

School of Electronics Engineering

M. Tech. – Automotive Electronics

Curriculum and Syllabus 2023-24

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OFTECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

To be a leader by imparting in-depth knowledge in Electronics Engineering, nurturing engineers, technologists and researchers of highest competence, who would engage in sustainable development to cater the global needs of industry and society.

MISSION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

- Create and maintain an environment to excel in teaching, learning and applied research in the fields of electronics, communication engineering and allied disciplines which pioneer for sustainable growth.
- Equip our students with necessary knowledge and skills which enable themto be lifelong learners to solve practical problems and to improve the quality of human life

.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The graduates of the programme will be able to

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry
- 3. Graduates will function in their profession with social awareness and responsibility
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country
- 5. Graduates will be successful in pursuing higher studies in engineering or management
- 6. Graduates will pursue career paths in teaching or research

.

PROGRAMME OUTCOMES (POs)

On completion of the Programme the students will have the

- PO_01: Having an ability to apply mathematics and science in engineering applications.
- PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment
- PO_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information
- PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice
- PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems
- PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development
- PO_07: Having a clear understanding of professional and ethical responsibility
- PO_08: Having a good cognitive load management skills related to project management and finance

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. Automotive Electronics, graduates will be able to:

- **PSO1.** Apply advanced concepts of Automotive Electronics to design and develop components and systems for applications in automotive systems.
- **PSO2**. Use state-of-art hardware and software tools to experiment the automotive electronics systems to solve industry and real-world problems.
- **PSO3**. Independently carry out research on diverse Automotive Electronics strategies to address practical problems and present a substantial technical report.

	CREDIT INFO								
S.no	Catagory	Credits							
1	Discipline Core	24							
2	Discipline Elective	12							
3	Projects and Internship	26							
4	Open Elective	3							
5	Skill Enhancement	5							
	Total Credits	70							

	Discipline Core										
sl.no	no Course Code Course Title C		Course Type	Ver sio n	L	Т	P	J	Credits		
1	MAME501L	Sensors and Engine Management Systems	Theory Only	1.0	3	0	0	0	3.0		
2	MAME502L	Microcontrollers for Vehicular Systems	Theory Only	1.0	3	0	0	0	3.0		
3	MAME502P	Microcontrollers for Vehicular Systems Lab	Lab Only	1.0	0	0	2	0	1.0		
4	MAME503L	Vehicle Control Systems	Theory Only	1.0	3	0	0	0	3.0		
5	MAME504L	Automotive Networking and Protocols	Theory Only	1.0	3	0	0	0	3.0		
6	MAME504P	Automotive Networking and Protocols Lab	Lab Only	1.0	0	0	2	0	1.0		
7	MAME505L	Electric and Electronic Power Systems for Vehicles	Theory Only	1.0	3	0	0	0	3.0		
8	MAME506L	Automotive Power Electronics and Motor Drives	Theory Only	1.0	3	0	0	0	3.0		
9	MAME506P	Automotive Power Electronics and Motor Drives Lab	Lab Only	1.0	0	0	2	0	1.0		
10	MAME507L	Alternative Drives, Traction and Controls	Theory Only	1.0	3	0	0	0	3.0		

		Discipline Elective							
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Р	J	Credits
1	MAME605L	Vehicular Information and Communication Systems	Theory Only	1.0	3	0	0	0	3.0
2	MAME606L	Parallel Programming using Multi cores and Graphical Programming Units	Theory Only	1.0	3	0	0	0	3.0
3	MAME607L	Digital Signal Processing and its Applications	Theory Only	1.0	3	0	0	0	3.0
4	MAME607P	Digital Signal Processing and its Applications Lab	Lab Only	1.0	0	0	2	0	1.0
5	MAME608L	Open Source Hardware and Software System Design	Theory Only	1.0	3	0	0	0	3.0
6	MAME609L	Machine Vision System for Automotive	Theory Only	1.0	3	0	0	0	3.0
7	MAME609P	Machine Vision System for Automotive Lab	Lab Only	1.0	0	0	2	0	1.0
8	MAME610L	Automotive Fault Diagnostics	Theory Only	1.0	3	1	0	0	4.0
9	MAME611L	Emission Control and Diagnosis	Theory Only	1.0	3	0	0	0	3.0
10	MAME612L	Vehicle Safety Systems	Theory Only	1.0	2	0	0	0	2.0
11	MAME613L	Vehicle Bodies	Theory Only	1.0	2	0	0	0	2.0
12	MAME614L	Engine Peripherals	Theory Only	1.0	2	0	0	0	2.0
13	MAME615L	Vehicle Security and Comfort Systems	Theory Only	1.0	3	0	0	0	3.0
14	MAME616L	Automotive IoT	Theory Only	1.0	3	0	0	0	3.0

Report On: 13-02-2024 04:00:53 PM

		Discipline Electiv	_z e						
15	MAME617L	Augmented and Virtual Reality for Automotive Applications	Theory Only	1.0	3	0	0	0	3.0
16	MAME618L	Soft Computing Techniques	Theory Only	1.0	3	0	0	0	3.0
17	MEDS501L	Embedded System Design	Theory Only	1.0	3	0	0	0	3.0
18	MEDS601L	Electromagnetic Interference and Compatibility in ESD	Theory Only	1.0	3	0	0	0	3.0
19	MEDS616L	Machine Learning and Deep Learning	Theory Only	1.0	3	0	0	0	3.0

	Projects and Internship										
sl.no	Course Code	Course Title	Course Type	Ver sio	L	Т	Р	J	Credits		
				n							
1	MAME696J	Study Oriented Project	Project	1.0	0	0	0	0	2.0		
2	MAME697J	Design Project	Project	1.0	0	0	0	0	2.0		
3	MAME698J	Internship I/ Dissertation I	Project	1.0	0	0	0	0	10.0		
4	MAME699J	Internship II/ Dissertation II	Project	1.0	0	0	0	0	12.0		

