

SCHOOL OF ELECTRICAL ENGINEERING

M. Tech Power Electronics and Drives

(M.Tech MPE)

Curriculum

(2020-2021 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

To be a leader for academic excellence in the field of electrical, instrumentation and control engineering imparting high quality education and research leading to global competence for the societal and industrial developments.

MISSION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

- Impart high quality education and interdisciplinary research by providing conducive teaching learning environment and team spirit resulting in innovation and product development.
- Enhance the core competency of the students to cater to the needs of the industries and society by providing solutions in the field of electrical, electronics, instrumentation and automation engineering.
- Develop analytical skills, leadership quality and team spirit through balanced curriculum.

M.TECH (MPE)

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints

PO_03: Having an ability to design and conduct experiments, as well as to analyze and interpret data

PO_04: Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice

PO_05: Having problem solving ability- solving social issues and engineering problems

PO_06: Having adaptive thinking and adaptability

PO_07: Having a clear understanding of professional and ethical responsibility

PO_08: Having a good cognitive load management [discriminate and filter the available data] skills

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Power Electronics and Drives) programme, graduates will be able to

- PSO1: Apply technical knowledge, skills and analytical ability to design, develop and test power electronic converters and drives using modern tools and technologies.
- PSO2: Solve the real world problems in the emerging fields like smart grid, renewable energy interfaces, and electric vehicles and to develop innovative technologies relevant to social, ethical, economic and environmental issues
- PSO3: Solve research gaps and provide solutions to socioeconomic, and environmental problems.

CREDIT STRUCTURE

Category-wise Credit distribution

Credits Breakup					
	CREDITS				
University Core	27				
University Elective	6				
Program Core	19				
Program Elective	18				
Total	70				

DETAILED CURRICULUM

University Core

S. No.	Course Code	Course Title	L	Т	P	J	С
1.	MAT5003	Methods of Applied Mathematics	3	0	0	0	3
2.	ENG5001	Fundamentals of Communications of Skills	0	0	2	0	1
3.	ENG 5002	Professional and Communication Skills	0	0	2	0	1
4.	STS5001	Essentials of Business Etiquettes and Problem Solving	3	-		-	1
5.	STS5002	Preparing for Industry	3	-	-	-	1
6.	SET5001	Science, Engineering and Technology Project - I	-	-		8	2
7.	SET5002	Science, Engineering and Technology Project - II	-	-	-	8	2
8.	EEE 6099	Master's Thesis	-	-	-	64	16
9.	GER5001/ FRE5001	Deutsch Fuer Anfaenger / Francais Fonctionnel	2	0	0	0	2

Programme Core

S. No.	Course Code	Course Title		T	P	J	С
1.	EEE5001	Analysis of Power Converters	3	0	2	0	4
2.	EEE5002	Generalized Machine Theory	3	0	0	0	3
3.	EEE5703	Advanced Processors for Power Converters	3	0	2	0	4
4.	EEE5704	Switched Mode Power Supplies	2	0	0	0	2
5.	EEE6001	Power Electronics Applications in Power Systems		0	0	4	3
6.	EEE6010	Industrial Electrical Drives	2	0	2	0	3

Programme Elective

S. No.	Course Code	Course Title			P	J	С
1.	EEE5005	Advanced Semiconductor Devices	3	0	0	0	3
2.	EEE5006	Integrated Circuits for Power Conversion	2	0	2	0	3
3.	EEE5007	Intelligent Control	3	0	0	0	3
4.	EEE5008	Modern Control Theory	3	0	0	0	3
5.	EEE5009	Energy Storage Systems	3	0	0	0	3
6.	EEE5010	Advanced Power System Protection	3	0	0	0	3
7.	EEE5011	Protocols for Smart Grids	3	0	0	0	3
8.	EEE5031	Advanced Reliability Engineering	1	2	0	0	2
9.	EEE6002	Wind Energy Conversion Systems	2	0	0	4	3
10.	EEE6003	Power Quality Analysis and Mitigation Techniques	2	0	0	4	3
11.	EEE6004	Microgrid Technologies	3	0	0	0	3
12.	EEE6005	Hybrid Electric Vehicles	2	0	0	4	3
13.	EEE6006	High Voltage Direct Current Transmission		0	0	4	4
14.	EEE6007	Pulse Width Modulation and Control		0	0	4	3
15.	EEE6008	Solar Photo Voltaic Systems		0	0	4	3
16.	EEE6009	Special Machines and Control	2	0	0	4	3

MAT5003 Methods of Applied Mathematics				P	J	C
		3	0	0	0	3
Pre-requisite	NIL	Sy	llab	us v	ers	ion
			v.	1.0		
0 014 4						

Course Objectives

- 1. Enhancing the basic understanding of the methods of Applied Mathematics to Engineering
- 2. Imparting computational thinking capability in relation to using appropriate analytical and optimization methodologies for power electronics problems
- 3. Extrapolating analytical, numerical and optimization skills to real time scenarios, with reference to electronics problems

Expected Course Outcome

At the end of the course the student should be able to

- 1. apply the concept of matrices in formulating practical problems
- 2. differentiate between numerical and analytical approaches
- 3. design transform techniques and circuit analysis methodologies
- 4. Apply Markovian process to solve the power spectrum problems and distinguish the utility of queuing models
- 5. Apply optimization methods to analyse the gradient methods

Module:1 | **Matrix Computations**

5 hours

Generalized Conjugate Gradient, Krylov Space and Lanczos methods, Iterative methods for symmetric, non-symmetric and generalized eigen value problems, Singular Value Decomposition

Module:2 | Ordinary Differential Equations

5 hours

Simple nonlinear differential equations: Sturm-Liouville problem. Series solution-Orthogonality and related recurrence relations

Module:3 | Calculus of Variations

6 hours

Concept of variation, Euler-Lagrange equations -Rayleigh- Ritz method- Galerkin method

Module:4 | Transforms Techniques

10 hours

The Transfer Function and the Steady state Sinusoidal Response, The Impulse Function in Circuit Analysis Fast Fourier transform, Short time Fourier transform, window measures, time frequency analysis

Module:5 | Stochastic Processes

6 hours

Markovian Processes, Stationary and Non-stationary processes, Time variant and Time invariant signals, Ergodic processes, Covariance, Correlation Auto & cross correlations, Power Spectrum

Module:6 Queuing Models

5 hours

Poisson Process, Markovian queues, Single and Multi-Server Models, Little's formula, Machine Interference Model, Steady State analysis

Module:7 | Optimization methods

6 hours

Basic concepts of Optimization, Unconstrained multivariable Optimization- Steepest

M.TECH (MPE)

	Descent and Conjugate Gradient Methods, Constrained Optimization- Lagrange multiplier method								
Mo	Module:8 Contemporary issues: 2 hour								
	Expert Lecturer: Mathematical methods and its Application to Dynamics and Electromagnetic fields								
		Total Lectu	re hours:		45 hours				
Tex	t Book(s)							
1.		ed Engineering Mathematics	, Erwin Kre	eyszig, 10 th	Edition,				
		ndia student Edition, (2015)							
Ref	erence I								
1.		Engineering Mathematics, E	3.S.Grewal	, 43 rd Edi	tion, Khanna Publications				
	(2015)								
2.		llity, Random Variables and		Processes, A	A. Papoulis and S.U.Pillai,				
	4 th Edi	tion, Tata McGraw-Hill, (201	4) reprint						
3.	Matrix	Computations, G. H, Golub	and C. F.	Van Loan,	North Oxford Academics,				
	(1983), 4th edition, Johns Hopkins University press								
4. Operations Research, H. A. Taha, 10 th Edition, Pearson Education (2019)									
Mo	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar								
Rec	commend	led by Board of Studies	09/03/201	6					
Apı	Approved by Academic Council 40th Date 18/03/2016								

	Vellore Institute of Techn (Deemed to be University under section 3 of UGC)		
ENG5001	Fundamentals of Communicat		L T P J C
D ::	N. 1 LEDWAR 1'1 D. C''.		0 0 2 0 1
Pre-requisite	Not cleared EPT (English Proficiency Tes	Syll:	abus version
Caura Objectiv	200		v. 1.0
Course Objective	es: ers learn basic communication skills - Listen	ing Speaking Peading	and Writing
	s apply effective communication in social an		; and witting
2. To help learner	s appry effective communication in social an	i deddenne context	
3. To make studer	nts comprehend complex English language th	rough listening and rea	ding
Expected Course	Outcome:		
	tening and comprehending skills of the learn		
	g skills to express their thoughts freely and f	luently	
_	for effective reading		
	cal correct sentences in general and academic		
5. Develop techni	cal writing skills like writing instructions, tra	nscoding etc.,	
Module:1 Liste	ening		8 hour
Understanding Co	<u> </u>		0 110 021
Listening to Speed			
Listening for Spec			
Module:2 Spea	king		4 hour
Exchanging Infor			
	ties, Events and Quantity		
Module:3 Rea	<u> </u>	<u> </u>	6 hour
Identifying Inform			
Inferring Meaning			
Interpreting text Module:4 Writ	ing. Contono	T	8hour
Basic Sentence St			onour
Connectives	ructure		
Transformation of	f Sentences		
Synthesis of Sente			
Module:5 Writ	ting: Discourse		4hour
Instructions			
Paragraph			
Transcoding		_	
	Т	otal Lecture hours:	30 hours
Text Book(s)			
1. Redston, Cl	nris, Theresa Clementson, and Gillie G	Cunningham. Face2fac	ce Upper
Intermediate	Student's Book. 2013, Cambridge University	Press.	
Reference Books			
	k .Stepping Stones: A guided approach to wr	ting sentences and Para	agraphs
	ion), 2012, Library of Congress.		
	Thitcomb & Leslie E Whitcomb, Effective Int	•	

Communication Skills for Engineers, 2013, John Wiley & Sons, Inc., Hoboken: New Jersey.

		emed to be University under section		S 1		
3.	ArunPatil, Henk Eijkman &Ena Bhattacharya, New Media Communication Skills for Engineers and IT Professionals,2012, IGI Global, Hershey PA.					
4.	Judi Brownell, Listening: Attitudes				outledge:USA	
5.	John Langan, Ten Steps to Impro Press:USA					
6.	Redston, Chris, Theresa Clements Teacher's Book. 2013, Cambridge		nningham.	Face2face Upp	per Intermediate	
Mod	de of Evaluation: CAT / Assignmen	t / Quiz / FAT / P	roject / Se	minar		
1.	Familiarizing students to adjective all letters of the English alphabet starts with the first letter of their results.	and asking them t	0 0		2 hours	
2.	Making students identify their per during presentation and respond u		Clarity and	d Volume	4 hours	
3.	Using Picture as a tool to enhance	learners speaking	g and writing	ng skills	2 hours	
4.	Using Music and Songs as tools t language / Activities through VIT	the target	2 hours			
5.	Making students upload their Self	- introduction vid	eos in Vin	neo.com	4 hours	
6.	Brainstorming idiomatic expression writings and day to day conversat	ons and making th			4 hours	
7.	Making students Narrate events by adding more descriptive adjectives and add flavor to their language / Activities through VIT Community Radio					
8	Identifying the root cause of stage to make their presentation better	fear in learners a	nd providi	ng remedies	4 hours	
9	Identifying common Spelling & Sentence errors in Letter Writing and other day to day conversations					
10.						
	Total Laboratory Hours 30 hours					
	Mode of evaluation: Online Quizzes, Presentation, Role play, Group Discussions, Assignments, Mini Project					
	Recommended by Board of Studies 22-07-2017					
	Approved by Academic Council No. 46 Date 24-8-2017					
	· ·			1		

ENG5002		Professional and Communica	tion Skills	L T P J C
EndSudZ		Trotessional and Communic	tion oxins	0 0 2 0 1
Pre-requisite	• E	NG5001		Syllabus version
Tre requisite	, 13.	1103001		v. 1.1
Course Object	ctives:			٧. 1.1
v		to develop effective Language and Com	munication Skills	<u> </u>
		ts' Personal and Professional skills		,
		ats to create an active digital footprint		
Expected Cor				
		personal communication skills		
		em solving and negotiation skills		
		es and mechanics of writing research rep	orts	
		er public speaking and presentation skill		
		uired skills and excel in a professional e		
.	-		1	
		al Interaction		2hours
Introducing O)neself- (one's career goals		
Activity: SW0	OT Ana	lysis		
Module:2		ersonal Interaction		2 hours
Interpersonal	_	nication with the team leader and collea	gues at the workp	lace
-				
Activity: Role				
		Interaction		2 hours
		Social Networking, gender challenges		
		kedIn profile, blogs		4.1
Module:4		é Writing		4 hours
		ement and key skills		
		Electronic Résumé		4.1
		iew Skills		4 hours
		ew, Group Discussions		
		iew and mock group discussion		4 h a
Module:6	Keport	t Writing		4 hours
Language and	d Mechar	nics of Writing		
A adiavidas VV mid	din a a Da	an out		
Activity: Writ		1		21
Module:7		Skills: Note making		2hours
Summarizing				
		ecutive Summary, Synopsis		2 h
Module:8	_	reting skills		2 hours
Interpret data		O 1		
Activity: Tran Module:9				4 h ar
		tation Skills		4 hours
Orai Presentat	uon usin	g Digital Tools		
Activity: Oral	l presenta	ation on the given topic using appropria	te non-verbal cue	S
Module:10	Proble	m Solving Skills		4 hours

	Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act, 1956)	
Prob	olem Solving & Conflict Resolution	
Acti	vity: Case Analysis of a Challenging Scenario	
	Total Lecture hours:	30hours
Text	t Book(s)	
1	Bhatnagar Nitin and Mamta Bhatnagar, Communicative English For Engineers And Professionals, 2010, Dorling Kindersley (India) Pvt. Ltd.	
Refe	erence Books	1
1	Jon Kirkman and Christopher Turk, Effective Writing: Improving Scientific	, Technical and
	Business Communication, 2015, Routledge	
2	Diana Bairaktarova and Michele Eodice, Creative Ways of Knowing in En	igineering, 2017,
	Springer International Publishing	
3	Clifford A Whitcomb & Leslie E Whitcomb, Effective Interperso	
	Communication Skills for Engineers, 2013, John Wiley & Sons, Inc., Hobok	
4	ArunPatil, Henk Eijkman &Ena Bhattacharya, New Media Communic	eation Skills for
3.7	Engineers and IT Professionals, 2012, IGI Global, Hershey PA.	
Mod	le of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar	
1.	SWOT Analysis – Focus specially on describing two strengths and two	2 hours
	weaknesses	
2.	Role Plays/Mime/Skit Workplace Situations	4 hours
3.	Use of Social Media – Create a LinkedIn Profile and also write a page or	2 hours
	two on areas of interest	
4.	Prepare an Electronic Résumé and upload the same in vimeo	2 hours
5.	Group discussion on latest topics	4 hours
6	Report Writing – Real-time reports	2 hours
7	Writing an Abstract, Executive Summary on short scientific or research articles	4 hours
8	Transcoding – Interpret the given graph, chart or diagram	2 hours
9	Oral presentation on the given topic using appropriate non-verbal cues	4 hours
10	Problem Solving Case Analysis of a Challenging Scenario	4 hours
	Total Laboratory Hours	30 hours
	le of evaluation: : Online Quizzes, Presentation, Role play, Group Discussions i Project	, Assignments,
	ommended by Board of Studies 22-07-2017	
	roved by Academic Council No. 47 Date 05-10-2017	
<u> </u>	110. T/ Due 05-10-2017	

		(Deemed to be University under section 3 of UGC Act, 1956)		
STS50	01	Essentials of Business Etiquettes and Problem Solving	_	T P J C
				0 0 0 1
Pre-requ	isite	NIL	Syllab	us version
C 01	• 4•			v.3.0
Course Ob				
	_	the students' logical thinking skills e strategies of solving quantitative ability problems		
		ne verbal ability of the students		
		critical thinking and innovative skills		
1. 100	mance	Critical tilliking and illiovative skins		
Expected C	Course	Outcome:		
		udents to use relevant aptitude and appropriate language to ex	xpress th	emselves
	_	nicate the message to the target audience clearly	•	
Module:1		ess Etiquette: Social and Cultural Etiquette and Writing		9 hours
	_	oany Blogs and Internal Communications and Planning a	nd	
	Writi	ng press release and meeting notes		
X7.1 X4				
		ustoms, Language, Tradition, Building a blog, Developing br		
-	_	Competition, Open and objective Communication, Two way audience, Identifying, Gathering Information,. Analysis, Deta	_	
	_	gress check, Types of planning, Write a short, catchy headlin	_	•
		ubject in the first paragraph., Body – Make it relevant to you		
Summanz	your s	ubject in the first paragraph., Body – Wake it relevant to you	audicii	,
Module:2	Study	skills – Time management skills		3 hours
Prioritization adhering to		rastination, Scheduling, Multitasking, Monitoring, Working	under pr	ressure and
Module:3	Prese	ntation skills – Preparing presentation and Organizing		7 hours
		rials and Maintaining and preparing visual aids and Deali	ing	
	with o	questions		
	-	PowerPoint presentation, Outlining the content, Passing the		
-	_	roduction, body and conclusion, Use of Font, Use of		_
-	-	rtance and types of visual aids, Animation to captivate your a		_
-	_	ut the ground rules, Dealing with interruptions, Staying g difficult questions	III COIII	ioi oi tile
questions, i	lanum	g difficult questions		
Module:4	Onan	titative Ability -L1 – Number properties and Averages an	ıd	11 hours
.viouuit.T	_	ressions and Percentages and Ratios		II HOULS
	11051	with a vi volime of min armiton		
Number of	factor			
	ractors	s, Factorials, Remainder Theorem, Unit digit position, To	ens digi	t position,
		s, Factorials, Remainder Theorem, Unit digit position, Teted Average, Arithmetic Progression, Geometric Progr	_	•
Averages,	Weight		ression,	Harmonic
Averages,	Weight , Increa	ted Average, Arithmetic Progression, Geometric Progr	ression,	Harmonic
Averages, Progression Module:5	Weight , Increa Reaso	ted Average, Arithmetic Progression, Geometric Progresse & Decrease or successive increase, Types of ratios and progression.	ession, oportions	Harmonic 8 hours

