratory Hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project Recommended by Board of Studies				*			4 hours	
7 Writing an Abstract, Executive Summary on short scientific or research articles 4 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours Total Laboratory Hours 32 hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project Recommended by Board of Studies 22-07-2017	R	Report V	Writing – Real-time repor	ts			2 hours	
articles 2 hours 8 Transcoding – Interpret the given graph, chart or diagram 2 hours 9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours Total Laboratory Hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project Recommended by Board of Studies		1	<u> </u>		cientific o	or research	4 hours	
9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours Total Laboratory Hours 32 hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project Recommended by Board of Studies 22-07-2017		0	,	5				
9 Oral presentation on the given topic using appropriate non-verbal cues 4 hours 10 Problem Solving Case Analysis of a Challenging Scenario 4 hours Total Laboratory Hours 32 hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project Recommended by Board of Studies 22-07-2017							2 hours	
10 Problem Solving Case Analysis of a Challenging Scenario 4 hours Total Laboratory Hours 32 hours Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project 22-07-2017								
Mode of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions, Assignmen Mini Project Recommended by Board of Studies 22-07-2017					4 hours			
Mini ProjectRecommended by Board of Studies22-07-2017	Total Laboratory Hours 32 hours					32 hours		
Mini ProjectRecommended by Board of Studies22-07-2017	ode o	of evalu	nation: : Online Ouizzes	Presentation Role	play Gro	un Discussions	Assignments	
Recommended by Board of Studies 22-07-2017					Piuy, 010	ap Discussions	, 1 10012111101110,	
			d by Board of Studies	22-07-2017				
Approved by Academic Council No. 47 Date 05-10-2017								

S

Course code	Deutsch fürAnfänger		L T P J C		
GER5001			0 0 0 0 2		
Pre-requisite	NIL	Sy	llabus version		
			v.1		
Course Objectiv	es:				
The course gives	students the necessary background to:				
1. enable student	s to read and communicate in German in their	day to day life			
2. become industry	2				
3. make them under	erstand the usage of grammar in the German Lang	lage.			
Expected Course					
	basics of German language in their day to day life				
	nd the conjugation of different forms of regula	-			
	nd the rule to identify the gender of the Nouns				
11.	German language skill in writing correspond	0			
	e talent of translating passages from English-C	erman and vice vers	a and To		
frame simple	e dialogues based on given situations.				
Module:1			2 h a		
		1 57 1	3 hours		
	ssungsformen, Landeskunde, Alphabet, Pers	-	b Konjugation,		
	V-fragen, Aussagesätze, Nomen – Singular un	i Plural			
Lernziel:					
ElementaresVerstä	ndnisvon Deutsch, Genus- Artikelwörter				
Module:2			2 h auna		
	Verben (regelmässig /unregelmässig) die Mon	ta dia Washantaga	3 hours		
	en, Artikel, Zahlen (Hundert bis eine Million)	•	•		
Sie	en, Artikei, Zamen (Hundert bis eine Winnon)	, Ja-/INCIII- Mage, III			
Lernziel :					
	er Hobbys erzählen, überBerufesprechenusw.				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Module:3			4 hours		
Possessivpronom	en, Negation, Kasus- AkkusatitvundDativ (bestimmter, unbesti	mmterArtikel),		
-	, Modalverben, Adjektive, Uhrzeit, Präpos		, · ·		
Getränke	,,,,,,,	, ,	· · · · · · · · · · · · · · · · · · ·		
Lernziel :					
Sätze mit Modalverben, VerwendungvonArtikel, über Länder undSprachensprechen,					
übereineWohnungt	e e	Lander under	raenenspreenen,		
Module:4			6 hours		
Übersetzungen : (Deutsch – Englisch / Englisch – Deutsch)				
Lernziel :					
Grammatik – Wo	rtschatz - Übung				
Module:5			5 hours		

(Dee	med to be University under section 3 o	f UGC Act, 1956)					
Leseverständnis, Mindmapmachen, Korr	Leseverständnis, Mindmapmachen, Korrespondenz-Briefe, Postkarten, E-Mail						
Lernziel :							
WortschatzbildungundaktiverSprachgebrauch							
Module:6 .					3 hours		
Aufsätze :							
MeineUniversität, Das Essen, mein Fre	und odermeineFre	undin, me	eineFamilie	e, einFest in	l		
Deutschlandusw							
Module:7					4 hours		
Dialoge:							
a) Gespräche mit Familienmitglied	lern, Am Bahnhof	,					
b) GesprächebeimEinkaufen ; in ei	nemSupermarkt;	in einerB	uchhandlur	ng;			
c) in einemHotel - an der Rezeptio	n ;einTerminbein	nArzt.					
TreffenimCafe							
Module:8					2 hours		
Guest Lectures/Native Speakers / Fei	inheiten der deuts	schen Spi	rache,Basisi	nformation	über die		
deutschsprachigen Länder				1			
	Total Lecture ho	ours: 30) hours				
Text Book(s)							
1. Studio d A1 Deutsch alsFremdsprache	e, Hermann Funk, C	hristina Ku	uhn, SilkeD	emme : 2012	2		
Reference Books							
1 Netzwerk Deutsch alsFremdsprach	e A1, Stefanie De	ngler, Pau	l Rusch, H	lelen Schm	tiz, Tanja		
Sieber, 2013					-		
2 Lagune ,HartmutAufderstrasse, Ju	tta Müller, Thoma	s Storz, 20)12.				
3 Deutsche SprachlehrefürAUslände	r, Heinz Griesbacl	n, Dora So	hulz, 2011	-			
4 ThemenAktuell 1, HartmurtAufder	strasse, Heiko Bo	ck, Mecht	hildGerdes	s, Jutta Mül	ler und		
Helmut Müller, 2010							
www.goethe.de							
wirtschaftsdeutsch.de							
hueber.de	hueber.de						
klett-sprachen.de	klett-sprachen.de						
www.deutschtraning.org							
Mode of Evaluation: CAT / Assignmen	t / Quiz / FAT						
Recommended by Board of Studies	10.06.2016						
Approved by Academic Council	41	Date	17.06.20	16			

Course code	e	FRANCAIS FONCTION	NEL	L T P J C
FRE5001	-			
Pre-requisit	te N	NIL		Syllabus version
•				v.1
Course Obj	ectives:			
		lents the necessary background to:		
1. demonstra	ate comp	etence in reading, writing, and speaking b	asic French, ind	cluding knowledge
of vocabu	lary (rela	ated to profession, emotions, food, workpl	ace, sports/hob	bies, classroom and
family).				
2. achieve pr	roficienc	y in French culture oriented view point.		
_		·		
Expected Co	ourse Ou	itcome:		
1. To rem	ember th	e daily life communicative situations via p	personal pronou	ins, emphatic
pronoui	ns, saluta	tions, negations, interrogations etc.		
		unicative skill effectively in French langu	0 0	0
3. To dem	onstrate	comprehension of the spoken / written lan	guage in transl	ating simple
sentenc				
		nd demonstrate the comprehension of som	e particular ne	w range of unseen
	material			· 1° 1
5. To dem	ionstrate	a clear understanding of the French cultur	e through the la	anguage studied.
Module:1	Saluar	Se présenter, Etablir des contacts		9 hours
		nombres (1-100), Les jours de la semaine,	Les mois de l'	
		nomores (1-100), Les jours de la semanie,	Les mois de l	annice, Les 1 Iononio
Sujets Les I	Pronome	Toniques I a conjugaison des verbes ré	ouliers. La cor	
-		Toniques, La conjugaison des verbes ré	guliers, La cor	
-		Toniques, La conjugaison des verbes ré- re / aller / venir / faire etc.	guliers, La cor	
irréguliers- a	voir / êtr	re / aller / venir / faire etc.	guliers, La cor	njugaison des verbes
irréguliers- a Module:2	voir / êtr Présent	re / aller / venir / faire etc. er quelqu'un, Chercher un(e)	guliers, La cor	
irréguliers- a Module:2	voir / êtr Présent corresp	er quelqu'un, Chercher un(e) ondant(e), Demander des nouvelles	guliers, La cor	njugaison des verbes
irréguliers- a Module:2	voir / êtr Présent corresp	re / aller / venir / faire etc. er quelqu'un, Chercher un(e)	guliers, La cor	njugaison des verbes
irréguliers- a Module:2	Présent corresp d'une p	er quelqu'un, Chercher un(e) ondant(e), Demander des nouvelles ersonne.		njugaison des verbes 9 hours
irréguliers- a Module:2 La co	Présent corresp d'une p	er quelqu'un, Chercher un(e) ondant(e), Demander des nouvelles ersonne.		njugaison des verbes 9 hours
irréguliers- a Module:2 La co	Présent corresp d'une p	re / aller / venir / faire etc. er quelqu'un, Chercher un(e) ondant(e), Demander des nouvelles ersonne. on des verbes Pronor		njugaison des verbes 9 hours
irréguliers- a Module:2 La co L'interrogati	Présent corresp d'une p onjugaiso on avec	re / aller / venir / faire etc. er quelqu'un, Chercher un(e) ondant(e), Demander des nouvelles ersonne. on des verbes Pronor		njugaison des verbes 9 hours La Négation,
irréguliers- a Module:2 La co L'interrogati Module:3	Présent corresp d'une p onjugaiso on avec Situer u	re / aller / venir / faire etc. er quelqu'un, Chercher un(e) ondant(e), Demander des nouvelles ersonne. on des verbes Pronor 'Est-ce que ou sans Est-ce que'.	ninaux,	njugaison des verbes 9 hours La Négation, 9 hours
irréguliers- a Module:2 La co L'interrogati Module:3 L'article (dé	Présent corresp d'une p onjugaiso on avec Situer u efini/ ind	re / aller / venir / faire etc. er quelqu'un, Chercher un(e) ondant(e), Demander des nouvelles ersonne. on des verbes Pronor 'Est-ce que ou sans Est-ce que'. un objet ou un lieu, Poser des questions	ninaux, lans/avec etc.),	njugaison des verbes 9 hours La Négation, 9 hours , L'article contracté,
irréguliers- a Module:2 La co L'interrogati Module:3 L'article (dé Les heures	Présent corresp d'une p onjugaiso on avec Situer u fini/ ind en franç	re / aller / venir / faire etc. er quelqu'un, Chercher un(e) ondant(e), Demander des nouvelles ersonne. on des verbes Pronor <i>'Est-ce que ou sans Est-ce que'</i> . un objet ou un lieu, Poser des questions éfini), Les prépositions (à/en/au/aux/sur/o gais, La Nationalité du Pays, L'adjectif	ninaux, dans/avec etc.), (La Couleur,	njugaison des verbes 9 hours La Négation, Urarticle contracté, 1'adjectif possessif,
irréguliers- a Module:2 La co L'interrogati Module:3 L'article (dé Les heures l'adjectif dé	Présent corresp d'une p onjugaiso on avec Situer u efini/ ind en franç monstrat	re / aller / venir / faire etc. er quelqu'un, Chercher un(e) ondant(e), Demander des nouvelles ersonne. on des verbes Pronor 'Est-ce que ou sans Est-ce que'. un objet ou un lieu, Poser des questions éfini), Les prépositions (à/en/au/aux/sur/o gais, La Nationalité du Pays, L'adjectif	ninaux, dans/avec etc.), (La Couleur, elles/quelle/qu	njugaison des verbes 9 hours La Négation, Urarticle contracté, 1'adjectif possessif,
irréguliers- a Module:2 La co L'interrogati Module:3 L'article (dé Les heures l'adjectif dé	Présent corresp d'une p onjugaiso on avec Situer u efini/ ind en franç monstrat	re / aller / venir / faire etc. er quelqu'un, Chercher un(e) ondant(e), Demander des nouvelles ersonne. on des verbes Pronor ' <i>Est-ce que ou sans Est-ce que</i> '. un objet ou un lieu, Poser des questions éfini), Les prépositions (à/en/au/aux/sur/o cais, La Nationalité du Pays, L'adjectif if/ l'adjectif interrogatif (quel/qu	ninaux, dans/avec etc.), (La Couleur, elles/quelle/qu	njugaison des verbes 9 hours La Négation, Urarticle contracté, l'adjectif possessif,
irréguliers- a Module:2 La co L'interrogati Module:3 L'article (dé Les heures l'adjectif dé adjectifs ave	Présent corresp d'une p onjugaiso on avec Situer u efini/ ind en franç monstrat c le nom	re / aller / venir / faire etc. er quelqu'un, Chercher un(e) ondant(e), Demander des nouvelles ersonne. on des verbes Pronor ' <i>Est-ce que ou sans Est-ce que</i> '. un objet ou un lieu, Poser des questions éfini), Les prépositions (à/en/au/aux/sur/o cais, La Nationalité du Pays, L'adjectif if/ l'adjectif interrogatif (quel/qu	ninaux, dans/avec etc.), (La Couleur, elles/quelle/qu	njugaison des verbes 9 hours La Négation, <u>9 hours</u> L'article contracté, l'adjectif possessif, elles), L'accord des
irréguliers- a Module:2 La co L'interrogati Module:3 L'article (dé Les heures l'adjectif dé adjectifs avec Module:4	Présent corresp d'une p onjugaiso on avec Situer u fini/ ind en franç monstrat c le nom Faire de	re / aller / venir / faire etc. er quelqu'un, Chercher un(e) ondant(e), Demander des nouvelles ersonne. on des verbes Pronor ' <i>Est-ce que ou sans Est-ce que</i> '. un objet ou un lieu, Poser des questions éfini), Les prépositions (à/en/au/aux/sur/o çais, La Nationalité du Pays, L'adjectif if/ l'adjectif interrogatif (quel/qu , L'interrogation avec Comment/ Combier	ninaux, dans/avec etc.), (La Couleur, elles/quelle/qu	njugaison des verbes 9 hours La Négation, <u>9 hours</u> L'article contracté, l'adjectif possessif, elles), L'accord des
irréguliers- a Module:2 La co L'interrogati Module:3 L'article (dé Les heures l'adjectif dé adjectifs ave Module:4	Présent corresp d'une p onjugaiso on avec Situer u fini/ ind en franç monstrat c le nom Faire de Demane	re / aller / venir / faire etc. er quelqu'un, Chercher un(e) ondant(e), Demander des nouvelles ersonne. on des verbes Pronor 'Est-ce que ou sans Est-ce que'. m objet ou un lieu, Poser des questions éfini), Les prépositions (à/en/au/aux/sur/o cais, La Nationalité du Pays, L'adjectif if/ l'adjectif interrogatif (quel/qu , L'interrogation avec Comment/ Combier es achats, Comprendre un texte court,	ninaux, dans/avec etc.), (La Couleur, elles/quelle/qu	njugaison des verbes 9 hours La Négation, <u>9 hours</u> L'article contracté, l'adjectif possessif, elles), L'accord des
irréguliers- a Module:2 La co L'interrogati Module:3 L'article (dé Les heures l'adjectif dé adjectifs ave Module:4 La traduction	Présent corresp d'une p onjugaiso on avec Situer u fini/ ind en franç monstrat c le nom Faire de Demand n simple	er quelqu'un, Chercher un(e) ondant(e), Demander des nouvelles ersonne. on des verbes Pronor 'Est-ce que ou sans Est-ce que'. un objet ou un lieu, Poser des questions éfini), Les prépositions (à/en/au/aux/sur/o çais, La Nationalité du Pays, L'adjectif if/ l'adjectif interrogatif (quel/qu , L'interrogation avec Comment/ Combier es achats, Comprendre un texte court, der et indiquer le chemin. :(français-anglais / anglais –français)	ninaux, dans/avec etc.), (La Couleur, elles/quelle/qu	njugaison des verbes 9 hours La Négation, 9 hours , L'article contracté, 1'adjectif possessif, elles), L'accord des 8 hours
irréguliers- a Module:2 La co L'interrogati Module:3 L'article (dé Les heures l'adjectif dé adjectifs avec Module:4 La traduction Module:5	Présent corresp d'une p onjugaiso on avec Situer u fini/ ind en franç monstrat c le nom Faire de Demand n simple	er quelqu'un, Chercher un(e) ondant(e), Demander des nouvelles ersonne. on des verbes Pronor ' <i>Est-ce que ou sans Est-ce que</i> '. un objet ou un lieu, Poser des questions éfini), Les prépositions (à/en/au/aux/sur/o cais, La Nationalité du Pays, L'adjectif if/ l'adjectif interrogatif (quel/qu , L'interrogation avec Comment/ Combier es achats, Comprendre un texte court, der et indiquer le chemin.	ninaux, dans/avec etc.), (La Couleur, elles/quelle/qu	njugaison des verbes 9 hours La Négation, <u>9 hours</u> L'article contracté, l'adjectif possessif, elles), L'accord des

L'article Partitif, Mettez les phrases aux pluriels, Faites une phrase avec les mots donnés, Exprimez les phrases données au Masculin ou Féminin, Associez les phrases.

Module:6 Comment ecrire un passage

9 hours

Décrivez :

La Famille /La Maison, /L'université /Les Loisirs/ La Vie quotidienne etc.

Module:7Comment ecrire un dialogue7 hours

Dialogue:

- d) Réserver un billet de train
- e) Entre deux amis qui se rencontrent au café
- f) Parmi les membres de la famille
- g) Entre le client et le médecin

Module:8 Invited Talk: Native speakers			2 hours				
1120	unitio					- 110415	
			Total Lecture he	ours:	30 hours		
Tey	kt Book(s)					
1.	Echo-1	, Méthode de français, J. Gi	rardet, J. Pécheur,	Publish	er CLE Inter	rnational, Paris 2010.	
2	Echo-1	, Cahier d'exercices, J. Gira	rdet, J. Pécheur, F	ublishe	r CLE Intern	ational, Paris 2010.	
Ref	ference l	Books					
1.	CONN	EXIONS 1, Méthode de fra	nçais, Régine Mér	ieux, Y	ves Loiseau,	Les Éditions Didier,	
	2004.						
2	CONN	EXIONS 1, Le cahier d'exe	ercices, Régine M	érieux, '	Yves Loiseau	ı, Les Éditions	
	Didier,	2004.					
3	ALTE	R EGO 1, Méthode de franç	ais, Annie Berthe	t, Cathe	rine Hugo, V	éronique M.	
	Kizirian, Béatrix Sampsonis, Monique Waendendries, Hachette livre 2006.						
Mo	de of Ev	aluation: CAT / Assignmen	t / Quiz / FAT				
Rec	commend	led by Board of Studies	10.06.2016				
Ap	proved b	y Academic Council	41	Date	17.06.20	16	

Course cod	e	Essentials of Business Etiquette and p	oroblem solving	L T P J C				
STS5001		^	0	0 0 0 2				
Pre-requisi	te	None		Syllabus version				
				1.0				
Course Ob								
1. To develop the students' logical thinking skills								
	2. To learn the strategies of solving quantitative ability problems							
		erbal ability of the students						
4. To enha	nce crit	ical thinking and innovative skills						
Expected C								
The student								
-		solving quantitative aptitude and verbal abi	lity questions of	various				
		fortlessly						
		e the message to the target audience clearly						
3. Enabling	g studer	ts to use relevant aptitude and appropriate la	anguage to expre	ess themselves				
Madalas 1	D			0.1				
Module:1		ess Etiquette: Social and Cultural		9 hours				
		ette and Writing Company Blogs and al Communications and Planning and						
		ng press release and meeting notes						
Value, Man		istoms, Language, Tradition, Building a blog	. Developing bi	and message				
		Competition, Open and objective Communic	10	0				
	0	audience, Identifying, Gathering Information		0				
		k, Types of planning, Write a short, catchy h						
		oject in the first paragraph., Body – Make it						
Module:2	Study	skills – Time management skills		3 hours				
Prioritizatio	n Proci	rastination, Scheduling, Multitasking, Moni	toring working	under pressure and				
adhering to			toring, working	under pressure and				
Module:3	Prese	ntation skills – Preparing presentation		7 hours				
		rganizing materials and Maintaining						
	and p	reparing visual aids and Dealing with						
	questi							
10 Tips to prepare PowerPoint presentation, Outlining the content, Passing the Elevator Test, Blue								
sky thinking, Introduction, body and conclusion, Use of Font, Use of Color, Strategic								
presentation, Importance and types of visual aids, Animation to captivate your audience, Design of								
	posters, Setting out the ground rules, Dealing with interruptions, Staying in control of the questions. Handling difficult questions							
questions, Handling difficult questions								
Modula 4	Madulard Quantitating Ability I.1 Northernesseting							
Module:4	-	titative Ability -L1 – Number properties verages and Progressions and		11 hours				
		ntages and Ratios						
Number of			igit position. T	ens digit position				
Number of factors, Factorials, Remainder Theorem, Unit digit position, Tens digit position,								

		Weighted Average, Arithmetic Progression, Geometric Progression, Harmonic , Increase & Decrease or successive increase, Types of ratios and proportions					
Mo	dule:5	Reasoning Ability-L1 – Analytical Reasoning 8 hours					
		gement (Linear and circular & Cross Variable Relationship), Blood Relations, nking/grouping, Puzzle test, Selection Decision table					
Mo	dule:6	Verbal Ability-L1 – Vocabulary Building 7 hours					
•	-	& Antonyms, One-word substitutes, Word Pairs, Spellings, Idioms, Sentence n, Analogies					
		Total Lecture hours: 45 hours					
Ref	ference l	Books					
1.	-	Patterson, Joseph Grenny, Ron McMillan, AlSwitzler (2001) Crucial Conversations: For Talking When Stakes are High. Bangalore. McGraw-Hill Contemporary					
2.	Dale C Books	Carnegie, (1936) How to Win Friends and Influence People. New York. Gallery					
3.	Scott P	Peck. M (1978) Road Less Travelled. New York City. M. Scott Peck.					
4.	FACE	(2016) Aptipedia Aptitude Encyclopedia. Delhi. Wiley publications					
5.		US (2013) Aptimithra. Bangalore. McGraw-Hill Education Pvt. Ltd.					
	bsites:						
1.		halkstreet.com					
2.		killsyouneed.com					
3.		nindtools.com					
4.	www.t	www.thebalance.com					
5.	www.e	2guru.000					
		valuation: FAT, Assignments, Projects, Case studies, Role plays, ents with Term End FAT (Computer Based Test)					
Rec	commend	ded by Board of Studies 09/06/2017					
		y Academic Council 45 Date 15.06.2017					