		Open Elective							
sl.no	Course Code	Course Title	Course Type	Ver	L	т	Р	J	Credits
				sio					
				n					
1	CFOC508M	Entrepreneurship	Online Course	1.0	0	0	0	0	3.0
2	MFRE501L	Francais Fonctionnel	Theory Only	1.0	3	0	0	0	3.0
3	MGER501L	Deutsch fuer Anfaenger	Theory Only	1.0	3	0	0	0	3.0
4	MSTS601L	Advanced Competitive Coding	Soft Skill	1.0	3	0	0	0	3.0

		Skill Enhancement							
sl.no	Course Code	Course Title	Course Type	Ver sio	L	Т	Р	J	Credits
				n					
1	MENG501P	Technical Report Writing	Lab Only	1.0	0	0	4	0	2.0
2	MSTS501P	Qualitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5
3	MSTS502P	Quantitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5

Report On: 13-02-2024 04:00:53 PM Page 2 of 3

Course Code	Course Title L		L	Т	Р	С
MAME501L	Sensors and Engine Management Systems	3 0		0	0	3
Pre-requisite	Nil	Syllabus version		on		
		1.0				

The course is aimed at

- 1. Giving details of the Engine sensor waveforms and methods to analyze the same.
- 2. Providing an overview of petrol and diesel engines using Engine Control Unit (ECU).
- 3. Giving insights into the operation of ECU with the suitable mapping of sensors.

Course Outcome

At the end of the course, the student will be able to

- 1. Comprehend the concepts of ECU design for automotive applications.
- 2. Analyze response of Transducers and sensors for automotive applications
- 3. Understand the various after treatment and alternative fuel-based systems.
- 4. Comprehend the operation of petrol engine management systems.
- 5. Understand the operation of automotive sensors and fuel injection systems.
- 6. Comprehend the Electronic control unit pertaining to chassis and body.
- 7. Illustrate the various Automotive subsystems.

Module:1 | Electronic Control Unit(ECU) Design

6 hours

The concepts of ECU design for automotive applications, Need for ECUs, advances in ECUs for automotive, design complexities of ECUs, V-Model for Automotive ECU's Architecture, analog and digital interfaces.

Module:2 Basics of Engine Control systems

6 hours

IC engines operation – Petrol and Diesel; IC engine as a propulsion source for Automobiles; the need for engine controls and management; Control objectives linked to fuel efficiency, emission limits and vehicle performance; advantages of using Electronic engine controls.

Module:3 | Petrol Engine Management Systems

7 hours

Evolution of Petrol engine controls, Electronic ignition, multi-point fuel injection, direct injection; Basics of ignition system and fuel injection system; Architecture of a EMS with multi point fuel injection.

Module:4 Diesel Engine Management Systems

6 hours

Basics of Diesel engine Controls; Evolution of diesel engine controls; in-line fuel pump; rotary fuel pump; EGR control; Electric motor driven fuel pump; electronic fuel injection control and timing.

Module:5 | After Treatment and Alternate Fuel

6 hours

Automobile emission – source, control, tests, standards (Indian), Exhaust Gas Recirculation (EGR), Catalytic converter, Alternative fuels – hydrogen – CNG, LPG, Biodiesel.

Module:6 Transducer Principles

6 hours

Transducers classification and basic principles, General Input-output configuration, static characteristics and dynamic characteristics of instruments, Variable resistance transducers, Metal and semiconductor strain gages and their signal conditioning, Inductive transducers, Electromagnetic sensors, Hall effect sensors, Capacitive transducers, Piezo electric transducers and their signal conditioning, Ultrasonic sensors.

Module:7 | Sensors for Transportation

6 hours

Vehicle Body:- Torque sensors/ Force sensors, Sensors Flap air flow sensors, Temperature sensor, Ultrasonic sensors, Ranging radar (ACC) Power Train:- Fuel level sensors, Speed and RPM sensors, Lambda Oxygen sensor, Hotwire air mass meter Chassis:- Steering wheel angle sensor, Vibration and acceleration sensors, Pressure sensors, Speed and RPM sensors.

Module:8 | Contemporary Issues

2 hours

		To	tal Lecture ho	ours:	45 hours			
Tex	xt Book	(s)		l				
1.		mentals of Internal Combust	tion Engines -	H.N. Gup	ta - Second edition (2015)			
		oublisher						
2. Internal Combustion Engines - 2012 -V Ganesan –Tata McGraw Hill								
3.	-							
	(Author)							
Re	ference	Books						
1.	Autom	otive Sensors, BOSCH. 2002	2					
2.	Fundar	mentals of Automotive Electr	onics Book - S	Sixth Edition	on-2015 - Alma Hillier			
Мо	de of E	valuation: Continuous Ass	essment Test	Digital	Assignment, Quiz and Final			
	Assessment Test							
Re	commer	ded by Board of Studies	28-07-2022					
App	proved b	y Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title		L	Т	Р	С
MAME502L	Microcontrollers for Vehicular Systems		3	0	0	3
Pre-requisite	Nil	Syllabus versio			on	
		1.0				

The course is aimed at:

- 1. Introducing the students to various automotive grade microcontroller for vehicles.
- 2. Teaching Embedded C programming with 8051 controller and ARM processor.
- 3. Explaining the architecture and features of ARM processor.

Course Outcome

2.

At the end of the course, the students will able to

- 1. Understand the architecture of 8051 Microcontroller.
- 2. Write programs for solving problems using 8051 Microcontroller.
- 3. Comprehend ARM architecture & its features
- 4. Describe the architecture of Cortex-M.
- 5. Perform ARM processor based experiments using Embedded C programming tool.
- 6. Have an overview of the types of ARM cores in the market and to make a suitable choice for an application.
- 7. Comprehend various Microcontroller for powertrain and body electronics.