	Lamber Association (L	eemed to be University under section	3 01 0 GC Act, 193	0)				
Ordering/1	anking/grouping, Puzzle test	t, Selection Decision	on table					
Module:6	Verbal Ability-L1 – Voc	abulary Building		7 hours				
	s & Antonyms, One word su on, Analogies	ıbstitutes, Word Pa	irs, Spelli	ings, Idioms, Sentence				
		Total Lecture ho	ours:	45 hours				
Reference	Books		1					
	Patterson, Joseph Grenny, F for Talking When Stakes ar	,	`	2001) Crucial Conversations: -Hill Contemporary				
2. Dale Book	=	Vin Friends and I	nfluence	People. New York. Gallery				
3. Scott	Peck. M(1978) Road Less T	ravelled. New Yor	k City. M	. Scott Peck.				
4. FACI	E(2016) Aptipedia Aptitude l	Encyclopedia. Dell	ni. Wiley _l	publications				
5. ETH	NUS(2013) Aptimithra. Bang	galore. McGraw-H	ill Educati	ion Pvt. Ltd.				
Websites:								
1. www	chalkstreet.com							
2. www	skillsyouneed.com							
3. www	mindtools.com							
4. www	www.thebalance.com							
	www.eguru.ooo							
3 Assessm	Mode of Evaluation: FAT, Assignments, Projects, Case studies, Role plays, 3 Assessments with Term End FAT (Computer Based Test)							
	Recommended by Board of Studies							
Approved	by Academic Council	53rd	Date	13/12/2018				

		(Deemed to be University under section 3 of UGC Act, 1956)		
STS50	02	Preparing for Industry		r P J C
Duo moore	igita	NIL		0 0 0 1
Pre-requ	isite	NIL	Synab	us version v.2.0
Course Ob	iective	•	<u> </u>	V.Z.U
		the students' logical thinking skills		
	-	e strategies of solving quantitative ability problems		
		ne verbal ability of the students		
4. To e	enhance	critical thinking and innovative skills		
Expected C			•	
		udents to simplify, evaluate, analyze and use functions and e	xpression	is to
SHIII	mate rea	al situations to be industry ready.		
Module:1	Interv	view skills – Types of interview and Techniques to face re		3 hours
Wioduic.1		riews and Mock Interview	mote	3 Hours
Structured a	and uns	tructured interview orientation, Closed questions and hypothe	etical que	estions,
		ective, Questions to ask/not ask during an interview, Video		
		, Phone interview preparation, Tips to customize preparation	ı for perso	onal
interview, F	Practice Practice	rounds		
M. 1.1.2	D	1 11 D	. TD	21
Module:2		ne skills – Resume Template and Use of power verbs and	Types	2 hours
	or res	ume and Customizing resume		
Structure of	f a stan	dard resume, Content, color, font, Introduction to Power v	erbs and	Write up,
		resume, Frequent mistakes in customizing resume, Layou	ut - Und	erstanding
different co	mpany	s requirement, Digitizing career portfolio		
Module:3	Fmot	ional Intelligence - L1 – Transactional Analysis and Brain		12 hours
Module.3		ing and Psychometric Analysis and Rebus Puzzles/Proble		12 Hours
	Solvin	· ·		
Introduction		tracting, ego states, Life positions, Individual Brai	nstormin	g, Group
Brainstormi	ing, Ste	pladder Technique, Brain writing, Crawford's Slip writing	approacl	h, Reverse
brainstormi	ng, Sta	ar bursting, Charlette procedure, Round robin brainsto	rming, S	Skill Test,
Personality	Test, N	Iore than one answer, Unique ways		
37.11.4				
Module:4	_	titative Ability-L3 – Permutation-Combinations and Pro	•	14 hours
		Geometry and mensuration and Trigonometry and Logari	itnms	
Counting	•	unctions and Quadratic Equations and Set Theory ng, Linear Arrangement, Circular Arrangements, Condi	itional P	 Probability
_	-	Dependent Events, Properties of Polygon, 2D & 3D Figures		-
-		ces, Simple trigonometric functions, Introduction to logarith		
_		uction to functions, Basic rules of functions, Unders		
_		probabilities of Quadratic Equations, Basic concepts of Ver	_	_
Module:5	Reaso	ning ability-L3 – Logical reasoning and Data Analysis a	nd	7 hours
	Intom	protetion		

Interpretation

Syllogisms, Binary logic, Sequential output tracing, Crypto arithmetic, Data Sufficiency, Data interpretation-Advanced, Interpretation tables, pie charts & bar chats

ınte	erpretation	on-Advanced, Interpretation	tables, pie charts	& bar chat	CS .				
Mo	dule:6	Verbal Ability-L3 – Com	prehension and	Logic		7 hours			
	Reading comprehension, Para Jumbles, Critical Reasoning (a) Premise and Conclusion, (b) Assumption & Inference, (c) Strengthening & Weakening an Argument								
Def	Pomomoo	Doolea		Total	Lecture hours:	45 hours			
1. 2.	Effective Daniel	Flage Ph.D(2003) The Art on Pearson	. Saint Paul, Minn	esota. Jist	Works				
3.	David Allen(2002) Getting Things done: The Art of Stress -Free productivity. New York City. Penguin Books.								
4.	FACE(2016) Aptipedia Aptitude E	Encyclopedia.Delh	i. Wiley pı	ublications				
5. We	ETHNI ebsites:	US(2013) Aptimithra. Bang	alore. McGraw-H	ill Educati	on Pvt. Ltd.				
1.	www.c	halkstreet.com							
2.	www.s	killsyouneed.com							
3.	www.n	nindtools.com							
4.	www.tl	nebalance.com							
5.	www.e	guru.000							
		aluation: FAT, Assignment nts with Term End FAT (Co			le plays,				
		ded by Board of Studies	09/06/2017						
App	proved b	y Academic Council	45 th AC	Date	15/06/2017				

EEE6099	Masters Thesis	L	T	P	J	C
		0	0	0	0	16
Pre-requisite	As per the academic regulations	Syllabus version			sion	
		v. 1.0				

Course Objectives:

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field and also to give research orientation

Expected Course Outcome:

At the end of the course the student will be able to

- 1. Formulate specific problem statements for ill-defined real life problems with reasonable assumptions and constraints.
- 2. Perform literature search and / or patent search in the area of interest.
- 3. Conduct experiments / Design and Analysis / solution iterations and document the results.
- 4. Perform error analysis / benchmarking / costing
- 5. Synthesise the results and arrive at scientific conclusions / products / solution
- 6. Document the results in the form of technical report / presentation

Contents

- 1. Capstone Project may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.
- 2. Project can be for two semesters based on the completion of required number of credits as per the academic regulations.
- 3. Should be individual work.
- 4. Carried out inside or outside the university, in any relevant industry or research institution.
- 5. Publications in the peer reviewed journals / International Conferences will be an added advantage

Mode of Evaluation: Periodic reviews, Presentation, Final oral viva, Poster submission						
Recommended by Board of Studies 10.06.2016						
Studies		T				
Approved by Academic Council	41st AC	Date	17.06.2016			

GER5001	Deutsch Fuer Anfaenger	L T P J C
		2 0 0 0 2
Pre-requisite	NIL	Syllabus version
-		v.1.0
Course Objective	25:	•

The course gives students the necessary background to:

- 1. Enable students to read and communicate in German in their day to day life
- 2. Become industry-ready
- 3. Make them understand the usage of grammar in the German Language.

Expected Course Outcome:

The students will be able to

Aufsätze:

- 1. Create the basics of German language in their day to day life.
- 2. Understand the conjugation of different forms of regular/irregular verbs.
- 3. Understand the rule to identify the gender of the Nouns and apply articles appropriately.
- 4. Apply the German language skill in writing corresponding letters, E-Mails etc.
- 5. Create the talent of translating passages from English-German and vice versa and To frame simple dialogues based on given situations.

Module:1 3 hours

Einleitung, Begrüssungsformen, Landeskunde, Alphabet, Personalpronomen, Verb Konjugation, Zahlen (1-100), W-fragen, Aussagesätze, Nomen – Singular und Plural

Lernziel: Elementares Verständnis von Deutsch, Genus- Artikelwörter

Module:2 3 hours

Konjugation der Verben (regelmässig /unregelmässig) die Monate, die Wochentage, Hobbys, Berufe, Jahreszeiten, Artikel, Zahlen (Hundert bis eine Million), Ja-/Nein- Frage, Imperativ mit

Lernziel: Sätze schreiben, über Hobbys erzählen, über Berufe sprechen usw.

Module:3 4 hours

Possessivpronomen, Negation, Kasus- AkkusatitvundDativ (bestimmter, unbestimmterArtikel), trennnbare verben, Modalverben, Adjektive, Uhrzeit, Präpositionen, Mahlzeiten, Lebensmittel, Getränke

Lernziel: Sätze mit Modalverben, Verwendung von Artikel, über Länder und Sprachen sprechen, über eine Wohnung beschreiben.

Module:4 6 hours Übersetzungen : (Deutsch – Englisch / Englisch – Deutsch) **Lernziel :**Grammatik – Wortschatz – Übung Module:5 5 hours Leseverständnis, Mindmap machen, Korrespondenz-Briefe, Postkarten, E-Mail Lernziel: Wortschatzbildung und aktiver Sprach gebrauch Module:6 3 hours

Meine Universität, Das Essen, mein Freund oder meine Freundin, meine Familie, ein Fest in Deutschland usw Module:7 4 hours Dialoge: a) Gespräche mit Familienmitgliedern, Am Bahnhof, b) Gespräche beim Einkaufen; in einem Supermarkt; in einer Buchhandlung; c) in einem Hotel - an der Rezeption ;ein Termin beim Arzt. Treffen im Cafe Module:8 2 hours Guest Lectures/Native Speakers / Feinheiten der deutschen Sprache, Basisinformation über die deutschsprachigen Länder **Total Lecture hours:** 30 hours Text Book(s) Studio d A1 Deutsch als Fremdsprache, Hermann Funk, Christina Kuhn, Silke **Demme: 2012 Reference Books** Netzwerk Deutsch als Fremdsprache A1, Stefanie Dengler, Paul Rusch, Helen Schmtiz, Tanja Sieber, 2013 Lagune , Hartmut Aufderstrasse, Jutta Müller, Thomas Storz, 2012. Deutsche Sprachlehrefür AUsländer, Heinz Griesbach, Dora Schulz, 2011 ThemenAktuell 1, HartmurtAufderstrasse, Heiko Bock, MechthildGerdes, Jutta Müller und Helmut Müller, 2010 www.goethe.de wirtschaftsdeutsch.de hueber.de, klett-sprachen.de www.deutschtraning.org Mode of Evaluation: CAT / Assignment / Quiz / FAT Recommended by Board of Studies 10/06/2016

M.TECH (MPE) Page 21

41th

Date

17/06/2016

Approved by Academic Council

FRE5001	Francais Fonctionnel	L	T	P J	C
		2	0	0 0	2
Pre-requisite	NIL	Sylla	bus	ver	sion
				7	7.1.0

Course Objectives:

The course gives students the necessary background to:

- 1. Demonstrate competence in reading, writing, and speaking basic French, including knowledge of vocabulary (related to profession, emotions, food, workplace, sports/hobbies, classroom and family).
- 2. Achieve proficiency in French culture oriented view point.

Expected Course Outcome:

The students will be able to

- 1. Remember the daily life communicative situations via personal pronouns, emphatic pronouns, salutations, negations, interrogations etc.
- 2. Create communicative skill effectively in French language via regular / irregular verbs.
- 3. Demonstrate comprehension of the spoken / written language in translating simple sentences.
- 4. Understand and demonstrate the comprehension of some particular new range of unseen written materials.
- 5. Demonstrate a clear understanding of the French culture through the language studied.

Module:1Saluer, Se présenter, Etablir des contacts3 hoursLes Salutations, Les nombres (1-100), Les jours de la semaine, Les mois de l'année, Les PronomsSujets, Les Pronoms Toniques, La conjugaison des verbes réguliers, La conjugaison des verbesirréguliers- avoir / être / aller / venir / faire etc.

Module:2	Présenter quelqu'un, Chercher un(e)	3 hours
	correspondant(e), Demander des nouvelles	
	d'une personne.	

La conjugaison des verbes Pronominaux, La Négation,

L'interrogation avec 'Est-ce que ou sans Est-ce que'.

Module:3 | Situer un objet ou un lieu, Poser des questions

4 hours

L'article (défini/ indéfini), Les prépositions (à/en/au/aux/sur/dans/avec etc.), L'article contracté, Les heures en français, La Nationalité du Pays, L'adjectif (La Couleur, l'adjectif possessif, l'adjectif démonstratif/ l'adjectif interrogatif (quel/quelles/quelle/quelles), L'accord des adjectifs avec le nom, L'interrogation avec Comment/ Combien / Où etc.,

Module:4	Faire des achats, Comprendre un texte court, Demander et indiquer le chemin.	6 hours
La traductio	on simple :(français-anglais / anglais –français)	

Module:5 Trouver les questions, Répondre aux 5 hours
--

			(D	eemed to be University under	section 3 of UGC A	Act, 1956)			
	ques	tions géi	nérales en fi	ançais.					
L'article I	artitif,	Mettez	les phrases	aux pluriels,	Faites u	ne phrase	e avec 1	les mots	donnés,
Exprimez 1	les phra	ises donn	iées au Masc	ulin ou Fémini	n, Associ	ez les phr	ases.		
Module:6	Com	ment ec	rire un pass	age					3 hours
Décrivez :									
La Famille	/La M	aison, /L	'université /]	Les Loisirs/ La	Vie quoti	idienne et	c.		
Module:7	Com	ment ec	rire un diale	ogue					4 hours
Dialogue:									
a) Rés	server u	ın billet d	de train						
b) Ent	re deux	amis qu	ii se renconti	ent au café					
c) Par	mi les 1	membres	de la famill	e					
d) En	tre le c	lient et le	e médecin						
						1			
Module:8	Inv	<u>ited Tall</u>	k: Native sp	eakers					2 hours
						T			
				Total Lectur	e hours:			•	30 hours
Text Book	` _	1 1 0			D 11	- CT F	T		. 2010
1. Echo-	I, Méth	iode de f	rançaıs, J. G	irardet, J. Péch	eur, Publi	isher CLE	Internat	ional, Pa	rıs 2010.
2 Echo-	1, Cahi	er d'exer	cices, J. Gira	ardet, J. Pécher	ur, Publish	ner CLE I	nternatio	nal, Pari	s 2010.
Reference	Books								
1. CONN	VEXIO	NS 1. M	éthode de fra	nçais, Régine	Mérieux.	Yves Lois	seau.Les	Éditions	Didier.
2004.		,		3 ,	,		, , , , , , , , , , , , , , , , , , , ,		,
								,	
			e cahier d'ex	ercices, Régin	e Mérieux	, Yves Lo	oiseau, L	es Editio	ns
Didie	r, 2004.								
3 ALTI	ER EGG		hode de fran	çais, Annie Be	rthet Cath	nerine Hu	go Véro	nique M	
				ique Waenden			_	inque ivi	ı
IXIZIII	un, Dea	uia baili	Paoma, Mon				2000.		
Mode of E	valuatio	on: CAT	/ Assignmer	nt / Quiz / FAT					
Recommen				10/06/2016		,			
Approved	by Aca	demic Co	ouncil	41th	Date	17/0	06/2016		

EEE5001	Analysis of Power Converters			L	T	P	J	C
				3	0	2	0	4
Pre-requisite	NIL		Syllabus version				ion	
Anti-requisite	NIL		v. 1.				1.0	

Course Objectives:

1. To understand and appreciate the operating principle and applications of various power electronic converters.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Analyze switching power converters in steady state and determine DC voltages and currents.
- 2. Analyze current and voltage waveforms in a converter in steady state
- 3. Explain the operation of different DC-DC converters and design converters suitable for various applications.
- 4. Assess the performance parameters of various types of inverters, analyze and compare different PWM techniques for their control
- 5. Explain the application of cycloconverter and AC voltage regulators
- 6. Discuss the principle of operation and model and simulate the advanced converters such as of Multi-level converters , PWM rectifiers & Matrix converter
- 7. Understand the controlling aspects involved.
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1	SINGLE	PHASE	UNCONTROLLED	AND	7 hours		
	CONTROLLED RECTIFIERS:						

Single Phase AC to DC Controlled converter configurations – Semi-converter – Fully controlled converter – R, RL, RLE load – operation under continuous and discontinuous conduction – Analysis of supply side power factor – effect of source impedance – Dual converter

Module:2 THREE PHASE UNCONTROLLED AND CONTROLLED 7 hours RECTIFIERS:

Three Phase AC to DC converters configurations – Un-controlled - Semi-converter – Fully controlled converter – Analysis of supply side power factor – three phase dual converter.

Module:3 DC-DC CONVERTERS: 7 hours

Analysis and design of DC to DC converters – Control of DC-DC converter – Buck, Boost, Buck-Boost and Cuk converters – multi-quadrant choppers.

Module:4 DC-AC INVERTERS: 6 hour

Single phase Voltage Source Inverter (VSI) and Current Source Inverter (CSI) – three phase VSI and CSI - 120° and 180° modes of operation.

Module:5 AC VOLTAGE CONTROLLERS: 5 hours

Single phase and three phase voltage regulators – R and RL load – range of control – Single phase cycloconverters – types and operating principle – three phase cycloconverter.