Course code	Preparing for Industry	L T P J C			
STS5002		0 0 0 0 2			
Pre-requisite	None	Syllabus version			
		1.0			
Course Objectives:					
1. To challenge students to explore their problem-solving skills					

2. To develop essential skills to tackle advance quantitative and verbal ability questions

3. To have working knowledge of communicating in English

Expected Course Outcome:

- 1. Simplify, evaluate, analyze and use functions and expressions to simulate real situations to be industry ready.
- 2. Interact confidently and use decision making models effectively
- 3. Be proficient in solving quantitative aptitude and verbal ability questions of various examinations effortlessly

Module:1	Interview skills – Types of interview	3 hours
	and Techniques to face remote	
	interviews and Mock Interview	

Structured and unstructured interview orientation, Closed questions and hypothetical questions, Interviewers' perspective, Questions to ask/not ask during an interview, Video interview, Recorded feedback, Phone interview preparation, Tips to customize preparation for personal interview, Practice rounds

Module:2	Resume skills – Resume Template and	2 hours
	Use of power verbs and Types of	
	resume and Customizing resume	

Structure of a standard resume, Content, color, font, Introduction to Power verbs and Write up, Quiz on types of resume, Frequent mistakes in customizing resume, Layout - Understanding different company's requirement, Digitizing career portfolio

Emotional Intelligence - L1 –	12 hours
Transactional Analysis and Brain	
storming and Psychometric Analysis	
and Rebus Puzzles/Problem Solving	
	Transactional Analysis and Brain storming and Psychometric Analysis

Introduction, Contracting, ego states, Life positions, Individual Brainstorming, Group Brainstorming, Stepladder Technique, Brain writing, Crawford's Slip writing approach, Reverse brainstorming, Star bursting, Charlette procedure, Round robin brainstorming, Skill Test, Personality Test, More than one answer, Unique ways

Module:4	Quantitative Ability-L3 –	14 hours
	Permutation-Combinations and	
	Probability and Geometry and	
	mensuration and Trigonometry and	
	Logarithms and Functions and	
	Quadratic Equations and Set Theory	
	Quadratic Equations and Set Theory	

Counting, Grouping, Linear Arrangement, Circular Arrangements, Conditional Probability, Independent and Dependent Events, Properties of Polygon, 2D & 3D Figures, Area & Volumes, Heights and distances, Simple trigonometric functions, Introduction to logarithms, Basic rules of logarithms, Introduction to functions, Basic rules of functions, Understanding Quadratic Equations, Rules & probabilities of Quadratic Equations, Basic concepts of Venn Diagram

Module:5	Reasoning abilit reasoning and D Interpretation	•			7 hours
Syllogisms, Binary interpretation-Adva	•		• •		Sufficiency, Data
Module:6	Verbal Ability-L and Logic	.3 – Compreh	ension		7 hours
Reading comprehen			• • •		onclusion, (b)
Assumption & Infe	rence, (c) Strengthe	ening & weak	ening an Ai	gument	
		Total Lectu	re hours:	45 hours	
References					1
1. Michael Farra	and JIST Editors(2	2011) Quick R	esume & C	over Letter Bo	ook: Write and Use
an Effective R	esume in Just One	Day. Saint Par	ul, Minnesc	ta.Jist Works	
0	h.D(2003) The Art	of Questionin	g: An Intro	duction to Cri	tical Thinking.
London. Pears					
	Aptipedia Aptitude				18
Mode of Evaluatio				s, Role plays,	
3 Assessments with	Term End FAT (C	Computer Base	d Test)		
Recommended by I	Board of Studies	09/06/2017			
Approved by Acade		45	Date	15-06-20	17

Course code	Finite Element Methods in Manufacturing	L T P J C
MEE5001		3 0 2 0 4
Pre-requisite	NIL	Syllabus version
		v. 1.1
Course Objectives	3:	
1. To teach the mat	thematical and physical principles underlying the Finite Eler	nent Method
(FEM)		
2. To introduce the	e concepts of FEM and to apply in the field of Manufacturing	g Engineering.

Expected Course Outcome:

- 1. Solve differential equations using various weighted residual methods and use them for finite element analysis
- 2. Perform structural analysis of using 1 D and 2 D elements
- 3. Perform thermal analysis using 1 D and 2 D elements
- 4. Model various nonlinearities to perform nonlinear finite element analysis
- 5. Model and simulate manufacturing processes such as welding, casting, metal forming and metal cutting
- 6. Perform finite element analysis on real life components and for simulating manufacturing processes using commercial package

Module:1 Mathematical basis for FEM

General field problems in engineering-Discrete and continuous models characteristics – Variational formulation of boundary value problems–Minimum potential energy principle - The method of weighted residuals-Solution of large system of equations - Choleski decomposition-Gaussian elimination procedures.

Module:2 General theory of FEM

General theory of FEM–Procedure for FEM - Discretization of domain - Selection of interpolation polynomials–Convergence requirements- Shape functions for simplex elements.

Module:3 Applications of FEM in structural analysis

Element characteristic matrices and vectors for elasticity problem - Assembly of element characteristics matrices–Incorporation of boundary conditions - Solution of the equations-Post processing –Solving problems in structural mechanics using bar, truss and beam elements.

Module:4 | Applications of FEM in solid mechanics

Plane stress, plane strain and axisymmetric stress analysis using constant strain trainable and rectangular element - Natural coordinate systems and numerical integration.

Module:5 | Applications of FEM in Heat transfer

Formulation of element equation for heat transfer considering conduction and convection loss -One dimensional, two dimensional and axisymmetric steady start heat transfer analysis using simplex elements – Introduction to transient heat transfer analysis.

Module:6 | Basic concepts of nonlinear FEM

6 hours

6 hours

5 hours

8 hours

6 hours

6 hours

Nonlinear problems – Analysis of material nonlinearity - Analysis of geometric nonlinearity – combined material and geometric nonlinearity – nonlinear contact conditions.

Module:7 Applications of FEA in casting and weldment solidification, 6 hours

			eemed to be University under section	3 of UGC Act, 1956)		
		Metal Forming and Mac	hining			
FE	analysis	of casting and Weldments s	solidification – spe	ecial consi	derations, laten	t heat
inc	orporatio	n - Case studies from publi	shed papers.			
FE	analysis	of metal forming and metal	cutting, chip sepa	ration crit	eria, incorporat	ion of strain
rate	e depende	ency- Case studies from pub	olished papers.			
Mo	dule:8	Contemporary issues				2 hours
				Total]	Lecture hours:	45 hours
Te	xt Book(s)				
1.	J. N. R	eddy. (2005), An Introduction	on to Finite Eleme	ent Method	McGraw Hill,	International
	Student	Edition				
Re	ference l	Books				
1.	J. Paulo	Davim, (2011), Finite Elen	nent Method in M	anufacturi	ng Processes, W	Viley
2.	R. W. L	ewis, PerumalNithiarasu, K	ankanhalliSeetha	amu,(2004	1), Fundamenta	ls of the Finite
	Elemen	t Method for Heat and Fluid	l Flow, John Wile	y & Sons I	_td.	
3.	Prakash	Mahadeo Dixit, Uday S. D	ixit, (2008) Mode	ling of Me	tal Forming and	l Machining
	Process	es: By Finite Element and S	oft Computing M	ethods, Sp	ringer-Verlag L	.td.
4.	•	J.N., (2014), An Introductio			•	th applications
	to heat t	ransfer, fluid mechanics, an	id solid mechanics	, OUP Ox	ford; 2 edition	
		aluation: CAT / Assignmen		roject / Sei	ninar	
		llenging Experiments (Ind				
		is to introduce the mathema				
		EM) as applied to solid n			•	
-		rious analysis like static,	-			ent analysis or
		and structures. Software us		the FEM	is ANSYS.	
1.		Element Analysis of structur	1			5 hours
2.		Element Analysis of Heat tra	-			5 hours
3.		Element Analysis of fluid flo	1			5hours
4.		Element Analysis of nonline				5hours
5.	-	ic and normal Mode Dynan		FEA Tech	nnique.	5 hours
6.	Finite e	element analysis of contact a	•			5 hours
			Т	otal Labo	ratory Hours	30 hours
		essment:				
		led by Board of Studies	17-08-2017			
Ap	proved b	y Academic Council	47	Date	05-10-2017	

	Computer Integrated Manufacturing	L T P J C
MEE5002		2 0 0 4 3
Pre-requisite	NIL	Syllabus versior
		v. 1.1
Course Objective	es:	
1	derstanding of classical and state-of-the-art production systems	s, control systems
-	chnology, cost systems, and evaluation techniques.	
_	nderstanding of computer-integrated manufacturing (CIM) a	and its impact or
1	roduct cost, and quality.	
	erview of computer technologies including computers, da	
floor operation	works, machine control, etc, as they apply to factory manage	ement and factory
	5.	
Expected Course	Outcome:	
_	effect of manufacturing automation strategies and derive prod	uction metrics.
	ated flow lines and assembly systems, and balance the line	
	ted material handling and storage systems for a typical product	tion system
	facturing cell and cellular manufacturing system.	
5. Develop CAPE	systems for rotational and prismatic parts	
Module:1 Con	cept of CIM d its types – Definition of CIM, Elements of CIM, Benefits	4 hours
Concurrent Engi	nd software. Concurrent Engineering: Definition, Sequential E neering, Benefits of Concurrent Engineering, Characteristi	0
	luct Life-Cycle Management (PLM), Collaborative Product De	
	Technology and Systems:	velopment. 4 hours
Design for Manuf	Technology and Systems: Facturability (DFM): Component Design, Design for Assembly	velopment. 4 hours 7. Computer-Aided
Design for Manuf Process Planning	Technology and Systems: Facturability (DFM): Component Design, Design for Assembly Variant and Generative Process Planning, Material Requi	velopment. 4 hours 7. Computer-Aided irements Planning
Design for Manuf Process Planning (MRP), Manufac	Technology and Systems : Facturability (DFM): Component Design, Design for Assembly : Variant and Generative Process Planning, Material Requi turing Resource Planning (MRP -II), Cellular Manufacturin	velopment. 4 hours 7. Computer-Aided irements Planning ng, Programmable
Design for Manuf Process Planning (MRP), Manufac Logic Controllers	Technology and Systems: Facturability (DFM): Component Design, Design for Assembly : Variant and Generative Process Planning, Material Requi turing Resource Planning (MRP -II), Cellular Manufacturin s, Flexible Manufacturing Systems: Physical Components of	velopment. 4 hours 7. Computer-Aided irements Planning ng, Programmable
Design for Manuf Process Planning (MRP), Manufac Logic Controllers	Technology and Systems: Facturability (DFM): Component Design, Design for Assembly : Variant and Generative Process Planning, Material Requi turing Resource Planning (MRP -II), Cellular Manufacturin s, Flexible Manufacturing Systems: Physical Components of	velopment. 4 hours 7. Computer-Aided irements Planning ng, Programmable
Design for Manuf Process Planning (MRP), Manufac Logic Controllers benefits and limit	Technology and Systems : Facturability (DFM): Component Design, Design for Assembly : Variant and Generative Process Planning, Material Requi turing Resource Planning (MRP -II), Cellular Manufacturin s, Flexible Manufacturing Systems: Physical Components of ations of FMS.	A hours A hours Computer-Aided irements Planning ng, Programmable of an FMS, FMS
Design for Manuf Process Planning (MRP), Manufac Logic Controllers benefits and limits Module:3 Com	Technology and Systems: Facturability (DFM): Component Design, Design for Assembly : Variant and Generative Process Planning, Material Requi turing Resource Planning (MRP -II), Cellular Manufacturin s, Flexible Manufacturing Systems: Physical Components of ations of FMS.	A hours A hours Computer-Aided irements Planning ng, Programmable of an FMS, FMS 4 hours
Design for Manuf Process Planning (MRP), Manufac Logic Controllers benefits and limits Module:3 Com Production plann	Technology and Systems : Facturability (DFM): Component Design, Design for Assembly : Variant and Generative Process Planning, Material Requi turing Resource Planning (MRP -II), Cellular Manufacturing s, Flexible Manufacturing Systems: Physical Components of ations of FMS. Puter Aided Planning and Control ing and control-cost planning and control-inventory mar	A hours A hours A hours A hours A hours A hours A hours A hours A hours
Design for Manuf Process Planning (MRP), Manufac Logic Controllers benefits and limits Module:3 Com Production plann requirements plan	Technology and Systems: Facturability (DFM): Component Design, Design for Assembly : Variant and Generative Process Planning, Material Requi turing Resource Planning (MRP -II), Cellular Manufacturin s, Flexible Manufacturing Systems: Physical Components of ations of FMS.	A hours A hours A hours A hours A hours A hours A hours A hours A hours
Design for Manuf Process Planning (MRP), Manufac Logic Controllers benefits and limits Module:3 Com Production plann requirements plan	Technology and Systems : Facturability (DFM): Component Design, Design for Assembly : Variant and Generative Process Planning, Material Requi turing Resource Planning (MRP -II), Cellular Manufacturing s, Flexible Manufacturing Systems: Physical Components of ations of FMS.	A hours A hours A hours A hours A hours A hours A hours A hours A hours
Design for Manuf Process Planning (MRP), Manufac Logic Controllers benefits and limits Module:3 Com Production planr requirements plan identification syst	Technology and Systems : Facturability (DFM): Component Design, Design for Assembly : Variant and Generative Process Planning, Material Requi turing Resource Planning (MRP -II), Cellular Manufacturing s, Flexible Manufacturing Systems: Physical Components of ations of FMS.	A hours A hours Computer-Aideo irements Planning ng, Programmable of an FMS, FMS 4 hours nagement-Materia system-Automatic
Design for Manuf Process Planning (MRP), Manufac Logic Controllers benefits and limitsModule:3Com Production plann requirements plati identification systemModule:4Com Com	Technology and Systems: Tacturability (DFM): Component Design, Design for Assembly : Variant and Generative Process Planning, Material Requi turing Resource Planning (MRP -II), Cellular Manufacturing s, Flexible Manufacturing Systems: Physical Components of ations of FMS. puter Aided Planning and Control ing and control-cost planning and control-inventory mar- nning - (ERP)-shop floor control-Factory data collection em-barcode technology automated data collection system. puter Monitoring ction monitoring systems-structure model of manufacturing	4 hours 4 hours Computer-Aided irements Planning ng, Programmable of an FMS, FMS 4 hours nagement-Materia system-Automatic 4 hours g process-process
Design for Manuf Process Planning (MRP), Manufac Logic Controllers benefits and limitsModule:3Com Production plann requirements platidentification systemModule:4Com Com Com Com Types of production control & strategi	 Technology and Systems: Facturability (DFM): Component Design, Design for Assembly Variant and Generative Process Planning, Material Requituring Resource Planning (MRP -II), Cellular Manufacturing Flexible Manufacturing Systems: Physical Components of ations of FMS. Puter Aided Planning and Control ning and control-cost planning and control-inventory marning - (ERP)-shop floor control-Factory data collection em-barcode technology automated data collection system. 	4 hours 4 hours Computer-Aided irements Planning ng, Programmable of an FMS, FMS 4 hours nagement-Materia system-Automatic 4 hours g process-process er in QC – contac
Design for Manuf Process Planning (MRP), Manufac Logic Controllers benefits and limits Module:3 Com Production plann requirements plat identification syst Module:4 Com Types of produc control & strategi inspection metho	I Technology and Systems: Facturability (DFM): Component Design, Design for Assembly : Variant and Generative Process Planning, Material Requituring Resource Planning (MRP -II), Cellular Manufacturing s, Flexible Manufacturing Systems: Physical Components of ations of FMS. puter Aided Planning and Control ing and control-cost planning and control-inventory marnning - (ERP)-shop floor control-Factory data collection embarcode technology automated data collection system. puter Monitoring etion monitoring systems-structure model of manufacturing es direct digital control-supervisory computer control-computed ds non-contact inspection method - computer-aided testing	4 hours 4 hours Computer-Aided irements Planning ng, Programmable of an FMS, FMS 4 hours nagement-Materia system-Automatic 4 hours g process-process er in QC – contac
Design for Manuf Process Planning (MRP), Manufac Logic Controllers benefits and limits Module:3 Com Production plann requirements plat identification syst Module:4 Com Types of produc control & strategi inspection metho	I Technology and Systems: Facturability (DFM): Component Design, Design for Assembly : Variant and Generative Process Planning, Material Requituring Resource Planning (MRP -II), Cellular Manufacturing s, Flexible Manufacturing Systems: Physical Components of ations of FMS. puter Aided Planning and Control ing and control-cost planning and control-inventory marnning - (ERP)-shop floor control-Factory data collection embarcode technology automated data collection system. puter Monitoring etion monitoring systems-structure model of manufacturing es direct digital control-supervisory computer control-computed ds non-contact inspection method - computer-aided testing	4 hours 4 hours Computer-Aided irements Planning ng, Programmable of an FMS, FMS 4 hours nagement-Materia system-Automatic 4 hours g process-process er in QC – contac
Design for Manuf Process Planning (MRP), Manufac Logic Controllers benefits and limitsModule:3Com Production plann requirements platidentification systemModule:4Com Com Com Com Types of production control & strategi	I Technology and Systems: Facturability (DFM): Component Design, Design for Assembly : Variant and Generative Process Planning, Material Requituring Resource Planning (MRP -II), Cellular Manufacturing s, Flexible Manufacturing Systems: Physical Components of ations of FMS. puter Aided Planning and Control ing and control-cost planning and control-inventory marnning - (ERP)-shop floor control-Factory data collection embarcode technology automated data collection system. puter Monitoring etion monitoring systems-structure model of manufacturing es direct digital control-supervisory computer control-computed ds non-contact inspection method - computer-aided testing	4 hours 4 hours Computer-Aided irements Planning ng, Programmable of an FMS, FMS 4 hours nagement-Material system-Automatic 4 hours g process-process er in QC – contact

Current Developments and Future Prospects-Artificial intelligence techniques and the components of an intelligent manufacturing system. key artificial intelligence technologies (fuzzy logic, artificial neural networks, expert systems and genetic algorithms),

Module:6 Application of Computer Integrated Manufacturing (CIM) systems

4 hours

CIM in automotive industry, Contributing Factors on CIM Application, Group technology applications for computer-integrated manufacturing, Computer-aided Tooling Design for Manufacturing Processes

	C		
Module:7	Cloud-based design and	manufacturing	4 hours
Evolution o	f design and manufacturing	systems, Characteristics and requirements	for cloud-based
design and	manufacturing systems, C	Cloud-based design and manufacturing ex	ample scenario,
Cloud-Base	d Desktop Factory.		
			-
Module:8	Contemporary issues:		2 hours
	I		201
		Total Lecture hours	30 hours
Text Book((s)		
1. Mikell	Groover, (2016), Automa	tion, Production Systems and Compu	ter-Integrated
Manufa	acturing, 4th. Ed., ISBN #0	-13-349961-8, Pearson, New Jersey	-
Reference	Books		
1. T.C. C	hang, R. Wysk and H.P. Wa	ang, (2009), Computer aided Manufacturing	g, Third Edition,
Pearson	n Education		
		t / Quiz / FAT / Project / Seminar	
	llenging Experiments (Inc		
	pject with a team size of 2 or		60 Hrs.
	ent will based on three revie		
### Down t	o earth industrial problems	shall be given	
1. A pr	oject scheduling approach t	o production and material requirement	
-	ning in Manufacturing-to-C		
2. On-1	Line Simulation for Shop Fl	loor Control in Manufacturing Execution	
Syst	em		
		igh Computer Integrated Manufacturing.	
		an Production: A Conceptual Model for	
	ancing Productivity.		
		chine cells in a computer integrated	
	ufacturing environment usin		
	• •	ing Analysis, and Manufacturing: A Cost-	
	efit Analysis	Service for Cloud Decad Decige and	
	ure-based Data Exchange a	s Service for Cloud Based Design and	
IVIAL	luracturning	Total Laboratory Hours	30 hours
Mode of ass	sessment.		50 110015
	ded by Board of Studies	17-08-2017	
Recomment	ava by Doura of Diadics	1/ 00 201/	

	VII Vellore Institute of T eemed to be University under section		
Approved by Academic Council	47	Date	05-10-2017