Module:1 Introduction to 8 bit microcontrollers 5 hours RISC / CISC and Harvard / Princeton, 8bit Architecture [8051,PIC18], External memory interface, Ports, Timers/counters, Serial Communication, Interrupts. Module:2 8 bit microcontrollers programming for 7 hours **Body, Safety and Temperature** Programming in Embedded C [8051, PIC18], Applications on Body, safety and Temperature. Module:3 ARM Architecture 7 hours ARM Design Philosophy, Overview of ARM architecture, States[ARM, Thumb, Jazelle], Registers, modes, Conditional Execution, Pipelining, Vector Tables, Exception handling. Module:4 | ARM Core 6 hours Architecture of Cortex-M, Memory Addressing, IO ports, Timers/counter, Watch Dog Timer, PWM, ADC/DAC, UART, Interrupts, Displays, C programming. Module:5 ARM core programming 6 hours Embedded C programming for IO ports, Timers, PWM, ADC and External interfaces. Module:6 | Automotive 32-bit MCU 6 hours Choosing MCU's for Automotive Applications, Atmel – SMART ARM based MCU, ST- SPC5 32-bit Automotive MCU, NXPAutomotive MCU. Module:7 | Automotive MCU by Applications 6 hours Automotive microcontrollers for Powertrain Control, Hybrid and Electric Auxiliaries, Transmission and Body Electronics. Module:8 | Contemporary Issues 2 hours **Total Lecture hours:** 45 hours Text Book(s) 1. The 8051 Microcontroller and Embedded Systems Using Assembly and C -3rd Edition - Muhammad Ali Mazidi -2015 **Reference Books**

1. 8051 Microcontrollers - David Calcutt, Fred Cowan, Hassan Parchizadeh - Newness -2011 The Definitive Guide to the ARM Cortex M0 - Joseph Yiu -Newness -2015

Automotive Microcontrollers, Volume 2 by Ronald K. Jurgen – SAE publication-2012

Mode of Assessment: Continuous Assessment and Final Assessment Test							
Recommended by Board of Studies	28-07-2022						
Approved by Academic Council	No. 67	Date	08-08-2022				

Course Code	Course Title		L	Т	Р	С
MAME502P	Microcontrollers for Vehicular Systems Lab	controllers for Vehicular Systems Lab				1
Pre-requisite	Nil	Syllabus version			ion	
		1.0				

The course is aimed at:

- 1. Introducing the students to various automotive grade microcontrollers for vehicles.
- 2. Teaching Embedded C programming with 8051 controller and ARM processor.
- 3. Explaining the architecture and features of ARM processor.

Course Outcome

- 1. Understand the architecture of 8051 Microcontroller.
- 2. Write programs for solving problems using 8051 Microcontroller.
- 3. Comprehend ARM architecture & its features
- 4. Describe the architecture of Cortex-M.
- 5. Perform ARM processor based experiments using Embedded C programming tool.
- 6. Have an overview of the types of ARM cores in the market and to make a suitable choice for an application.
- 7. Comprehend various Microcontroller for powertrain and body electronics.

Indi	cative Experiments					
1.	[8051 Micro controller using B	Embedded C in I	Keil and		2 hours	
	implementation in 8051 Micro	controller] (exp	t. 1 to 5)			
	Programming with Arithmetic lo	gic instructions –	GPIO pro	ogramming		
2.	Programming with timer – using				4 hours	
3.	Programming with Serial Comm transfer and receiver	nunication – Seria	al commu	nication data	4 hours	
4.	Programming with Interrupt – pr	roviding external	interrupt t	o activate	4 hours	
5.	Programming with LCD - interfa	ace LCD to displa	y outputs	3	2 hours	
6.	[ARM Micro controller using I			ator and	2 hours	
	LPC2148 –ARM microcontrol					
	Programming with Arithmetic lo	gic instructions –	Basic pro	ogramming		
	like addition, subtraction.					
7.	Programming with Arithmetic lo , OR etc., logic execution	gic instructions -	multiply, o	division, AND	2 hours	
8.	GPIO programming ARM micro	controller - GPIO	program	ming	4 hours	
9.	Timers programming ARM Micr delay	ocontroller– usin	g timer fo	r calculating	4 hours	
10.					2 hours	
	Total Laboratory Hours					
Mod	e of Assessment: Continuous As	sessment and Fi	nal Asses	ssment Test		
	ommended by Board of Studies					
Аррі	Approved by Academic Council No. 67 Date 08-08-2022					

Course Code	Course Title		L	T	Р	С
MAME503L Vehicle Control Systems		3	0	0	3	
Pre-requisite	Nil	Syllabus version			n	
		1.0				

The course is aimed at:

- 1. Getting the know-how required for mathematical modeling, performance and stability analysis of feedback vehicle control system.
- 2. Providing a comprehensive coverage of controller design, state space design methods and digital control system.
- 3. Acquiring the skills for carrying out typical projects involving vehicle controls using MATLAB and SIMULINK.

Course Outcome

- 1. Understand the modeling aspects involved in the design of the physical system for vehicle applications
- 2. Identify the steady state and transient response of the different order of the system, analyse its performance and compute error coefficients.
- 3. Evaluate the stability of the system in frequency domain
- 4. Design a controller for automotive application using MATLAB/SIMULINK
- 5. Comprehend the Classical controller design
- 6. Identify the state space design methods like SISO, etc.
- 7. Explain the stability test procedure and get introduced to digital controller design.