Module:6ADVANCED POWER CONVERTERS:6 hoursPWM Rectifier – multilevel inverters – types, power circuit, operating principle and

Module:7 CONTROL TECHNIQUES: S hours	(Deemed to be University under section 3 of UGC Act, 1956) comparative features — Matrix converter.						
Concept of PWM — Sine PWM — harmonic spectrum — Space vector PWM — voltage control and harmonic reduction. Module:8	_					5 hours	
Module:8 Contemporary issues: Total Lecture hours: 45 hours Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Image: Carrel of the content of t		,		_ Space vector P	WM – volt		
Module:8 Contemporary issues: Total Lecture hours: 45 hours Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar 1. Single phase one quadrant AC-DC rectifier hours 2. Single phase two quadrant AC-DC rectifier 2 hours 3. Two quadrant high power AC-DC rectifier 2 hours 4. Step-up chopper with R, RL loads 2 hours 5. Converter for battery charging in PV systems 2 hours 6. Buck-Boost converter 2 hours 7. Interleaved boost converter 2 hours 8. Interleaved buck converter 2 hours 9. Home UPS 2 hours 10. Three phase inverter operating under 120 °and 180 ° modes 2 hours 11. Fan regulators and light dimmers 2 hours 12. Three phase AC-AC voltage regulator with R, RL loads 2 hours 13. Single phase Step down cycloconverter 2 hours 14. Single phase Step down cycloconverter 2 hours 15. Diode clamped multilevel inverter	_		nome spectrum	- Space vector r	VV IVI — VOIU	age control	
Total Lecture hours: 45 hours Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar 1. Single phase one quadrant AC-DC rectifier hours 2. Single phase two quadrant AC-DC rectifier 2 hours 3. Two quadrant high power AC-DC rectifier 2 hours 4. Step-up chopper with R, RL loads 2 hours 5. Converter for battery charging in PV systems 2 hours 6. Buck-Boost converter 2 hours 7. Interleaved boost converter 2 hours 8. Interleaved buck converter 2 hours 9. Home UPS 2 hours 10. Three phase inverter operating under 120 °and 180 ° modes 2 hours 11. Fan regulators and light dimmers 2 hours 12. Three phase AC-AC voltage regulator with R, RL loads 2 hours 13. Single phase Step up cycloconverter 2 hours 14. Single phase Step down cycloconverter 2 hours 15. Diode clamped multilevel inverter 2 hours 16. Flying capacitor multilevel inverter 2 hours 17. Cascade type multilevel inverter			NG•			2 hours	
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar	Wioduic.6	Contemporary issue		Total Lectu	re hours:		
1. Single phase one quadrant AC-DC rectifier 2. Single phase two quadrant AC-DC rectifier 2. hours 3. Two quadrant high power AC-DC rectifier 2. hours 4. Step-up chopper with R, RL loads 2. hours 5. Converter for battery charging in PV systems 2. hours 6. Buck-Boost converter 2. hours 7. Interleaved boost converter 2. hours 8. Interleaved buck converter 2. hours 9. Home UPS 2. hours 10. Three phase inverter operating under 120 °and 180 ° modes 2. hours 11. Fan regulators and light dimmers 2. hours 12. Three phase AC-AC voltage regulator with R, RL loads 2. hours 13. Single phase Step up cycloconverter 2. hours 14. Single phase Step down cycloconverter 2. hours 15. Diode clamped multilevel inverter 2. hours 16. Flying capacitor multilevel inverter 2. hours 17. Cascade type multilevel inverter 2. hours 18. Closed loop control of boost converter 2. hours 19. Closed loop control of boost converter 2. hours 19. Closed loop control of buck converter 2. hours 19. Closed loop control of buck converter 2. hours 19. Closed loop control of buck converter 2. hours 19. Closed loop control of buck converter 2. hours 19. Closed loop control of buck converter 2. hours 19. Closed loop control of buck converter 2. hours 19. Closed loop control of buck converter 2. hours 19. Closed loop control of buck converter 2. hours 19. Closed loop control of buck converter 2. hours 19. Closed loop control of buck converter 2. hours 19. Closed loop control of buck converter 2. hours 19. Closed loop control of buck converter 30 hours 19. Closed loop control of buck converter 30 hours 19. Closed loop control of buck converter 30 hours 19. Closed loop control of buck converter 30 hours 19. Closed loop control of buck converter 30 hours 19. Closed loop control of buck converter 30 hours 19. Closed loop control of buck converter 30 hours 19. Closed loop control of buck 20 hours 30 hours 19. Closed loop control of buck 30 hou	Mode of Ex	valuation: CAT / Assignma	nt / Ouiz / FAT			- It Hours	
2. Single phase two quadrant AC-DC rectifier 2 hours 3. Two quadrant high power AC-DC rectifier 2 hours 4. Step-up chopper with R, RL loads 2 hours 5. Converter for battery charging in PV systems 2 hours 6. Buck-Boost converter 2 hours 7. Interleaved boost converter 2 hours 8. Interleaved buck converter 2 hours 9. Home UPS 2 hours 10. Three phase inverter operating under 120 °and 180 ° modes 2 hours 11. Fan regulators and light dimmers 2 hours 12. Three phase AC-AC voltage regulator with R, RL loads 2 hours 13. Single phase Step up cycloconverter 2 hours 14. Single phase Step down cycloconverter 2 hours 15. Diode clamped multilevel inverter 2 hours 16. Flying capacitor multilevel inverter 2 hours 17. Cascade type multilevel inverter 2 hours 18. Closed loop control of boost converter 2 hours 19. Closed loop control of bouck converter 2 hours 20. Power factor correction using buck-boost converter 2 hours 21. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 22. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2 Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017.							
3. Two quadrant high power AC-DC rectifier 4. Step-up chopper with R, RL loads 5. Converter for battery charging in PV systems 6. Buck-Boost converter 2 hours 7. Interleaved boost converter 2 hours 8. Interleaved buck converter 2 hours 9. Home UPS 2 hours 10. Three phase inverter operating under 120 °and 180 ° modes 2 hours 11. Fan regulators and light dimmers 2 hours 12. Three phase AC-AC voltage regulator with R, RL loads 2 hours 13. Single phase Step up cycloconverter 2 hours 14. Single phase Step up cycloconverter 2 hours 15. Diode clamped multilevel inverter 2 hours 16. Flying capacitor multilevel inverter 2 hours 17. Cascade type multilevel inverter 2 hours 18. Closed loop control of boost converter 2 hours 19. Closed loop control of boost converter 2 hours 20. Power factor correction using buck-boost converter 2 hours 19. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics - Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016							
4. Step-up chopper with R, RL loads 5. Converter for battery charging in PV systems 6. Buck-Boost converter 7. Interleaved boost converter 8. Interleaved buck converter 9. Home UPS 10. Three phase inverter operating under 120 °and 180 ° modes 11. Fan regulators and light dimmers 12. Three phase AC-AC voltage regulator with R, RL loads 13. Single phase Step up cycloconverter 14. Single phase Step down cycloconverter 15. Diode clamped multilevel inverter 16. Flying capacitor multilevel inverter 17. Cascade type multilevel inverter 18. Closed loop control of boost converter 19. Closed loop control of buck converter 20. Power factor correction using buck-boost converter 21. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016		<u> </u>					
5. Converter for battery charging in PV systems 2 hours 6. Buck-Boost converter 2 hours 7. Interleaved boost converter 2 hours 8. Interleaved buck converter 2 hours 9. Home UPS 2 hours 10. Three phase inverter operating under 120 °and 180 ° modes 2 hours 11. Fan regulators and light dimmers 2 hours 12. Three phase AC-AC voltage regulator with R, RL loads 2 hours 13. Single phase Step up cycloconverter 2 hours 14. Single phase Step down cycloconverter 2 hours 15. Diode clamped multilevel inverter 2 hours 16. Flying capacitor multilevel inverter 2 hours 17. Cascade type multilevel inverter 2 hours 18. Closed loop control of boost converter 2 hours 19. Closed loop control of buck converter 2 hours 20. Power factor correction using buck-boost converter 2 hours Total Laboratory Hours Text Book(s) 1. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016				er			
6. Buck-Boost converter 2 hours 7. Interleaved boost converter 2 hours 8. Interleaved buck converter 2 hours 9. Home UPS 2 hours 10. Three phase inverter operating under 120 °and 180 ° modes 2 hours 11. Fan regulators and light dimmers 2 hours 12. Three phase AC-AC voltage regulator with R, RL loads 2 hours 13. Single phase Step up cycloconverter 2 hours 14. Single phase Step down cycloconverter 2 hours 15. Diode clamped multilevel inverter 2 hours 16. Flying capacitor multilevel inverter 2 hours 17. Cascade type multilevel inverter 2 hours 18. Closed loop control of boost converter 2 hours 19. Closed loop control of buck converter 2 hours 20. Power factor correction using buck-boost converter 2 hours Total Laboratory Hours Text Book(s) 1. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016					2 hour	S	
7. Interleaved boost converter 2 hours 8. Interleaved buck converter 2 hours 9. Home UPS 2 hours 10. Three phase inverter operating under 120 °and 180 ° modes 2 hours 11. Fan regulators and light dimmers 2 hours 12. Three phase AC-AC voltage regulator with R, RL loads 2 hours 13. Single phase Step up cycloconverter 2 hours 14. Single phase Step down cycloconverter 2 hours 15. Diode clamped multilevel inverter 2 hours 16. Flying capacitor multilevel inverter 2 hours 17. Cascade type multilevel inverter 2 hours 18. Closed loop control of boost converter 2 hours 20. Power factor correction using buck-boost converter 2 hours 20. Power factor correction using buck-boost converter 2 hours Total Laboratory Hours 30 hours Text Book(s) 1. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Pr		Converter for battery cha-	rging in PV syst	ems	2 hour	S	
8. Interleaved buck converter 9. Home UPS 2 hours 10. Three phase inverter operating under 120 °and 180 ° modes 2 hours 11. Fan regulators and light dimmers 2 hours 12. Three phase AC-AC voltage regulator with R, RL loads 2 hours 13. Single phase Step up cycloconverter 2 hours 14. Single phase Step down cycloconverter 2 hours 15. Diode clamped multilevel inverter 2 hours 16. Flying capacitor multilevel inverter 2 hours 17. Cascade type multilevel inverter 2 hours 18. Closed loop control of boost converter 2 hours 19. Closed loop control of buck converter 2 hours 20. Power factor correction using buck-boost converter 20. Power factor correction using buck-boost converter 2 hours 20. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	6.	Buck-Boost converter			2 hour	S	
9. Home UPS 2 hours 10. Three phase inverter operating under 120 °and 180 ° modes 2 hours 11. Fan regulators and light dimmers 2 hours 12. Three phase AC-AC voltage regulator with R, RL loads 2 hours 13. Single phase Step up cycloconverter 2 hours 14. Single phase Step down cycloconverter 2 hours 15. Diode clamped multilevel inverter 2 hours 16. Flying capacitor multilevel inverter 2 hours 17. Cascade type multilevel inverter 2 hours 18. Closed loop control of boost converter 2 hours 19. Closed loop control of buck converter 2 hours 20. Power factor correction using buck-boost converter 2 hours Total Laboratory Hours 30 hours Text Book(s) 1. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	7.	Interleaved boost convert	er		2 hour	S	
10. Three phase inverter operating under 120 °and 180 ° modes 2 hours 11. Fan regulators and light dimmers 2 hours 12. Three phase AC-AC voltage regulator with R, RL loads 2 hours 13. Single phase Step up cycloconverter 2 hours 14. Single phase Step down cycloconverter 2 hours 15. Diode clamped multilevel inverter 2 hours 16. Flying capacitor multilevel inverter 2 hours 17. Cascade type multilevel inverter 2 hours 18. Closed loop control of boost converter 2 hours 19. Closed loop control of buck converter 2 hours 20. Power factor correction using buck-boost converter 2 hours Total Laboratory Hours 30 hours Text Book(s) 1. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics − Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	8.	Interleaved buck converte	er		2 hour	S	
11. Fan regulators and light dimmers 12. Three phase AC-AC voltage regulator with R, RL loads 13. Single phase Step up cycloconverter 14. Single phase Step down cycloconverter 15. Diode clamped multilevel inverter 16. Flying capacitor multilevel inverter 17. Cascade type multilevel inverter 18. Closed loop control of boost converter 19. Closed loop control of buck converter 20. Power factor correction using buck-boost converter 21. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	9.	Home UPS			2 hour	S	
11.Fan regulators and light dimmers2 hours12.Three phase AC-AC voltage regulator with R, RL loads2 hours13.Single phase Step up cycloconverter2 hours14.Single phase Step down cycloconverter2 hours15.Diode clamped multilevel inverter2 hours16.Flying capacitor multilevel inverter2 hours17.Cascade type multilevel inverter2 hours18.Closed loop control of boost converter2 hours19.Closed loop control of buck converter2 hours20.Power factor correction using buck-boost converter2 hoursTotal Laboratory Hours30 hoursText Book(s)1.Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013.2.William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004.Reference Books1.Joseph Vithayathil, "Power Electronics - Principles and Applications", Tata McGraw-Hill edition, 2010.2.Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017.Recommended by Board of Studies	10.	Three phase inverter oper	rating under 120	°and 180 ° mode	s 2 hour	S	
13. Single phase Step up cycloconverter 14. Single phase Step down cycloconverter 15. Diode clamped multilevel inverter 16. Flying capacitor multilevel inverter 17. Cascade type multilevel inverter 18. Closed loop control of boost converter 19. Closed loop control of buck converter 20. Power factor correction using buck-boost converter 2 hours Total Laboratory Hours Text Book(s) 1. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	11.					S	
14. Single phase Step down cycloconverter 15. Diode clamped multilevel inverter 16. Flying capacitor multilevel inverter 17. Cascade type multilevel inverter 18. Closed loop control of boost converter 19. Closed loop control of buck converter 20. Power factor correction using buck-boost converter 21. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	12.	Three phase AC-AC volt	age regulator wi	th R, RL loads	2 hour	S	
14. Single phase Step down cycloconverter 15. Diode clamped multilevel inverter 16. Flying capacitor multilevel inverter 17. Cascade type multilevel inverter 18. Closed loop control of boost converter 19. Closed loop control of buck converter 20. Power factor correction using buck-boost converter 21. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	13.	-	<u> </u>		2 hour	S	
15. Diode clamped multilevel inverter 16. Flying capacitor multilevel inverter 17. Cascade type multilevel inverter 18. Closed loop control of boost converter 19. Closed loop control of buck converter 20. Power factor correction using buck-boost converter 21 hours 22 hours 23 hours 24 hours 25 hours 26. Power factor correction using buck-boost converter 27 hours 28 hours 29 hours 20. Power factor correction using buck-boost converter 29 hours Total Laboratory Hours 30 hours Text Book(s) 1. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	14.	<u> </u>			2 hour	S	
16. Flying capacitor multilevel inverter 2 hours 17. Cascade type multilevel inverter 2 hours 18. Closed loop control of boost converter 2 hours 19. Closed loop control of buck converter 2 hours 20. Power factor correction using buck-boost converter 2 hours Total Laboratory Hours 30 hours Text Book(s) 1. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	15.		•		2 hour	S	
17. Cascade type multilevel inverter 2 hours 18. Closed loop control of book converter 19. Closed loop control of buck converter 2 hours 20. Power factor correction using buck-boost converter 2 hours Total Laboratory Hours 30 hours Text Book(s) 1. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics − Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	16.				2 hour	S	
1. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	17.				2 hour	S	
1. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	18.	Closed loop control of bo	ost converter		2 hour	S	
Total Laboratory Hours Total Laboratory Hours Text Book(s) 1. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics − Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	19.				2 hour	S	
Text Book(s) 1. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	20.			converter	2 hour	S	
Text Book(s) 1. Rashid M.H., "Power Electronics-Circuits, Devices and Applications", Prentice HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016			_		ırs 30 hou	ırs	
HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	Text Book	<u>(s)</u>		·	-		
HallIndia, New Delhi, 2013. 2. William Shepherd and Li Zhang, "Power Converter Circuits", Marcel Dekker Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016			ectronics-Circuit	s, Devices and A	Applications	", Prentice	
Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016							
Inc, New York, 2004. Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	2.	William Shepherd and I	i Zhang, "Powe	er Converter Circ	cuits", Mar	cel Dekker	
Reference Books 1. Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016		_	<u> </u>				
 Joseph Vithayathil, "Power Electronics – Principles and Applications", Tata McGraw-Hill edition, 2010. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016 	Reference						
McGraw-Hill edition, 2010. 2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016			wer Electronics	- Principles and	d Applicati	ons", Tata	
2. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", John Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016				•			
Wiley & Sons, 2017. Recommended by Board of Studies 05/03/2016	2.			er Converters ar	nd AC Dri	ves", John	
Recommended by Board of Studies 05/03/2016			, C			•	
	Recommen		05/03/2016				
				Date	18/03/2016	Ó	

			-	u	
	3	0	0	0	3
Pre-requisite NIL	Sylla	bus	s v	ers	ion
Anti-requisite NIL				v.	1.0

Course Objectives:

- 1. To provide knowledge about the fundamentals of magnetic circuits, energy, force and torque of multi-excited systems.
- 2. To introduce the concepts of mathematical modelling of electrical machines.
- 3. To provide the knowledge of theory of transformation of three phase variables to two phase variables.
- 4. To analyze the steady state and dynamic state operation of induction machine and synchronous through mathematical modeling.

Expected Course Outcome:

- 1. Interpret the machine in steady state
- 2. Interpret the machine dynamics
- 3. Analyze the electrical machine equivalent circuit parameters and modeling of electrical machines.
- 4. Develop the mathematical model of electro mechanical energy conversion system
- 5. Develop the mathematical model of special machine
- 6. Explain the various electrical parameters in mathematical form.
- 7. Summarize the different types of reference frame theories and transformation relationships.