	Advanced Materials and Characterization	L T P J C
MEE5003		3 0 0 0 3
Pre-requisite	NIL	Syllabus version
		v. 1.1
Course Objective	25:	1
1. To provide insi	ght into the various classes of materials, their mechanical beh	naviour and
applications		
2. To impart know	vledge on various surface modification techniques	
3. To enable acqu	ire skills in the use and selection of advanced experimental te	echniques for
characterization	n of materials and application of these techniques to solving p	problems in
materials scien	ce and engineering	
Expected Course	Outcome:	
-	mechanical behaviour of materials, their importance and appl	ications
	us engineering alloys in terms of specifications, applications,	
-	suitability of different types of surface modifications on mater	
	rocessing and applications of different non-metallic materials	
• •	the acquired skills in analysing the properties and application	
materials and		
	-	
o. Identity meth	ods for use on characterization based on microscopy, microar	nalysis and
•	ods for use on characterization based on microscopy, microar	halysis and
diffraction tec	chniques, and surface and spectroscopy analysis	
diffraction teo 7. Apply advan	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq	ues for materials
diffraction tec 7. Apply advar characterizati	chniques, and surface and spectroscopy analysis	ues for materials
diffraction teo 7. Apply advan	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq	ues for materials
diffraction teo 7. Apply advar characterizati materials	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq on particularly of the most widely used thin films, nanomate	ues for materials erials and advanced
diffraction teo 7. Apply advancharacterizati materials Module:1 Revi	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq on particularly of the most widely used thin films, nanomate ew of Mechanical Behavior of Materials	ues for materials erials and advanced 7 hours
diffraction teo 7. Apply advan characterizati materials Module:1 Revi Plastic de formati	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq on particularly of the most widely used thin films, nanomate ew of Mechanical Behavior of Materials on in poly phase alloys - Strengthening mechanisms - Griffit	ues for materials erials and advanced 7 hours h's theory of failure
diffraction teo 7. Apply advancharacterizati materials Module:1 Revi Plastic de formation modes – Brittle a	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq on particularly of the most widely used thin films, nanomate ew of Mechanical Behavior of Materials on in poly phase alloys - Strengthening mechanisms - Griffit and ductile fractures - Damping properties of materials - f	ues for materials erials and advanced 7 hours h's theory of failure fracture toughness -
diffraction teo 7. Apply advancharacterization materials Module:1 Revi Plastic de formation modes – Brittle a Initiation and pro-	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq on particularly of the most widely used thin films, nanomate ew of Mechanical Behavior of Materials on in poly phase alloys - Strengthening mechanisms - Griffit and ductile fractures - Damping properties of materials - f pagation of fatigue cracks - Creep mechanisms - Environme	ues for materials erials and advanced 7 hours h's theory of failure fracture toughness -
diffraction teo 7. Apply advancharacterization materials Module:1 Revi Plastic de formation modes – Brittle a Initiation and pro-	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq on particularly of the most widely used thin films, nanomate ew of Mechanical Behavior of Materials on in poly phase alloys - Strengthening mechanisms - Griffit and ductile fractures - Damping properties of materials - f	ues for materials erials and advanced 7 hours h's theory of failure fracture toughness -
diffraction teo 7. Apply advancharacterization materials Module:1 Revi Plastic de formation modes – Brittle a Initiation and pro- materials, Selection	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq on particularly of the most widely used thin films, nanomate ew of Mechanical Behavior of Materials on in poly phase alloys - Strengthening mechanisms - Griffit and ductile fractures - Damping properties of materials - f pagation of fatigue cracks - Creep mechanisms - Environme on of materials for various applications.	ues for materials erials and advanced 7 hours h's theory of failure fracture toughness - ental degradation of
diffraction teo 7. Apply advar characterizati materials Module:1 Revi Plastic de formati modes – Brittle a Initiation and pro materials, Selectio Module:2 Engi	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq on particularly of the most widely used thin films, nanomate ew of Mechanical Behavior of Materials on in poly phase alloys - Strengthening mechanisms - Griffit and ductile fractures - Damping properties of materials - f pagation of fatigue cracks - Creep mechanisms - Environme on of materials for various applications.	ues for materials erials and advanced 7 hours h's theory of failure fracture toughness - ental degradation of 6 hours
diffraction teo 7. Apply advancharacterization materials Module:1 Revi Plastic de formation modes – Brittle a Initiation and promaterials, Selection Module:2 Engi Cast iron, steels	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq on particularly of the most widely used thin films, nanomate ew of Mechanical Behavior of Materials on in poly phase alloys - Strengthening mechanisms - Griffit and ductile fractures - Damping properties of materials - f pagation of fatigue cracks - Creep mechanisms - Environme on of materials for various applications. neering Alloys , alloy steels and stainless steels – an overview of phases	theory of failure racture toughness - ental degradation of 6 hours and microstructure,
diffraction ted7. Apply advar characterizati materialsModule:1ReviPlastic de formati modes – Brittle a Initiation and pro- materials, SelectionModule:2EngiCast iron , steels types, specificati	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq on particularly of the most widely used thin films, nanomate ew of Mechanical Behavior of Materials on in poly phase alloys - Strengthening mechanisms - Griffit and ductile fractures - Damping properties of materials - f pagation of fatigue cracks - Creep mechanisms - Environme on of materials for various applications.	theory of failure 7 hours h's theory of failure racture toughness - ental degradation of 6 hours and microstructure, ments, Aluminum,
diffraction teo 7. Apply advar characterizati materials Module:1 Revi Plastic de formati modes – Brittle a Initiation and pro materials, Selection Module:2 Engi Cast iron , steels types, specificati Magnesium and	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq on particularly of the most widely used thin films, nanomate ew of Mechanical Behavior of Materials on in poly phase alloys - Strengthening mechanisms - Griffit and ductile fractures - Damping properties of materials - f pagation of fatigue cracks - Creep mechanisms - Environme on of materials for various applications. neering Alloys , alloy steels and stainless steels – an overview of phases ons applications, heat treatment, effect of alloying ele	this theory of failure 7 hours his theory of failure racture toughness - ental degradation of 6 hours and microstructure, ments, Aluminum,
diffraction ted 7. Apply advaration characterization materials Module:1 Revi Plastic de formation modes – Brittle a Initiation and promaterials, Selection Module:2 Engi Cast iron , steels types, specification Magnesium and specifications, app	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq on particularly of the most widely used thin films, nanomate ew of Mechanical Behavior of Materials on in poly phase alloys - Strengthening mechanisms - Griffit and ductile fractures - Damping properties of materials - f pagation of fatigue cracks - Creep mechanisms - Environme on of materials for various applications. neering Alloys , alloy steels and stainless steels – an overview of phases ons applications, heat treatment, effect of alloying ele Titanium wrought and cast alloys used in engineering ap plications, heat treatment.	ues for materials erials and advanced 7 hours h's theory of failure racture toughness - ental degradation of 6 hours and microstructure, ments, Aluminum, pplications – Types,
diffraction teo 7. Apply advaration advance characterization materials Module:1 Revi Plastic de formation modes – Brittle a Initiation and promaterials, Selection Module:2 Engi Cast iron , steels types, specificati Magnesium and specifications, app Module:3 Surf	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq on particularly of the most widely used thin films, nanomate ew of Mechanical Behavior of Materials on in poly phase alloys - Strengthening mechanisms - Griffit and ductile fractures - Damping properties of materials - f pagation of fatigue cracks - Creep mechanisms - Environme on of materials for various applications. neering Alloys , alloy steels and stainless steels – an overview of phases ons applications, heat treatment, effect of alloying ele Titanium wrought and cast alloys used in engineering ap plications, heat treatment. Cace Modifications of Materials	pues for materials erials and advanced 7 hours h's theory of failure fracture toughness - ental degradation of 6 hours and microstructure, ments, Aluminum, pplications –Types, 6 hours
diffraction teo 7. Apply advaration characterization materials Module:1 Revi Plastic de formation modes – Brittle a Initiation and promaterials, Selection Module:2 Engi Cast iron , steels types, specification Magnesium and specifications, app Module:3 Surf	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq on particularly of the most widely used thin films, nanomate ew of Mechanical Behavior of Materials on in poly phase alloys - Strengthening mechanisms - Griffit and ductile fractures - Damping properties of materials - f pagation of fatigue cracks - Creep mechanisms - Environme on of materials for various applications. neering Alloys , alloy steels and stainless steels – an overview of phases ons applications, heat treatment, effect of alloying ele Titanium wrought and cast alloys used in engineering ap plications, heat treatment. Face Modifications of Materials ce treatment and coating - Case hardening and hard facing -	thermal spraying –
diffraction teo 7. Apply advar characterizati materials Module:1 Revi Plastic de formati modes – Brittle a Initiation and pro materials, Selection Module:2 Engi Cast iron , steels types, specificati Magnesium and specifications, app Module:3 Surf Mechanical surface vapour deposition	chniques, and surface and spectroscopy analysis need lighting, thermal, chemical and imaging techniq on particularly of the most widely used thin films, nanomate ew of Mechanical Behavior of Materials on in poly phase alloys - Strengthening mechanisms - Griffit and ductile fractures - Damping properties of materials - f pagation of fatigue cracks - Creep mechanisms - Environme on of materials for various applications. neering Alloys , alloy steels and stainless steels – an overview of phases ons applications, heat treatment, effect of alloying ele Titanium wrought and cast alloys used in engineering ap plications, heat treatment. Cace Modifications of Materials	thermal spraying – and Electrolysis

Module:4	Nonmetallic Materials	6 hours
Composite	materials, ceramics, plastics -Introduction, an overview of prod	cessing, their
characterist	ic features, types and applications.	
Module:5	Modern Materials and Alloys	6 hours
Super alloy	s- Refractory metals - Shape memory alloys- Dual phase steels, Micro	alloyed, High
	w alloy steel, Transformation induced plasticity (TRIP) steel, M	
	graphite iron and Creep resistant aluminum alloys, SMART materials, M	Ietallic glass –
Quasi crysta	al and Nano crystalline materials, metal foams.	
Module:6	Characterization Techniques - I	6 hours
-	licroscopy, Elements of Image Analysis and Quantitative Metallogr	1
	n, Intensity of diffracted beam, Indexing of XRD patterns of cubic ar	nd non-cubic
crystals, pr	recise lattice parameter determination –	
	Characterization Techniques - II	
Scanning El	lectron Microscopy, Modes of Operation, Fractography, Chemical Analyst	U
Scanning El Energy Disj	lectron Microscopy, Modes of Operation, Fractography, Chemical Analyspersive Analysis – Transmission Electron Microscopy Principles, Thin Fi	sis using lm and
Scanning E Energy Disj Replication	lectron Microscopy, Modes of Operation, Fractography, Chemical Analyspersive Analysis – Transmission Electron Microscopy Principles, Thin Fi Techniques, Image Contrast, Bright Field and Dark Field Imaging, Selec	sis using lm and
Scanning E Energy Dis Replication	lectron Microscopy, Modes of Operation, Fractography, Chemical Analyspersive Analysis – Transmission Electron Microscopy Principles, Thin Fi	sis using lm and
Scanning E Energy Dis Replication Diffraction	lectron Microscopy, Modes of Operation, Fractography, Chemical Analys persive Analysis – Transmission Electron Microscopy Principles, Thin Fi Techniques, Image Contrast, Bright Field and Dark Field Imaging, Selec and Chemical Analysis – Thermal Analysis Methods	sis using lm and ted Area
Scanning E Energy Disj Replication	lectron Microscopy, Modes of Operation, Fractography, Chemical Analyspersive Analysis – Transmission Electron Microscopy Principles, Thin Fi Techniques, Image Contrast, Bright Field and Dark Field Imaging, Selec	sis using lm and
Scanning E Energy Dis Replication Diffraction	lectron Microscopy, Modes of Operation, Fractography, Chemical Analys persive Analysis – Transmission Electron Microscopy Principles, Thin Fi Techniques, Image Contrast, Bright Field and Dark Field Imaging, Selec and Chemical Analysis – Thermal Analysis Methods Contemporary issues:	sis using lm and ted Area 2 hours
Scanning E Energy Dis Replication Diffraction	lectron Microscopy, Modes of Operation, Fractography, Chemical Analys persive Analysis – Transmission Electron Microscopy Principles, Thin Fi Techniques, Image Contrast, Bright Field and Dark Field Imaging, Selec and Chemical Analysis – Thermal Analysis Methods	sis using lm and ted Area
Scanning El Energy Disp Replication Diffraction Module:8 Text Book(lectron Microscopy, Modes of Operation, Fractography, Chemical Analys persive Analysis – Transmission Electron Microscopy Principles, Thin Fi Techniques, Image Contrast, Bright Field and Dark Field Imaging, Selec and Chemical Analysis – Thermal Analysis Methods Contemporary issues: Total Lecture hours: (s)	sis using lm and ted Area 2 hours 45 hours
Scanning El Energy Disp Replication Diffraction Module:8 Text Book(lectron Microscopy, Modes of Operation, Fractography, Chemical Analys persive Analysis – Transmission Electron Microscopy Principles, Thin Fi Techniques, Image Contrast, Bright Field and Dark Field Imaging, Selec and Chemical Analysis – Thermal Analysis Methods Contemporary issues: Total Lecture hours:	sis using lm and ted Area 2 hours 45 hours
Scanning El Energy Disp Replication Diffraction Module:8 Fext Book(1. W.D. 0	lectron Microscopy, Modes of Operation, Fractography, Chemical Analys persive Analysis – Transmission Electron Microscopy Principles, Thin Fi Techniques, Image Contrast, Bright Field and Dark Field Imaging, Selec and Chemical Analysis – Thermal Analysis Methods Contemporary issues: Total Lecture hours: (s)	sis using lm and ted Area 2 hours 45 hours
Scanning E Energy Disp Replication Diffraction Module:8 Text Book(1. W.D. 0 Introdu	lectron Microscopy, Modes of Operation, Fractography, Chemical Analys persive Analysis – Transmission Electron Microscopy Principles, Thin Fi Techniques, Image Contrast, Bright Field and Dark Field Imaging, Selec and Chemical Analysis – Thermal Analysis Methods Contemporary issues: Total Lecture hours: s) Callister, David G. Rethwisch, (2013) Materials Science and Engine- action, 9th ed., Wiley & Sons	sis using lm and ted Area 2 hours 45 hours
Scanning El Energy Disp Replication Diffraction Module:8 Text Book(1. W.D. 0 Introdu Reference	lectron Microscopy, Modes of Operation, Fractography, Chemical Analys persive Analysis – Transmission Electron Microscopy Principles, Thin Fi Techniques, Image Contrast, Bright Field and Dark Field Imaging, Selec and Chemical Analysis – Thermal Analysis Methods Contemporary issues: Total Lecture hours: s) Callister, David G. Rethwisch, (2013) Materials Science and Engine- action, 9th ed., Wiley & Sons	sis using lm and ted Area 2 hours 45 hours eering: An
Scanning El Energy Disj Replication Diffraction Module:8 Module:8 Text Book(1. W.D. 0 Introdu Reference 1 1. Williar	lectron Microscopy, Modes of Operation, Fractography, Chemical Analys persive Analysis – Transmission Electron Microscopy Principles, Thin Fi Techniques, Image Contrast, Bright Field and Dark Field Imaging, Selec and Chemical Analysis – Thermal Analysis Methods Contemporary issues: S) Callister, David G. Rethwisch, (2013) Materials Science and Engine- iction, 9th ed., Wiley & Sons Books	sis using lm and ted Area 2 hours 45 hours eering: An
Scanning El Energy Disj Replication Diffraction Module:8 Text Book(1. W.D. 0 Introdu Reference 1 1. Williar Mode of Ev	lectron Microscopy, Modes of Operation, Fractography, Chemical Analys persive Analysis – Transmission Electron Microscopy Principles, Thin Fi Techniques, Image Contrast, Bright Field and Dark Field Imaging, Selec and Chemical Analysis – Thermal Analysis Methods Contemporary issues: S) Callister, David G. Rethwisch, (2013) Materials Science and Engine Iction, 9th ed., Wiley & Sons Books n F. Hosford (2010), Mechanical Behavior of Materials, Cambridge Univ raluation: CAT / Assignment / Quiz / FAT / Project / Seminar	sis using lm and ted Area 2 hours 45 hours eering: An
Scanning El Energy Disp Replication Diffraction Module:8 Text Book(1. W.D. 0 Introdu Reference 1 1. Williar Mode of Ev Mode of ass	lectron Microscopy, Modes of Operation, Fractography, Chemical Analys persive Analysis – Transmission Electron Microscopy Principles, Thin Fi Techniques, Image Contrast, Bright Field and Dark Field Imaging, Selec and Chemical Analysis – Thermal Analysis Methods Contemporary issues: S) Callister, David G. Rethwisch, (2013) Materials Science and Engine Iction, 9th ed., Wiley & Sons Books n F. Hosford (2010), Mechanical Behavior of Materials, Cambridge Univ raluation: CAT / Assignment / Quiz / FAT / Project / Seminar	sis using lm and ted Area 2 hours 45 hours eering: An

Course code	Modern Machining Processes	L T P J C
MEE5004		2 0 0 4 3
Pre-requisite	NIL	Syllabus version
-		v. 1.1
Course Objectiv	es:	
	indamentals and advances in modern machining processes	
2. To provide kn	owledge in applied aspects of modern machining processes viz	., high speed
machining, no	n-traditional machining, hybrid machining, advanced finishing	and micro-
machining		
Expected Cours	e Outcome:	
1. Explain the w	orking principle, process capabilities and applications of variou	s modern
machining/fin	ishing processes	
2. Analyse the in	ter-relationship between the process parameters and machining	g performances
such as cutting	g forces, tool wear, material removal rate and surface finish	
3. Discuss the sp	ecific characteristics and requirements of high speed machining	g system
4. Select a suitab	le modern machining/finishing process for manufacturing of m	acro/ micro
components/fe	eatures	
5. Demonstrate u	nderstanding of modern machining process through a hands or	ı project
Module:1 Mee	chanics of machining	4 hours
Mechanisms of	chip formation, shear angle relations, and theoretical determ	nination of cutting
forces in machini	ng - Thermal aspects of machining, tool wear and tool life.	
e	h speed machining	4 hours
• •	ining (HSM) - Characteristics of HSM - Machine tools requir	
	HSM – Design of tools for HSM – Tool clamping systems	- Applications of
HSM – Hard mad	chining	
	onventional machining processes-I	4 hours
=	ing - Abrasive water jet machining - Ultrasonic machining -	
machining system	n, process variables, parametric analysis, process capabilities an	id applications -
	onventional machining processes-II	6 hours
T1	machining - Electric discharge machining - Laser beam ma	
	machining - Electric discharge machining - Laser beam machining	-
beam machining	- working principle, machining system, process variables, p	-
beam machining		-
beam machining process capabilit	- working principle, machining system, process variables, p es and applications.	arametric analysis,
beam machining process capability Module:5 Hyt	- working principle, machining system, process variables, p	arametric analysis, 3 hours

		(Deemed to be University under section 3 of UGC Act		
dis	charge	grinding – Electro chemical discharge grinding - The	ermal assisted mach	ining.
Mod	dule:6	Advanced Finishing Processes		3 hours
Ab	rasive	flow finishing, Magnetic abrasive finishing, Ma	gneto rheological	finishing and
che	emical	mechanical finishing - working principle, machin	e tool set up, proc	cess variables,
		rformance and applications.		
	dule:7	Micromachining processes		4 hours
		n to microfabrication, Diamond micro-machining,		
EDN	M, micr	o-ECM laser beam micro-machining, electron beam	n micromachining a	nd focused ion-
bear	n techn	iques.		
Moo	dule:8	Contemporary issues		2 hours
				1
		То	tal Lecture hours:	30 hours
Tex	t Book	(s)		
1.	Jain V	K, (2010), Introduction to Micromachining, Narosa	Publishers	
Ref	erence	Books		
1.	J Paul	o Davim (2011), Modern Machining Technolog	y: A Practical Gu	ide, Woodhead
		ning, USA		
2.	Hassar	Abdel-Gawad El-Hofy (2014), Fundamentals of Ma	achining Processes:	Conventional
	and No	onconventional Processes, CRC Press, Taylor & Fran	ncis Group, USA	
Mod	de of Ev	valuation: CAT / Assignment / Quiz / FAT / Project /	/ Seminar	
List	of Cha	Illenging Experiments (Indicative)		
1.	# Grou	p project with a team size of 2 or 3		60 hours
	## Ass	essment will based on three reviews		
	### Do	own to earth industrial problems shall be given		
	1.	Development of analytical model based on the estim	mation of tool life	
		by varying various process parameters in turning.		
	2.	Effect of various cutting fluids on surface rought	ness in milling of	
		Superalloys		
	3.	Numerical modeling of cutting force and temperat	ture in orthogonal	
		cutting using ABAQUS		
	4.	Measurement of cutting temperature in various n	nachining process	
		through contact and non-contact methods.		
	5.	Ultrasonic machining of ceramics.		
	6.	EDM machining of difficult to cut materials.		
	7.	Effect of EDM process parameter on surface integr	rity	
	8.	Numerical modeling of crater formation in Ele	ectrical Discharge	
		Machining		

 9. Surface roughness prediction based on cutting parameters and tool vibrations in turning operations 10. Effect MQL parameters on grinding of titanium of alloys 					
Mode of assessment:					
Recommended by Board of Studies 17-08-2017					
Approved by Academic Council	47	Date	05-10-2017		

Course code	Quality and Reliability Engineering	L T P J C
MEE5005		3 0 0 0 3
Pre-requisite	NIL	Syllabus version
		v. 1.1
Course Objective	es:	
quality.2. Develop the un practical uses in	<u> </u>	y control and their
	ess variability in terms of cost of quality.	
2. Demonstrate the quality.	ing plan with OC curve to evaluate the effectiveness for a give	
process. 4. Apply basic qu	ality improvement and problem solving tools like QFD, FME	A and bench
marking.		
5. Design basic fa	ctorial experiments and Taguchi methods to identify the main	effects,
interaction effe	cts, and their significance.	
6. Acquire the con	ncepts of the reliability to calculate the system reliability based	1 on the given
component con	nection.	
7. Apply the qual	ity and reliability concepts to solve real time industry problem	•
Module:1 Qua		7 hours
	lity Control; Quality Control vs. Assurance, Basic stages of ty Cost, Elements of Quality costs	of Quality Control,
	stical Process Control (SPC)	6 hours
Causes and Com	y/Process Control: Process capability (Cp, Cpk, Pp, Ppk), mon Causes of Variation, Process control charts for varia or attributes: p, np, c, u charts, Cusum Charts, Multi-vari cl	ables: X-R charts.
Module:3 Acce	ptance Sampling	6 hours
	bling-types - probability of acceptance in single, double,	
	curves - producer's Risk and consumer's Risk. AQL, LTPD	
-	g plans for AQL and LTPD- uses of standard sampling plans.	, (_ concepto
¥		
	tegic tools and Techniques	6 hours
o 11 p		
	Deployment, Deming's PDCA Cycle - Poka Yoke, Failure marking - 5S concepts	modes & Effect