Module:1	System Modeling using Transfer function	6 hours							
	Fundamentals of modeling -transfer function approach. Introduction to block diagrams &								
	signal flow graphs. Introduction to SIMULINK.								
	Performance of Feedback Control System	6 hours							
	, Second order control system response for step								
•	Type number -characteristic equation -Poles an	d Zeroes concept -Error Analysis							
	nance indices.								
Module:3		6 hours							
	system								
	response plots -frequency domain specification								
	ability criteria -Root Locus - stability in the free	quency domain –gain and phase							
	Nyquist stability criterion.								
	Controller Design	6 hours							
	al, Integral, Derivative controllers, P, PI, and PID								
	sing SIMULINK to build 'P', 'PI', 'PID'controller mo	odules and carry out experiments.							
•	and interpretations of results.								
	Classical controller design	6 hours							
	esign in the frequency domain- lead, lag comper								
	Modern control theory	7 hours							
	e design methods: SISO, MIMO systems, Vario								
	sh form, etc), controllability and observability, sta								
Module:7	Introduction to Digital Control	6 hours							
	System								
	ime systems, Sampling and aliasing conside								
	tics -Jury's stability test -mapping s to z plan-	e -Digital controller design: from							
	igital design.								
Module:8	Contemporary Issues	2 hours							

		To	tal Lecture ho	ours:	45 hours			
Tex	Text Book(s)							
1.	Katsuh	iko Ogata, —Modern Contro	I Engineeringl	l, Prentice	Hall, (4th Edition), 2015			
2.	K. Oga	ta, —Discrete-Time Control	Systems, Prer	ntice-Hall,	Inc., 1994			
Ref	ference	Books						
1.	I.J. Na	grath and M. Gopal, "Contr	ol Systems Ei	ngineering	g", New Age International (P)			
	Limited	I, 4th Edition, 2006						
2.		n S. Nise," Control Systems						
3.	Uwe K	iencke, Lars Nielsen, —Aut	omotive Contr	ol System	ns: For Engine, Driveline, and			
	Vehicle	ell, Springer; 1 edition, March	30, 2000					
Мо	de of E	Evaluation: Continuous Ass	essment Test	, Digital	Assignment, Quiz and Final			
Ass	Assessment Test							
Re	commen	ded by Board of Studies	28-07-2022					
App	proved b	y Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title			Р	С
MAME504L	ME504L Automotive Networking and Protocols				3
Pre-requisite	Nil	Syllabus version			ion
		1.0			

The course is aimed at:

- 1. Providing an overview of automotive network systems.
- 2. Exposing students to the aspects of design, development, application and performance issues associated with automotive network systems.

Course Outcome

- 1. Illustrate the basics of automotive networking and protocols
- 2. Comprehend the general protocols and their usage in automotive sector
- 3. Understand the LIN protocol and implement inconvenience feature applications
- 4. Design and implement CAN protocol for chassis and power train applications
- 5. Understand the concepts of time triggered protocols and it's usage in automotive field
- 6. Design and implement in media-oriented system transport protocol applications
- 7. Understand FlexRay protocol and their usage in safety critical applications

7. Und	lerstand FlexRay protocol and their usage in safe	ety critical applications							
Module:1	Introduction to Automotive Networking	6 hours							
Overview of	of Data communication and networking -need fo	r In-Vehicle networking –layers of							
OSI referer	nce model -multiplexing and de-multiplexing con	cepts -vehicle buses.							
Module:2	General purpose protocols	6 hours							
Overview of	of general purpose networks and protocols -Ethe	ernet, TCP, UDP, IP							
Module:3	Protocol for low data rate	6 hours							
	applications								
LIN standa	rd overview -workflow concept-applications -LIN	protocol specification –signals –							
Frame tra	nsfer –Frame types –Schedule tables –Ta	sk behaviour model –Network							
manageme	nt – status management.								
Module:4	Protocol for medium data rate	7 hours							
	applications								
Overview of	of CAN -fundamentals -Message transfer -fr	ame types-Error handling -fault							
confinemer	nt-Bit time requirements								
Module:5	Time triggered protocol	6 hours							
Introductio	n to CAN open -TTCAN -Device net -SAE J193	39							
	Protocol for infotainment	6 hours							
MOST -O	verview of data channels -control channel-sync	hronous channel -asynchronous							
channel -l	_ogical device model –functions-methods-prop	perties-protocol basics- Network							
	a transport –Blocks –frames –Preamble-bounda								
Module:7	Protocols for safety critical	6 hours							
	applications								
	troduction –network topology –ECUs and bus int								
	ol operation controls -media access control and	frame and symbol processing –							
coding/dec									
Module:8	Contemporary Issues	2 hours							
	Total Lecture hours:	45 hours							
Text Book	(s)								
	ielleen, Automotive in-vehicle networks, John W	ilev & Sons. Limited, 2016							
Reference	·	, 2. 22, 2							
	Bosch, Bosch automotive networking, Bentley p	oublishers.2007							
	,,,,,,,,								

- 2. Society of automotive engineers, In-vehicle networks ,2015
- 3. Ronald K Jurgen, —Automotive Electronics Handbook, McGraw-Hill Inc. 1999.
- 4. IndraWidjaja, Alberto Leon-Garcia, —Communication Networks: Fundamental Concepts and Key Architectures, McGraw-Hill College; 1st edition, 2000.
- 5. Konrad Etschberger, Controller Area Network, IXXAT Automation, August 22, 2001.
- 6. Olaf Pfeiffer, Andrew Ayre, Christian Keydel, —Embedded Networking with CAN and CANopen, Anna books/Rtc Books, 2003

CANopen, Anna books/Rtc Books, 2003					
Mode of Assessment: Continuous Assessment and Final Assessment Test					
Recommended by Board of Studies	28-07-2022	28-07-2022			
Approved by Academic Council	No. 67	Date	08-08-2022		

Course Code	Course Title				Р	С
MAME504P	Automotive Networking and Protocols Lab		0	0	2	1
Pre-requisite	Nil	Syllabus versi		ion		
		1.0				

The course is aimed at:

- 1. Providing an overview of automotive network systems.
- 2. Exposing students to the aspects of design, development, application and performance issues associated with automotive network systems.