Module:1 Energy in Magnetic System: 5 hours

Single and multiple excited systems - Field energy - co-energy and mechanical force - electromechanical energy conversion - single and multiple excited systems - torque and force expression

Module:2 Linear Transformation: 5 hours

Kron's theory - transformation from three phase to two phase - transformation from rotating axes to stationary axes-Park's Transformation - Physical Interpretation.

5 hours

9 hours

Module:3 Reference Frame Theory:

Reference frame theory - transformation between reference frames - stationary circuit variable transformation - steady state voltage equation.

Module:4 3-phase induction motor:

Voltage and torque equation: machine variables - arbitrary reference frame and rotor reference frames - steady state operation - dynamic model - operations of induction motor with non- sinusoidal supply waveforms - simulation of arbitrary reference frame and linearised model.

Module:5 2- Phase Induction motor: 5 hours

Voltage and torque equation: machine variables - arbitrary reference frame and rotor reference frames- steady state operation - dynamic model - operations of induction motor with non- sinusoidal supply waveforms - simulation of arbitrary reference frame and linearised model

Module:6 Synchronous Machine: 8 hours

Reactance of synchronous machine - time constants of synchronous machine - voltage and torque

equation: Machine variables - arbitrary reference frame and rotor reference frames park's equation - dynamic model of synchronous machine - effects of magnetic saturation simulation of linearised model.

model	•						
Module	e:7	Special Machine Modelin	g:				6 hours
Steady-	state	and dynamic model: Perma	nent magnet synd	chrono	ous m	achine -	BLDC motor-Steady-
state and dynamic model of switched reluctance motor.							
Modul	e:8	Contemporary issues:					2 hours
			Total Lecture h	ours:	45 ł	nours	
Text B	ook(s)					
1.	Fitz	gerald A. E., Kingsley and U	Jmans, "Electric N	Machin	nery",	McGraw	-Hill Book Company,
	7 th e	dition, 2013.					
2.	P.C.	Krause, Oleg Wasynczuk ar	nd Scoot D. Sudh	off, "A	naly	sis of Ele	ctrical Machinery and
	Driv	res System", IEEE Press, 201	13.		-		·
Refere	nce B	ooks					
1.	P. S	. Bimbhra, "Generalized The	eory of Electrical	Machi	nes",	Khanna I	Publishers, 2013.
Recom	mende	ed by Board of Studies	05/03/2016				
Approv	ed by	Academic Council	40 th AC	Date		18/03/20	16

EEE5703	Advanced Processors for Power Converters	L	T	PJ	C
		3	0	2 0	4
Pre-requisite	NIL	Sylla	bus	ver	sion
Anti-requisite	NIL			V.	1.0
0 01 4					

Course Objectives:

- 1. Introducing ARM Processor and DSP controller
- 2. Overview of resources available in ARM Processor and DSP-controller
- 3. Overview of programming frame work, software building blocks and Interrupt structures, Event manager, and compare unit
- 4. To design control circuits for power converters

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Describe the architecture of ARM processor
- 2. Use the Timers and PWM to generate triggering pulses for power electronic circuits
- 3. Experiment with the exceptions of ARM processor to vary the triggering pulses for power electronic circuits
- 4. Apply digital signal processing in ARM processor
- 5. Explain the architecture of DSP processor
- 6. Experiment with the peripherals of DSP processor for power electronics applications
- 7. Experiment with the DSP processor for real time power electronic problems
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 ARM Processors: 4 hours

Arm processor architecture and pipelining –programmer's model –data paths and instruction decoding –ARM instruction set –addressing modes – General Purpose Input and Output (GPIO) - Analog to Digital Converter – Digital to Analog Converter – Simple programming

Module:2 Timers and PWM:

6 hours

Different modes of operation of Timers - Match Registers - Generation of PWM using Compare registers - Capture Control - Single and Double Edge Controlled PWM - programming

Module:3 Exception and Interrupt Handling:

6 hours

Exception handling overview – Interrupts – Interrupt Handling Schemes – Utility of interrupts in closed loop control of a real time system - programming - Advanced Microcontroller Bus architecture.

Module:4 | Digital Signal Processing with ARM:

6 hours

Representing a Digital Signal – Introduction to DSP on the ARM – Industry needs from the digital implementation perspective on the processors.

Module:5 Digital Signal Processor:

6 hours

Basic architecture - System configuration registers - Memory addressing mode - Interrupt handling - Instruction set - Programming Concepts - Simple programs.

Module:6 | Peripherals of DSP:

8 hours

General purpose Input/Output (GPIO) Functionality- Utilization of GPIO in PWM signal generation - Interrupts - A/D converter – Event Managers (EVA, EVB) - PWM signal generation for single phase inverter.

Mod	lule:7	Case Studies using ARM a	and DSP:					7 hours
Cont	rol of D	C-DC converters- Inverters	control (PWM, S ₁	pace ve	ector	PWM) -	-ac to dc	converters –
cyclo	oconvert	ers – Closed loop control con	cepts					
Mod	lule:8	Lecture by industry expe	rts.					2 hours
			Total Lecture ho	ours:	45 ł	ours		
Mod	e of Eva	luation: CAT / Assignment /	Quiz / FAT / Proje	ect / Se	emin	ar	•	
1.	Contro	signal for obtaining variable	duty cycle.					2 hours
2. Obtaining pulse width modulated signal from a saw tooth and DC signal.								2 hours
3.	Process	sor based control of a single p	hase half-wave co	ntrolle	ed co	nverter		2 hours
4.	Single	phase single quadrant DC-DO	C converter and its	contro	ol.			2 hours
5.	Contro	of a single phase single quad	drant bridge type A	AC-DC	con	verter.		2 hours
6.	Single	phase two quadrant AC-DC c	converter controlle	d throu	ıgh A	ARM prod	cessor.	2 hours
7.	High po	ower single quadrant bridge t	ype AC-DC conve	erter an	ıd its	control		2 hours
8.	Contro	l of a High power two quadra	nt bridge type AC	-DC co	onve	rter.		2 hours
9.	ARM p	processor based control of a re	esidential UPS.					2 hours
10.	Digital	control of high power industr	rial inverter.					2 hours
11.		of three phase AC voltage c						2 hours
12.		phase step down cycloconver						2 hours
13.		control of single quadrant DC						2 hours
14.		sed implementation of PWM						2 hours
15.		of single phase half controll						2 hours
16.	Contro	of chopper circuit in TRC ar	nd variable freque	ncy me	ethod			2 hours
				Tot	al L	aborator	y Hours	30 hours
	Book(s)							
1.		rew N.Sloss, Dominic Symes						
2		gning and Optimizing System						
2.		nid A. Toliyat, Steven Campb s, New York, Washington Do		iectron	nech	anical mo	tion conti	roi", CRC
Rofo	rence B		., 2012.					
1.		Gibson "ARM Assembly La	nguage – an Introd	luction	" Se	cond Edit	ion lulu	com
1.		ishers 2011.	iigaage aii iiitiOC	.uv.11011	. 50	cona Dan	ion, luiu.	C C 111
Reco	1	ed by Board of Studies	05/03/2016					
		Academic Council	40 th AC	Date		18/03/20	16	
rr'	1 3			,			-	

EEE5704	Switched Mode Power Supplies	L	T	P	J	C
		2	0	0	0	2
Pre-requisite	NIL	Syll	abu	IS V	ers	ion
Anti-requisite	NIL				v.	1.0

Course Objectives:

- 1. To acquire knowledge on switch mode power conversion concepts
- 2. Design and Development of appropriate switched mode power supplies for particular application

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Analyse different non isolated DC-DC converters for steady-state operation.
- 2. Develop circuit models for different dc –dc converters
- 3. Compare isolated and non-isolated dc-dc converters
- 4. Design magnetic components of dc-dc converters
- 5. Build dynamic and small signal model of switched mode power converters.
- 6. Apply soft-switching techniques to DC-DC converter to reduce switching power loss.
- 7. Select suitable switched mode power converters for particular application

Module:1	Steady state converter analysis	5 hours
Buck, Boost	Buck – Boost and Cuk Converters (CCM &DCM)	
Module:2	Equivalent circuit modelling, losses, and efficiency	5 hours
Buck, Boost	and Buck – Boost Converters	
Module:3	Isolated converters	4 hours
Significance	of an isolated converters – Forward Converter - Fly-back Converter - Ha	lf and full
bridge Conv	erter	
Module:4	Magnetic circuit Design	4 hours
Selection of	inductor - Design of high frequency Inductor and transformer	
Module:5	Dynamic Analysis and Control of Switching Converters	5 hours
Module:5	Dynamic Analysis and Control of Switching Converters	5 Hours
AC equivale	ent circuit modelling of converters- dynamic equation of buck & boost cor	nverters -Small -
AC equivale		nverters -Small -
AC equivale	ent circuit modelling of converters- dynamic equation of buck & boost cor	nverters -Small -
AC equivale signal mode Module:6	ent circuit modelling of converters- dynamic equation of buck & boost cor l & converter transfer functions -Control of converters- voltage & current	nverters -Small - mode control
AC equivale signal mode Module:6 Classificatio	ent circuit modelling of converters- dynamic equation of buck & boost corl & converter transfer functions -Control of converters- voltage & current Resonant Converters	nverters -Small - mode control
AC equivale signal mode Module:6 Classificatio	ent circuit modelling of converters- dynamic equation of buck & boost cord & converter transfer functions -Control of converters- voltage & current Resonant Converters on - Series resonant circuit-parallel resonant circuits - Resonant switches -	nverters -Small - mode control
AC equivale signal mode Module:6 Classificatio	ent circuit modelling of converters- dynamic equation of buck & boost cord & converter transfer functions -Control of converters- voltage & current Resonant Converters on - Series resonant circuit-parallel resonant circuits - Resonant switches -	nverters -Small - mode control
AC equivale signal mode. Module:6 Classificatio switching an Module:7	ent circuit modelling of converters- dynamic equation of buck & boost cord & converter transfer functions -Control of converters- voltage & current Resonant Converters on - Series resonant circuit-parallel resonant circuits - Resonant switches - ad Zero current switching	nverters -Small - mode control 3 hours Zero voltage 2 hours
AC equivale signal mode. Module:6 Classificatio switching an Module:7 Power Factor	ent circuit modelling of converters- dynamic equation of buck & boost cor l & converter transfer functions -Control of converters- voltage & current Resonant Converters on - Series resonant circuit-parallel resonant circuits - Resonant switches and Zero current switching Applications	nverters -Small - mode control 3 hours Zero voltage 2 hours
AC equivale signal mode. Module:6 Classificatio switching an Module:7 Power Factor	ent circuit modelling of converters- dynamic equation of buck & boost cord & converter transfer functions -Control of converters- voltage & current Resonant Converters	nverters -Small - mode control 3 hours Zero voltage 2 hours
AC equivale signal mode. Module:6 Classificatio switching an Module:7 Power Factor	ent circuit modelling of converters- dynamic equation of buck & boost cord & converter transfer functions -Control of converters- voltage & current Resonant Converters	3 hours Zero voltage
AC equivale signal mode. Module:6 Classificatio switching an Module:7 Power Factor Portable Ele	ent circuit modelling of converters- dynamic equation of buck & boost cor l & converter transfer functions -Control of converters- voltage & current Resonant Converters on - Series resonant circuit-parallel resonant circuits - Resonant switches - ad Zero current switching Applications or Correction in Switching Power Supplies – Low Input SMPS for Laptop ctronic devices	3 hours Zero voltage 2 hours Computers and

1.	Robert W. Erickson and Dragan Maksimovic, "Fundamentals of Power Electronics",						
	Springer, reprint	of the original 2	2nd edition, 2012.	i			
2.	Simon Ang, Alej	Simon Ang, Alejandro Oliva, "Power-Switching Converters", CRC Press, Vol. No., 3rd					
	Edition, 2010.						
Referen	Reference Books						
1.	Philip T Krein, "	Elements of Pov	wer Electronics ",	Oxford Ur	niversity Press, 2nd Edition,		
	2012.						
2.	Ned Mohan, Und	deland and Robb	oin, "Power Electr	onics: con	verters, Application and		
	design" John Wi	ley & sons, repr	int, 2013.				
Mode o	of Evaluation:	CAT I & II – 3	0%, DA – 10%, Q	uiz-I & II	- 20%, FAT - 40%		
Recomi	Recommended by Board of Studies 16-08-2017						
Approv	ed by Academic C	47 th AC	Date	05/10/2017			

EEE6001	Power Electronics Applications in Power Systems		L	T	P	J	C
			2	0	0	4	3
Pre-requisite	EEE5001	Sy	lla	bu	s v	ers	ion
Anti-requisite	NIL					v.	1.0
Course Objectives	•						

- 1. To impart in-depth knowledge of reactive power control, system compensation, application of FACTS controllers and power electronics applications in HVDC transmission.
- 2. To bring out the importance of flexible AC transmission systems and controllers.
- 3. To explain the concept of stability and their effects

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Apply the concept of load compensation and reactive power control to AC power system
- 2. Summarize the operation of Shunt connected FACTS devices
- 3. Differentiate between the series and shunt connected FACTS controllers
- 4. Modeling and simulation various FACTS controllers for power transmission
- 5. Illustrate the effect of the presence of multiple FACTS controllers in a network
- 6. Describe the application of FACTS controllers to damp oscillation
- 7. Apply various control techniques to HVDC transmission
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Reactive Power Control:

4 hours

Steady state and dynamic problems in AC systems- Theory of Load compensation- Principles of shunt and series compensation - Power factor correction- Voltage regulation and Phase balancing.

Module:2 Shunt devices:

5 hours

Introduction to Flexible AC transmission systems (FACTS), Thyristor switched capacitors (TSC), Thyristor Controlled Reactors (TCR) - Static Var Compensators (SVC) - Static Synchronous compensator (STATCOM).

Module:3 | Series Devices:

3 hours

Thyristor Controlled series compensators (TCSC), Static synchronous series compensator (SSSC).

Module:4 | **Modelling and Analysis of FACTS devices:**

5 hours

Mathematical Modelling of FACTS devices (SVC, SSSC, TCSC, STATCOM and Unified power flow controller (UPFC)) - Case Studies.

Module:5 Co-ordination of FACTS Controllers:

4 hours

Control strategies to improve system stability - Co-ordination of FACTS controllers

Module:6 Application of FACTS devices:

3 hours

Subsynchronous resonance, Damping oscillations, Transient stability and voltage stability

Module:7 HVDC Transmission:

4 hours

Introduction to HVDC Transmission, Comparison AC and DC Transmission systems, HVDC

configurations - components of HVDC system -HVDC system Control, modern HVDC systems, HVDC Installations in India.

Module:8	Contemporary issues:				2 hours
			Total I	Lecture hours:	30 hours
Mode of Eva	aluation: CAT / Assignment	Quiz / FAT / Pro	ject / Semi	nar	
			List of P	rojects	
1. E	Effect of Reactive power com	pensation in trans	mission lin	es	
2. P	ower factor improvement wi	th capacitors			
3. V	Oltage regulation using com	pensation			
4. L	oad balancing in power syste	em network using	compensat	cors	
5. A	application of SVC for voltag	ge profile improve	ment		
	application of STATCOM fo	r voltage profile in	nprovemer	nt	
	imulation of TCSC				
	Application of UPFC in powe				
	imulation of STATCOM wit		odels		
	imulation of UPFC with mat				
	Case studies with FACTS dev				
	oad flow incorporating SVC				
	oad flow incorporating STA				
	imulation of HVDC systems				
	application of FACTS devices in	n power flow impro	vement		
Text Book(s	/				
	ain Hingorani &Lazzlo Gy	•	_	S. Concepts & T	Sechnology of
	CTS", Standard publishers &				
	han Mathur, Rajiv.K.Varm	=		TS Controllers	for Electrical
Tra	nsmission systems" John W	iley and Sons, 20	11.		
Reference E	Books				
1. T.J.	E Miller "Reactive Power Co	ontrol in Electric s	ystem" Jol	nn Wiley & Sons,	NY, 2010.
2. Enr	ique Acha, Claudio R. Fuer	te-Esquivel, Hugo	Ambriz-	Pérez, "FACTS: N	Modelling and
Sim	nulation in Power Networks",	John Wiley, 2011	l.		
3. K.R	R.Padiyar, "HVDC Power Tra	ansmission Systen	ıs", New A	cademic Science,	2011.
	led by Board of Studies	05/03/2016		<u> </u>	
Approved by	y Academic Council	40 th AC	Date	18/03/2016	

EEE (040	and and seed of	Vellore Institute of T	3 of UGC Act,	1956)	
EEE6010		Industrial Electric	al Driv	es	L T P J C
Pre-requisite	e EEE 5001,EEI	F 5002			2 0 2 0 3 Syllabus version
Anti-requisit		2 3002			v. 1.0
Course Obje					V. 1.0
	ce basic concepts of loa	d and drive interaction	n spee	d control conce	ents of ac and dc
	reversal, regenerative b		-		opts of ac and ac
	ourse Outcome:	runing aspects, desig	,111100110	оченову	
	letion of this course the	student will be able t			
_	he fundamental concept				
	e suitable power conver		based o	n requirement.	
•	e different types of DC			•	
4. Categorise	the AC drives and diffe	erentiate from DC dri	ves.		
	calar and vector control				
	e standards for EMI and		_		
	nd an option for energy	_			
8. Design and	d Conduct experiments,	as well as analyse an	d interp	ret data	
Module:1	Introduction to Elect	rio Drivos:			3 hours
	s of Electric Drive dyr		Potor Po	wer and Tora	
	Conditions-Speed Control			_	
	or Heating and Thermal		101018-N	keversing-rorq	ue Control-Dynamic
Module:2	Sizing and Selection	<u>-</u>			4 hours
	erters-Converters with		t_Inverte	er Modulation	
	Motor Specification-C				•
Energy.	Wotor Specification-C	verioad Capacity-C	Ontion 1	Kange-Deraum	g lactor-regenerative
Module:3	Control of DC Drives	•			5 hours
	methods of DC moto		ole nha	se and three	
	quadrant operation-Cho				
	C Drives-Design of cont		5 Diakii	ng and speed	reversur crosed 100p
Module:4	Scalar Control of AC				4 hours
	ol with Compensation		Voltag	e Vector Con	
Legislations.	or with compensation	Serve Control	, ortag	,0 ,00001 001.	Wild Stairdards and
Module:5	Vector Control of AC	C Drives:			5 hours
	Control-Flux Vector C		e contro	l – Sensor less	
Module:6	EMC and Interference				3 hours
	EMC- EMC for Power	Converters- Groun	ding ar	nd Shielding-H	
	eduction Methods- Mit				
Module:7	Energy Saving in Ele				4 hours
Classification	n of Energy Efficiency		otor sta	rting and conti	rol- Load over Time -
	with Variable and Co			•	
Regenerated	Power	_	-		-
Module:8	Contemporary issues	•			2 hours
		Total Lecture	hours:	30 hours	
					l