Module:5	Experimental design and	d Taguchi metho	d		6 hours
Fundament	als – factorial experiments	- random design,	Latin squ	are design – Tag	uchi method –
Loss function – experiments – S/N ratio and performance measure – Orthogonal array.					
Module:6	Reliability				6 hours
	 reliability vs quality, relia 	•			
	endent failure models - d				
	models - serial, parallel an				s, load sharing
systems, st	andby systems, covariant m	odels, static mode	ls, dynami	ic models.	
Module:7	Hazard models				6 hours
	azard model, linearly incre	Ū.			
	, Advantages of Weibull di				
•	ies-parallel system, faulty tr	ree analysis (FTA)	, Design t	based on reliability	, Redundancy
in design.					
Module:8	Contemporary issues				2 hours
			Total	Lecture hours:	45 hours
			I otai	Lecture nours.	45 110015
Text Book					
	Montgomery, John Wiley,	(2011), Introduct	ion to Sta	tistical Quality C	Control, 6th
Edition, 2011.					
Reference Books					
	aiah.K, (2014), Applied Sta	atistical Quality C	ontrol and	l Improvement, P	rentice Hall of
India (
	Tobias and D. C. Trindade, ((2011), Applied R	eliability,	3rd Edition, Chap	man and
Hall/C	RC				
	valuation: CAT / Assignment	nt / Quiz / FAT / P	Project / Se	eminar	
Mode of as					
	ded by Board of Studies	17-08-2017	1		
	by Academic Council	47	Date	05-10-2017	

Course code		Mechatronics and Automation	L T P J C	
MEE5025			2 0 2 0 3	
Pre-requisite	;	NIL	Syllabus version	
			v. 1.1	
Course Objec	ctives:			
-		terdisciplinary knowledge in mechanical, electric, and control components and impart basic concepts of automation.	•	
 To introduce various sensing, actuating and control elements of a mechatronics system. To provide hands on experience automation using Hydraulics, Pneumatics and PLC. 				
5. 10 provide		si experience automation using riguraunes, r neumanes and	TLC.	
Expected Cou	urse Ou	itcome:		
_		ensor, actuator and controller for a Mechatronics application	1	
2. Design a h	nydrauli	c circuit for a given automaton requirement		
3. Design a F	Pneumat	tic Circuit for a given Problem		
4. Develop p	orogram	s for CNC machines and robots		
5. Design an	automa	tion system for simple industrial applications		
6. Experimen	ntally pe	erform industrial automation using Hydraulics, Pneumatics a	and PLC	
Module:1	Mecha	atronics and its Elements	4 hours	
Mechatronics	in ma	nufacturing, products and design. Review of electronic	cs fundamentals -	
Mechatronics elements - Sensors, transducers, signal processing devices, relays, contactors, timers				
and data conv	and data conversion devices			
Module:2	Proces	ssors and controllers	4 hours	
Microprocessors, microcontrollers, PID controllers and PLCs.				
	1			
Module:3		s and mechanisms	4 hours	
		DC motors and servo drives - Ball screws, linear motion	-	
•		by camshafts, electronic cams, indexing mechanisms, to	ol magazines and	
transfer system	ms.			
	TT 1			
Module:4	•	aulic systems	4 hours	
-		lirection control valves, actuators, and supporting element	is, hydraulic power	
packs, and put	mps - D	esign of hydraulic circuits.		
	-			
Module:5		natic Systems	4 hours	
		ion and conditioning of compressed air, system compo	nents and graphic	
representation	ns, desig	n of systems.		
	arra			
Module:6	C'NC' 1	technology and Robotics	4 hours	

Total Lecture hor And Hall Reference Books 1. W. Bolton, (2011) Mechatronics: Electronic control systems in mechateing engineering, Pearson; 5th edition Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1 1. PLC programming for simple industrial control problems with logic, time and counters, data manipulation and math instructions. 2. Interfacing digital input and output field devices with PLC hardware. 3. Interfacing analog field devices with PLC. 4. Control of Conveyor and material handling system using PLC system 5. Control of AC/DC/Servo motor drives for a motion control application. 6. PLC control of electro-pneumatic and electro-hydraulic systems. 7.	4 hours	ation	Module:7
Module:8 Contemporary issues: Total Lecture how Interface Books Interfacing Gearson; 5th edition Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. PLC programming for simple industrial control problems with logic, time and counters, data manipulation and math instructions. 2. Interfacing digital input and output field devices with PLC hardware. 3. Interfacing analog field devices with PLC. 4. Control of conveyor and material handling system using PLC system 5. Control of AC/DC/Servo motor drives for a motion control application. 6. PLC control of electro-pneumatic and e	as the use of bel	utomation of industrial processes, such as	Applications of
Total Lecture hor an Introdu and Hall Reference Books 1. W. Bolton, (2011) Mechatronics: Electronic control systems in mechate engineering, Pearson; 5th edition Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. PLC programming for simple industrial control problems with logic, time and counters, data manipulation and math instructions. 2. Interfacing digital input and output field devices with PLC hardware. 3. Interfacing analog field devices with PLC. 4. Control of conveyor and material handling system using PLC system 5. Control of AC/DC/Servo motor drives for a motion control application. 6. PLC control of electro-pneumatic and electro-hydraulic systems. 7. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software 8. Industrial robot programming for a material handling and processi applications 9.		tomated inspections systems	conveyors, mat
Total Lecture hor And Hall Reference Books 1. W. Bolton, (2011) Mechatronics: Electronic control systems in mechateing engineering, Pearson; 5th edition Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1 1. PLC programming for simple industrial control problems with logic, time and counters, data manipulation and math instructions. 2. Interfacing digital input and output field devices with PLC hardware. 3. Interfacing analog field devices with PLC. 4. Control of Conveyor and material handling system using PLC system 5. Control of AC/DC/Servo motor drives for a motion control application. 6. PLC control of electro-pneumatic and electro-hydraulic systems. 7.			
Text Book(s) 1. Boucher, T. O.,(2012) Computer automation in manufacturing - an Introdu and Hall Reference Books 1. W. Bolton, (2011) Mechatronics: Electronic control systems in mechan engineering, Pearson; 5th edition Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. PLC programming for simple industrial control problems with logic, time and counters, data manipulation and math instructions. 2. Interfacing digital input and output field devices with PLC hardware. 3. Interfacing analog field devices with PLC. 4. Control of conveyor and material handling system using PLC system 5. Control of electro-pneumatic and electro-hydraulic systems. 7. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software 8. Industrial robot programming for a material handling and processi applications 9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hou	2 hours		Module:8
Text Book(s) 1. Boucher, T. O.,(2012) Computer automation in manufacturing - an Introdu and Hall Reference Books 1. W. Bolton, (2011) Mechatronics: Electronic control systems in mechan engineering, Pearson; 5th edition Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. PLC programming for simple industrial control problems with logic, time and counters, data manipulation and math instructions. 2. Interfacing digital input and output field devices with PLC hardware. 3. Interfacing analog field devices with PLC. 4. Control of conveyor and material handling system using PLC system 5. Control of electro-pneumatic and electro-hydraulic systems. 7. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software 8. Industrial robot programming for a material handling and processi applications 9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hou	irs: 45 hours	Total Lasture hours	
 Boucher, T. O.,(2012) Computer automation in manufacturing - an Introdu and Hall Reference Books W. Bolton, (2011) Mechatronics: Electronic control systems in mechat engineering, Pearson; 5th edition Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Itst of Challenging Experiments (Indicative) PLC programming for simple industrial control problems with logic, time and counters, data manipulation and math instructions. Interfacing digital input and output field devices with PLC hardware. Interfacing analog field devices with PLC. Control of conveyor and material handling system using PLC system Control of AC/DC/Servo motor drives for a motion control application. PLC control of electro-pneumatic and electro-hydraulic systems. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software Industrial robot programming for a material handling and processi applications Development HMI and SCADA system for simple industrial application. Physical modeling and analysis of mechanical systems w MATLAB\SIMULINK \ SIMSCAPE software.	Irs: 45 Hours		
and Hall Reference Books 1. W. Bolton, (2011) Mechatronics: Electronic control systems in mechaten engineering, Pearson; 5th edition Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. PLC programming for simple industrial control problems with logic, time and counters, data manipulation and math instructions. 2. Interfacing digital input and output field devices with PLC hardware. 3. Interfacing analog field devices with PLC. 4. Control of conveyor and material handling system using PLC system 5. Control of AC/DC/Servo motor drives for a motion control application. 6. PLC control of electro-pneumatic and electro-hydraulic systems. 7. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software 8. Industrial robot programming for a material handling and processi applications 9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hou Mode of assessment:			
Reference Books 1. W. Bolton, (2011) Mechatronics: Electronic control systems in mechatengineering, Pearson; 5th edition Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. PLC programming for simple industrial control problems with logic, time and counters, data manipulation and math instructions. 2. Interfacing digital input and output field devices with PLC hardware. 3. Interfacing analog field devices with PLC. 4. Control of conveyor and material handling system using PLC system 5. Control of AC/DC/Servo motor drives for a motion control application. 6. PLC control of electro-pneumatic and electro-hydraulic systems. 7. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software 8. Industrial robot programming for a material handling and processi applications 9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hou Mode of assessment:	ction, Chapman	automation in manufacturing - an Introducti	
1. W. Bolton, (2011) Mechatronics: Electronic control systems in mechanengineering, Pearson; 5th edition Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. PLC programming for simple industrial control problems with logic, time and counters, data manipulation and math instructions. 2. Interfacing digital input and output field devices with PLC hardware. 3. Interfacing analog field devices with PLC. 4. Control of conveyor and material handling system using PLC system 5. Control of AC/DC/Servo motor drives for a motion control application. 6. PLC control of electro-pneumatic and electro-hydraulic systems. 7. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software 8. Industrial robot programming for a material handling and processi applications 9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hou Mode of assessment:			
engineering, Pearson; 5th edition Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. PLC programming for simple industrial control problems with logic, time and counters, data manipulation and math instructions. 2. Interfacing digital input and output field devices with PLC hardware. 3. Interfacing analog field devices with PLC. 4. Control of conveyor and material handling system using PLC system 5. Control of AC/DC/Servo motor drives for a motion control application. 6. PLC control of electro-pneumatic and electro-hydraulic systems. 7. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software 8. Industrial robot programming for a material handling and processi applications 9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hou Mode of assessment:			
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. PLC programming for simple industrial control problems with logic, time and counters, data manipulation and math instructions. 2. Interfacing digital input and output field devices with PLC hardware. 3. Interfacing analog field devices with PLC. 4. Control of conveyor and material handling system using PLC system 5. Control of AC/DC/Servo motor drives for a motion control application. 6. PLC control of electro-pneumatic and electro-hydraulic systems. 7. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software 8. Industrial robot programming for a material handling and processi applications 9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hou Mode of assessment:	ncal and electrica	: Electronic control systems in mechanica	
List of Challenging Experiments (Indicative) 1. PLC programming for simple industrial control problems with logic, time and counters, data manipulation and math instructions. 2. Interfacing digital input and output field devices with PLC hardware. 3. Interfacing analog field devices with PLC. 4. Control of conveyor and material handling system using PLC system 5. Control of AC/DC/Servo motor drives for a motion control application. 6. PLC control of electro-pneumatic and electro-hydraulic systems. 7. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software 8. Industrial robot programming for a material handling and processi applications 9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hout Mode of assessment:			engmeer
List of Challenging Experiments (Indicative) 1. PLC programming for simple industrial control problems with logic, time and counters, data manipulation and math instructions. 2. Interfacing digital input and output field devices with PLC hardware. 3. Interfacing analog field devices with PLC. 4. Control of conveyor and material handling system using PLC system 5. Control of AC/DC/Servo motor drives for a motion control application. 6. PLC control of electro-pneumatic and electro-hydraulic systems. 7. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software 8. Industrial robot programming for a material handling and processi applications 9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hout Mode of assessment:		/ Ouiz / FAT / Project / Seminar	Mode of Evalue
 PLC programming for simple industrial control problems with logic, time and counters, data manipulation and math instructions. Interfacing digital input and output field devices with PLC hardware. Interfacing analog field devices with PLC. Control of conveyor and material handling system using PLC system Control of AC/DC/Servo motor drives for a motion control application. PLC control of electro-pneumatic and electro-hydraulic systems. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software Industrial robot programming for a material handling and processi applications Development HMI and SCADA system for simple industrial application. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. 		· · · · · · · · · · · · · · · · · · ·	
and counters, data manipulation and math instructions. 2. Interfacing digital input and output field devices with PLC hardware. 3. Interfacing analog field devices with PLC. 4. Control of conveyor and material handling system using PLC system 5. Control of AC/DC/Servo motor drives for a motion control application. 6. PLC control of electro-pneumatic and electro-hydraulic systems. 7. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software 8. Industrial robot programming for a material handling and processi applications 9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hout Mode of assessment:	ers 3 hours		
 Interfacing digital input and output field devices with PLC hardware. Interfacing analog field devices with PLC. Control of conveyor and material handling system using PLC system Control of AC/DC/Servo motor drives for a motion control application. PLC control of electro-pneumatic and electro-hydraulic systems. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software Industrial robot programming for a material handling and processi applications Development HMI and SCADA system for simple industrial application. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. 			
 Interfacing analog field devices with PLC. Control of conveyor and material handling system using PLC system Control of AC/DC/Servo motor drives for a motion control application. PLC control of electro-pneumatic and electro-hydraulic systems. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software Industrial robot programming for a material handling and processi applications Development HMI and SCADA system for simple industrial application. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. 	3 hours		
 Control of AC/DC/Servo motor drives for a motion control application. PLC control of electro-pneumatic and electro-hydraulic systems. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software Industrial robot programming for a material handling and processi applications Development HMI and SCADA system for simple industrial application. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hout Mode of assessment: 	3 hours		
 6. PLC control of electro-pneumatic and electro-hydraulic systems. 7. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software 8. Industrial robot programming for a material handling and processi applications 9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hout Mode of assessment: 	3 hours	handling system using PLC system	4. Control
 7. Development and analysis of fluid power circuits with AUTOMATIC STUDIO software 8. Industrial robot programming for a material handling and processi applications 9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory How Mode of assessment:	3 hours	rives for a motion control application.	5. Control
STUDIO software 8. Industrial robot programming for a material handling and processi applications 9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hout Mode of assessment:	3 hours	and electro-hydraulic systems.	6. PLC con
 8. Industrial robot programming for a material handling and processi applications 9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory How Mode of assessment:	N 3 hours	uid power circuits with AUTOMATION	7. Develop
applications 9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hout Mode of assessment:			STUDIC
9. Development HMI and SCADA system for simple industrial application. 10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hout Mode of assessment:	ng 3 hours	for a material handling and processing	
10. Physical modeling and analysis of mechanical systems with MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hout Mode of assessment:			11
MATLAB\SIMULINK \ SIMSCAPE software. Total Laboratory Hou Mode of assessment:	3 hours		-
Total Laboratory Hou Mode of assessment:	th 3 hours		2
Mode of assessment:			MATLA
· · · · · · · · · · · · · · · · · · ·	rs 30 hours	Total Laboratory Hours	Mada of
Decommanded by Deard of Studies 17.09.2017		17.09.2017	
Recommended by Board of Studies17-08-2017Approved by Academic Council47Date05-10-201	7		

Course code	Metrology and Non-Destructive Testing	L T P J C	
MEE6001		2 0 0 4 3	
Pre-requisite	NIL	Syllabus version	
		v. 1.1	

Course Objectives:

- 1. Introduce the basic principles of various measurement methodologies
- 2. Impart Knowledge on different types of measurement and statistical quality control methods.
- 3. Provide sufficient knowledge on the use and selection of inspection techniques.

Expected Course Outcome:

- 1. Carryout linear and angular measurements on mechanical components.
- 2. Identify transducer for sensing various mechanical parameters.
- 3. Design suitable sensing systems for measuring mechanical parameters.
- 4. Statistically analyze variation and design Statist0069cal Quality Control systems.
- 5. Carryout Non Destructive evaluation of components and products.

Module:1Measurements6 hoursNeed of inspection, Principles of measurement, Measuring Standards, Measuring systems and
accuracy of measurement, Precision and accuracy, errors in measurement, calibration of measuring
instruments. Introduction to limits, fits and tolerances, tolerance limits, deviations, allowance,
unilateral and bilateral tolerance system

Module:2	Linear, angular and surface roughness measurements	6 hours

Linear and angular measuring instruments, gauges, types of gauges, Limit gauges: GO and NO GO gauges, Slip gauges and Sine bar, significance of comparators in mass production. Different surface texture, factors affecting surface finish, methods of measuring surface finish, numerical evaluation of surface roughness – Ra, Rq and Rz,

Module:3	Vibration, strain, force and torque measurements	6 hours

Vibration measurement system - strain gauges, Wheatstone's bridge circuit, strain measurementaxial, bending and torsional, strain gauge selection criteria. Force measurement system, load cells – types of load cells, dynamic force measurement; Torque measurement - static and dynamic torque, slip rings, introduction to torque testing dynamometers

Constructional allowers at the terminant		
Geometrical alignment tests, performance tests, Machine tool testing – alignment testing of Lathe.		
Screw thread terminology, types of threads, measurement of effective diameter by two-wire method.		
Types of gears, spur gear terminology, pitch measurement methods.		

Module:5	Iule:5Statistical Quality Control6 hours			
Data presentation – Statistical measures and tools – Process capability – Confidence and tolerance				
limits – Control charts for variables and for fraction defectives				

Module:6	Inspection Techniques I	6 hours
Characteristic	Characteristics of liquid penetrants – Principles of operation of Liquid Penetranttest – Developers –	

applications- Methods of production of magnetic fields- Principles of operation of magnetic particle test- Applications- Advantages and Limitations.

Module:7 Inspection Techniques II

7 hours

Radiography Sources of ray X-ray production-properties of d and x rays – film characteristics – exposure charts – contrasts – operational characteristics of x ray equipment – applications.

Ultrasonic Techniques: Production of ultrasonic waves – different types of waves – general characteristics of waves – pulse echo method – A, B, C scans

Module:8		Contemporary issues				2 hours
				To	tal Lecture hours:	45 hours
Text	t Book(s))			I	
1.	Jain R.	.K., (2015), Engineering N	Aetrology, Khani	na Publica	tions, Edition: 21st re	evised.
2.		rraj, Jayakumar T., Thav , Narosa Publishers.	asimuthu M. (2	2008), Prac	ctical Non-Destructiv	ve Testing, 3rd
Refe	erence Bo	ooks				
1.	Bewoo	or A.K and Kulkarni V.A,	(2009), Metrolog	y and mea	surement", Tata McC	Graw-Hill
2.	Practic	cal Non-Destructive Test	ing- Baldevraj,	Jayakuma	r T., Thavasimuthu	ı M., (2008),
	Narosa	Publishers. 3rd edition				
3.	Alan S. Morris, Reza Langari, (2013), Measurement and instrumentation – Theory and application" 2 nd edition					
4.	Paul E	. Mix, (2005), Introductio	n to Non-destruc	tive Testin	g, John Wiley & son	IS
Mod	le of Eval	luation: CAT / Assignmen	nt / Quiz / FAT /	Project / S	eminar	
List	of Chall	enging Experiments (Inc	licative)			
				Total La	aboratory Hours	
Mod	le of asse	ssment:				
Reco	ommende	ed by Board of Studies	17-08-2017			
App	roved by	Academic Council	47	Approved by Academic Council 47 Date 05-1-2017		

Course code	Optimization Techniques	L T P J C
MEE6002		2 2 0 4 4
Pre-requisite	NIL	Syllabus version
		v. 1.1
Course Objectives:	·	
1. To understand the	role of optimization in engineering design and its importan	ce.

- 2. To introduce the different optimization algorithms in linear as well as non-linear programming problems
- 3. To introduce the non-traditional optimization algorithms in solving non-linear optimization problems.

Expected Course Outcome:

Upon successful completion of the course the students will be able to

- 1. Apply basic concepts of mathematics to formulate engineering optimization problems as well as understand and apply necessary and sufficient conditions based on differential calculus, in finding maxima/minima of single and multi-variables functions.
- 2. Analyze the potential advantage of search methods and gradient based methods and apply for unconstrained non-linear optimization problems covering wide range of applications.
- 3. Enumerate the differences between direct and indirect optimization methods and apply for solving constrained non-linear optimization problems covering wide range of applications.
- 4. Understand and apply quadratic and geometric programming approaches to solve quadratic functions and engineering design problems covering wide range of applications.
- 5. Describe the basics of different evolutionary algorithms and apply existing optimization software packages to solve engineering problems.
- 6. Enumerate fundamentals of fuzzy logic and neural networks and apply these techniques to solve various problems arising from engineering areas.
- 7. Demonstrate the potential advantages of clustering techniques and apply to solve various problems covering wide range of applications in marketing, bio-medical and geo-spatial fields, etc.

eic.
Module:1Classical Optimization Techniques4 hour
Introduction, engineering applications of optimization-classification of optimization problems-
Single variable optimization-Multivariable optimization with no constraints-Multi variable
optimization with equality and in equality constraints: Lagrange multipliers method, Kuhn-Tucker
conditions
Module:2Unconstrained Nonlinear Optimization4 hour
Direct Search methods: Univariate method, Pattern directions, Hook and Jeeves' method, Powell'
method-Indirect search methods: Gradient of a function, Cauchy method, Fletcher-Reeves method.
Module:3Constrained Non-linear Optimization:3 hour
Characteristics of a constrained optimization problem - Direct methods: Cutting plane method
methods of feasible directions – Indirect methods: Interior and exterior penalty function methods
Module:4Quadratic & Geometric programming:3 hour
Quadratic programming: Introduction, necessary conditions, solution using Wolfe's method
Geometric programming: Solution from differential calculus point of view, Solution from
arithmetic-geometric inequality point of view.
Module:5Genetic algorithms4 hour
Basic concepts- working principle – encoding – different methods – fitness function – reproduction-

different methods. Genetic modelling-inheritance- Crossover mutation-convergence of genetic algorithm.