Course Outcome

- 1. Illustrate the basics of automotive networking and protocols
- 2. Comprehend the general protocols and their usage in automotive sector
- 3. Understand the LIN protocol and implement inconvenience feature applications
- 4. Design and implement CAN protocol for chassis and power train applications
- 5. Understand the concepts of time triggered protocols and it's usage in automotive field
- 6. Design and implement in media-oriented system transport protocol applications
- 7. Understand FlexRay protocol and their usage in safety critical applications

Ind	licative Experiments					
1.	LIN node to node communication u	sing HCS512	microcont	roller	8 hours	
	 Data will be sent and receiv 	ed from maste	r and slav	ve node		
	using LIN protocol					
2.	CAN node to node communication	•			8 hours	
	 Data will be sent and receive 	ed from maste	r and slav	/e node		
	using CAN protocol					
3.	FlexRay communication using EVE				6 hours	
	 Multiple Data bytes sent usi 	ing FlexRay pr	otocol			
4.	TCP/IP communication using LabV	'iew			4 hours	
	 Sending data to particular p 	ort address us	ing TCP/I	P protocol		
5.	TCP/UDP communication using La	bView			4 hours	
	 Sending data to particular p 	ort address us	ing TCP/I	JDP protocol		
	Total Laboratory Hours					
Мо	Mode of Assessment: Continuous Assessment and Final Assessment Test					
Re	commended by Board of Studies	28-07-2022		·		
App	proved by Academic Council	No. 67	Date	08-08-2022		

Course Code	Course Title		L	Т	Р	С
MAME505L	Electric and Electronic Power Systems for Vehicles		3	0	0	3
Pre-requisite	Nil	Syllabus versio			ion	
				1.0		

The course to aimed at

- 1. Developing the skills to understand the circuit and electrical wiring diagram and interpret the same.
- 2. Providing students with a good understanding of automotive electrical systems with particular emphasize on batteries, charging, ignition, starters and lighting systems.
- 3. Imparting students the knowledge about the new developments and advancements of automotive electrical technologies.

Course Outcome

At the end of the course, the student will be able to

- 1. Interpret the electrical wiring, circuit diagram for automotive applications
- 2. Understand the role of batteries in vehicles
- 3. Develop a charging system for vehicles
- 4. Understand the starter and ignition systems in vehicles
- 5. Demonstrate knowledge on lighting systems for vehicles.
- 6. Comprehend the passive restraint systems and electrical accessories in vehicles
- 7. Design and implement various electrical outlet systems for vehicles

Module:1 | Electrical Systems and Circuits 6 hours System approach -electrical wiring, terminals and switching -multiplexed wiring systems -CAN - circuit diagrams and symbols, Requirements for two wheeler, three wheeler vehicles, Requirements for heavy vehicles- trucks and trailers. Module:2 Batteries 6 hours Vehicle Batteries -Lead-Acid batteries -maintenance and charging -diagnosing Lead acid battery faults –advanced battery technology. Module:3 Charging systems 7 hours Requirements of charging systems —generation of electrical energy in motor vehicle physical principles - alternators -characteristic curves -charging circuits -diagnosing charging system faults. Module:4 Starting system 6 hours Requirements -starter motors and circuits -types of starter motors -diagnosing starting system faults. Module:5 | Ignition system 6 hours Fundamentals -electronic ignition -programmed ignition -distributor less ignition -direct ignition spark plug ignition -diagnosing faults. Module:6 | Lighting system 6 hours Insulated and earth return systems, positive and negative earth systems, Concealed headlights Lighting circuit types, glare and preventive methods. Module:7 | Gauges, Accessories and Passive 6 hours restraint systems Electrical fuel pump, speedometer, oil and temperature gauges, Horns, Wipers, washers, Blower motors, Defoggers, Power windows, seats, door locks, Air bag systems, Seat belt pretensioners Module:8 | Contemporary Issues 2 hours **Total Lecture hours:** 45 hours Text Book(s) 1. Automotive Electricals / Electronics System and Components, Tom Denton, 3rd

	T							
	Edition, 2015							
Ref	Reference Books							
1.	Judge, A.W., —Modern Electrical E	Equipment of A	Automobile	esll, Chapmar	n & Hall London,			
2.	Young, A.P., &Griffiths.L., —Autom Society & New Press, 1990	obile Electrica	l Equipme	entll, English l	Languages Book			
3.	Automotive Electricals Electronics Edition, 2004	•	·		sosch Gmbh, 4th			
4.	Automotive Hand Book, Robert Bos	sch, Bently Pu	blishers, 1	1997				
5.	Jurgen, R., Automotive Electronics	Hand Book, 2	015					
Мо	de of Evaluation: Continuous Ass	essment Test	, Digital	Assignment,	Quiz and Final			
Ass	sessment Test			•				
Re	commended by Board of Studies	28-07-2022						
	· · · · · · · · · · · · · · · · · · ·		_					

No. 67

Date

08-08-2022

Approved by Academic Council

Course Code	Course Title		L	Т	Р	С
MAME506L	MAME506L Automotive Power Electronics and Motor Drives			0	0	3
Pre-requisite	Nil	Syllabus version			ion	
				1.0		

The course is aimed at:

- 1. Imparting an in-depth knowledge about power electronics devices using MATLAB
- 2. Acquiring the design capability of converters and inverters for the electric and hybrid vehicles 3. Gaining knowledge on the different motors and their application in electric vehicles

Course Outcome

At the end of the course, the student will be able to

- 1. Understand the operation of power semiconductor devices
- 2. Understand the operation of AC-DC converters at different loads
- 3. Understand the operation of three phase inverters
- 4. Design different converters: buck, boost and buck-boost converters
- 5. Understand the concepts of ultracapacitor and its usage in automotive field
- 6. Describe the different speed control methods of induction motors
- 7. Give details about the operation and characteristics of different motors