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

	(Deeme	ed to be University under section 3 of	UGC Act, 1956)				
List	of Challenging Experiments (Indic	cative)					
1.	Speed control of Induction Motor D	Prive using V/F Co	ntrol		2 hours		
2.	Speed control of Induction Motor D	Prive using VVC			2 hours		
3.	Speed control of Induction Motor D	Prive using Flux So	ensor less	Control	2 hours		
4.	Dynamic braking of Induction Motor	or Drive			2 hours		
5.	Induction motor Equivalent circuit	parameters estima	tion and fo	ormation	2 hours		
6.	AC Drive Load test using coupled r	notor-generator se	tup		2 hours		
7.	Speed Control of DC Drive				2 hours		
8.	Speed Control of Switched Relucta	nce Motor (SRM)	Drive		2 hours		
9.	Different Control Techniques of Servo Drive 2 hours						
10.	Speed Control of Slip Ring Induction	on motor (SRIM)			2 hours		
11.	Speed Control of Permanent Magne (PMBLDC)	et Brushless Direct	Current I	Drive	2 hours		
12.	Speed Control of Permanent Magne	et Synchronous Mo	otor Drive	(PMSM)	2 hours		
13.	Speed Control of Synchronous mot	or drive using V/F	control		2 hours		
14.	Speed Control of Synchronous mot	or drive using flux	sensor les	ss control	2 hours		
15.	Speed Control of synchronous drive	e using PI/PID Cor	ntroller		2 hours		
16.	Velocity Control of Linear Induction	n Motor Drive			2 hours		
17.	Performance Estimation of Induction	on Motor Drive thr	ough Mul	ti-Level	2 hours		
	Inverter						
18.	Performance Estimation of Induction	on Motor Drive the	ough Mat	rix Converter	2 hours		
		T	otal Labo	ratory Hours	30 hours		
Text	Book(s)						
1.	Bimal K Bose, "Modern Power						
2.	R. Krishnan, "Electric Motor Dr	ives- Modeling, A	nalysis an	d Control", Pre	ntice Hall Inc.,		
	2008.						
Refe	rence Books						
1.	Danfoss Handbook on VLT Free	quency Converters	, "Facts W	orth Knowing	about		
	Frequency Converters", PE-MSN						
2.	Gopal K dubey, "Fundamentals	of Electrical Drive	s", CRC I	Press, Second E	dition, 2015		
3.	Werner Leonard, "Control of Ele	ectric Drives", Spr	inger Verl	ag, 2012.			
4.	Haitham Abu-Rub, Atif Iqbal, Ja		_		rol of AC		
	Drives with Matlab/Simulink Models", John Wiley & sons, 2012.						
	Recommended by Board of Studies 05/03/2016						
App	roved by Academic Council	40 th AC	Date	18/03/2016			

EEE5005	Advanced Semiconductor Devices		T	PJ	C
		3	0	0 0	3
Pre-requisite	NIL	Syllabus version			
Anti-requisite	NIL	v. 1.0			

Course Objectives:

- 1. To select appropriate devices based on the application requirements.
- 2. Understand the problems associated with the PE circuits and design protection circuits to overcome these problems.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Categorize power electronic switches based on its rating and appropriate device selection suitable for application
- 2. Examine and Classify power diodes based on its switching characteristics
- 3. Summarize the current controlled devices and synthesize power transistor by building its dynamic model.
- 4. Select the thyristor suitable for different power ratings and applications.
- 5. Recognize the voltage controlled devices with emphasis on device paralleling and series operation.
- 6. Examine and Classify emerging power semiconductor devices.
- 7. Design appropriate protection circuits to overcome problems associated with power electronic circuits.

Module:1 Introduction: 6 hours

Power switching devices overview – Attributes of an ideal switch, application requirements, circuit symbols; Power handling capability – (SOA); Device selection strategy – On-state and switching losses – EMI due to switching.

Module:2 Power diodes: 5 hours

Structure, operating principle, switching characteristics, types, forward and reverse characteristics, Safe Operating Area (SOA).

Module:3 Power Transistors: 6 hours

Construction, static characteristics, physics of operation, switching characteristics; Negative temperature co-efficient and secondary breakdown – Power Darlington- Safe operating regions. dynamic models of BJT

Module:4 Power Thyristors: 6 hours

Physics of operation, Two transistor analogy – concept of latching; Gate and switching characteristics; converter grade and inverter grade and other types; series and parallel operation—comparison of BJT and Thyristor – steady state and dynamic models of Thyristor.

Module:5	Power MOSFETs and IGBTs:	7 hours				
Principle of	voltage controlled devices, construction, types, s	static and switching characteristics,				
steady state and dynamic models of MOSFET and IGBTs.						

Module:6 Emerging Power Devices: 7 hours

Basics of G	TO, MCT, FCT,	RCT and	IGCT.	Smart	power	devices,	Intelligent	Power	Modules.
Silicon Carbi	ide Devices.								
Module:7	Gate Driving ar	nd Protecti	ion:						6 hours

Necessity of isolation, pulse transformer, opto-coupler – Gate drives circuit for MOSFETs and IGBTs; Design of snubbers–guidance for heat sink selection, heat sink types and design – Mounting types.

Mod	dule:8	Contemporary issues:				2 hours			
			Total Lecture ho	ours: 45	hours				
Text	Text Book(s)								
1.	Ned M	ohan, Tore M. Undeland, "I	Power Electronics	- Conve	rters, Appl	ications and Design",			
	John W	iley & Sons, 2008.							
2.	Rashid	M.H., "Power Electronics:	Circuits, Devices	and App	olications '	", Pearson Education,			
	June 20	13.							
Refe	erence B	ooks							
1.	Robert	Perret, "Power Electronics S	Semiconductor Dev	vices", Jol	nn Wiley &	Sons,2010.			
2.	Joseph	Vithayathil, 'Power Electro	onics Principles a	nd Appli	cations', T	ata McGraw-Hill 1st			
	edition, 2010.								
Reco	ommende	ed by Board of Studies	05/03/2016						
App	Approved by Academic Council 40 th AC Date 18/03/2016								

Pre-requisite NIL Syllabus version NIL Syllabus version NIL Syllabus version NIL	EEE5006	Integrated Circuits for Power Conversion	L	T	P	J	C
			2	0	2	0	3
Anti-requisite NII.	Pre-requisite	NIL	Sylla	bus	s ve	ers	ion
The requisite THE	Anti-requisite	NIL				v.	1.1

Module:6

Power Supply ICs:

- 1. Enhancing the basic understanding of the using analog circuits related to the analysis of PWM techniques for power converters
- 2. Imparting experimental design thinking capability in relation to using various PWM techniques in power converter application circuits
- 3. Extrapolating the design thinking skills to real-time sensors

Expected Course Outcomes:

On the completion of this course the student will be able to:

- 1. Apply the acquired knowledge in the design of the various PWM technique circuits using operational amplifiers
- 2. Study of the voltage sensor and current sensor circuits for dc and ac application circuits
- 3. Analyze the 555 Timer Astable circuits, VCO and PLL circuits.
- 4. Explain the concepts and of 8 bit DAC and ADC circuits using op-amp.
- 5. Outline of the knowledge in gate pulse generation for high-frequency converters.
- 6. Design of the IC voltage regulators circuit for low power real-time applications.
- 7. Develop the opto driver circuits for MOSFET with 1:N isolation transformer.
- 8. Design and Conduct experiments, as well as analyze and interpret data.

Module:1	Op Amp circuits for High-frequency power converters:	6 hours			
Introduction to Op-Amp – Linear and Non-Linear applications. Trailing edge, leading edge, and					
double edge	carrier wave generation – Pulse width modulation for power converter	rs-Practical design			
problems.		_			
Module:2	Sensor interfaces for power converters:	3 hours			
Design of Si	gnal Gain for AC/DC Voltage and current sensors - practical applicat	ion circuits with dc			
to dc and dc	to ac converters.				
Module:3	PLL and 555 Timer circuits for power converters:	5 hours			
Voltage con	trolled oscillator, Phase locked loop (PLL) and synchronization	Methods for Grid			
interfaced co	nverters - Practical circuit using PLL IC. 555 Timer based application	circuits			
Module:4	Mixed-signal circuits for power converters:	4 hours			
Generation of PWM for closed loop power converters using analog and digital Integrated circuits -					
Operation of various ADC and DACs – Practical application circuits.					
Module:5	Switched Mode RF Power Amplifiers:	3 hours			
PWM pulse generation for RF power amplifiers/Resonant converters - Practical circuits.					

4 hours

Linear Voltage Regulator ICs – fixed and variable voltage regulators – protection schemes – switching regulator ICs – practical biasing circuits for analog and digital ICs.

swi	switching regulator ICs – practical biasing circuits for analog and digital ICs.							
	lule:7	High voltage Isolation Interfaces for power conv			3 hours			
	Practical design circuit using high-frequency Opto-driver ICs for high voltage - high power							
conv	erters - (Opto-isolator – biasing circuits with 1:N isolation trans	nsformer.					
Mod	lule:8	Contemporary issues:			2 hours			
		Total Lecture hours:	30 hours					
			1					
Text	Book(s)						
1.	Rob	ert F. Coughlin and Frederick F. Driscoll, "Operation	nal Amplifiers	and l	Linear Integrated			
	Circ	uits", PHI Learning Private Limited, Sixth Edition, 2	015.					
Refe	rence B	ooks						
1.	Rob	ert L. Boylestad and Louis Nashelsky, "Electron	nic Devices a	nd (Circuit Theory",			
	Pren	ntice Hall, Eleventh Edition, 2015.						
2.	Bob	Dobkin, Jim Williams, "Analog Circuit Design: A	Tutorial Guide	e to A	Applications and			
	Solu	ttions", Elsevier Inc, First Edition, 2011.						
Mod	e of Eva	luation: CAT / Assignment / Quiz / FAT / Project / S	eminar					
T int	of Chall	langing Ermaninganta (Indicativa)						
		lenging Experiments (Indicative)	m vaima On A	****	2 hours			
1.	_	and implementation of gate pulses for SΦ inverte		.mp	2 hours			
2		pulse / Multiple pulse / Sinusoidal pulse width modu)	2 h a			
2.	_	and implementation of gate pulses for 3Φ invision and implementation of gate pulses for 3Φ invision pulses (Nultiple pulses / Sinvesidal pulses width	_	<i>J</i> p-	2 hours			
3.		ingle pulse / Multiple pulse / Sinusoidal pulse width and implementation of gate pulse for boost converted to the converted t		mn/	2 hours			
3.	_	mer / ICL 8038 / SG2524	a using Op-Ai	пр/	2 Hours			
4.		and implementation of gate pulse for buck converte	rusing On Am	nn /	2 hours			
4.	_	ner / ICL 8038 / SG2524.	i using Op-An	ıp /	2 Hours			
5.		and implementation of gate pulse for buck-boost co	nvartar using ()n	2 hours			
٥.	_	555 Timer / ICL 8038 / SG2524.	inverter using (<i>J</i> p-	2 Hours			
6.	-	and implementation of gate pulse for sepic converte	rucing On Am	n /	2 hours			
0.	_	mer / ICL 8038 / SG2524.	i using Op-An	1p /	2 Hours			
7.		and implementation of gate pulse for Cuk converted	r using On-Am	nn /	2 hours			
/.	_	mer / ICL 8038 / SG2524.	using Op-An	ъ,	2 Hours			
8.		and implementation of gate pulse for buck / boo	st / buck-boos	st /	2 hours			
0.	_	and implementation of gate purse for buck / bookived converter using AD632 / AD 633.	ost / Duck-DOOS	υ ι /	2 110u15			
9.		and implementation of gate pulse for cuk / sepic /	KY / interleas	ved	2 hours			
<i>)</i> •	_	ter using Op-Amp / 555 Timer / ICL 8038 / SG2524.		, cu	2 110u15			
10.		and implementation of gate pulse for Phase Oppor		ion	2 hours			
10.	_	PWM using Quad Op-Amp.	omon Disposit		_ 110415			
11.		and implementation of gate pulse for Alternative	Phase Opposit	ion	2 hours			
11.	_	ition (APOD) PWM using Quad Op-Amp.	Thuse Opposit	1011	_ 110415			
12.		and implementation of gate pulse for Phase Dispos	sition (PD) PW	VM	2 hours			
14.	Design	and implementation of gate pulse for thase Dispos	nuon(1 D) 1	4 TAT	= Hours			

	using Quad Op-Amp.					
13.	Design and implementation of gat	e pulse for Phas	e Shift PW	/M (PSPWM)	2 hours	
	using Quad Op-Amp.					
14.	Design and implementation of ga	ate pulse for Ca	rrier Overl	apping PWM	2 hours	
	(COPWM) using Quad Op-Amp.					
15.	Design and implementation of gate	pulse for Variabl	e Frequenc	y (VFPWM)	2 hours	
	using Quad Op-Amp.					
	Total Laboratory Hours					
Reco	Recommended by Board of Studies 22/07/2017					
App	roved by Academic Council	47 th AC	Date	05/10/2017		

EEE5007	Intelligent Control		LI	P	J	C
			3 0	0	0	3
Pre-requisite	NIL	Sy	llabı	ıs v	ers	sion
Anti-requisite	NIL				v.	1.1

- 1. Apply neural networks, fuzzy logic and optimization techniques for obtaining improved/desired output(s) from the given power electronic application.
- 2. Apply the design concepts of feed forward and feedback neural networks for power converters
- 3. Formulate and analyze the real time power converters with the knowledge of evolutionary algorithms

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Describe the mathematical model of a neuron with different activation functions for power electronic controllers.
- 2. Demonstrate the concepts of feed forward and recurrent neural networks into travelling salesman problem to find the optimal solution.
- 3. Apply the hamming and Maxnet training techniques for solving the engineering problems.
- 4. Analyze the performance of self-organizing feature networks in fourier and wavelet transformations.
- 5. Estimate the performance of expert systems in modern power controllers.
- 6. Calculate the membership values with suitable Defuzzification method and the neuro-fuzzy inference systems concept to modern controllers.
- 7. Design neural network, fuzzy logic and evolutionary based approach for power electronic control

Module:1	Introduction to intelligent control:	5 hours				
Architecture	Architecture for intelligent control—Symbolic reasoning system—Rule-based systems—Knowledge					
representatio	n—Expert systems.					
Module:2	Associative Memories:	7 hours				
Basic Conce	epts - Linear Associator - Basic concepts of rec	current auto associative memory -				
Associative 1	memory of spatio-temporal patterns - Hetero and B	idirectional Associative Memories -				
Adaline and	Madaline Network Algorithms.					
Module:3	Networks and Case studies:	8 hours				
Hopfield net	twork—Self-organizing network and Recurrent no	etwork—ART Network concepts -				
Neural Netw	ork based controller—Stability analysis of Neural—	-Network interconnection systems—				
Identification	and control of linear and nonlinear					
Module:4	Data processing:	5 hours				
Scaling—For	urier transformation—Principal-component analy	ysis—Wavelet transformations –				
wavelet tool	box					
Module:5	Fuzzy sets and Fuzzy relations:	7 hours				
Introduction	to crisp sets and fuzzy sets- basic fuzzy set operation	n and approximate reasoning - Fuzzy				
relations—Fu	uzzification -inferencing and defuzzification—Fuzzy	knowledge and rule bases.				
Module:6	Fuzzy modelling and control:	7 hours				
Fuzzy mod	elling and control schemes for nonlinear syster	ns— Self-organizing fuzzy logic				
control—Fu	zzy logic control for nonlinear time-delay system-	-Stability analysis of fuzzy control				

system	systems—Implementation of fuzzy logic controller using Matlab fuzzy-logic toolbox.						
Module	Module:7 Optimization: 4 hou					4 hours	
Basic c	Basic concept of optimization— Introduction to evolutionary algorithms- optimization tool box -						
applicat	ions						
Module	e:8	Contemporary issues:				2 hours	
Total Lecture hours: 45 hours							
Text Bo	Text Book(s)						
1.	Jack	M. Zurada, "Introduction to	Artificial Neural	Syste	ns",Jaico Pul	olishing House, 2013.	
2.	Tim	othy J. Ross, "Fuzzy Logic v	with Engineering A	Applic	ation",McGr	w Hill International	
	Edit	ions, 2012.					
Referen	nce B	ooks					
1.	J.S.I	R Jang, C.T Sun, E.Mizutani	, "Neuro-Fuzzy So	oft Co	mputing", Pe	arson Education, 2011.	
Recomm	nende	ed by Board of Studies	22/07/2017				
Approve	Approved by Academic Council 47 th AC Date 05/10/2017				017		

EEE5008	Modern Control Theory		L	T	P	J	C
			3	0	0	0	3
Pre-requisite	NIL	S	ylla	bus	s ve	ersi	ion
Anti-requisite	NIL					v.	1.0