Module:6	Fuzzy logic and Artificial Neural Networks	6 hours					
Fuzzy sets- F	Fuzzy sets- Fuzzy set operations- Fuzzy relations-Cardinality of Fuzzy relations-Operations on						
Fuzzy relations-Properties of Fuzzy relations-Membership Functions-Features of Membership							
functions- F	functions- Fuzzification-Methods of Membership value Assignments- Fuzzy Rule Base-						
Defuzzificatio	n-Deffuzzification methods- Fuzzy logic controller(Block Diagram)						
Basic concept	s-Neural network Architectures-Single layer feed forward network-M	ultilayer feed					
forward netw	ork-Recurrent Networks-Characteristics of Neural Networks-Learni	ng methods.					
Perceptron networks-Back Propagation networks-Radial base function network-Hopfield network-							
Kohonen Self	organizing maps-ART						

Module:7Clustering4 hoursSupervised Learning and Unsupervised Learning techniques, Basic issues in clustering, First
conceptual clustering system, Partitioning methods: K-means and Hierarchical Clustering, C-means,
fuzzy K-means, Fuzzy C-means, Support vector machine4 hours

Mod	ule:8	Contemporary Discussions	2 hours
		Total Lecture hours:	30 hours
Text	Book(s)		
1.	Singire	esu S. Rao, (2009), Engineering Optimization - Theory and Practice, John	Wiley &
	Sons, I	Inc., 4 th edition	
Refe	rence Bo	ooks	
1.	•	moy Deb, (2012), Optimization for Engineering Design: Algorithms a	nd Examples,
	PHI Le	earning Pvt. Ltd., 2 nd edition	
2.	Wilhel	m Forst, Dieter Hoffmann, (2010), Optimization - Theory and Practice, Sp	pringer
3.		Iran, G. V. Reklaitis, K. M. Ragsdell, (2006), Engineering Optimization:	Methods and
	Applic	ations, John Wiley & Sons, 2 nd edition	
4.	S.Raja	sekharan, G.A.VijayalakshmiPai,(2003), Neural Network, Fuzzy Logic	and Genetic
	Algorit	thms Synthesis and Applications, Prentice Hall India	
Mode	e of Eval	uation: CAT / Assignment / Quiz / FAT / Project / Seminar	
Chal	lenging	Projects	
11.	Guide	lines	
		nerally a team project [Maximum 4 members]	
		ols and techniques studied in optimization methods are to be applied.	
	• Foo	cus on practical real life applications such as aerospace design, civil	
	-	gineering constructions, manufacturing, production planning and	
	cor	ntrol etc.	

		<i>1</i> 3			
	 Report in digital format which model, notation used, math 			1	
	appropriate software/compute sensitivity analysis/parametric	r program for	-		
	Assessment on a continuous basis with a minimum of 3 reviews.				
Sample Projects					60 hours
1.	Design and optimization of aircraft	t structure for min	nimum we	ight	
2.	Optimal selection of machining co	nditions in metal	cutting pro	ocesses for	
	minimum production cost				
3.	Design and optimization of materia	al handling equip	ment such	as conveyors,	
	trucks and cranes for minimum cos	st			
4.	Design and optimization of water n	eservoir system f	for maxim	ım storage	
	capacity				
5.	Design and optimization of multi-echelon inventory systems for optimal				
inventory decisions and shipment policies.					
Mode	e of assessment:				
Reco	mmended by Board of Studies	17-08-2017			
Approved by Academic Council47Date05-10-2017					

Course code	Micro and Nano Manufacturing	L T P J C
MEE6003		3 0 0 0 3
Pre-requisite	NIL	Syllabus version
		v. 1.1
Course Obje	ctives:	
1. To acquai	nt the students with the principles, basic machine tools, and dev	velopments in the
micro/nano	manufacturing process and research trends in the area of	micro and nano
manufactu	ing process.	
Expected Co	urse Outcome:	
Upon success	ful completion of the course the students will be able to	
1. Demonstra	te the principles of Micro Nano Manufacturing.	
2. Apply the	process of patterns using on any surface of lithography.	
3. Analyze th	e etching and micro molding processes for the manufacture of pat	tterns in wafers as
well as ver	y small plastic parts.	
4. Illustrate s	ze effect in micro machining with respect to plastic behavior.	
5. Explain th	e different mechanical micro machining process.	
6. Discuss or	vapour deposition and laser nano manufacturing techniques.	
Module:1	General principles of Micro and Nano manufacturing	6 hours
Substrates, th	n film deposition techniques, etching, requirements of mask material	ls, Typical
fabrication pr	ocess for an integrated circuit – Scanning probe microscopy for Nano	o manufacturing
Module:2	Lithography	6 hours
X ray lithogra	phy-steps-Synchrotron radiation-LIGA process-Methods of res	sist application
Module:3	Etching and Micro moulding process:	6 hours
Dry etching	and plasma etching, characteristics of plasma, effects of etching,	Injection molding,
Embossing, n	icro molding tools	
Module:4	Size effect in micro machining	6 hours
Plastic behav	ior in large strain – Shear angle prediction – Mechanism of lar	rge plastic flow –
Inhomogeneo	us train	
-		
Module:5	Mechanical Micro machining	6 hours
	operation of Micro milling – Micro turning-Chip removal – High spe	
	-Micro grinding process	Prince
	00 P0	
Module:6	Vapor deposition techniques	6 hours
	· upor apposition techniques	0 nours

Principle and operation of Physical vapor deposition – chemical vapor deposition – thin film characteristics-

Module:7 Laser based Nano manufacturing

6 hours

Laser fundamentals, sources, optics, Femtosecond Pulsed laser Micro and Nano fabrication – General applications.

Industrial Applications of micro and Nano manufacturing: MEMS, IC and micro scale features

Mod	lule:8	Contemporary issues				2 hours
				Tota	l Lecture hours:	45 hours
Text	t Book(s)					
1.	Mark J	J. Jackson, (2010) Micro an	d Nano fabr	ication, CRC Pr	ess, Taylor & Franc	is Group
Refe	erence B	ooks				
1.	Yi Qin	,(2010), Micro-Manufactur	ing Enginee	ring and Techno	ology, Elsevier Publ	isher, ISBN:
	978-0-	8155-1545-6				
2.	V.K.Ja	in, (2013), Micro manufact	turing proces	sses, CRC Press	s, Taylor and Francis	s Group
3.	Muam	merKoc, TrugelOzel, (201	l) Micro ma	nufacturing, De	sign and manufactur	ring of micro
	produc	ets, Wiley Publishers				
Mod	le of Eval	luation: CAT / Assignment	/ Quiz / FA	Γ / Project / Sen	ninar	
Reco	ommende	ed by Board of Studies	17-08-201	.7		
App	roved by	Academic Council	47	Date	05-10-2017	

Course code		Casting and Welding Technology		LT	P J	JC
MEE6004				30	2 (0 4
Pre-requisite	•	NIL	Sy	llabu	is ver	rsion
						7.1.1
Course Obje	ctives:					
1. To study th	ne metal	llurgical concepts and applications of casting and welding pro-	ocess	5.		
2. To impart t	the know	wledge of joining different metallic and non- metallic materia	als.			
Expected Co	urse O	utcome:				
Upon success	ful com	pletion of the course the students will be able to				
1. Model the	solidifi	cation process of castings.				
2. Evaluate th	ne suital	pility of various casting processes for a product.				
3. Analyze the	e influe	nce of process parameters on the quality of weld.				
4. Evaluate th	ne mech	anisms of metal transfer through weld simulation.				
	-	advanced welding techniques for aerospace, nuclear, automo	obile	and 1	naval	L
application	IS.					
		ability of metals and alloys and their metallurgical aspects. D	esigr	ı wel	ding	and
		d quality control of components.				
7. Design wel	lding ar	ad casting systems and quality control of components.				
	r					
Module:1		ng Design and Metallurgy				ours
		n metal and mold, Design considerations in casting, Solidifi	catio	on Me	echar	iism,
Centre-line fe	eding r	esistance				
	1					
Module:2		t Trends in Casting and Foundry Layout				ours
		omparison of various established processes; recent developm		-		
_		d box molding; ceramic shell molding; V process; continuo	us ca	sting	;; squ	leeze
and pressed ca	asting; l	Nishiyama process; Shaw process; Anitoch process etc.				
						
Module:3		cs of Welding Arc				ours
-		ation and maintenance, cathode and anode drops, Arc colum				
		hode, arc characteristics, Characteristics of power source				
• •		rc length regulation in mechanized welding processes, cycle	e and	pow	ver fa	ctor,
Static and dyn	namic c	haracteristics of power sources.				
			—			
Module:4		ing Process and Modes of Metal Transfer				ours
	• •	s of metal transfer in various arc welding processes, factors	contr	ollin	g me	Iting
rate in various	s weldir	ng processes, Arc welding processes.				
	T					
Module:5	Recen	nt Trends in Welding			4 h	ours

Surfacing and Hot facing in welding, Friction welding, friction stir welding, diffusion bonding, ultrasonic welding, electron beam welding, Laser beam welding, Plasma welding hybrid twin wire active TIG – Tandem, MIG

Mod	ule:6	Weldability	6 hours
		·	
	•	ests, Varestraint testing, Lehigh Restraint test, Houldcroft test, Implant t (Tekken Test)- Weld mechanical testing	lest, Oblique 1
- 010	Jove lest	(Tekken Test)- weld mechanical testing	
Mod	ule:7	Metallurgy of Welding	12 hours
Carb	on equiva	alent, welding of carbon and low alloy steel, Welding of Stainless steel	, Welding of Al
	-	Welding of Nickel based super alloys, Weld defects and weld failures	, U
Mod	ule:8	Contemporary Discussion	2 hours
		Total Lecture hours:	45 hours
Text	Book(s)		
1.	John K	. C, (2015), Metal Casting and Joining PHI Learning, New Delhi	
2.	Sindu I	Kou, Welding Metallurgy (2015), 2nd Edition, Publisher: John Wiley &	z Sons, Inc,
	ISBN:	978-0-471-43491-7	
Refe	rence Bo	oks	
1.	Bowdit	ch, W.A., Bowditch M. A., Bowditch, K. E., (2006), Weldin	ng Technology
	Fundar	nentals, Goodheart -Willcox Pub., 4th Edition	
2.	Messle	r Robert W. Jr., (2004), Principles of welding WILEY-VCHVerlag	GmbH & Co.
		Weinheim	
3.		n, (2004), Welding Handbook: Welding Processes, Part 1, Vol. 2, Ame	rican Welding
	Society	,	
		uation: CAT / Assignment / Quiz / FAT / Project / Seminar	
	-	enging Experiments (Indicative)	
1.		of welding parameters in SMAW, GMAW and GTAW processes	6 hours
2.	-	rison of rutile, basic and cellulosic electrodes in MMAW process	2 hours
3.		of shielding gases on performance of GMAW process	2 hours
4.		of welding fluxes in submerged arc welding process	2 hours
5.		of optical profile gas cutting	2 hours
6.		inspection for weld quality	2 hours
7.		netrant inspection for determining surface defects in welded joints	2 hours
8.		tic particle inspection for determining surface defects in welded joints	2 hours
9.		nic inspection for assessing sub-surface defects	2 hours
10.	-	raphic inspection of weld joints	2 hours
11.		esting, Green sand moulding, CO2 Moulding, Shell Moulding,	6 hours
	Vacuur	n Moulding, NDT of castings, Design of gating systems,	

Measurement of fluidity, Melting				
		Total Labo	ratory Hours	30 hours
Mode of assessment:				
Recommended by Board of Studies	17-08-2017			
Approved by Academic Council	47	Date	05-10-2017	

V. Course Objectives: 1. An understanding of basic principles, techniques and issues underlying geometric design, dig geometry processing, and the latest virtual prototyping and e-manufacturing solutions in des and manufacturing; 2. A practical awareness of skills required to use virtual prototyping and e-manufacturing solutions in day and manufacturing activities Expected Course Outcome: Upon successful completion of the course the students will be able to 1. Describe the techniques for product modeling, product visualization, digital mockup and prod data management. Elaborate the methods for digital geometry processing 2. Describe the principles of and facilities for virtual reality and its applications in digital mock and virtual manufacturing 3. Describe the methods and algorithms for collaborative design and design a product assembly utilizing appropriate collaborative design tools 4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing 6 hoo Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturing Paradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. Module:2 Product data visualization 6 hon Graphics fundamentals, graphics data representation, polygon	Course code	Virtual Manufacturing	L T P J C
v. Course Objectives: 1. An understanding of basic principles, techniques and issues underlying geometric design, dig geometry processing, and the latest virtual prototyping and e-manufacturing solutions in des and manufacturing; 2. A practical awareness of skills required to use virtual prototyping and e-manufacturing solutiot to analyse various design and manufacturing activities Expected Course Outcome: Upon successful completion of the course the students will be able to 1. Describe the techniques for product modeling, product visualization, digital mockup and prod data management. Elaborate the methods for digital geometry processing 2. Describe the principles of and facilities for virtual reality and its applications in digital mock and virtual manufacturing 3. Describe the methods and algorithms for collaborative design and design a product assembly utilizing appropriate collaborative design tools 4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing A for VM: Design-centered VM, Production-centered VM and Control-centered V Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. Module:2 Product data visualization 6 hot Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, vivieng in 3D, input/output devices, virtual and	MEE6005		3 0 0 0 3
Course Objectives: 1. An understanding of basic principles, techniques and issues underlying geometric design, dig geometry processing, and the latest virtual prototyping and e-manufacturing solutions in des and manufacturing; 2. A practical awareness of skills required to use virtual prototyping and e-manufacturing solution to analyse various design and manufacturing activities Expected Course Outcome: Upon successful completion of the course the students will be able to 1. Describe the techniques for product modeling, product visualization, digital mockup and prod data management. Elaborate the methods for digital geometry processing 2. Describe the principles of and facilities for virtual reality and its applications in digital mock and virtual manufacturing 3. Describe the methods and algorithms for collaborative design and design a product assembly utilizing appropriate collaborative design tools 4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing 6 hoo Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturi Paradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, v	Pre-requisite	NIL	Syllabus version
1. An understanding of basic principles, techniques and issues underlying geometric design, dig geometry processing, and the latest virtual prototyping and e-manufacturing solutions in des and manufacturing; 2. A practical awareness of skills required to use virtual prototyping and e-manufacturing solutions to analyse various design and manufacturing activities Expected Course Outcome: Upon successful completion of the course the students will be able to 1. Describe the techniques for product modeling, product visualization, digital mockup and prod data management. Elaborate the methods for digital geometry processing 2. Describe the principles of and facilities for virtual reality and its applications in digital mock and virtual manufacturing 3. Describe the methods and algorithms for collaborative design and design a product assembly utilizing appropriate collaborative design tools 4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing 6 hoo Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturi Pradigms of VM: Module:2 Product data visualization 6 hoo Graphics fundamentals, graphics data representation, polygonal based operations, LC Generic VM. Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hoo Integrated Product and Process Development in Collaborative Virtual Engineering En			v. 1.1
geometry processing, and the latest virtual prototyping and e-manufacturing solutions in des and manufacturing; 2. A practical awareness of skills required to use virtual prototyping and e-manufacturing solutions to analyse various design and manufacturing activities Expected Course Outcome: Upon successful completion of the course the students will be able to 1. Describe the techniques for product modeling, product visualization, digital mockup and prod data management. Elaborate the methods for digital geometry processing 2. Describe the principles of and facilities for virtual reality and its applications in digital mock and virtual manufacturing 3. Describe the methods and algorithms for collaborative design and design a product assembly utilizing appropriate collaborative design tools 4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing 6 hoo Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturi Pradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Module:2 Product data visualization 6 hoo Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing 6 hoo </td <td></td> <td></td> <td></td>			
and manufacturing; 2. A practical awareness of skills required to use virtual prototyping and e-manufacturing solution to analyse various design and manufacturing activities Expected Course Outcome: Upon successful completion of the course the students will be able to 1. Describe the techniques for product modeling, product visualization, digital mockup and prod data management. Elaborate the methods for digital geometry processing 2. Describe the principles of and facilities for virtual reality and its applications in digital mock and virtual manufacturing 3. Describe the methods and algorithms for collaborative design and design a product assembly utilizing appropriate collaborative design tools 4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing Module:2 Product data visualization Module:2 Product data visualization Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 	1. An understandin	g of basic principles, techniques and issues underlying geom	etric design, digita
to analyse various design and manufacturing activities Expected Course Outcome: Upon successful completion of the course the students will be able to 1. Describe the techniques for product modeling, product visualization, digital mockup and prod data management. Elaborate the methods for digital geometry processing 2. Describe the principles of and facilities for virtual reality and its applications in digital mock and virtual manufacturing 3. Describe the methods and algorithms for collaborative design and design a product assembly utilizing appropriate collaborative design tools 4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing 6 hoo Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturi Paradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. Module:2 Product data visualization 6 hoo Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing 6 hoo Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerosp. Product Development	• • •		solutions in design
Expected Course Outcome: Upon successful completion of the course the students will be able to 1. Describe the techniques for product modeling, product visualization, digital mockup and prod data management. Elaborate the methods for digital geometry processing 2. Describe the principles of and facilities for virtual reality and its applications in digital mock and virtual manufacturing 3. Describe the methods and algorithms for collaborative design and design a product assembly utilizing appropriate collaborative design tools 4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing 6 hor Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturi Product data visualization Module:2 Product data visualization Module:2 Product data visualization Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing Module:3 Digital M	2. A practical awar	eness of skills required to use virtual prototyping and e-man	ufacturing solution
Upon successful completion of the course the students will be able to 1. Describe the techniques for product modeling, product visualization, digital mockup and prod data management. Elaborate the methods for digital geometry processing 2. Describe the principles of and facilities for virtual reality and its applications in digital mock and virtual manufacturing 3. Describe the methods and algorithms for collaborative design and design a product assembly utilizing appropriate collaborative design tools 4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing 6 hor Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturing Paradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. Module:2 Product data visualization 6 hor Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing 6 hor Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hor Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software	to analyse variou	s design and manufacturing activities	
Upon successful completion of the course the students will be able to 1. Describe the techniques for product modeling, product visualization, digital mockup and prod data management. Elaborate the methods for digital geometry processing 2. Describe the principles of and facilities for virtual reality and its applications in digital mock and virtual manufacturing 3. Describe the methods and algorithms for collaborative design and design a product assembly utilizing appropriate collaborative design tools 4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing 6 hor Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturing Paradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. Module:2 Product data visualization 6 hor Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing 6 hor Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hor Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software			
1. Describe the techniques for product modeling, product visualization, digital mockup and prod data management. Elaborate the methods for digital geometry processing 2. Describe the principles of and facilities for virtual reality and its applications in digital mock and virtual manufacturing 3. Describe the methods and algorithms for collaborative design and design a product assembly utilizing appropriate collaborative design tools 4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing 6 hor Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturi Paradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. Module:2 Product data visualization Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing Module:3 Digital Mock-up Sectors for Digital Mock-ups (DMU) in complex Aerosp. Product Development	-		
data management. Elaborate the methods for digital geometry processing 2. Describe the principles of and facilities for virtual reality and its applications in digital mock and virtual manufacturing 3. Describe the methods and algorithms for collaborative design and design a product assembly utilizing appropriate collaborative design tools 4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing 6 hor Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturing Paradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. Module:2 Product data visualization 6 hor Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing 6 hor Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hor Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerospi Product Development 6 hor <td>-</td> <td></td> <td></td>	-		
and virtual manufacturing 3. Describe the methods and algorithms for collaborative design and design a product assembly utilizing appropriate collaborative design tools 4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing 6 hor Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturi Paradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. Module:2 Product data visualization 6 hor Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing 6 hor Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerosp. Product Development			nockup and produc
 3. Describe the methods and algorithms for collaborative design and design a product assembly utilizing appropriate collaborative design tools 4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing 6 how Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturing Paradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. Module:2 Product data visualization 6 how Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its application computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing 6 how Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerosp. Product Development 	2. Describe the pri	nciples of and facilities for virtual reality and its application	s in digital mockuj
utilizing appropriate collaborative design tools 4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing 6 hor Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturi Paradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. 6 hor Module:2 Product data visualization 6 hor Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing 6 hor Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hor Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerosp. Product Development	and virtual man	ufacturing	
4. Demonstrate the applications of VM in material processing through simulation. Module:1 Virtual manufacturing 6 hor Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturi Paradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. 6 hor Module:2 Product data visualization 6 hor Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing 6 hor Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hor Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerosp. Product Development	3. Describe the me	thods and algorithms for collaborative design and design a p	product assembly by
Module:1 Virtual manufacturing 6 hor Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturing Paradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. Module:2 Product data visualization 6 hor Graphics fundamentals, graphics data representation, polygonal based operations, L0 management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hor Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerospic Product Development	utilizing approp	riate collaborative design tools	
Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturi Paradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. Module:2 Product data visualization 6 hord Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing 6 hord Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hord Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerosp.	4. Demonstrate the	applications of VM in material processing through simulatio	on.
Definitions, scope of Virtual Manufacturing, Methods and tools used in Virtual manufacturi Paradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. Module:2 Product data visualization 6 hord Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing 6 hord Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hord Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerosp.			
Paradigms of VM: Design-centered VM, Production-centered VM and Control-centered V Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. Module:2 Product data visualization 6 hot Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hot Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerosp: Product Development 9	Module:1 Virt	ual manufacturing	6 hours
Generic VM Issues - relationships between VM, Virtual Prototyping, the Virtual Enterprise. Role object oriented technology in VM. Module:2 Product data visualization 6 hor Graphics fundamentals, graphics data representation, polygonal based operations, LC management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing 6 hor Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hor Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerospa Product Development		_	
object oriented technology in VM. Module:2 Product data visualization 6 hor Graphics fundamentals, graphics data representation, polygonal based operations, L0 management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hor Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerospa Product Development	-	-	
Module:2 Product data visualization 6 hor Graphics fundamentals, graphics data representation, polygonal based operations, LG management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hor Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerospa Product Development Product Development	Generic VM Issues	- relationships between VM, Virtual Prototyping, the Virtual	Enterprise. Role o
Graphics fundamentals, graphics data representation, polygonal based operations, LG management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hore Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerospa Product Development 9	object oriented tech	nology in VM.	
Graphics fundamentals, graphics data representation, polygonal based operations, LG management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hore Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerospa Product Development			
management, lighting and coloring, illumination, and shading. Virtual reality and its applicatio computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hor Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerospa Product Development			
computer animation, viewing in 3D, input/output devices, virtual and augmented reality, virt design, virtual prototyping and virtual manufacturing Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hore Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerospa Product Development			* ·
design, virtual prototyping and virtual manufacturing Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hore Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerospa Product Development Product Development			
Module:3 Digital Mock-up Unit (DM) in Virtual Manufacturing 6 hor Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerospa Product Development	1		nted reality, virtua
Integrated Product and Process Development in Collaborative Virtual Engineering Environm using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerospa Product Development	design, virtual proto	styping and virtual manufacturing	
using CATIA Software. Success Factors for Digital Mock-ups (DMU) in complex Aerospa Product Development	Module:3 Digi	tal Mock-up Unit (DM) in Virtual Manufacturing	6 hour
Product Development	Integrated Product	and Process Development in Collaborative Virtual Engine	eering Environmen
	using CATIA Soft	ware. Success Factors for Digital Mock-ups (DMU) in c	complex Aerospace
Module-4 Manufacturing process simulation 6 box	Product Developme	nt	
Module 1 Manufacturing process simulation 6 how	roduct Developille		
Factory level, Machine level, Component level, Process level. Integrated Simulation Method			

Support Virtual Factory Engineering. Application of Virtual Reality Simulation of a Mechanical Assembly Production Line. Case studies using CATIA, SOLIDCAST, PROCAST, OPTICAST simulation software.