Module:1 Power Electronics 6 hours Introduction to power electronics- Structure, operation and characteristics of automotive semiconductor devices -SCR, Power Transistor, Power MOSFET and IGBT- turn on and off circuits - series and parallel operation of SCR -protection Circuits -design of snubber circuits Module:2 | Converters 6 hours Half wave controlled converter with R,RL-RLE load, fully controlled converters with R-RL-RLE load-Three phase half wave controlled converter with R-RL load- Three phase fully controlled converter with R-RL load Module:3 Inverters 6 hours Voltage source inverter with 120 degree and 180 degree conduction mode-current source inverters – PWM techniques Module:4 Choppers 6 hours Step up and step down choppers –Different types of coppers – use of choppers Module:5 Ultracapacitors 6 hours Theory of electronic double layer capacitance-model and cell balancing-sizing criteriaconverter interface-ultracapacitors in combination with batteries Module:6 | Automotive motor Control 6 hours Methods of controlling speed – Induction and DC Motor controls Module:7 | Automotive drive system 7 hours BLDC - Motor construction, characteristics and operation -Open loop and close loop control through speed and current sensors-Switched Reluctance Motor -Motor construction, operation and its application. Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book(s) 1. P.S. Bimbhra, "Power Electronics:", Khanna Publishers, 14th edition, 2015 Reference Books

1.	Ali Emadi, "Handbook of Automo	otive power elec	tronics a	nd motor Drives" CRC Press,
	2015.			
2.	Bimal K Bose, "Power Electronic	cs and Motor D	rive: Adv	ances and Trends", Elsevier,
	Inc., 2006.			
Мо	de of Assessment: Continuous Ass	sessment and F	inal Asses	ssment Test
Re	commended by Board of Studies	28-07-2022		
App	proved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title		L	Т	Р	С
MAME506P	Automotive Power Electronics and Motor Drives	Lab	0	0	2	1
Pre-requisite	Nil	Sy	llab	us v	ers	ion
			•	1.0		

The course is aimed at:

- 1. Imparting an in-depth knowledge about power electronics devices using MATLAB
- 2. Acquiring the design capability of converters and inverters for the electric and hybrid vehicles 3. Gaining knowledge on the different motors and their application in electric vehicles

Course Outcome

- 1. Understand the operation of power semiconductor devices
- 2. Understand the operation of AC-DC converters at different loads
- 3. Understand the operation of three phase inverters
- 4. Design different converters: buck, boost and buck-boost converters
- 5. Understand the concepts of ultra-capacitor and its usage in automotive field
- 6. Describe the different speed control methods of induction motors
- 7. Give details about the operation and characteristics of different motors

Ind	icative Experiments				
1.	Design and study of anode current	curve using S	CR		2 hours
2.	Design and study of transfer and output characteristics of MOSFET				
3.	Design and study of transfer and output characteristics of IGBT				
4.	Single Phase half wave controlled	convertor with	R load(u	sing SCR),	4 hours
	triggering from microcontroller.				
5.	Three Phase half wave controlled of	convertor with	R, RL, lo	ad using	4 hours
	MATLAB				
6.	Three Phase voltage source inverte	er (VSI) 120 de	egree mo	ode of	4 hours
	conduction using MATLAB				
7.	Step-up-chopper and step-down ch	opper using M	IATLAB		4 hours
8.	Brushless DC (BLDC) motor model	ling using MAT	LAB		4 hours
		To	tal Labo	oratory Hours	30 hours
Мо	de of Assessment: Continuous Asse	ssment and F	nal Asse	essment Test	
Red	commended by Board of Studies	28-07-2022			
App	proved by Academic Council	No. 67	Date	08-08-2022	

Course Code	Course Title		L	T	Р	С
MAME507L	Alternative Drives, Traction and Controls		3	0	0	3
Pre-requisite	MAME505L	Syllabus versi		ersio	on	
			1	.0		

The course is aimed at:

- 1. Acquainting students with the basics of propulsion using IC engines and electric motors
- 2. Knowing about different energy storage and conversion schemes for Hybrid vehicles
- 3. Giving details about the different architectures for Hybrid electric vehicles

Course Outcome

At the end of the course, the students will able to

- 1. Understand automotive electrical systems
- 2. Suggest an alternate vehicle technology
- 3. Understand the difference in electric motors and IC engines for propulsion in automobiles
- 4. Describe the charging systems for different storages devices
- 5. Understand the types of motors used and control mechanism involved for these types of motors in vehicles
- 6. Explain the various architectures for Hybrid electric vehicles
- 7. Understand the need of fuel cells and use them for hybrid vehicles

Module:1Automotive Electrical Systems6 hoursElectricalSystems and Circuits - Starting systems - Ignition Systems - Lighting & accessories - Electromagnetic Interference and CompatibilitySystems - Lighting & accessories

Module:2 | Hybrid Vehicle Technology

6 hours

Background on need for alternate vehicle technologies for propulsion - Emissions from IC engine based transportation and regulating standards - Projections on availability of non-renewable energy sources - Alternate technologies for vehicles for reducing urban pollution and for extending availability of resources - Importance of Hybrid Electric Vehicles technology

Module:3 | Basics of Vehicle Propulsion

7 hours

Components comprising traction torque - Vehicle performance Parameters - Speed and Acceleration - Fuel economy in IC engine vehicles - Torque - Speed characteristics of IC engines - Comparison of Electric motors and IC engines as vehicle propulsion power sources - Basics of Electric vehicles - Types of Motors and the speed - Torque characteristics

Module:4 | Energy Storage / Energy Conversion

6 hours

Different types of Batteries for Electric vehicles - Lead acid batteries, Nickel Metal Hydride Batteries, Lithium ion batteries - Comparison of different types of batteries - Battery Management systems / Energy Management Systems - Wireless Charging Systems - Fast Charging Systems - Super Capacitors - Fuel Cells - Solar Energy Converters.

Module:5 | Motors and Controllers

6 hours

DC motors - Principle and control - Induction motor drives - Methods of speed control of Induction motor - Constant V / f control - Vector control method - Inverter for Vector control - Basic principles of BLDC motors - Performance analysis and control of BLDC Motors - Sensor less technique for driving BLDC motors - Regenerative braking with electric drive - Four quadrant operation - Optimizing energy recovery.