- 1. To understand the continuous and discrete state-space modelling of physical systems and apply controllability and observability criteria
- 2. To understand the concepts and techniques of linear and nonlinear control system analysis and synthesis

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Analyze the system response.
- 2. Construct the linear model for the Nonlinear system
- 3. Synthesize the state feedback control law.
- 4. Estimate the Observer for the given system.
- 5. Convert the continuous system to discrete model
- 6. Design digital controller / compensator
- 7. Examine the system stability

37 1 1 1			0.1				
Module:1	State Variable Analysis-Continuous system:		8 hours				
Introduction to state space modelling- physical systems, State Diagrams, Solution to vector							
	differential equations and state transition matrix. Controllability and Observability.						
Module:2	Stability Analysis:		6 hours				
Stability theo	ory-Linear and Non Linear systems, Lyapunov dire	ect and indirec	et methods, Lyapunov				
functions-me	thods of construction.						
Module:3	State Feedback Controller Design:		6 hours				
Controller de	sign by state feedback –Necessary and Sufficient co	ndition for arb	itrary pole placement-				
state regulato	r problem. Reference tracking (Servo) problem – Sta	ate feedback w	rith integral control.				
Module:4	State Space Observer Design:		5 hours				
Full order -	reduced order observer design – observer based	state feedback	control – separation				
principle.	-		-				
Module:5	Discrete System:		6 hours				
Calculus of c	difference equations. Z-transform, continuous versu	is digital conti	ol, sampling process,				
effect of san	npling rate, Quantization effects. Methods of dis	scretisation- D	Piscrete state variable				
analysis.							
Module:6	Stability Analysis of discrete systems:		4 hours				
Location of	poles, Jury's stability criterion, stability analysis thro	ough bilinear tı	ansforms.				
Module:7	Discrete Control Design:		8 hours				
Digital comp	ensator design using Root Locus, Frequency Response	onse Plots. Di	screte pole placement				
and observer design.							
Module:8 Contemporary issues: 2 hours							
	Total Lecture hours:	45 hours					
Text Book(s)			1				
	ata, "Modern Control Engineering", Prentice Hall of	India, 2010.					
2. G. F. Franklin, J. D. Powell and M Workman, "Digital Control of Dynamic Systems", PHI							

	(Pearson), 2008.								
Refer	Reference Books								
1.	G. F. Franklin, J. D. Powell and A. E. Naeini, 'Feedback Control of Dynamic Systems' PHI								
	(Pearson), 2004.								
2.	Loan D. Landau, Gianluca Zito, 'Digital Control Systems, Design, Identification and								
	Implementation' Springer, 2006								
3.	D. Ibrahim, 'Micro-controller base	ed Applied Digital	Control' J	John Wiley & Sons Ltd., 2006					
4.	C.T. Chen, 'Linear Systems Theor	ry and Design'' O	xford Univ	versity Press, 3rd Edition, 1999					
Recor	Recommended by Board of Studies 05/03/2016								
Appro	Approved by Academic Council 40 th AC Date 18/03/2016								

EEE5009	Energy Storage Systems		L	T	P	J	С
			3	0	0	0	3
Pre-requisite	NIL	Syllabus version			on		
Anti-requisite	NIL					V	. 1.1

- 1. To define different energy storage techniques
- 2. To describe basic physics, chemistry, and engineering issues of energy storage devices, such as batteries, thermoelectric convertors, fuel cells, super capacitors
- 3. To design of energy storage for different applications

Expected Course Outcome:

On completion of the course, the student will be able to

- 1. Identify different energy storage techniques and recent trends
- 2. Compare different battery technologies and its characters
- 3. Inspect a modern battery technologies
- 4. Discuss and combine super capacitors with batteries
- 5. Analyze fuel cells
- 6. Identify the different fields of applications of ESS
- 7. Discuss the applications of energy storage in PV

Module:1Introduction:7 hoursMechanical, electrical and chemical energy storage systems and its applications - Available and
unavailable energy - Energy Analysis - Second law efficiency - Helmholtz & Gibb's function -
Energy Analysis - Recent trends in Energy storage systems.

Module:2 Classical Battery:

Module 3 | Modern batteries

6 hours

5 hours

7 hours

Basic Concepts - Battery performance - charging and discharging - storage density - energy density and safety issues - Lead Acid- Nickel-Cadmium - Zinc Manganese dioxide.

Wioduic.5	Wodern batteries.	
Zinc-Air - Ni	ickel Hydride - Lithium Battery - State Of Charge -	Technology Challenges.

Module:4 Super capacitors:

Super capacitors - types of electrodes and some electrolytes- Electrode materials - high surface area activated carbons- metal oxide- and conducting polymers- Electrolyte - aqueous or organic-disadvantages and advantages of super capacitors - Applications of Super capacitors

Module:5 Fuel cells: 7 hours

Fuel cells - direct energy conversion - maximum intrinsic efficiency of an electrochemical converterphysical interpretation - Carnot efficiency factor in electrochemical energy convertors - types of fuel cells - hydrogen oxygen cells - hydrogen air cell - alkaline fuel cell- and phosphoric fuel cell.

Module:6	Mobile Applications and Micro-Power	5 hours
	Sources:	

The diverse energy needs of mobile applications -Characteristics due to the miniaturized scale - Capacitative storage-electrochemical storage - Hydrocarbon storage- Pyro-electricity - Radioactive source - Recovering ambient energy

Module:7 Energy Storage in Photovoltaic Systems: 6 hours

Standalone photovoltaic systems - Grid connected systems- Energy Storage in PV systems using lead acid battery technology- Flywheels - Compressed Air Energy Storage - Thermal energy storage -

capturin	capturing heat and cold to create energy on demand - Pumped Hydro power.										
Module	e :8	Contemporary issues:				2 hours					
			Total Lecture ho	ours:	45 hours						
Text Bo	Text Book(s)										
1.	Yves	s Brunet, "Energy Storage",	Wiley-ISTE, 1st E	dition,	2010.						
2.	Rob	ert A.Huggins, "Energy Stor	rage", Springer, 2 ⁿ	^d Editi	on, 2015.						
Referei	nce B	ooks									
1.	And	rei G. Ter-Gazarian, "Energ	y storage systems	for Pov	wer systems",	2nd edition, IET 2011.					
2.	2. R M. Dell, D.A.J. Rand, "Understanding Batteries" RSC Publications, 1 st edition, 2012.										
Recomi	Recommended by Board of Studies 22/07/2017										
Approv	ed by	Academic Council	47 th AC	Date	05/10/20)17					

EEE5010	Advanced Power System Protection	L	T	PJ	C
		3	0	0 0	3
Pre-requisite	NIL	Syllabus versio			sion
Anti-requisite	NIL	v. 1.1			

- 1. Explain the principle of operation and working of static relay, digital relay and numerical relay.
- 2. Discuss the various protection schemes used for power system components
- 3. Discuss and analyse the protection of FACT devices, HVDC transmission and microgrid.

Expected Course Outcome:

On completion of the course the student will be able to

- 1. Discuss the constructional details and to analyze the performance characteristics of both conventional and static relays.
- 2. Identify appropriate protection scheme to provide protection to different power system components.
- 3. Design the protection schemes to provide protection for various FACTS devices.
- 4. Analyze and design protection schemes to provide protection for the HVDC transmission against over currents and over voltages.
- 5. Design the adaptive protection scheme for providing protection to Microgrid systems
- 6. Develop and formulate the algorithm of different types of digital relays.
- 7. Design the hardware of numerical algorithm and develop the algorithm for it.

Module:1	Philosophy of Protection:	7 hours
Characterist	ic functions of protective relays - relay elements an	d relay terminology- construction of
	- non-critical switching circuits- Static Relay.	, 23
Module:2	Protection of Power System Components:	7 hours
Protection o	f generators – transformer over current protection- l	ong EHV line protection- protection
of capacitors	s in an interconnected power system.	
Module:3	Protection of FACTS Devices:	7 hours
TCR Overcu	urrent Limiter - TCSC Protection - bypass breakers	- Capacitor overvoltage protection –
Impacts of F	FACTS devices on distance protection scheme	
	D 4 41 CITIDO	(house
Module:4	Protection of HVDC:	6 hours
	aults and protection – protection against over current	
Converter F		
Converter F		
Converter Faline. Module:5	aults and protection – protection against over current	s – over voltages - protection of DC 7 hours
Converter Faline. Module:5 Key protect	aults and protection – protection against over current Microgrid Protection:	7 hours ault level modification, Blinding of
Converter Faline. Module:5 Key protect protection,	aults and protection – protection against over current Microgrid Protection: ion challenges- Possible solutions- case Studies: F	7 hours ault level modification, Blinding of
Converter Faline. Module:5 Key protect protection,	Microgrid Protection: ion challenges- Possible solutions- case Studies: F Adaptive protection for microgrids- Fault current	7 hours ault level modification, Blinding of
Converter Faline. Module:5 Key protect protection,	Microgrid Protection: ion challenges- Possible solutions- case Studies: F Adaptive protection for microgrids- Fault current	7 hours ault level modification, Blinding of
Converter Faline. Module:5 Key protect protection, islanded ope	Microgrid Protection: ion challenges- Possible solutions- case Studies: F Adaptive protection for microgrids- Fault current eration- Islanding Detection.	7 hours ault level modification, Blinding of source for effective protection in 4 hours
Converter Faline. Module:5 Key protect protection, islanded ope	Microgrid Protection: ion challenges- Possible solutions- case Studies: F Adaptive protection for microgrids- Fault current eration- Islanding Detection. Digital relays:	7 hours ault level modification, Blinding of source for effective protection in 4 hours
Converter Faline. Module:5 Key protect protection, islanded ope	Microgrid Protection: ion challenges- Possible solutions- case Studies: F Adaptive protection for microgrids- Fault current eration- Islanding Detection. Digital relays:	7 hours ault level modification, Blinding of source for effective protection in 4 hours
Converter Faline. Module:5 Key protect protection, islanded ope Module:6 Over current Module:7	Microgrid Protection: ion challenges- Possible solutions- case Studies: F Adaptive protection for microgrids- Fault current eration- Islanding Detection. Digital relays: nt, directional, impedance, reactance relays - digital relays.	7 hours ault level modification, Blinding of source for effective protection in 4 hours elaying algorithms.

			Total Lecture ho	ours:	Hours: 45					
Text Bo	Text Book(s)									
1.	1. Paithankar and S. R Bhide, "Fundamentals of Power System Protection", Prentice-Hall of									
	Indi	a, 2013								
2.	Paul	M Anderson, "Power Syst	em Protection", V	Viley-II	EEE Press, 20)12'				
Referen	nce B	ooks								
1.	Sule	iman M. Sharkh, Mohamma	d A. Abu-Sara, <u>G</u>	eorgios	I. Orfanouda	kis, Babar Hussain,				
	"Po	wer Electronic Converters fo	r Microgrids", Jol	nn Wile	y & Sons, 20	14.				
Recom	Recommended by Board of Studies 22/07/2017									
Approv	ed by	Academic Council	47 th AC	Date	05/10/20	17				

	Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act, 1956)					
EEE5011	Protocols for Smart Grid	L	T	P	J	C
		3	0	0	0	3
Pre-requisite	NIL	Sylla	bu	s ve	rsi	on
Anti-requisite	NIL			,	v.	1.0
Course Objecti	ves:					
	e with the working and features of smart grid					
	d the various communication technologies for Smart grid					
3. To understand	d the standards and protocols for smart grid					
Expected Cour						
	importance of smart grid as compared to a conventional ac grid.					
	importance and application of Phasor measuring unit					
	he importance of management of power demand in grid					
	various security issues related to smart grid					
	management of data in smart grid environment					
	arious control aspects to smart grid					
7. Summarize	the communication /information technology protocols used smart	grids.				
1						
	atroduction: id Topologies- Microgrid concept- Justifications for smart grids-I					ırs
Intelligent Grid Module:2 M	ions of smart grid components-Monitoring and Control Technological Distribution component-Demand Side Management. Icasurement Technology: asor Measurement Units(PMU) Working and applications-Optio			6 ł	101	ırs
PMU-Fault Dete	ection and Self healing-smart meters-an overview of the hardware rt appliances-Advanced Metering Infrastructure-Multiagent Syst	used-I	D em	and	l S	ide
Module:3 In	formation and Communications Technology:			9 ł	101	ırs
Coordination be	cation-dedicated and shared communication channels-GSM,GPRS etween cloud computing and smart power grids-Development and communication Software				_	
	teroperability, Standards and Cyber Security:					ırs
	t interoperability-Benefits and challenges of interoperability-S	mart g	rid	net	two	ork
interoperability-	Cyber Security concerns associated with AMI.					
Module:5 St	tandards for Smart Grid Operations:			61	101	ırs
	or substation automation-IEC 61850-IEC standard for energy man	agemer	t sv			
	SI C12.22 for Smart metering.		y			
Module:6 St	tandards for Communication Protocols:			61	יחו	ırs
	mmon information model- IEC 60870-IEC 62351-High Sp	need P	OWE			
communication	~ 1			/1 J	J11.	

SCADA (supervisory control and data acquisition) Functions and function architecture -

5 hours

Smart Grid Operations:

Module:7

Configuration Management- Fault Management -Accounting Management Security Management Data and data architecture-Common Information Model (CIM) Process architecture

Module:8		Contemporary issues:				2 hours
			Total Lecture ho	ours:	45 hours	
Text I	Book(s)				
1.	Jam	es A.Momoh, "Smart grid:	Fundamentals of	Desig	n and Analy	sis", IEEE press and
	Wil	ey publications, 2012.				
2.	Jana	aka Ekanayake, Kithsiri Liya	nage,Jianzhong W	u,Akih	iko Yokoyan	a,Nick Jenkins,
	"Sm	nart Grid Technology and Ap	plications", Wiley	2011.		
Refer	ence B	ooks				
1.	Has	san Farhangi, "The path of th	ne smart grid", IEI	EE pow	er and Energ	y Magazine, Vol.8,
	No.	1, Jan 2010.				
Recon	nmend	ed by Board of Studies	05/03/2016			
Appro	ved by	Academic Council	40 th AC	Date	18/03/20	16

EEE5031	Advanced Reliability Engineering	1	۱ '	T	P	J	C
		1		2	0	0	2
Pre-requisite	NIL	Sylla	bus	S V	er	sio	n
Anti-requisite	NIL	v. 1.0					
G 011 41							

- 1. Apply the principles & methods of reliability and maintenance engineering tools for Design problems
- 2. Understand the importance of reliability and its relationship with quality and safety
- 3. Application of RAMS to Aero, Medical and Industrial commodities

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Design RAMS as per the standards followed for AERO applications.
- 2. Develop models and case studies to analyze RAMS for medical devices.
- 3. Design to meet the reliability and functional safety objectives in the Auto components.
- 4. Examine the various reliability test strategies and standards for Industrial systems.
- 5. Analyze RAMS in the user specific applications.
- 6. Integrate different case studies for the utilizations of RAMS in specific applications.
- 7. Develop the reliability predictive models using software tools.

Module:1 RAMS - AERO 5 hours

RAMS in Aerospace Domain, ARP 4761 and ARP 4754 - System Safety Assessment Process. Introduction to DO-178, DO-254 and DO - 160 E Standards. Process FMEA, MSG 3 Analysis, RAMS Case Study on Aero Program.

Module:2 | RAMS - MEDICAL

5 hours

RAMS in Medical Domain, Medical Devices - Classification and Applicable Reliability and Risk Management Tasks, Standards - ISO 14971, ISO 13485. PMS - Post Market Surveillance in Medical Devices - RAMS Case Study on Medical Devices

Module:3 RAMS - AUTO

4 hours

RAMS in Auto Domain, DFR Process in Auto Domain, ISO 26262 - Functional Safety, ITAF 16949 Standard. Warranty Data Management. RAMS Case Study - Auto Systems.

Module:4 RAMS - INDUSTRIAL, ROBOTS

4 hours

RAMS in Industrial Domain, IEC 61508 - Functional Safety Standard. RAMS Case Study on Industrial Systems.

Module:5 RAMS - APPLIANCES, OFFICE AUTOMATION PRODUCTS, CONSUMER ELECTRONICS

4 hours

RAMS in Appliances, Office Automation Product and Consumer Electronics - Case Study From Each Domain.