Module:5	Dispersed Network Manufacturing		6 hours
Virtual fac	tory, enterprise collaborative modeling system, virtual man	nufacturing (VM) s	ystem,
Web-based	d work flow management, collaborative product commerce	, applications of m	ulti-agent
technology	y, e-supply chain management and tele-manufacturing		
Module:6	Virtual Machining Simulation		6 hours
	based machining simulation .Advanced process simulation	1 0	
optimization	n software-simulate real-world performance of machining	operations	
Module:7	Practical applications of VM in materials processing	g	7 hours
	et metal processing, Virtual machining and inspection syst	5	
	nproving Product Design.	(*1115), *110	
Module:8	Contemporary Issues		2 hours
	Total I	Lecture hours:	45 hours
	I Utal I	Lecture nours.	45 Hours
	× ·		
1. Milar	n Gregor and Stefan Medvecky (2010), Digital Factor	• •	Practice,
1. Milan Engin	n Gregor and Stefan Medvecky (2010), Digital Factor neering the Future,LaszloDudas (Ed.), ISBN: 978-953-307	• •	Practice,
1. Milan Engin	n Gregor and Stefan Medvecky (2010), Digital Factor neering the Future,LaszloDudas (Ed.), ISBN: 978-953-307	• •	Practice,
1. Milan Engin	n Gregor and Stefan Medvecky (2010), Digital Factor neering the Future,LaszloDudas (Ed.), ISBN: 978-953-307	-210-4	
Milan Engin Reference I 1.	n Gregor and Stefan Medvecky (2010), Digital Factor neering the Future,LaszloDudas (Ed.), ISBN: 978-953-307 Books	Tutorial Approac	
1. Milar Engin Reference I 1. An Ir Schro	n Gregor and Stefan Medvecky (2010), Digital Factor neering the Future,LaszloDudas (Ed.), ISBN: 978-953-307 Books Introduction to CATIA V6 Release (2012): A Hands-on off Development Corp (21 September 2011), ISBN-13: 97	Tutorial Approac 8-1585036639.	
1. Milar Engin Reference I 1. An Ir Schro	n Gregor and Stefan Medvecky (2010), Digital Factor neering the Future,LaszloDudas (Ed.), ISBN: 978-953-307 Books Introduction to CATIA V6 Release (2012): A Hands-on	Tutorial Approac 8-1585036639.	
1. Milan Engin Reference I 1. An In Schro Mode of Ev	n Gregor and Stefan Medvecky (2010), Digital Factor neering the Future,LaszloDudas (Ed.), ISBN: 978-953-307 Books Introduction to CATIA V6 Release (2012): A Hands-on off Development Corp (21 September 2011), ISBN-13: 97 valuation: CAT / Assignment / Quiz / FAT / Project / Semi	Tutorial Approac 8-1585036639.	
Engin Reference I I. An In Schro Mode of Ev Mode of ass	n Gregor and Stefan Medvecky (2010), Digital Factor neering the Future,LaszloDudas (Ed.), ISBN: 978-953-307 Books Introduction to CATIA V6 Release (2012): A Hands-on off Development Corp (21 September 2011), ISBN-13: 97 valuation: CAT / Assignment / Quiz / FAT / Project / Semi	Tutorial Approac 8-1585036639.	

Course code		Theory of Metal Forming		LT	P	JC
MEE6006				2 0	0	4 3
Pre-requisite		NIL	Sy	llabu	s ve	rsion
						v. 1.1
Course Objec	tives:					
1. Select form	ing tecl	hniques for various applications				
2. Calculate the	he form	ning limit for various processes				
Expected Cou	irse Ou	itcome:				
Upon successf	ul com	pletion of the course the students will be able to				
1. Demonstrat	e the ap	oplication of theory of plasticity to understand concepts of m	iecha	nics	, stre	SS
and tempera	ature di	stribution and friction in metal forming processes				
2. Apply relev	ant for	ging load calculations to evaluate the impact on quality of th	ie pro	ocess		
-		rces that occur in a rolling process				
=		ion process in terms of in terms of deformation, lubrication				
		and tube drawing processes in terms of performance and incl	ludin	g the	effe	ct of
residual stre						
		lication of various sheet metal forming methods				
7. Evaluate the	e stress	es formed when a new component or part is metal formed				
Module:1		amentals of Metal working				ours
		rming Process, Mechanics of Metal working, Flow Str			mina	ation,
Temperature in	n Metal	working, Friction and Lubrication, workability Residual Str	resses			
Module:2	Forgi	6				nours
		ging process, Forging equipment, Forging in plain strain c			-	
		Calculation of forging loads in closed-die forging, Forging	ig de	efects	, Po	wder
Metallurgy in	forging					
	יוו ת	6 X 7 4 1			41	
Module:3			6.1			ours
		lling, Rolling mills, Hot-Rolling, Cold-Rolling, Rolling o			a sn	apes,
Forces and Ge	ometric	cal Relationship in rolling, Problems and defects in rolled pr	roduc	ts		
Module:4	Extru	gion			11	
		sion equipment's, Deformation, Lubrication and Defects in	ovti	noior		nours
			i exti	usioi	i pro	ocess,
Analysis of the	e extrus	sion process, Hydrostatic extrusion, extrusion of tubing.				
	<u> </u>				4.1	
Module:5		ing of Rods, Wires and Tubes		1 •		nours
		ing, Analysis of wire drawing, Tube-drawing processes,	Ana	lysis	of	Tube
drawing, Resid	dual str	esses in Rod, Wire and Tubes				

	lule:6	Sheet-Metal forming	3 hours
	-	hods, Shearing and blanking, Bending, Stretch forming, Deep drawing, I	Forming Limit
Crite	eria, Defe	cts in formed products	
	lule:7	Advances in Metal Forming	3 hours
-		rming, Electro hydraulic forming, magnetic pulse forming, super p	plastic forming,
		ng – fine blanking HERF.	
	lule:8		
Mod	lule:1	Fundamentals of Metal working	5 hours
		Total Lecture hours:	30 hours
Text	t Book(s)		
1.	Helmi	A. Youssef, Hassan A. El-Hofy, Mahmoud H. Ahmed, (2011), Manufac	cturing
	Techno	ology: Materials, Processes, and Equipment, CRC Press, Taylor & France	cis Group
2.	George	e E Dieter (2014), Mechanical Metallurgy, Third Edition Tata McGraw H	Hill.Education
	PVT L	td	
Refe	erence Bo	ooks	
1.	Heinz	Tschaetsch,(2005), Metal Forming Practise, Springer Berlin Heidelberg	New York
2.	B.L.Ju	neja, (2012), Fundamentals of Metal Forming Processes, New Age Int	ternational, 2nd
	Edition	1	
3.	Marcin	iak,Z., Duncan J.L., Hu S.J., (2006), Mechanics of Sheet M	etal Forming',
	Butterv	worth-Heinemann An Imprint of Elsevier	
4.	Hingol	e, RahulkumarShivajirao. (2015), Advances in Metal Forming Exp	ert System for
	Metal	Forming, Springer Publications.	
Mod	le of Eval	uation: CAT / Assignment / Quiz / FAT / Project / Seminar	
Cha	llenging	Projects	
Gui	delines		
		roach: The project should be done iteratively, using a time-box approac	
		e presentation: The project has to have a presentation half-way. This is	
-		t no bad surprises will appear at the project end. Before the intermediate	-
		ion should be made. The poster that presents the research and the report	outline should
	be preser		
1.		nation Behavior during rolling and swaging	60 hours
2.		ery, recrystallization and grain growth grain size measurement by	
	-	tative metallography	
3.		nination of the tensile properties and strain hardening exponent of	
		nt class of materials	
4.		aging and yield point phenomenon	
5.	Effect	of work hardening on the tensile properties of metals	

Г

٦

6.	6. Incremental forming study						
7. Conventional FLD study for various sheet metals							
	Total Laboratory Hours						
Mode	e of assessment:						
Reco	Recommended by Board of Studies 17-08-2017						
Appr	oved by Academic Council	47	Date	05-10-2017			

Course code	Sustainable Manufacturing	L T P J C
MEE6007		3 0 0 0 3
Pre-requisite	NIL S	yllabus version
		v. 1.1
Course Objectives		
-	lents with knowledge of key environmental and sustainability is	sues relevant to
modern manufa	0	
-	of tools and skills that may be used to design, analyze, and impro	ve
manufacturing p	processes, products, and business operations.	
Expected Course	Outcome:	
-	ompletion of the course the students will be able to	
-	uirements and concepts in lean manufacturing.	
	need for sustainability assessment and their types.	
3. Develop sustain	ability assessment framework model depending on the process un	der
investigation.		
4. To Frame Strate	gic polices and implement sustainability approaches	
5. Leverage sustain	nability concepts in a supply chain.	
6. Apply knowledge	ge of lean and other sustainability concepts in a typical sustainable	manufacturing
setup.		
		1
	ed for Sustainable Manufacturing	6 hours
	environmental issues pertaining to the manufacturing sector – pre	
-	nat minimize negative environmental impacts – environmental leg	
	eptable practice in society – adoption of low carbon technologies –	- need to reduce
the carbon footprin	t of manufacturing operations.	
Module:2 Tec	hniques for non-market valuation	6 hours
	based approaches, demand estimation methods – expressed	
	e modeling – Multi-criteria analysis- Stakeholder analysis –	
	or and national levels	
	tainability performance evaluators	6 hours
Frameworks and	techniques - environmental management systems - life cycl	e assessment -
	onmental impact assessments – carbon and water foot-printing.	
strategic and enviro	r r c	
-		6 hours
Module:4 Stra	ategies and Design Approaches	
Module:4 Stra Concepts of Com		nt of a strategic

Approaches to strategy formulation - Realization of new strategies/system designs

Module:5Challenges and Opportunities7 hoursChallenges in logistics and supply chain – developing the right supply chain strategy for the
products – need to align the supply network around the strategy – Tools that can be used
systematically to identify areas for improvement in supply chains – Specific challenges and new
thinking in the plan, source and delivering of sub-processes7 hours

Module:6Principles of sustainable operations7 hoursLife cycle assessment Manufacturing and service activities –Influence of product design on
operations – Process analysis – Capacity management – Quality management – Inventory
management – Just-In-Time systems – Resource efficient design – Consumerism and sustainable
well-being.7 hours

Module:7Sustainable manufacturing and practices – Case StudiesCase Studies on sustainable manufacturing

Mod	lule:8 Contemporary issues:	2 hours
	Total Lecture hour	rs: 45 hours
Text	Book(s)	
1.	Seliger, G,(2012), Sustainable Manufacturing: Shaping Global Value Creati	ion, Springer
Refe	rence Books	
1.	Dornfeld, David.(2012), Green Manufacturing, Springer-Verlag, New York	- -
2.	Davim, J.P.(2010), Sustainable Manufacturing, John Wiley & Sons.	

3. Gupta, S.M. and Lambert, A.J.D.(2008), Environment Conscious Manufacturing, CRC Press

4. Douglas C.Montgomery, "Design and Analysis of Experiments", 5th Edition, John Wiley & Sons, 2012.

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Mode of assessment:

Recommended by Board of Studies	17-08-2017		
Approved by Academic Council	47	Date	05-10-2017

Course code	Supply Chain and Logistics Management	L T P J C
MEE6008		3 0 0 0 3
Pre-requisite	NIL	Syllabus version
		v. 1.1
Course Objee	etives:	
1. To improve	e the overall organization performance and customer satisfaction by	improving product
or service of	lelivery to consumer.	
2. To fulfill c	ustomer demands through the most efficient use of resources, inc	luding distribution
capacity, ir	wentory and labor.	
Expected Cor	irse Outcome:	
-	ful completion of the course the students will be able to	
1. Foresee the	trends and importance of value chain in the operations of logistics a	and supply chain
	mation and outsourcing techniques for improving in customer servic	
warehouse	operations	
3. Analyse the	e impact of relationships and benchmarking on the performance of th	ne supply chain
using appro	opriate metrics	
4. Demonstra	te the effective use of emerging information technologies in logistics	s and supply chain
manageme	nt	
5. Develop ap	propriate models in transportation management for decision-making	5
6. Address the	e problems of inventory management in a holistic approach using su	itable models and
strategies		
Module:1	Supply Chain Management	6 hours
	nd Development- Nature and Concept - Importance of Supply Cha	
	of Supply Chain - The Need for Supply Chain - Understanding	
-	• Participants in Supply Chain – Global Applications	the Suppry Chan
Management	Tarterpants in Suppry Chain Global Appleations	
Module:2	Logistics Management	6 hours
Origin and De	efinition – Types of Logistics – Logistics Management – Ware Hou	use Management -
Automation a	nd Outsourcing - Customer Service and Logistics Management	- A Perspective
Concepts in L	ogistics and Physical Distribution - Distribution and Inventory-3PL	and 4PL.
Module:3	Logistics and Supply chain relationships	6 hours
Benchmarking	g the logistics process and SCM operations –Mapping the supply	chain processes -
Supplier and	distributor benchmarking -setting benchmarking priorities -id-	entifying logistics
performance	ndicators -Channel structure - Economics of distribution -channel	nel relationships -
logistics servi	ce alliances.	
Module:4	Information System	6 hours

Introduction-Positioning of information in logistics and supply chain management (L&SCM)-Logistical information system-Operational logistical information system-Integrated information technology solution for L&SCM-Emerging Technologies in L&SCM.

Module:5	Transportation System	6 hours		
Introduc	ion-Position of transportation in L&SCM-Elements of transportation c	cost-Modes of		
transport	ation-Multi-modal transportation-Containerization-Selection of transpor	tation mode-		
Transpor	tation decision (Pricing and Rate)-Transportation network (Routing and Sche	eduling).		
Module:	Inventory Management	6 hours		
The role	of cycle inventory in a supply chain -Managing multi echelon cycle	inventory -		
Estimati	g cycle inventory - related costs in practice - the role of safety inventory	y in a supply		
chain –	nanaging safety inventory in a multi echelon supply chain - the role of	f information		
technolo	gy in inventory management – estimating and managing safety inventory in p	practice.		
Module:7	5 5	7 hours		
	on-Evolutionary trends of logistics and supply chain organization-Basic	c organization		
principles	Factors influencing organizational structure.			
Module:8	Contemporary issues	2 hours		
	Total Lecture hours:	45 hours		
Text Boo	x (s)			
1. Don	ald J. Bowersox and David J. Closs, (2006), Logistical Management: The Int	egrated		
Sup	ly Chain Process, TMH			
Referenc	Books			
1. Edw	ard J Bradi, John J Coyle (2010), A Logistics Approach to Supply Chain	Management,		
Cen	age learning, New Delhi			
2. Cho	ora, S. and Meindl, P., (2014), Supply Chain Management: Strategy,	, Planning &		
Ope	ations, 6 th edition, Pearson Education (Singapore) Pvt. Ltd.			
3. Agr	wal D K, (2003), Logistics & Supply Chain Management, Macmillan India	Ltd.		
4. Sim	hi-Levi, D. Kaminsky, P. Simchi-Levi, E. and Ravi Shankar (2008),	Designing &		
Managing the Supply Chain: Concepts, Strategies & Case Studies, Third Edition, Tata				
	aging the Supply Chain: Concepts, Strategies & Case Studies, Third	Dantion, Tata		
	aging the Supply Chain: Concepts, Strategies & Case Studies, Third raw-Hill, Third Edition	Lattion, Tuta		
		Duttion, Tutu		
McG				
McC Mode of I	raw-Hill, Third Edition			

Recommended by Board of Studies	17-08-2017		
Approved by Academic Council	47	Date	05-10-2017

Course code	Manufacturing System Simulation	L T P J C			
MEE6009		2 0 2 0 3			
Pre-requisite	NIL	Syllabus version			
		v. 1.1			
Course Objectives:	Course Objectives:				
1. Ability to underst	and the underlying features of discrete event simulation and	how it is applicable			

VIT VIT Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act, 1956)

- for analyses and development of manufacturing systems.
- 2. To understand the concept of simulation and to learn the simulation language.
- 3. To enable application of simulation to manufacturing systems and to gain hands on experiences from how discrete event simulation is applied based on an industrial needs.

Expected Course Outcome:

- 1. Identify and formulate advance problems and apply
- 2. Knowledge of mathematics and simulation packages to solve manufacturing problems.
- 3. Use the techniques, skills, and modern packages, necessary for professional practices.
- 4. Demonstrate the application of discrete event simulation.
- 5. Apply the methods and tools for select cases.

Module:1 Computer modelling and simulation system

4 hours

3 hours

5 hours

4 hours

Introduction to simulation- steps in simulation-nature of computer modelling and simulation- types of models- Monte Carlo simulation, limitation of simulation, areas of application, examples. Components of system-discrete and continuous systems- Examples, Model of a system-variety of modelling approaches.

Module:2 Random number generation

Properties of random numbers, Random number generation techniques-the mid product methodconstant multiplier technique- additive congruential method- linear congruential method, Tests for random numbers: frequency tests- test for autocorrelation.

Module:3 Random variable generation

Random variable generation –inverse transform technique-exponential distribution–uniform distribution-Weibull distribution-triangular distribution. Empirical continuous distribution-generating approximate normal variates- Erlang distribution.

Module:4 Distribution and evaluation of experiments

Discrete uniform distribution- Poisson distribution-geometric distribution- acceptance and rejection technique for Poisson, gamma distribution. Variance reduction techniques- antithetic variables-Validation of simulation models-Verification of simulation models.

Module:5 Discrete event simulation

3 hours

4 hours

Concepts in discrete-event simulation- manual simulation using event scheduling, simulation of queuing system, simulation of inventory systems. Simulation of manufacturing and material handling systems.

Module:6 Simulation Packages

Introduction to Simulation packages – simulation using spreadsheet, WITNESS, ARENA, GPSS. Programming for discrete event systems in GPSS.

Moo	lule:7 Case Studies	5 hours
Mod	lelling and simulation of a packaging line, assembly operations,	batch processing,
proc	luction/Inventory system using ARENA.	
Mo	lule:8 Contemporary issues	2 hours
	· · · ·	
	Total Lecture hou	irs: 30 hours
Tex	t Book(s)	
1.	Jerry banks, John S Carson, Barry L Nelson and David M Nicol,(2013),	Discrete Event
	System Simulation, 5 th edition, Pearson Education Asia	
Ref	erence Books	
1.	NarsingDeo, (2006), System Simulation with Digital Computer, Prentice ha	all of India
2.	Averill M. Law, (2014), Simulation modeling and analysis, 5 th edit	
	Education	
3.	W. David Kelton, Randall P. Sadowski, Nancy B. Zupick (2014), Simu	lation with Arena,
	McGraw-Hill Education, 6 th edition	
4.	Sheldon M. Ross, (2012), Simulation, Academic Press, 5 th Edition	
5.	William J. Stewart, (2009), Probability, Markov Chains, Queues, and	d Simulation: The
	Mathematical Basis of Performance Modeling, Princeton University Press	
6.	Barry L. Nelson (2010), Mathematics, Stochastic Modeling: Analysis and S	Simulation, Dover
	Publications	
Mod	le of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar	
List	of Challenging Experiments (Indicative)	
1.	Study of elements, entities, activities and basic models of a simulation	3 hours
	package modeling and simulation.	
2.	Throughput analysis of an individual production facility using simulation.	2 hours
3.	Modelling of a typical manufacturing facility and study its performances.	2 hours
4.	Breakdown analysis of a production facility with one machine.	2 hours
5.	Breakdown analysis of a production system having multiple machines.	2 hours
6.	Study of transport system in a shop floor.	2 hours
7.	Buffer size design	2 hours
8.	Identification of bottleneck machine on a given shop floor	2 hours
9.	Simulation of a Queuing Systems	2 hours
10.	Simulation of Production Systems	2 hours
11.	Simulation of Inventory systems	2 hours
12.	Facility layout study using simulation	2 hours
13.	Project management using simulation	3 hours

SoftwarePackages : ARENA, QUEST, PROMODEL, FLEXSIM, AUTOMOD, WITNESS				
Recommended by Board of Studies	Recommended by Board of Studies 17-08-2017			
Approved by Academic Council	47	Date	05-10-2017	