Module:6 Architectures for Hybrid Electric Vehicles

6 hours

Series, parallel and series – parallel hybrids - Different architectures for Hybrid Electric vehicles - Series Hybrid Electric vehicle basics - Sizing of major components - Peak power sourcing - Parallel Hybrid electric vehicle basics - Engine on / off control strategy - Peak

•	rcing - Drive train rating -		hybrid El	ectric drive s	system - Series-
•	d hybrid electric vehicle syst				
Module:7	Industry examples of I	Hybrid Elect	ric		6 hours
	Vehicle				
Fuel cell: E	asic principles of fuel cells				
Module:8	Contemporary Issues				2 hours
	To	tal Lecture ho	urs:		45 hours
Text Book	(s)		I		
1. Moder	n Electric, Hybrid Electric a	nd Fuel cell v	ehicles -	by MehrdadE	Ehsani, Yimin
Gao, S	Sebatien Gay and Ali Emadi;	Published by (CRC pres	s,2015	
Reference	Books	-	•		
1. Iqbal F	lusain, Electric & Hybrid Veh	icles, CRC Pro	ess, 2015		
2. Ronald	d K Jurgen, Automotive Elect	ronics Handbo	ok, McGr	aw-Hill Inc. 19	999
	-				
		 	51.11.1		<u> </u>
_	Evaluation: Continuous Ass	essment Lest	, Digital	Assignment,	Quiz and Final
Assessme		1			
Recomme	nded by Board of Studies	28-07-2022			
Approved I	by Academic Council	No. 67	Date	08-08-2022	

Course Code	Course Title		L	Т	Р	С
MAME605L	Vehicular Information and Communication Syste	ms	3	0	0	3
Pre-requisite	Nil	Syl	lab	us v	/ers	ion
				1.0		

The course is aimed at:

- 1. Teaching the students concepts of data processing, instrumentation and ECU recording equipment.
- 2. Providing students, a good understanding about automotive sound system and navigation for vehicular systems
- 3. Providing details about the positioning and guidance systems.

Course Outcome

- 1. Understand the data processing in motor vehicles.
- 2. Comprehend the networking in automotive.
- 3. Gain knowledge about the information & communication
- 4. Understand the ECU recording equipment and Parking systems
- 5. Explore the sound system for automotive
- 6. Understand the Positioning and Map Matching for vehicles

	utomotive
Module:1 Data processing in motor vehicles	5 hours
Requirements, Electronic control unit (ECU), Architecture, CARTRONIC.	
Module:2 Automotive networking	6 hours
Cross-system functions, Requirements for bus systems, Classification o	f bus systems,
Applications in the vehicle, Coupling of networks, Example.	
Module:3 Instrumentation	6 hours
Information and communication areas, Driver information systems, Instr	ument clusters,
Display types	
Module:4 ECU recording equipment and Parking	6 hours
systems	
Legal requirements, Design variations, parking aid with ultrasonic se	ensors, Further
development	-
Module:5 Automotive sound systems	7 hours
Radio tuners, Conventional tuners, Digital receivers, Reception qua	llity, Reception
improvement, Auxiliary equipment, Vehicle antennas.	
Module:6 Positioning and Map Matching	7 hours
Dead Reckoning, Global Positioning System, Sensor fusion. Conventional	map matching,
Fuzzy logic Based Map matching, Map aided Sensor calibration.	
Module:7 Route Planning and Route Guidance	6 hours
Shortest Path, Heuristic Search, Bidirectional Search, Hierarchical search,	Juidance while
En Route , Guidance while off Route , Guidance with dynamic information	0.1
Module:8 Contemporary Issues	2 hours
T 4.114	45.1
Total Lecture hours:	45 hours
Text Book(s)	
1. Bosch, "Automotive Handbook", 8th Edition, SAE publication, 2015	
Reference Books	
1. Intelligent Vehicle Technologies Theory and Appications-	L Vlacic, M
Parent,FHarashima - Butterworth Heinemann, 2015	
2. Vehicle location and Navigation Systems – Yilin Zhao – Artech House Inc	c., 2016

3.	14. NY: Springer, 2010			
4.	Mashrur A. Chowdhury, and Ade Systems Planning, Artech House,	el Sadek, Fund Inc., 2003	damental	s of Intelligent Transportation
	de of Evaluation: Continuous Ass sessment Test	sessment Test	t, Digital	Assignment, Quiz and Final
Red	commended by Board of Studies	28-07-2022		
App	proved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title		L	Т	Р	С
MAME606L	Parallel Programming using Multi cores and Graphical Programming Units		3	0	0	3
Pre-requisite	Nil	Syl	lab	us \	/ers	ion
				1.0		

The course is aimed at:

- 1. Imparting the knowledge about implementation of multi-threading on single core versus multi-core platforms
- 2. Providing the basic concept of threads error diffusion and parallel error diffusion.
- 3. Elaborating the details of Deadlock and Semaphores and implementation of dependent threading features.

Course Outcome

At the end of the course, the student will be able to

- 1. Understand the basic concepts of multi-core architecture
- 2. Demonstrate knowledge of the core architectural aspects of Parallel Computing
- 3. Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications
- 4. Apply the concept of threading for large scale systems
- 5. Apply methods to support and manage virtualization
- 6. Develop and implement the various Parallel Programming Concepts in Linux Platform
- 7. Analyze the gblockldx and threadldx

Module:1 Multi-core Architecture

6 hours

Overview of Single core processor Architecture and its limitations, Architectural Innovations, Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore system software stack.