Module:6	TUTORIALS- I	4 hours
Domain Spe	ecific Reliability and Safety Plan	

Module	e :7	TUTORIALS – II				4 hours			
Reliabi	Reliability Test Planning - Reliasoft ALTA++ Test Planning, Test Data Analysis								
Module	e :8	Contemporary issues:				2 hours			
		Total Lecture hours:			30 hours				
Text B	ook(s)								
1.		is J. Gullo and Jack Dixon,		y-Quality	and Reliability Engir	neering			
		es", John Wiley & Sons, 201	17.						
Referen	nce B	ooks							
1.	BS	Dhillon, "Robot System R	eliability and Saf	ety: A M	odern Approach", CF	RC Press-			
	Tayl	or & Francis, 2015.							
2.	Nich	nolas J. Bahr, "System S	Safety Engineerin	g and R	isk Assessment: A	Practical			
	App	roach", Second Edition, CR	C Press-Taylor &	Francis, 2	015.				
3.	Rich	ard C. Fries, "Reliable Desi	ign of Medical De	evices", Th	nird Edition, CRC Pre	ss-Taylor			
	& F1	rancis, 2013.							
4.	Clif	ton A. Ericson II, "Hazard A	nalysis Technique	es for Syst	tem Safety", First Edit	tion, John			
	Wile	ey & Sons, 2005.							
Mode o	f Eva	luation: CAT / Assignment /	Quiz / FAT / Pro	ject / Sem	inar				
Recom	mende	ed by Board of Studies	13-10-2018						
Approv	ed by	Academic Council	53 rd	Date	13-12-2018				

EEE6002	Wind Energy Conversion	on Systems	$ \mathbf{L} \mathbf{T} \mathbf{P} \mathbf{J} \mathbf{C}$			
			2 0 0 4 3			
Pre-requisite	EEE5002		Syllabus version			
Anti-requisit			v. 1.0			
Course Object			,-L			
•	lifferent types of generators and appropriat	e power electronic	controllers for wind			
energy system		1				
Expected Co	rrse Outcome:					
•	etion of this course the student will be able to:					
	basic concepts of wind turbine and its charact	eristics.				
	out all the control methods of wind turbines.					
	ne various generator configurations used in W					
	out power converters and its control technique	es.				
	e grid integrated operation.					
_	ower quality issues and recommend the standa	ards.				
	the offshore wind power generation.					
8. Design a co	mponent or a product applying all the relevan	t standards with rea	ilistic constraints			
Module:1	Introduction:		4 hours			
		ants and Types of				
	Principles – Design – Betz limit – Compor – Wind power – Factors – Power limitations	ients and Types of	rurome – Operating			
Characteristics	- White power - Pactors - Fower minitations					
Module:2	Control of Wind Turbines:		4 hours			
	-stall control – Combined Pitch-stall control -	- Flan nower contro				
	ring – mechanical braking – MPPT Schemes	- Map power contro	n – yaw control –			
Electrical brai	ding – incentancea braking – wit i i Schemes					
Module:3	Generator Configuration:		4 hours			
	- Doubly fed – fully fed - Synchronous - Per	manent magnet-driv				
7 tsyncin onou.	bodory red runy red Synchronous Ter	manent magnet arry	ve tram.			
Module:4	Power Electronic Interface and Control:		4 hours			
	ter Configurations – DFIG - Control of M	achine Side and C				
	GSC - Real Power Control	definite blac and c	sita biae converters,			
Limination o	doc - Real Fower Condor					
Module:5	Grid Integration:		4 hours			
		ugh (LVRT) ramn				
	Wind interconnection requirements, low-voltage ride through (LVRT), ramp rate limitations, and supply of ancillary services for frequency and voltage control, current practices and industry trends					
	nection- impact on steady-state and dynamic p		25 und madstry trellus			
wind intercon	nections impact on sicady-state and dynamic p	orioiniance.				
Module:6	Power Quality Issues and Standards:		4 hours			
Minning:0	i ower Quanty issues and Standards:		4 <u>110</u> urs			

Typical Subsystems – Turbine Technology – Transmission network – HVAC and HVDC – Impact on Power system – Energy Storage – Sub-sea station – Condition monitoring.

Factors - Power Quality Standards and Regulations, Issues and Consequences - Mitigation

4 hours

M.TECH (MPE) Page 53

Techniques and Control

Module:7 Offshore Wind Energy:

Module:	Contemporary issues:				2 hours
		Total Lecture hou	ırs: 30	0 hours	
Mode of	Evaluation: CAT / Assignment	/ Quiz / FAT / Proje	ect / Sen	ninar	
List of P	ojects				
1. M	odeling of Vertical Axis Wind	Turbine			
	odeling of Horizontal Axis Wi	nd Turbine			
	odeling of MPPT Techniques				
	odeling of Generators				
	odeling of Power Electronics I				
	odeling of Grid Side Converted				
	odeling of Machine Side Conv				
	eady state and transient analysi				
	equency Control in Wind turbi				
	wer Quality mitigation of Win				
	wer Optimization of Wind turl				
	nd Speed Estimation Technique				
	wer Curve formation of Wind				
	odeling of Energy storage devi				
	sponse of Controller under nor	rmal and fault condi	tions		
Text Boo					
	in Wu, Yongqiang Lang, Nav	_		ower Conve	ersion and Control of
	Vind Energy Systems", John V				
2.	iegfried Heier, "Grid Integration	on of Wind Energy (Convers	sion System	s", Wiley, 2009.
Reference	Books				
1.	homas Ackkermann, "Wind P	ower in Power Syste	ems", Jo	ohn Wiley &	Sons, Ltd, 2012.
2. I	. P. Kothari, S. Umashank	ar, "Wind Energy	Syste	ms and A	oplications", Narosa
I	ublications, Newdelhi, 2014.				
3.	limpo Anaya-Lara, David Car	npos-Gaona, Edgar	Moreno	-Goytia, Gr	ain Adam, "Offshore
	Vind Energy Generation: Cont	rol, Protection, and	Integrat	tion to Elect	trical Systems", John
	Viley & Sons, 2014.		_		-
Recomme	nded by Board of Studies	05/03/2016			
	by Academic Council	40 th AC	Date	18/03/20	16

EEE6003	Power Quality and Mitigation Techniques		L	T	P	J	C
			2	0	0	4	3
Pre-requisite	EEE5001	S	lla	bu	s ve	ersi	ion
Anti-requisite	NIL					v.	1.0

- 1. To describe various power quality issues in power system
- 2. To analyze the power quality issues using appropriate techniques
- 3. To give an insight to various measurement techniques and conduct power quality analysis
- 4. To evaluate and implement various mitigation techniques for power quality improvement

Expected Course Outcome:

On successful completion of the module, students will be able to:

- 1. Define and Describe power quality issues as per IEEE /IEC standards
- 2. Simulate and Analyze voltage sag, swell and interruption and Describe methods to reduce sag and swell
- 3. Analyze single and three phase loads for improving power factor, harmonics and unbalanced loads
- 4. Analysis of harmonics by mathematical tools
- 5. Apply of IEEE/IEC power quality standards for measurements and analysis
- 6. Design of filters and compensators for harmonic reduction, load balancing and power factor improvement
- 7. Evaluate power quality at an Industry/Data centre/Hospital and Develop solution
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 INTRODUCTION TO POWER QUALITY: 4 hours

Terms and definitions: Overloading - under voltage - over voltage. Concepts of transients - short duration variations such as interruption - long duration variation such as sustained interruption. Sags and swells - voltage sag - voltage swell - voltage imbalance - voltage fluctuation - power frequency variations. Power Acceptability curves — Power Quality Standards, limits and regulations.

Module:2 VOLTAGE SAGS AND SWELLS:

4 hours

Sources of sags and interruptions - Estimating Voltage Sag Performance -Fundamental Principles of Protection -Solutions at the End-User Level-Evaluating the Economics of Different Ride-Through Alternatives -Motor-Starting Sags - Utility System Fault-Clearing Issues, Sources of over voltages - Capacitor switching – Ferro resonance. Mitigation of voltage swells - surge arresters

Module:3 ANALYSIS OF SINGLE PHASE AND THREE PHASE 4 hours LOADS:

Power in single phase systems: Sinusoidal voltage, non-sinusoidal voltage – Power in three phase systems: Balanced & unbalanced loads – phasor analysis – three phase unbalanced and distorted source supplying nonlinear loads – concept of power factor under non-sinusoidal voltages and/or currents.

Module:4	CONVENTIONAL	LOAD	COMPENSATION	4 hours
	TECHNIOUES:			

Analysis of unbalance – symmetrical components, instantaneous real and reactive powers - Principle of load compensation and voltage regulation – classical load balancing problem: open loop balancing – closed loop balancing, current balancing.

Module:5	HARMONIC ANALYSIS:		5 hours
Principles fo	r Controlling Harmonics - Harmonic analysis using	mathematical to	ools – Computation
of THD, TD	D, DIN – Extraction of fundamental sequence compo	onent from mea	sured samples.
Module:6	FILTER DESIGN:		4 hours
	Reduction: Design of passive filter – performance eva		•
	us real and reactive power theory - shunt active filter		
_	erations - Instantaneous symmetrical component theorems	ory - realization	n of DSTATCOM,
UPQC ener	gy.		
Module:7	POWER QUALITY MONITORING AND SUR	VEV.	3 hours
	Considerations - Power Quality Measurement Equip		
_	t Data-Application of Intelligent Systems-Power Qu		= -
Wicasurcinci	it Data-Application of Interrigent Systems-Fower Qu	anty Montorn	ig Standards.
Module:8	Contemporary issues:		2 hours
- Indudicio	Total Lecture hours:	30 hours	2 110415
Mode of Eva	lluation: CAT / Assignment / Quiz / FAT / Project / S		
THOUGO OF EVE	List of Projects		
1 Powe	er Quality Analysis of residential loads		
	er Quality Analysis of UPS loads		
	er Quality Analysis of AC Plant / computer loads		
	er Quality Analysis of loads in a computer lab		
	er Quality Analysis of Sewage Treatment Plant		
	er Quality Analysis of Substation Power house		
	eling of CFL/LED Lighting loads		
	eling of UPS		
	eling of Transformer and Tap changers		
	eling of Reactive power compensation devices		
	stigations of Power Quality Events		
	tigations of Energy Loss in the electrical network Studies and Reports on effect of diesel generators	on nower and	lity paramatars in an
	ical network grid	on power qua	inty parameters in an
	Studies and Reports on effect of renewables on pow	er quality parar	neters in an electrical
	ork grid	er quarrey parar	notors in an orocarour
Text Book(s			
1. Rog	ger C. Dugan, Mark F. McGranaghan, Surya Santoso	, H. Wayne Bea	aty, "Electrical Power
Sys	tem Quality", Tata Mcgraw-hill, Newdelhi, 2012	•	•
2. Mo	hammad A.S Masoum, Ewald F.Fuchs, "Power Qual	ity in Power Sy	ystems and Electrical
Mae	chines", Academic Press, Elsevier, 2015.		
Reference B	ooks		
1. Gho	sh and G. Ledwich, "Power Quality Enhancement U	sing Custom P	ower Devices",
Com	inger Verlag, 2012.		
Spr			

2.	Surajit Chattopadhyay, Madhuchhanda Mitra, Samarjit Sengupta, "Electric Power Quality",			
	Springer Publications, 2011			
3.	Bhim Singh, Ambrish Chandra, Kamal Al-Haddad, "Power Quality: Problems and			
	Mitigation Techniques", John Wiley & sons Ltd, 2015.			
Recomi	Recommended by Board of Studies 05/03/2016			
Approved by Academic Council		40 th AC	Date	18/03/2016

FFF(004	(Deemed to be University under section 3 of UGC Act, 1956)	INDIC
EEE6004	Microgrid Technologies	L T P J C 3 0 0 0 3
Dua magnisita	EEE5001	Syllabus version
Pre-requisite	ELESUUI	
C Oh:4:		v. 1.1
Course Objective		
	integration of renewable sources	
2. Design modern	control technologies for microgrids in Islanded and grid connec	ted operation
F		
Expected Course		
	nding of the microgrid types and configurations	aultifunction amid
connected convert	power electronics in Microgrid and acquire the knowledge of n	nultifuliction grid
		ad amountion
•	rious types of control in micro grid in islanded and grid connected management concept in grid connected a and islanded micro	•
	issues in Microgrid technologies and study the impact of DG's	gnu
	nized Microgrid considering the role of power market	
	necessity of protection and detecting the islanding operation in	Microgrid
7. Identifying the	necessity of protection and detecting the islanding operation in	Microgriu
Module:1 Intre	oduction to Microgrid	5 hours
	urations – CERTS Microgrid Test Bed – DC Microgrid- HFAC	
	- Hybrid DC- and AC- Coupled Microgrid	. Microgriu –
LI'AC MICIOGIIU	- Tryona De- and Ae- Coupled wherogra	
Module:2 Pow	er Electronics in Microgrid	6 hours
Midduic.2 1 0W	ti Electronics in wherogriu	o nours
	Mode – Islanded mode – Battery Charging mode – design of p	ower converters-
Brick Busses Soft	ware Frame work- Multi Function grid Connected inverters	
Madalas Carr	1 2 N.C2.3	(1,
Module:3 Cont		6 hours
	haracteristics – Local control – Centralized Control – Decer	
Output Impedance	n – PQ Control - Droop control methods – Frequency/Voltage	Control –Inverte
Output Impedance		
Module:4 Mici	ogrid Energy Management Systems	6 hours
	Power Management Strategy - Stand-alone – Grid connected -	•
	nd Active Power Management	- chergy storage
Voltage Control a	nd Active I ower Management	
Module:5 Pow	er Quality Enhancement	6 hours
	d controllers for power quality issues – Power Quality Improven	
 Impact of DG in 	ategration on Power Quality.	nent teennologies
	g	
Module:6 Opti	mization in Microgrid	7 hours
_	zation for Operating Cost- Unit Commitment- Congestion Man	
of Microgrid in Po		<i>G</i> :
<u> </u>		
Module:7 Prot	ection in Microgrid	7 hours
	ation-Islanding detection, Effect on Feeder Reclosure, Protection	
	IIDG Units- Adaptive relaying scheme	
	ntemporary issues:	2 hours
	I V	_ Hours

		Fotal Lecture hou	rs: 4	5 hours	
Tex	xt Book(s)				
1.	Suleiman M,Sharkh, Mohammad	A.Abu-Sara Georg	gios I	. Orfanouda	kis, Babar Hussain,
	"Power Electronic Converters for M	icrogrid", Wiley-I	EEE	Press, 2014	
2.	A.Mahmoud, A.L- Sunni and Faud	,M, "Control and (Optimi	ization of D	stributed Generation
	Systems"ISBN: 978331916910, Spr	inger Publishers,20)15.		
Ref	ference Books				
1.	Nikos Hatziargyiou, "Microgrids:		d Co	ntrol" ISBN	: 978-1-118-72068-
	4, Wiley-IEEE Press, December 201	3.			
2.	S.Chowhury, S.P.Chowdury and Per	ter Crossley, "Micr	ogrids	and Active	Distribution
	Networks" ISBN 978-1-84919-014-5	5, IET renewable E	nergy	series, 2011	
3.	Ritwi K Majumder, "Microgrid: Sta	bility Analysis and	Conti	rol" VDM Pu	ablishing 2010
4.	Shin'ya Obara, "Optimum Design o	f Renewable Energ	v Svs	tems: Micros	grid and Nature Grid
	Methods", AEEGT Book Series, 20	_	,, -, -		9
<u> </u>					
Мо	ode of Evaluation: CAT / Assignment	/ Quiz / FAT / Proj	ect / S	Seminar	
Rec	commended by Board of Studies	22/07/2017			
Ap	proved by Academic Council	47 th AC	Date	05/10/2	2017

EEE6005	Electric and Hybrid Electric Vehicles	L	T	P	J	C
		2	0	0	4	3
Pre-requisite	EEE 5001	Sylla	bus	ve	rsi	on
Anti-requisite	NIL			,	v. :	1.0

Module:1

supporting subsystems

- 1. Providing knowledge on Hybrid and Electric vehicles
- 2. Selection of suitable motor drive and power converters for Electric vehicle application

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand the necessity of Electric vehicles and environmental issues of conventional vehicles
- 2. Describe the performance characteristics of Electric vehicles
- 3. Compare different architectures of hybrid power trains
- 4. Analyse the power flow management of Hybrid electric vehicles
- 5. Examine the characteristics of different electric motors for Electric vehicle application
- 6. Select the sizing of the motor and power electronic components for Electric and hybrid electric vehicles
- 7. Develop different energy management strategies for electric vehicles.

Introduction to Hybrid Electric Vehicle

8. Design a component or a product applying all the relevant standards with realistic constraints

4 hours

History of h	ybrid and electric vehicles - social and environmental importance of	hybrid and electric			
vehicles - mo	vehicles - modern drive - trains on energy supplies and their impact.				
Module:2	Electrical Vehicle model and Characteristics	4 hours			
Basics of vel	Basics of vehicle performance - vehicle power source characterization – transmission characteristics -				
mathematica	l models to describe vehicle performance				
Module:3	Hybrid Train Architectures	4 hours			
Fundamental	concept of hybrid traction - Basic concepts of electric traction - intro	oduction to various			
electric drive	e - train topologies.				
Module:4	Power Flow Management	4 hours			
Introduction	to various hybrid drive-train topologies - Power flow control in h	ybrid drive - train			
topologies -	fuel efficiency analysis				
Module:5	Electric Machine and Drive in Hybrid Electric Vehicles	4 hours			
Configuratio	Configuration and control of DC Motor drives - AC Motor drives - Permanent Magnet Motor drives -				
Switch Reluc	Switch Reluctance Motor drives				
Module:6	Performance Analysis of Hybrid Electric Vehicles	4 hours			

Module:7 Energy Management Strategies 4 hours

Matching the electric machine and the internal combustion engine (ICE) - Sizing the propulsion motor - power electronic components - selecting of energy storage technology- communications -

Introduction to energy management strategies used in hybrid and electric vehicle - classification of different energy management strategies - comparison of different energy management strategies - implementation issues of energy strategies

Module:8	Contemporary issues:			2 hours
		Total Lecture hours:	30 hours	
Text Book(s)			

1.	Chris Mi, MA Masrur, and D W Gao, "Hybrid Electric Vehicles- Principles and Applications				
	with Practical Perspectives", Wiley, 2011.				
2.	Iqbal Hussain, "Electric and Hybrid Vehicles-Design Fundamentals", CRC Press, Second				
	Edition,2011.				
Refe	Reference Books				
1.	Mehrdad Ehsani, Yimin Gao, and Ali Emadi, "Modern Electric, Hybrid and Fuel Cell Vehicles:				
	Fundamentals", CRC Press, 2010.				
2.	Davide Andrea, "Battery management Systems for Large Lithium-Ion Battery Packs", Artech				
	House, 2010.				
Mod	Mode of Evaluation: CAT I & II – 30%, DA – 10%, Quiz-I & II – 20%, FAT – 40%				
Reco	Recommended by Board of Studies 05/03/2016				

Date

18/03/2016

40th

Approved by Academic Council

EEE6006 High Voltage Direct Current Transmission L T P J						C	
		3	0	0	4	4	
Pre-requisite	EEE5001	Sylla	bu	s v	ers	ion	
Anti-requisite	NIL				v.	1.0	
Course Objectives:							