Course code	Maintenance Engineering	L T P J C
MEE6010		
Pre-requisite	NIL	Syllabus version
110-10quisite		v. 1.1
Course Obje	etives:	
•	he student to understand maintenance principles, functions and practi	ices followed in
industry		
•	and basic concepts of maintenance categories like Preventive mainter	nance, condition
monitoring	and repair methods for some basic machine elements.	
3. To have an	introductory idea about maintenance management	
	irse Outcome:	
-	ful completion of the course the students will be able to	
	ill be able to trace out and locate the faulty element within a large ma	chine based on
	ms observed from the machines.	
	suitable repair methods, tools and tackles needed for performing the	
	on the application of condition monitoring parameters of a machine as	s a preventive
maintenand	e tool, with the final objective of reducing the breakdown situations.	
4. To decide	on the parts replacement plan on any machine in an economical way.	
Module:1	Principles and Practices of Maintenance Planning	6 hours
-	es of maintenance planning – Objectives and principles of planned m	
	ortance and benefits of sound Maintenance systems – Reliability and	machine
availability –	MTBF, MTTR and MWT – Factors of availability	
Module:2	Maintenance Policies – Preventive Maintenance	
		6 hours
	categories – Comparative merits of each category – Prevent	6 hours ive maintenance.
Maintenance	categories – Comparative merits of each category – Prevent chedules, repair cycle - Principles and methods of lubrication – TPM	ive maintenance,
Maintenance	categories – Comparative merits of each category – Prevent chedules, repair cycle - Principles and methods of lubrication – TPM	ive maintenance,
Maintenance		ive maintenance.
Maintenance maintenance s Module:3	chedules, repair cycle - Principles and methods of lubrication – TPM	ive maintenance
Maintenance maintenance s Module:3 Condition Mo	chedules, repair cycle - Principles and methods of lubrication – TPM Condition Monitoring	ive maintenance 6 hours ting and off-load
Maintenance maintenance s Module:3 Condition Mo	Condition Monitoring Denitoring – Cost comparison with and without CM – On-load test nods and instruments for CM – Temperature sensitive tapes – Pistor	ive maintenance 6 hours ting and off-load
Maintenance maintenance s Module:3 Condition Mo testing – Met wear-debris an	chedules, repair cycle - Principles and methods of lubrication – TPM Condition Monitoring pointoring – Cost comparison with and without CM – On-load test nods and instruments for CM – Temperature sensitive tapes – Pistonalysis	ive maintenance 6 hours ting and off-load of thermometers -
Maintenance maintenance s Module:3 Condition Mo testing – Met wear-debris an Module:4	chedules, repair cycle - Principles and methods of lubrication – TPM Condition Monitoring onitoring – Cost comparison with and without CM – On-load test nods and instruments for CM – Temperature sensitive tapes – Pistonalysis Failure Analysis And Fault Location Methods	ive maintenance 6 hours ting and off-load bl thermometers - 6 hours
Maintenance maintenance s Module:3 Condition Met testing – Met wear-debris an Module:4 Failure analys	chedules, repair cycle - Principles and methods of lubrication – TPM Condition Monitoring pointoring – Cost comparison with and without CM – On-load test nods and instruments for CM – Temperature sensitive tapes – Pistonalysis	ive maintenance 6 hours ting and off-load bl thermometers - 6 hours
Maintenance maintenance s Module:3 Condition Mo testing – Met wear-debris an Module:4	chedules, repair cycle - Principles and methods of lubrication – TPM Condition Monitoring onitoring – Cost comparison with and without CM – On-load test nods and instruments for CM – Temperature sensitive tapes – Pistonalysis Failure Analysis And Fault Location Methods	ive maintenance 6 hours ting and off-load bl thermometers - 6 hours
Maintenance maintenance s Module:3 Condition Mo testing – Met wear-debris an Module:4 Failure analys location.	chedules, repair cycle - Principles and methods of lubrication – TPM Condition Monitoring onitoring – Cost comparison with and without CM – On-load test nods and instruments for CM – Temperature sensitive tapes – Pistonalysis Failure Analysis And Fault Location Methods is – Failures and their development – Logical fault location methods	ive maintenance 6 hours ting and off-load of thermometers - 6 hours – Sequential faul
Maintenance maintenance s Module:3 Condition Mot testing – Met wear-debris an Module:4 Failure analys location. Module:5	chedules, repair cycle - Principles and methods of lubrication – TPM Condition Monitoring onitoring – Cost comparison with and without CM – On-load test nods and instruments for CM – Temperature sensitive tapes – Pistonalysis Failure Analysis And Fault Location Methods	ive maintenance 6 hours ting and off-load of thermometers - 6 hours – Sequential faul 6 hours

mo	odels: Age	replacement, Block replace	ement models			
Mo	dule:6	Repair Methods For Bas	ic Machine			6 hours
Re	pair metho	ods for beds, slideways, spin	ndles, gears, lead	screws and	d bearings	
	dule:7	Repair methods for Mat	e			6 hours
-		ods for Material handling	equipment, So	me examp	ples - Upkeep	Of Equipment
Mai	ntenance	Records				
Mo	dule:8	Contemporary Discussi	on			2 hours
						1
				Total	Lecture hours:	45 hours
Tex	t Book(s)					I
1.	Donald	J. Bowersox and David J	. Closs,(2006), I	Logistical 1	Management: Th	e Integrated
	Supply	Chain Process, TMH				
Ref	erence Bo	ooks				
1.	Edward	d J Bradi, John J Coyle: (20	010), A Logistics	Approach	to Supply Chair	n Management,
	Cengag	ge learning, New Delhi				
2.	-	a, S. and Meindl, P., (20				, Planning &
	Operat	ions, 6 th edition, Pearson Ed	lucation (Singapo	ore) Pvt. Lt	d	
3.	0	al D K, (2003), Logistics &	11 0	0		
4.		-Levi, D. Kaminsky, P. Sim				
	U	ing the Supply Chain: Conc	epts, Strategies &	case Stu	dies,. Third Edition	on, Tata
	McGra	w-Hill, Third Edition				
		uation: CAT / Assignment /	Quiz / FAT / Pro	oject / Sem	inar	
	de of asses		I			
		d by Board of Studies	17-08-2017			
App	proved by	Academic Council	47	Date	05-10-2017	

Course code	Manufacturing Information Systems	L T P J C
MEE6011		2 0 0 4 3
Pre-requisite	NIL	Syllabus version
		v. 1.1
Course Objectiv	/es:	
1. To provide a	n importance of databases and its application in manufactur	ing systems that
prepare stude	nts for their engineering practice by organization by conversant	t with order
policies, data	base terminologies, designing, manufacturing considerations.	
2. Define and e	xplain basic terms in the area of manufacturing, as well as s	structure, design,
configuration	and practical use of IT systems for manufacturing.	
3. To provide s	pecialist knowledge in the area of manufacturing information	n systems, as an
upgrade of the	e basic knowledge about information systems provided in the core	e courses.
Expected Cours	e Outcome:	
Upon successful	completion of the course the students will be able to	
1. To create sim industry	ple to moderately complex manufacturing information system	for manufacturing
•	cally the role of management information systems for design	engineering and
manufacturing		i, engineering and
	an appreciation of the complex relationship between information	ation systems and
organization	an approximation of the complex relationship between mionic	ation systems and
e	n analysis and design tools	
	n support systems for various issues.	
II J II I		
Module:1 M	Ianagement Information Systems	4 hours
	nd Objectives - Contemporary Approaches to MIS - Information a	as a strategic
resource - Use of	finformation for competitive advantage - MIS as an instrument for	or the
organizational ch	lange	
Module:2 In	nformation, Management and Decision Making	4 hours
Models of Decis	ion Making - Classical, Administrative and Herbert Simon's Mod	dels - Attributes of
information and	its relevance to Decision Making - Types of information	
Module:3 In	nformation Technology	4 hours
Definition, IT C	Capabilities and their organizational impact -Telecommunicatio	n and Networks -
	ologies of Networks - IT enabled services such as Call Cen	
Information Syst		
Madulard	ata Daga Managamant Sustang	<u> </u>
	ata Base Management Systems	4 hours
Data warehousir	ng and Data Mining	

		(Deemed to be University under section 3 of UGC Act, 1956)	
Mod	ule:5	Systems Analysis and Design	4 hours
Sys	tems Dev	velopment Life Cycle - Alternative System Building Approaches - Prot	otyping - Rapid
Dev	velopmen	t Tools - CASE Tools - Object Oriented Systems (Only introduction to	o these tools
&te	chniques		
		-	
	ule:6	Decision Support Systems	4 hours
	-	sion Support Systems - Executive Information Systems - Executive Sup	port Systems -
Exp	ert Syste	ems and Knowledge Based Expert Systems - Artificial Intelligence	
		1	
	ule:7	Management Issues in MIS	4 hours
		Security and Control - Quality Assurance -Ethical and Social Dimensio	
Prop	erty Righ	nts as related to IT Services / IT Products - Managing Global Information	on Systems
Mod	ule:8	Contemporary Issues and Challenges	2 hours
		Total Losture hours	20 haven
		Total Lecture hours	: 30 hours
	Book(s)		
1.		ekar, (2013) Management Information Systems, Tata McGraw Hill, 5 th	Edition
	rence Bo	· · · ·	
1.		n and Laudon,, (2011), Management Information Systems, 12 th I ion Asia	Edition, Pearson
2.	Rajara	man, (2011), Analysis and Design of Information Systems, Prentice Ha	ll, 3 rd Edition
3.	Turbar	n and Aronson,(2010), Decision Support Systems and Intelligent S	ystems, Pearson
	Educat	ion Asia	
		uation: CAT / Assignment / Quiz / FAT / Project / Seminar	
		Projects	
	lelines		
	110	ect with a team size of 2 or 3	
		nt will based on three reviews	
		earth industrial problems shall be given	
	ple proj		1
1.		oping a Business Intelligence Solutions for the Health Care industry.	60 hours
2.	Model science	ling of manufacturing information system based on complexity	
3.	Energy	v information system for textile industries	
4.	Develo	opment of an information package for unorganized small scale textile	
	sectors		
5.	Decisi	on support system for energy saving analysis in industries	

6.	Create a website in nearby show	their use and			
	administration of talent resources				
7.	Feasibility studies and proof of co	ncept for new pro	ducts and	services	
8.	Work flow analysis and design, pr				
1.	Developing a Business Intelligenc	Care industry.			
Mode	Mode of assessment:				
Recommended by Board of Studies 17-08-2017					
Appr	Approved by Academic Council47Date05-10-2017				

Course code	Design and Analysis of Experiments	L T P J C
MEE6012		2 2 0 4 4
Pre-requisite	NIL	Syllabus version
		v. 1.1
Course Objectives:		

- 1. To introduce the student to the principles and methods of statistical analysis of experimental designs.
- 2. To provide knowledge on process/product optimization through statistical concepts.

Expected Course Outcome:

Upon successful completion of the course the students will be able to

- 1. Identify the Principles and Guidelines of Design of Experiments
- 2. Analyze the Randomized Block Designs
- 3. Analyze the Factorial Designs
- 4. Explain the comparison of classical and Taguchi's approach in Design of Experiments
- 5. Solve the problems by Regression Analysis
- 6. Analyze the importance of response Surface Methodology in Design of Experiments

Module:1 **Experiments with a Single Factor**

Basic Principles and Guidelines of Design of Experiments - Single Factor Experiments - ANOVA -Model Adequacy Checking - Determining Sample Size - Comparing Pairs of Treatment Means-Introduction to DOAE software

Module:2 **Randomized Block Designs**

Randomized complete block design - Latin square designs - Graeco-Latin square design - Balanced incomplete block designs

Module:3 **Factorial Designs** Two levels - 2^k factorial designs - Confounding and Blocking in factorial designs

Module:4 **Fractional Factorial Designs**

The One-Half and One-Quarter Fraction of the 2^k Design - General 2^{k-p} Fractional Factorial Design - Resolution

Module:5 **Robust Design**

Comparison of classical and Taguchi's approach - orthogonal designs - S/N ratio - application to Process and Parameter design.

Module:6 **Regression Analysis**

Introduction - Simple Linear Regression Analysis - Multiple Linear Regression Model - Model Adequacy Checking

Module:7 **Response Surface Methodology** 4 hours Response surface methodology, parameter - optimization - robust parameter design and itsapplication to control of processes with high variability.

4 hours

4 hours

4 hours

4 hours

4 hours

Mod	ule:8	Contemporary issues	2 hours
		Total Lecture hours:	30 hours
Text	Book(s)		
1.	Dougla	s C. Montgomery, (2017), Design and Analysis of Experiments, Jonc., 9th edition	ohn Wiley &
Refe	rence Bo	ooks	
1.	Philip .	J. Rose, (2000), Taguchi Techniques for quality Engineering, Prentice I	Hall
2.	Charles	R. Hicks, Kenneth V. Turner (1999) Jr., Fundamental concepts in the	Design of
	Experi	ments, Oxford University Press, 5 th edition	_
using	glas C. M g designe	Contgomery (2016) Response Surface Methodology: Process and Product d experiments: 4 th edition. will be exposed to deal and solve the practical problems faced in the fir	-
Sam	ple Tuto	rials	
1.	Single	Factor Experiments	30 hours
2.	Rando	nized complete block design	
3.	Latin s	quare designs	•
4.	Graeco	-Latin square design	•
5.	Balanc	ed incomplete block designs	
6.	2 ^k facto	orial designs	
7.	Confor	inding and Blocking in factorial designs	
8.	Fractio	nal Factorial Designs	
9.	Taguch	ii's orthogonal designs and S/N ratio	
10.	Multip	le linear regression model	
11.	Exercis	se on robust parameter design	
-		e knowledge of the DOE software by solving the real time problems es using	
Sam	ple Proje	ects	
1.		nized design, block design to remove noise factors in an organization.	60 hours
2.	Factori	al Designs and fractional factorial designs in process optimization.	
3.		sion Analysis to predict the process performance.	
4.	Quadra	tic equation prediction and surface plot using RSM.	
5.	Case st	udies using optimization techniques.	
Mod	e of Eval	uation: CAT / Assignment / Quiz / FAT / Project / Seminar	
		d by Board of Studies 17-08-2017	

WIT VIT	
	Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act, 1936)

	100		
Approved by Academic Council	47	Date	05-10-2019

	Advanced Tool Engineering	L T P J C
MEE6013		3 0 0 4 4
Pre-requisite	NIL	Syllabus version
_		v. 1.1
Course Objectives:		
1. To teach the stude	ents the basic and modern tools available.	
2. To enable the stu	lents to design tools, dies, jigs and fixtures	
3. To teach students	to analyse and optimise design of jigs and fixtures	
4. To expose studen	ts to design of dies for press work and forging	
Expected Course O	utcome:	
1. Interpret the tool	ng drawing, materials and their heat treatment	
2. Recommend appr	opriate jigs and fixtures for various metal forming operations	
3. Choose various ty	pes of work holding devices for different geometry of work	pieces
4. Design of cutting	tools for various operations	
5. Design of tooling	for CNC Machine tools	
6. Design of cutting	tools, press tool dies, jigs and fixtures for manufacturing vari	ous components
Module:1 Tool	Design	3 hours
Drafting and Design	Techniques in Tooling, Modern Tool making practices, Tool	ing materials and
heat treatment		
,	n of Press Tools Dies	6 hours
Types of Dies –Me	thod of Die operation-Clearance and cutting force calculate	ions-Blanking and
Types of Dies –Me Piercing die design	thod of Die operation–Clearance and cutting force calculat – Pilots – Strippers and pressure pads-Presswork material	ions-Blanking and
Types of Dies –Me	thod of Die operation–Clearance and cutting force calculat – Pilots – Strippers and pressure pads-Presswork material	ions-Blanking and
Types of Dies –Me Piercing die design Short-run tooling for	thod of Die operation–Clearance and cutting force calculat – Pilots – Strippers and pressure pads-Presswork material Piercing.	tions-Blanking and s – Strip layout –
Types of Dies –Me Piercing die design Short-run tooling for Module:3 Desig	thod of Die operation–Clearance and cutting force calculat – Pilots – Strippers and pressure pads-Presswork material Piercing. n of Forming Dies	tions-Blanking and s – Strip layout – 7 hours
Types of Dies –Me Piercing die design Short-run tooling for Module:3 Desig Bending dies – Forg	 thod of Die operation–Clearance and cutting force calculat – Pilots – Strippers and pressure pads-Presswork material Piercing. n of Forming Dies ing dies – Extrusion dies - Drawing dies - Design and drate 	tions-Blanking and s – Strip layout – 7 hours
Types of Dies –Me Piercing die design Short-run tooling for Module:3 Desig	 thod of Die operation–Clearance and cutting force calculat – Pilots – Strippers and pressure pads-Presswork material Piercing. n of Forming Dies ing dies – Extrusion dies - Drawing dies - Design and drate 	tions-Blanking and s – Strip layout – 7 hours
Types of Dies –Me Piercing die design Short-run tooling for Module:3 Design Bending dies – Forgand Welding dies – I	 thod of Die operation–Clearance and cutting force calculat – Pilots – Strippers and pressure pads-Presswork material Piercing. n of Forming Dies ing dies – Extrusion dies - Drawing dies - Design and drat Design 	ions-Blanking and s – Strip layout – 7 hours fting; Casting Dies
Types of Dies -Me Piercing die design Short-run tooling for Module:3 Design Bending dies - Forgand Welding dies - I Module:4 Design	 thod of Die operation–Clearance and cutting force calculat – Pilots – Strippers and pressure pads-Presswork material Piercing. n of Forming Dies ing dies – Extrusion dies - Drawing dies - Design and dra Design n of Jigs 	tions-Blanking and s – Strip layout – 7 hours fting; Casting Dies 7 hours
Types of Dies -Me Piercing die design Short-run tooling for Module:3 Design Bending dies - Forgand Welding dies - I Module:4 Design Types of drill jigs -	 thod of Die operation–Clearance and cutting force calculat Pilots – Strippers and pressure pads-Presswork material Piercing. n of Forming Dies ing dies – Extrusion dies - Drawing dies - Design and drate Design n of Jigs design of drill jigs - Drill bushings - Types, methods of correct 	tions-Blanking and s – Strip layout – 7 hours fting; Casting Dies 7 hours
Types of Dies -Me Piercing die design Short-run tooling for Module:3 Design Bending dies - Forgand Welding dies - I Module:4 Design Types of drill jigs -	 thod of Die operation–Clearance and cutting force calculat – Pilots – Strippers and pressure pads-Presswork material Piercing. n of Forming Dies ing dies – Extrusion dies - Drawing dies - Design and dra Design n of Jigs 	tions-Blanking and s – Strip layout – 7 hours fting; Casting Dies 7 hours
Types of Dies -Me Piercing die design Short-run tooling for Module:3 Desig Bending dies - Forg and Welding dies - I Module:4 Desig Types of drill jigs - designs of Plate, Character	 thod of Die operation–Clearance and cutting force calculat – Pilots – Strippers and pressure pads-Presswork material Piercing. n of Forming Dies ing dies – Extrusion dies - Drawing dies - Design and drat Design n of Jigs design of drill jigs - Drill bushings - Types, methods of connnel, Boxes, Post, Angle plate, Turnovers and Pot Jigs. 	tions-Blanking and s – Strip layout – 7 hours fting; Casting Dies 7 hours nstruction - Simple
Types of Dies -Me Piercing die design Short-run tooling for Module:3 Design Bending dies - Forgand Welding dies - I Module:4 Design Types of drill jigs - designs of Plate, Character Module:5 Design	 thod of Die operation–Clearance and cutting force calculat Pilots – Strippers and pressure pads-Presswork material Piercing. n of Forming Dies ing dies – Extrusion dies - Drawing dies - Design and drate Design n of Jigs design of drill jigs - Drill bushings - Types, methods of commel, Boxes, Post, Angle plate, Turnovers and Pot Jigs. n of Fixtures 	tions-Blanking and s – Strip layout – 7 hours fting; Casting Dies 7 hours nstruction - Simple 7 hours
Types of Dies -Me Piercing die design Short-run tooling for Module:3 Desig Bending dies - Forg and Welding dies - I Module:4 Desig Types of drill jigs - designs of Plate, Cha Module:5 Desig Design principles - I	 thod of Die operation–Clearance and cutting force calculat – Pilots – Strippers and pressure pads-Presswork material Piercing. n of Forming Dies ing dies – Extrusion dies - Drawing dies - Design and drat Design n of Jigs design of drill jigs - Drill bushings - Types, methods of connnel, Boxes, Post, Angle plate, Turnovers and Pot Jigs. 	tions-Blanking and s – Strip layout – 7 hours fting; Casting Dies 7 hours nstruction - Simple 7 hours , Boring,

Mod	lule:6	Design of Cutting tools				7 hours
Me	chanics o	f Metal cutting –Oblique an	nd orthogonal cut	ing- Chip	formation and sh	ear angle -
		cutting tools – Milling cutte	•	• •		•
		eved and profile relieved cur			-	-
		1	<u> </u>			
Mod	lule:7	Tool Design for CNC Ma	achine tools			6 hours
Intro	duction	-Tooling requirements for	r Numerical con	trol syster	ms – Fixture de	esign for CNC
mac	hine tool	s- Sub plate and tombstone	e fixtures-Univer	sal fixture	s- Cutting tools	– Tool holding
metł	nods– Au	tomatic tool changers and to	ool positioners – 7	Fool preset	tting	
Mod	lule:8	Contemporary Discussio	n			2 hours
				Total	Lecture hours:	45 hours
Text	t Book(s)					
1.	Donald	lson C., Lecain G.H. and	Goold V.C., (2	012), Too	ol Design, 4th e	edition, Tata
	McGra	w-Hill Publishing Company	y Ltd., New Delh	i		
Refe	erence Be	ooks				
1.	E.G.H	offman, (2004), Jig and Fixt	ture Design, Thor	nson Asia	Pte. Ltd, Singapo	ore
2.	Prakas	h Hiralal Joshi, (2000), Too	ling data, Wheele	r Publishi	ng	
3.	Venka	taraman K., (2005), Design	of Jigs, Fixtures a	and Pressto	ools, TMH	
4.	Andrey	w Y C Nee, A. Senthil Kum	ar and Z J Tao,(2	004), An A	Advanced Treatis	e on Fixture
	Design	and Planning, World Scien	tific Publishing C	Co Pte Ltd.		
Mod	le of Eval	uation: CAT / Assignment /	/ Quiz / FAT / Pro	oject / Sem	inar	
List	of Chall	enging Experiments (Indic	cative)			
1.		a piercing tool and perform				60 hours
2.	Design	a Blanking tool and perform	m an economic ar	nalysis		
3.	_	a Bending die piercing tool	-			
4.	Design	a single point cutting tool a	and determine the	damage e	quivalent	
	stress of	on the tool body				
5.	0	and fabricate an angular m	<u> </u>			
6.	-	a fixture (Turning/Milling	-	ling) and e	stimate the	
		acting on the clamping poin				
7.		a cold drawing die for the		of pipe usi	ng CAD tools	
8.		a welding/Inspection fixtur	re			
		ed by Board of Studies	17-08-2017			
App	roved by	Academic Council	47	Date	05-10-2017	

Г

٦

Course code		Laser Material Processing	L T P J C
MEE6014			
Pre-requisite	<u>,</u>	NIL	Syllabus version
	·		v. 1.1
Course Obje	ctives:		
Ŷ		ent to understand the basics of Laser Technology and its appli-	cation to
advanced r			
2. To broader	n the ho	rizon of students on utilization of laser manufacturing experim	ients.
Expected Co			
-		pletion of the course the students will be able to	
		mportance of industrial lasers and laser processing.	
		ed joining and surface modification processes.	1
		machining and rapid manufacturing techniques for various appendimentations of laser methodology.	plications.
4. Explain un		id importance of laser methodology.	
Module:1	Princ	iples of Industrial Lasers	6 hours
		eneration, optical resonators, laser modes- mode selection,	
-	•	am modifications and types of industrials lasers.	inte broadening
		and modifications and types of maastrais fasers.	
Module:2	Laser	processing fundamentals	6 hours
		on with conducting metals, semiconductors and insulators –	
and metallurg			
	1		
Module:3		based joining processes	6 hours
		er based joining processes, principle of key hole and conducti	
-	-	neters, pulsed laser welding, and laser welding of differen	t materials, laser
brazing and la	aser sele	ective soldering.	
Madada 4	T		
Module:4		based surface modification	6 hours
		eatment, Laser surface melting- Glazing, Laser direct Metal of	-
texturing and	0	er surface cladding and Hard coatings, Laser physical vapour	deposition, laser
	laser si	lock peening	
	T		
Module:5		based machining	7 hours
		on for cutting and drilling – cut quality and process characterist erformance – process variations – industrial applications of La	
drilling	etteur p	enormance process variations industrial approactions of La	ser eutling and
Module:6	Laser	based rapid manufacturing	7 hours
	-	, laser rapid manufacturing of low cost tools, lase rapid manuf	acturing of
porous mater	rials, la	ser rapid manufacturing of bimetallic components.	