- Course Objectives:
- 1. Describe various HVDC Transmission system technology with details
- 2. Analysis and control of HVDC converters
- 3. Modeling and dynamic analysis of HVDC systems through simulations
- 4. Fault analysis and system interaction of HVDC system

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Evaluate HVAC and HVDC technology with techno-economic aspect
- 2. Describe HVDC Transmission system through single-line diagram
- 3. Modeling and Simulation of HVDC Converters
- 4. Analysis of HVDC Converters
- 5. Design of Harmonic Filters for HVDC Systems
- 6. Simulation & Analysis HVDC Faults through MATLAB/CYME
- 7. Study of a national HVDC Project and preparation of report in LaTeX

8. Design a component or a product applying all the relevant standards with realistic constraints DC Power Transmission Technology: Module:1 10 hours Comparison of AC and DC transmission - HVDC transmission -planning for HVDC transmissionmodern trends in HVDC transmission - IEEE and IEC standards. **Analysis of HVDC converters:** 7 hours Module:2 Pulse number - choice of converter configuration-simplified analysis of Graetz circuit-converter bridge characteristics – characteristics of a twelve pulse converter- analysis of converters Module:3 **Control of HVDC System:** 5 hours Principles of control - converter firing control - Valve blocking and bypassing - starting, stopping, and power flow reversal Module:4 **Modeling of HVDC System:** 6 hours Per unit system for dc quantities - power flow solution - stability studies Module:5 **Dynamics of HVDC system:** 5 hours HVDC system modelling for digital dynamic simulation **HVDC** system interactions: Module:6 6 hours Short circuit ratio - reactive power and ac system strength - problems with low ESCR system problems associated with weak systems - effective inertia constant 4 hours Module:7 **Response to DC and AC system faults:** DC line faults - converter faults - protection Module:8 **Contemporary issues:** 2 hours **Total Lecture hours:** 45 hours

(Deemed to be University under section 3 of UGC Act, 1956)							
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar							
List of Projects							
Design a block describing HVDC transmission system							
2. Design a block describing valve control of HVDC converter station							
3. Design a block describing Valve control of HVDC inverter station							
4. Design a block describing PLL for synchronising							
5. Design a block describing instantaneous active power measurement							
6. Design a block describing instantaneous reactive power measurement							
7. Design a Simulation block of HVDC transmission line							
8. Design a Simulation circuit HVDC converter valve operation							
9. Design a Simulation circuit of HVDC inverter valve operation							
10. Develop a linearized model of HVDC transmission line							
11. Develop a linearized model of AC/DC interactive HVDC system							
12. Develop a linearized model of filter circuit							
13. Design a three phase Graetz converter circuit							
14. Develop steady state flow model of HVDC power system							
15. Develop a block describing generalised filter circuit model							
Text Book(s)							
1. Chan-Ki Kim, Vijay K. Sood, Gil-Soo Jang, Seong-Joo Lim, Seok-Jin Lee, "HVDC							
Transmission Power Conversion Applications in Power Systems", John Wiley,							
Singapore, 2009.							
2. Jos Arillaga, HVDC Transmission , 2 nd Edition, IET, London, UK, 1998.							
Reference Books							
Edward Wilson Kimbark, "Direct Current Transmission", Vol. I, Wiley Inter Science,							
New York, London, Sydney, 1971.							
2. Padiyar, K.R., "HVDC Power Transmission System", Wiley Eastern Limited, New Delhi,							
2010.							
Recommended by Board of Studies 05/03/2016							
Approved by Academic Council 40 th AC Date 18/03/2016							

EEE6007	L	T P J	C	
		2	0 0 4	3
Pre-requisite	EEE5001	Sylla	bus versi	on
Anti-requisite	NIL		v. 1	1.0
0 01 4				

- 1. To understand the importance of pulse width modulation (PWM) technique applied to power converters.
- 2. To implement various PWM strategies.

Expected Course Outcomes:

On the completion of this course the student will be able to:

- 1. Design of the use of various PWM techniques applied to power electronic converters.
- 2. Study of the concept of single phase and three phase VSI.
- 3. Apply the concept of voltage control inverters using various pwm techniques.
- 4. Analyze the concept of modulation control of inverters.
- 5. Discuss of the advanced modulation technique for inverters.
- 6. Understand the various pwm techniques using in multi-level inverters.
- 7. Apply the concept of harmonic in inverters.
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Introduction: 3 hours

Fundamentals of PWM – Base and carrier signal generation - Methods of implementation – Driver circuits for interfacing - PWM control of DC-DC converters.

Module:2 Three Level Modulation of 1 VSI: 3 hours

Topology of a 1ϕ VSI – three level modulation of 1ϕ VSI — analytical calculation of harmonic losses.

Module:3 Voltage Control of 1 VSI:

3 hours

Single, Multiple, Sinusoidal and Modified Sinusoidal PWM techniques –Impact of Power device on the PWM technique expression for output voltage.

Module:4 | Modulation of 3\phi VSI:

5 hours

Topology of a 3ϕ VSI -3ϕ modulation with sinusoidal references - Third harmonic reference injection - analytical calculation of harmonic losses - over modulation operation - Analysis of total harmonic distortion for various operating conditions

Module:5 Advanced Modulation Techniques:

4 hours

Trapezoidal, Staircase, Stepped, Harmonic Injection and Delta modulation techniques – Space Vector Modulation (SVM) – Implementation issues involved in the modulation schemes

Module:6 Modulation Strategies for Multi-Level 5 hours Inverters (MLI):

Basics of carrier based PWM techniques for MLIs – Three level naturally sampled Phase Disposition PWM (PDPWM) – Three level naturally sampled Phase Opposition Disposition PWM (PODPWM) – Alternative Phase Opposition Disposition PWM (APODPWM) technique – Introduction to reduced

		to be University under section 3 of UG	GC Act, 1956)				
switch mu	tilevel inverters.						
36 33 5							
Module:7	Harmonic Elimination:			5 hours			
				ed to MLIs – Switching angle			
computation	ons with equal and unequal volta	ige levels – minim	um harm	onic distortion.			
Module:8	Contemporary issues:			2 hours			
		Total Lecture ho		45 hours			
Mode of E	valuation: CAT / Assignment / C	Quiz / FAT / Proje	ct / Semi	inar			
List of Pro	ojects						
1. Imple	nentation of Time Ratio Control	l (TRC) of DC-DC	Conver	ter.			
2. Implen	nentation of Current Limit Contr	ol (CLC) of DC-D	OC Conv	erter.			
3. Design	and implementation of an un-m	odulated (square v	vave) vo	ltage source inverter (VSI).			
4. Design (VSI).	and implementation of sinusoi	dal pulse width m	odulated	l (PWM) voltage source inverter			
5. Design	and implementation of three lev	vel modulated volt	age sour	ce inverter (VSI).			
6. Measu	rement and validation of harmo	onic profile of sing	gle phas	e VSI under various modulation			
technic	ues.						
7. Design	and implementation of three ph	ase VSI under 120	° mode.				
	and implementation of three ph						
		onic profile of thr	ee phase	e VSI under various modulation			
technic			1.1	(CVD f)			
10. Implen phase '		and space vector	· modula	ation (SVM) technique for three			
11. Implen	nentation of selective harmonic	elimination technic	que.				
12. Pulse g	generation for three level natural	ly sampled PDPW	M.				
	eneration for three level natural	• •	WM.				
	eneration for APODPWM techr	-					
15. Valida	ion of harmonic profiles of ML	I's controlled using	g PDPW	M, PODPWM and APODPWM			
method							
Text Book	· /			111			
			idth Mo	dulation for Power Converters -			
Principles and Practice", John Wiley & Sons, 2003.							
Reference Books							
1. B	1. Bin Wu, "High-Power Converters and AC Drives", John Wiley & Sons, 2006.						
	2. Rashid M.H., "Power Electronics: Circuits, Devices and Applications", Pearson Education, June 2013.						
3. N	ed Mohan, Tore M. Undeland, "	Power Electronics	- Conve	erters, Applications and Design",			
John Wiley & Sons, 2007.							
Recommen	Recommended by Board of Studies 05/03/2016						
Approved	by Academic Council	40 th AC	Date	18/03/2016			
1.1	<u> 1</u>						

EEE6008 Solar Photo Voltaic Systems				T	P	J	C
			2	0	0	4	3
Pre-requisite	EEE5001	Sy	llat	us	ve	rsi	on
Anti-requisite	NIL				,	v. 1	0
G G14 4							

- 1. To make the students to understand the importance and applications of Solar Energy and techniques to improve the efficiency of Solar PV system.
- 2. To make them acquainted with power electronic interface circuits for Solar Energy

Expected Course Outcome:

On the completion of this course the students will be able to:

- 1. Apply new techniques for estimation of solar PV cell parameters
- 2. Capability to assess the performance of solar thermal power plants
- 3. Develop new tracking techniques and reconfiguration methods for improved power extraction from solar PV systems
- 4. Design a photovoltaic system and its interfacing circuits
- 5. Synthesize PV system architecture for grid connected PV systems and applications of Solar PV in real time scenario.
- 6. Examine new materials for energy storage as well as for high temperature applications
- 7. Compute the cost analysis and payback period of solar PV installations and categorize various environmental impacts of PV.
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Solar PV cell fundamentals: 4 hours

Principle of direct solar energy conversion into electricity in a solar cell - properties - Solar cell and its types - p-n junction, structure- I-V characteristics of a PV module - solar PV modelling and equations - modelling techniques - cell efficiency - fill factor - Applications.

Module:2 | Solar PV plants:

3 hours

Energy Transfer Power cycles - Tower, Trough and Dish Systems - Concentrating Dish Systems - Concentrating Linear Fresnel Reflectors - Solar Chimneys - Hybrid Systems.

Module:3 | Maximum power point tracking:

4 hours

Need for Maximum power tracking- - effect of irradiation and temperature on PV characteristics - Tracking techniques and array reconfiguration

Module:4 | Stand Alone PV Systems:

5 hours

Schematics, Batteries, Charge Conditioners - Balance of system components for DC and/or AC Applications - Typical applications for lighting, water pumping etc.

Module:5 Grid Connected PV Systems:

5 hours

Schematics - Charge Conditioners - Interface Components - Balance of system - PV System in Buildings.

Module:6 | Energy Storage:

5 hours

Necessity of storage for solar energy- Rechargeable batteries. Solar Energy Storage Concepts - Materials for Energy Storage- Materials for Low and High Temperature Storage Applications.

Module:	V			3 hours						
	Cost analysis and pay back calculations for different types of solar panels and collectors -									
	installation and operating costs - Environmental and safety issues - protection systems -									
performa	performance monitoring.									
Module:	8 Contemporary issues:			2 hours						
		Total Lecture ho	urs:	30 hours						
	•									
Mode of	Evaluation: CAT / Assignment	Quiz / FAT / Proje	ect / Sem	inar						
List of P	rojects:									
1. Iden	tification of suitable materials fo	or effective solar PV	V cell							
2. Extra	ction of I-V and PV characterist	ics of real solar PV	panel su	ing resistive load						
3. Desig	gn a model of any solar PV appli	cation		-						
4. Identi	ification of suitable location of e	establishing solar P	V plants							
5. Study	y on factors which effecting the J	performance of sola	ar PV sys	tems						
	the factors like fill factor and ten	*	n perforn	nance of solar PV system						
	gn control algorithm for Maximu									
	time implementation of MPP tec									
	lation of various conventional M									
	ementation bio inspired algorithm		ower trac	king						
	gn of standalone solar PV system									
	rvey on major standalone solar P	V systems and app	lications							
	ssity of hybrid systems									
	ration of Solar and Battery source		face							
	gn and implementation of MPP f	or wind system								
Text Boo										
		i, "Photovoltaic S	ystems I	Engineering", 3 rd edition, CRC						
	Press, 2010.		ud							
	D. Yogi Goswami, "Principles of	of Solar Engineerin	ıg" 3 ^{ru} Ed	lition, , CRC Press, 2015.						
Reference										
	1. Leon Freris, David Infield, "Renewable energy in power systems", John Wiley & Sons,									
2008.										
2.	2. Ali Keyhani, "Design of Smart Power Grid Renewable Energy Systems", John Wiley &									
	Sons, 2011.									
3.	Michael Boxwell, "The Solar Electricity Handbook", Code Green Publishing, UK, 2009.									
4.	Sukhatme S.P., "Solar Energy", Tata McGraw Hills P Co., 3rd Edition, 2008.									
5.	R.Mukund, "Wind and Solar Power Systems: Design, Analysis, and Operation", 2 nd									
	Edition, CRC Press, 2005.	,	<i></i>							
	ended by Board of Studies	05/03/2016								
	Approved by Academic Council 40 th AC Date 18/03/2016									
The state of the s										

		Vellore Institute of Technolo (Deemed to be University under section 3 of UGC Act,	195 6)							
EEE6009		Special Machines and Con	trol	L	7	Γ]	P J	J (7	
				2	(0	0 4	1 .	3	
Pre-requisite	e	EEE5002		Sylla	ıbı	us	ver	rsio	n	
Anti-requisit		NIL					V	7. 1.	0	
Course Object	ectives:									
-		dge on non-standard type of electro-mechani	cal energy conve	rsion n	nac	chi	ines	s an	d	
their importan	nce.				_				_	
Expected Cor	nirse O	utcome•								
		f this course the student will be able to:								
-		at magnet material property and circuits								
• •		er motor from other motor								
-		ned reluctance motor from synchronous reluc	tance motor							
_		ave and sine wave permanent magnet brushle								
	_	motor from conventional motor								
_		nced synchronous motor								
		iate drive for the specific purpose.								
		ent or a product applying all the relevant stan	dards with realisti	ic cons	str	air	nts			
	<u> </u>	T J G								
Module:1	Stepp	er Motors:					4 h	oui	·s	
	1	Working – Modes of excitation – Drive circ	uits – Control As	spects -	- (Coi	nce	pt o	of	
lead angle.				r				r		
					_				_	
Module:2	Switch	ned Reluctance Motors:					4 h	oui	`S	
Constructiona	al and V	Working - Power Converters and their con	trollers - Method	ds of ro	oto	or	pos	itic	n	
sensing.		-					-			
Module:3	Synch	ronous Reluctance Motors:					5 h	oui	·S	
Constructiona	al and V	Vorking Significance of direct and quadrature	e inductances - Ph	nasor d	iaş	gra	ım.			
Module:4	Perma	nent Magnet Brushless DC Motors:					5 h	oui	`S	
Permanent M	/lagnet	materials - Magnet Characteristics - Perm	eance coefficient	t. Mag	ne	etic	ci	rcu	it	
analysis of P	PMBLD	C – EMF and torque equations – Commu	tation – Power C	Convert	er	a	nd	the	ir	
controllers.										
Module:5	Perma	nent Magnet Synchronous Motors:					4 h	oui	`S	
Principle of o	operation	on –EMF and Torque equations–Synchron	ous Reactance –	Phaso	r	dia	ıgra	ım	_	
-	-	ere requirements.								
Module:6	Advan	ced Synchronous Machines:					4 h	oui	`S	
Flux Switching and Flux Reversal Machines - Claw Pole Alternators - Axial flux Machines -										
Construction a	Construction and Working - Characteristics - Applications.									
Module:7	Linear	r Motors:					4 h	oui	·s	
7. 50.	-					_~		-		

Linear DC Motors - Linear Induction Motors - Linear Synchronous Motors - Linear Switched

			ed to be University under section 3 o							
Relucta	ance N	Motors - Construction and W	orking - Applicati	ons.						
Modul	le:8	Contemporary issues:			2 hours					
			Total I actume h		20 h avvva					
			Total Lecture he		30 hours					
Mode	of Eva	aluation: CAT / Assignment	/ Quiz / FAT / Pro	ject / Semi	nar					
List of	f Proje	ects								
1. Exe	ecutio	n of B-H Loop and demagne	tization characteri	stics of BI	LDC motor					
	rforma	ance test of Hall sensors								
		cuit test on permanent magne								
		f controllers for permanent								
		n of torque speed characteris			DC motor					
		ontrollers for square wave p								
		e phasor diagram, torque-spe								
		test on permanent DC motor		diagram fo	r the same					
		ontrollers for sine wave pern								
		d construction of Switched R								
		simulation test and draw cha								
		suitable test and obtain vario			d reluctance motor.					
		d simulate power circuit for l								
		a suitable test on induction n								
		rming suitable test estimate t	the efficiency of in	iduction ge	enerator.					
Text B										
1.			anent Magnet an	d Relucta	nce Motor Drives", Clarendon					
		ss, Oxford 1989.								
2.	R. k	Krishnan, "Permanent Magne	et and Brushless D	C Motors	Drives", CRC Press, New York,					
	201	0.								
Refere	ence B	ooks								
1.	T. k	Kenjo and S. Nagamori, "Per	manent Magnet ar	nd Brushle	ss DC Motor", Clarendon Press,					
	Lon	idon 1988.								
2.	T. Kenjo, "Stepper Motors and their Microprocessor Controls", Clarendon Press, London.									
3.	Ion Boldea, "Linear Electric Machines, Drives and MAGLEVs Handbook", CRC Press,									
	London, 2013.									
4.	_		tor Theory and Pra	actice Sten	per Motors", Peter Perengrinus,					
		idon, 1982.	<i>j</i>	P	,					
5.		<u> </u>	manent Magnet at	nd Brushle	ss DC Motor". Clarendon Press					
··	5. T. Kenjo and S. Nagamori, "Permanent Magnet and Brushless DC Motor", Clarendon Press, London 1988.									
Recom		ed by Board of Studies	05/03/2016							
		Academic Council	40 th AC	Date	18/03/2016					
7 PP10	, ca by	1 Toddellife Couliell	TO AC	Date	10/03/2010					