Mo	dule:7	Laser Metrology				4 hours
Hol	ography ,	interferometry and laser sca	attering			
Moo	dule:8	Contemporary Discussi	on			3 hours
		Γ				
				Total	Lecture hours:	30 hours
Tex	t Book(s)					
1.		Steen, JyotirmoyMazumde er: Springer; (6 September 2 on.	·		, ,	0
2.	Publicat	urface Engineering: Process ions, 2016	and Applications	, J.R Law	rence and D Waugh	Woodhead
	erence Bo		16 . 0 1 . 1	T T · ·	D 2 000	
1.		Fundamentals, William T Si				2015
2. 3.		Additive Manufacturing of I	-			ger 2015
<u> </u>	-	Optical Methods in Engineering Metrology, D C Williams, Springer 2012Laser Forming and Welding Processes, BekirSaniVilbarandSohailAkhthar, Springer 2014				
5.	Physical Processes in Laser Material Interaction, M Bertolotti, Springer 2012					
	J		··· ,		··· I &	
Mod	de of Eval	uation: CAT / Assignment /	/ Quiz / FAT / Pro	ject / Sem	ninar	
Mod	de of asses	ssment:				
Rec	ommende	d by Board of Studies	17-08-2017			
App	proved by	Academic Council	47	Date	05-10-2017	

Course code	Additive Manufacturing Technology	L T P J C
MEE6015		2 0 0 4 3
Pre-requisite	NIL	Syllabus version
		v. 1.1

Course Objectives:

- 1. Learn what Advanced/Additive manufacturing (AM) is and understand why it has become one of the most important technology trends in decades for product Development and innovation.
- 2. Demonstrate comprehensive knowledge of the broad range of AM processes, devices, capabilities and materials that are available.
- 3. Understand the various software tools, processes and techniques that enable advanced/additive manufacturing and personal fabrication.

Expected Course Outcome:

Upon successful completion of the course the students will be able to

- 1. To demonstrate comprehensive knowledge of the broad range of AM processes, devices, capabilities and materials that is available.
- 2. To understand the various software tools, processes and techniques that enable advanced/additive manufacturing and personal fabrication.
- 3. To articulate the various tradeoffs that must be made in selecting advanced/additive manufacturing processes devices and material s to suit particular product requirements.
- 4. Opportunity to design, engineer and fabricate an actual multi-component object using advanced/additive manufacturing devices and processes (the "project").
- 5. Demonstrate the latest trends and business opportunities in AM, distributed manufacturing and mass customization

Module:1 **Basics and Principles**

Basics and Principles of Additive Manufacturing (AM), Additive Manufacturing Processes, Extrusion, Beam Deposition, Jetting, Sheet Lamination, Direct-Write, Photo-polymerization, Sintering, Powder Bed Fusion

Module:2 **Design/Fabrication Processes**

Data Sources, Software Tools, File Formats, Model Repair and Validation, Pre- & Post-processing, Reverse engineering: digitizing, laser scanning, CT-scanning, point cloud manipulation, data segmentation, surface reconstruction, model further processing.

Materials Science for AM Module:3

Materials Science for Additive Manufacturing- Polymer and Photo-polymerization, Process& Material Selection, Direct Digital Manufacturing and AM; parts and their uses. Process Monitoring and Control for AM-Defects, Geometry, Composition, Temperature, Phase Transformation.

Module:4 **Design for Additive Manufacturing**

Design for Additive Manufacturing, Multiple Materials, Hybrids, Functionally Graded Materials, Composite Materials, current and future directions; Process Modeling of AM process- Design optimization through finite-element modeling of AM- Simulation of phase transformations- heating, melting, forming, solidification and finishing and rheological studies of various AM materials.

4 hours

4 hours

4 hours

Module:5	Rapid Tooling	4 hours
An Automo	tive Perspective to Rapid Tooling utilizing Rapid Prototyping and Manufa	cturing,
Precision St	ratiform Machining, CAD/LAM- integration of CAD with CAM laser cut	ting, Profile
Edge Lamin	ation, Slice Control Machining, Subsequent Casting Operations, Rubber I	Mold Casting,
Plaster/Sanc	l Molding, Spin Casting, prototyping methodology for automotive produc	t
developmen	t.	
Module:6	Nickel Vapor Deposition	4 hours
Nickel Cera	mic Composite (NCC) Tooling from RP & Models, NCC Tools Based Or	1
Stereolithog	raphy Models, Integration of Tool Forming With RP&M, Compression T	ooling
Nickel Vapo	or Deposition Technology-Need for NVD, NVD applications, properties o	f NVD
nickel, com	parison between NVD and Electroformed nickel tooling, comparison betw	veen NVD
and Conven	tional tooling	
Module:7	Applications and Future Directions of AM	4 hours
The Express	Tool Process- Conformal Cooling Channels, The Express tool Process, H	Finite-Elemen
Analysis of 1	Express Tool, limitations - Applications of AM: Aerospace, Automotiv	e, Biomedica
Applications	of AM, Product Development, Commercialization, Trends and Future	Directions in
Additive Mar	nufacturing.	
Additive Ma	nufacturing.	
	Contemporary Discussion	2 hours
	-	2 hours
	-	
Module:8	Contemporary Discussion Total Lecture hours:	
Module:8 Text Book(s	Contemporary Discussion Total Lecture hours:	30 hours
Module:8 Text Book(s 1. Ian G	Contemporary Discussion Total Lecture hours:	30 hours
Module:8 Text Book(s 1. Ian G Spring	Contemporary Discussion Total Lecture hours: bson, David Rosen, Brent Stucker,(2015), Additive Manufacturing Terer Publications	30 hours
Module:8 Text Book(s) 1. Ian G Spring Reference B	Contemporary Discussion Total Lecture hours: bson, David Rosen, Brent Stucker,(2015), Additive Manufacturing Terer Publications	30 hours chnologies,
Module:8 Text Book(s) 1. Ian G Spring Reference B 1. Dongc	Contemporary Discussion Total Lecture hours: Disson, David Rosen, Brent Stucker,(2015), Additive Manufacturing Te er Publications Dooks Dooks	30 hours chnologies,
Module:8 Text Book(s) 1. Ian G Spring Reference B 1. Dongo Spring	Contemporary Discussion Total Lecture hours: Dibson, David Rosen, Brent Stucker,(2015), Additive Manufacturing Te er Publications ooks longGu, (2014), Laser Additive Manufacturing of High-Performan	30 hours chnologies, ce Materials
Module:8 Text Book(s) 1. Ian G Spring Reference B 1. Dongo Spring 2. Andre	Contemporary Discussion Total Lecture hours: bson, David Rosen, Brent Stucker,(2015), Additive Manufacturing Te er Publications ooks longGu, (2014), Laser Additive Manufacturing of High-Performant er Publ.	30 hours chnologies, ce Materials lishers
Module:8 Text Book(s 1. Ian G Spring Reference B 1. Dongc Spring 2. Andre 3. Hopki	Contemporary Discussion Total Lecture hours: Disson, David Rosen, Brent Stucker,(2015), Additive Manufacturing Te er Publications poks longGu, (2014), Laser Additive Manufacturing of High-Performant er Publ. as Gebhardt, (2011), Understanding Additive Manufacturing, Hanser Publ	30 hours chnologies, ce Materials lishers
Module:8 Text Book(s) 1. Ian G Spring Reference B 1. Dongo Spring 2. Andre 3. Hopki Digita	Contemporary Discussion Total Lecture hours: Total Lecture hours: bisson, David Rosen, Brent Stucker,(2015), Additive Manufacturing Teger Publications ooks longGu, (2014), Laser Additive Manufacturing of High-Performanger Publ. as Gebhardt, (2011), Understanding Additive Manufacturing, Hanser Publications, Hague, Dickens, (2005), Rapid Manufacturing: An Industrial Revolution	30 hours chnologies, ce Materials lishers olution for the
Module:8 Text Book(s 1. Ian G Spring Reference B 1. Dongo Spring 2. Andre 3. Hopki Digita 4. Peter I	Contemporary Discussion Total Lecture hours: Total	30 hours chnologies, ce Materials lishers plution for the
Module:8 Text Book(s) 1. Ian G Spring Reference B 1. Dongo Spring 2. Andre 3. Hopki Digita 4. Peter I Applio	Contemporary Discussion Total Lecture hours: Total	30 hours chnologies, ce Materials lishers olution for the rial e—Advanced
Module:8 Text Book(s) 1. Ian Gi Spring Reference B 1. Dongo Spring 2. Andre 3. Hopki Digita 4. Peter I Applio	Contemporary Discussion Total Lecture hours: Total Lecture hours: bson, David Rosen, Brent Stucker,(2015), Additive Manufacturing Te er Publications ooks longGu, (2014), Laser Additive Manufacturing of High-Performanger Publ. as Gebhardt, (2011), Understanding Additive Manufacturing, Hanser Publnson, Hague, Dickens, (2005), Rapid Manufacturing: An Industrial Revolution Paul F. Jacobs, (2000), Rapid Tooling-Technologies and Industriations. Technology Strategies Group, Concord, Massachusetts, Laser Farmanana Paulonana P	30 hours chnologies, ce Materials lishers olution for the rial e—Advanced
Module:8 Text Book(s) 1. Ian G Spring Reference B 1. Dongc Spring 2. Andre 3. Hopki Digita 4. Peter I Applic Techn	Contemporary Discussion Total Lecture hours: Total Lecture hours: Ibson, David Rosen, Brent Stucker,(2015), Additive Manufacturing Teger Publications ooks longGu, (2014), Laser Additive Manufacturing of High-Performanger Publ. as Gebhardt, (2011), Understanding Additive Manufacturing, Hanser Publ nson, Hague, Dickens, (2005), Rapid Manufacturing: An Industrial Revol Age. Wiley D. Hilton, Paul F. Jacobs, (2000), Rapid Tooling-Technologies and Indust cations. Technology Strategies Group, Concord, Massachusetts, Laser Farology Group, Warwick, Rhode Island, Copyright © 2000 by Marcel Dekk	30 hours chnologies, ce Materials lishers olution for the rial e—Advanced
Module:8 Text Book(s) 1. Ian G Spring Reference B 1. Dongo Spring 2. Andre 3. Hopki Digita 4. Peter I Applio Techn	Contemporary Discussion Total Lecture hours: Total Lecture hours: bson, David Rosen, Brent Stucker,(2015), Additive Manufacturing Te er Publications ooks longGu, (2014), Laser Additive Manufacturing of High-Performanger Publ. as Gebhardt, (2011), Understanding Additive Manufacturing, Hanser Publnson, Hague, Dickens, (2005), Rapid Manufacturing: An Industrial Revolution Paul F. Jacobs, (2000), Rapid Tooling-Technologies and Industriations. Technology Strategies Group, Concord, Massachusetts, Laser Farmanana Paulonana P	30 hours chnologies, ce Materials lishers olution for the rial e—Advanced
Module:8 Text Book(s) 1. Ian G Spring Reference B 1. Dongc Spring 2. Andre 3. Hopki Digita 4. Peter I Applic Techn Mode of Eva Project	Contemporary Discussion Total Lecture hours: Total Lecture hours: Ibson, David Rosen, Brent Stucker,(2015), Additive Manufacturing Teger Publications ooks longGu, (2014), Laser Additive Manufacturing of High-Performanger Publ. as Gebhardt, (2011), Understanding Additive Manufacturing, Hanser Publ nson, Hague, Dickens, (2005), Rapid Manufacturing: An Industrial Revol Age. Wiley D. Hilton, Paul F. Jacobs, (2000), Rapid Tooling-Technologies and Indust cations. Technology Strategies Group, Concord, Massachusetts, Laser Farology Group, Warwick, Rhode Island, Copyright © 2000 by Marcel Dekk	30 hours chnologies, ce Materials lishers olution for the rial e—Advanced

# Do	wn to earth application and innovativ	ve idea should hav	ve been att	empted	
Sam	ple Projects				
1.	Projects on CAD data generation for	or 3D printing usi	ng various	s tools	60 hours
	including: various scanning and rev	verse engineering	technique	s and related	
	software.				
2.	Projects on CAD data processing s	uch as STL file c	orrections,	orientation	
	optimization, and support and tool	path generation f	or econom	ically	
	producing the components with de-	sired properties.			
3.	Design and fabrication of working	models for the co	onceptual t	esting	
	applications.				
4.	Build complex engineering assemb	olies of polymeric	materials	with less	
	process planning.				
5.	Redesign the existing locomotive k	key-components f	or weight	reduction	
	without effecting the functionality	that can be produ	ced only b	y additive	
	manufacturing.				
6.	Microstructural characterization of	the additive man	ufactured	materials.	
7.	Mechanical characterization of the	additive manufac	ctured mate	erials.	
Mode	e of assessment:				•
Reco	ommended by Board of Studies	17-08-2017			
Appr	roved by Academic Council	47	Date	05-10-2017	

		Industrial Surface Engineering		L T P J C
MEE6052				2 0 0 4 3
Pre-requisite	NIL		S	yllabus version
				v. 1.1
Course Objec	tives:			
1. To enable	the students	understand the basic concepts of sur	face engineer	ing using both
conventiona	l and advance	d surface engineering techniques		
2. To enhance	the students'	knowledge with regard to characterize a	and testing sur	face engineered
materials fo	r different pro	perties		
3. To familiar	ize the studer	nts with various surface engineering te	chnique adop	ted in different
industries an	nd how to app	ly the knowledge for solving industrial pro	oblems	
Expected Cou	rse Outcome:			
Upon successfy	al completion	of the course the students will be able to		
1. Demonstrat	e the role of be	eams in surface modification		
2. Explain surf	ace modificat	ion processes		
3. Apply surfa	ce spray and F	VD & CVD coatings for various applicat	ions	
		ormed and hot dip coatings processes		
5. Test and cha	aracterize the o	coatings		
Module:1	Surface Mod	ification – Role of Beams		3 hours
Physics of the	ne power be	eams used for surface modification.	Plasma/laser/	flame Plasma
Classification/	lynamical ch	naracteristics/plasma parameters/plasma	excitation/pla	asma sources:-
Classification/	orinciples, lase	r parameters, pulsed and CW lasers - Flan	ne: Diffusion f	lame/pre-mixed
	1			
	-			
Lasers: Basic p	-			
Lasers: Basic p flame; Role of Module:2	fuel/air ratio Surface Mod			
Lasers: Basic p flame; Role of Module:2 Gas phase inte	fuel/air ratio Surface Mod raction, surfac	e hardening, nitridation, carburization, ca		, heat and mass
Lasers: Basic p flame; Role of Module:2 Gas phase inte transfer aspect	fuel/air ratio Surface Mod raction, surfac s, thermodyna	e hardening, nitridation, carburization, cannot cannot a summer and process control, surface passive	ation by oxid	, heat and mass ation, evolutior
Lasers: Basic p flame; Role of Module:2 Gas phase inte transfer aspect temperature ar	fuel/air ratio Surface Mod raction, surfac s, thermodyna id composition	e hardening, nitridation, carburization, ca mics and process control, surface passive n profiles, case depth control. Carburizat	vation by oxid ion/nitridation	, heat and mass ation, evolutior reactor design
Lasers: Basic p flame; Role of Module:2 Gas phase inte transfer aspect temperature ar	fuel/air ratio Surface Mod raction, surfac s, thermodyna id composition	e hardening, nitridation, carburization, cannot cannot a summer and process control, surface passive	vation by oxid ion/nitridation	, heat and mass ation, evolutior reactor design
Lasers: Basic p flame; Role of Module:2 Gas phase inte transfer aspect temperature ar	fuel/air ratio Surface Mod raction, surfac s, thermodyna id composition ng, plasma car	e hardening, nitridation, carburization, ca mics and process control, surface passive n profiles, case depth control. Carburizat	vation by oxid ion/nitridation	ation, evolution reactor design
Lasers: Basic p flame; Role of Module:2 Gas phase inte transfer aspect temperature ar Plasma nitridir flame carburiz	fuel/air ratio Surface Mod raction, surfac s, thermodyna id composition ng, plasma car	e hardening, nitridation, carburization, caumics and process control, surface passiven profiles, case depth control. Carburizate burizing, laser nitriding/carburizing, laser	vation by oxid ion/nitridation	, heat and mass ation, evolutior reactor design

Plasma spray/wire arc spray/cold spray/ d-gun Spray/HVOF/SPS: In flight particle dynamics/spray watch/ role of Bond Coat Examples: Alumina/zirconia/composites/WC coatings; Spray coating microstructure/ Design of plasma spray Guns ;Vacuum Plasma spray: UHTC based on carbides/borides

Module:4	PVD and CVD coatings
----------	-----------------------------

PVD COATINGS: Magnetron sputtering/ cathodic arc/ multi-layering/FGM coatings/hardness and oxidation resistance control, Thickness and roughness controlExamples: TiN/CrN/NbN/Cr/ Ti/ CARBON COATING/TiAlN/CrAlN/CrAlO

CVD Coatings: Principles of CVD/Thermal CVD/PE CVD. CVD reactor design: Reactor Types, kinetics, mass transfer and residence time optimization. ECR & Microwave CVD.Graphite coatings/DLC/Diamond and graphene CVD/ SiC and TiC coatings

Module:5 Electro-formed Coatings

3 hours

Basics of electrodeposition, Hard-chrome and Nickel coatings, Cadmium plating, electro-deposition cell design, control parameters in electrodeposition. Electroless coatings: nickel deposition

Module:6 Hot Dip coatings

6 hours

Galvanizing & Aluminizing; Pack cementation process: Boronizing and aluminizing: process modelling and furnace design; Conversion coatings: Chromating and phosphating: Process modelling and design aspects ;Coatings for glass: Solgel coatings and magnetron sputtered AR coatings;Pre-coating operations: Degreasing, de-scaling, sand-blasting, plasma cleaning, degassing-Post-coating operation: Curing/consolidation, stress relieving; Large area industrial coatings: Automation, rototics, zigs and fixtures, batch processing - Codes and standards for coating acceptance: ASTM standards

Module:7Coating testing and characterization3 hoursComposition and phase analysis, morphology and microstructure, wear and oxidation resistance,
galvanic corrosion testing, adhesion test, Standard tests as per ASTM standards3 hours

Module:8		Contemporary Discussion	2 hours	
		Total Lecture hours:	30 hours	
Tex	t Book(s)	· · · · · · · · · · · · · · · · · · ·		
1.	Advan	ced Surface coatings, A Mathews, David lickerby, Springer (2012 reprint)		
Refe	erence Bo	ooks		
1.	Laser I	Fundamentals, William T Silfvast, Cambridge Univ. Press 2009 reprint.		
2.	Laser S	Surface Engineering: Process and Applications J R Lawrence and D Waug	h, Woodhead	
	Publica	ations, 2016.		
3.	Thin F	ilms by Chemical Vapour Deposition (Thin Film Science and Technology), Morosance	
	C.E an	d Sidall G, Book 7, Elsevier, 2016.		
4.	Electro	pplating Engg. Handbook, L.J Durrey, Springer, 2014.		
5.	Therm	al Spray Fundamentals, P.L Fauchaisad, J V R Hebertein, m I Boulos, spri	nger 2014	
Mod	le of Eval	uation: CAT / Assignment / Quiz / FAT / Project / Seminar		
Pro	ject			
# Ge	enerally a	team project of two/three		

M.TECH (MMF)

- # Concepts studied in Modules should have been used
- # Down to earth application and innovative idea should have been attempted
- # Assessment on a continuous basis with a min of 3 reviews.

Sample Projects

1.	Electroplating for automotive ind	plating for automotive industry to combat corrosion 60 hours				
2.	Nano-coating using EPD				-	
3.	Micro-arc oxidation of Mg alloys					
4.	Surface oxidation of SS					
5.	Demonstration of Electro-deposit	ion of Ni/Cu				
6.	Plasma modification of SS surfac	e				
7.	Plasma modification of HAP coat	ting				
8.	Gas phase nitridation of steel					
9.	Surface hardening of Aerospace a	Surface hardening of Aerospace alloys				
10.	Laser texturing of Aerospace allo	ys				
11.	Spin coatings on Ti implants					
Mode	e of assessment:					
Reco	mmended by Board of Studies	17-08-2017				
Appro	oved by Academic Council	47	Date	05-10-2017		