Module:2 Overview of Threading

6 hours

Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading - virtual environment - Run time virtualization - System virtualization

Module:3 Fundamental concepts of parallel programming

6 hours

Thread Level Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization

Module:4 | Parallel programming constructs

6 hours

Synchronization - Critical sections - Deadlock - Semaphores - Locks - Condition variables - Messages - Fence - Barrier - Implementation dependent threading features

Module:5 OpenMP : Portable solution for threading

7 hours

Loop carried dependence - Data-race conditions - Managing shared and private Data -Loop Scheduling and Partitioning - Effective use of reductions - work-sharing sections -Using barrier and Nowait - Interleaving single thread and multi-thread execution - Data copy-in and copy-out - Protecting updates of shared variables - OpenMP Library functions -OpenMP environmental variables – multithreading debugging techniques

Module:6 CUDA Programming

6 hours

GPUs as Parallel computers - architecture of a modern GPU - Data Parallelism - CUDA program structure - Matrix - Matrix multiplication example - Device memories and data transfer - Kernel functions and threading - predefined variables - Runtime API

Module:7 CUDA threads and Memories

CUDA thread organization - Using block and thread - synchronization and Transparent Scalability - Thread Assignment - Thread scheduling - CUDA device memory types strategy for reducing global memory traffic

Мо	dule:8	Contemporary Issues			2 hours			
		Т	otal Lecture ho	ours:	45 hours			
Tex	kt Book	(s)						
1.					h Software Multi-threading, iblications, New Delhi, 2015			
Ref	ference	Books						
1.	_	mming Massively Parallel nei W. Hwu, Elesevier, Nev	•	hands-or	n approach, David B. Kirk and			
_	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test							
Red	commer	nded by Board of Studies	28-07-2022					
App	oroved b	y Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title		L	T	Р	С
MAME607L	Digital Signal Processing and its Applications		3	0	0	3
Pre-requisite	Nil	Syl	lab	us \	/ers	ion
				1.0		

The course is aimed at:

- 1. Introducing the concepts of sampling, digital filter, adaptive digital system
- 2. Providing the concepts of information theory and source coding different applications
- 3. Teaching methods and algorithms which would enable communication to happen as close to the maximum information transfer rate as possible

Course Outcome

At the end of the course, the student will be able to

- 1. Gain insight into digital models and algorithms to process the signals, after due conversion of signals from analog to digital
- 2. Determine the techniques to perform analog to digital and digital to analog conversion process
- 3. Design adaptive filters based on the signal processing and communication concepts
- 4. Analyse the signal spectrum from the received signal and modulation scheme suitable for information transmission
- 5. Determine the statistical properties of the signal
- 6. Find different ways of minimizing the number of bits, needed to represent a given amount of information
- 7. Find methods to minimize the probability of communication errors, without affecting the rate of communication process

Module:1 Basics 5 hours

The history of digital signal processing: Measurements and analysis, Telecommunications, Audio and television, Household appliances and toys, Automotive, Digital signal processing basics: Continuous and discrete signals, Sampling and reconstruction, Quantization, Processing models for discrete-time series, Common filters may be added digital filters: Filter architectures, Filter synthesis, Digital control systems: Proportional-integral-derivate controllers, Advanced controllers

Module:2 | Analog Digital interface

7 hours

System considerations: Encoding and modulation, Number representation and companding systems, Digital-to-analog conversion: Multiplying digital-to-analog converters, Integrating digital-to-analog converters, Bitstream digital-to-analog converters, Sample-and-hold and reconstruction filters, Analog-to-digital conversion: Anti-aliasing filters and sample-and-hold, Flash analog-to-digital converters, Successive approximation analog-to-digital converters, Counting analog-to-digital converters, Integrating analog-to-digital converters, Dither, Sigma-delta analog-to-digital converters

Module:3 | Adaptive digital systems

6 hours

Introduction: System structure The processor and the performance function: The adaptive linear combiner, The performance function, Adaptation algorithms: The method of steepest descent, Newton's method, The least mean square algorithm, Applications: Adaptive interference channel, Equalizers, Adaptive beam forming

Module:4 | Spectral analysis and modulation

7 hours

Discrete Fourier transform and fast Fourier transform: Spectral analysis, Discrete Fourier transform and fast Fourier, transform approaches, "Z" transforms Using the auto-correlation function, Periodogram averaging, Parametric spectrum analysis, Modulation: Amplitude shift keying (ASK), Frequency shift keying (FSK), Phase shift keying (PSK), Complex modulation, The Hilbert transformer

Module:5 Kalman filters

4 hours

	n intuitive approach: Recursive I Iman filter: The signal model, The			
	odule:6 Data compression	,		7 hours
De	information theory primer: Inform Ita modulation, adaptive delta	modulation and	d continu	lously variable slope delta
	odulation, DPCM adaptive DPCM t			
	d sub-band coding, Vocoders and			
	mpel-Ziv algorithm, Recognition te	chniques: Speed	h recogni	
	odule:7 Error-correcting codes	 .		7 hours
Ha	annel coding: The channel mod mming distance and error correct des, Viterbi decoding, Interleaving	ion, Linear blo	ock codes	, Cyclic codes, Convolution
	odule:8 Contemporary Issues	,		2 hours
	Т	otal Lecture ho	urs:	45 hours
_				
	xt Book(s)			
Te :		applications, Da		eby and William Walker,
1.	xt Book(s) Digital signal processing and a	applications, Da		eby and William Walker,
1. Re 1.	xt Book(s) Digital signal processing and a Second Edition, Elsevier, New Yo	applications, Da ork, 2015	g Strann	
1.	xt Book(s) Digital signal processing and a Second Edition, Elsevier, New Yoference Books Advanced digital signal process	applications, Da ork, 2015 ing noise reduc	g Strann tion, Sae	edV.Vasaghi, Fourth edition,
1. Re 1. 2. Mc	xt Book(s) Digital signal processing and a Second Edition, Elsevier, New Yoference Books Advanced digital signal process Wiley, New Delhi, 2015	applications, Da ork, 2015 ing noise reduc mentals and App	g Strann tion, Sae	edV.Vasaghi, Fourth edition, by Li Tan, First edition 2007
1. Re 1. 2. Mc As	xt Book(s) Digital signal processing and a Second Edition, Elsevier, New Young Ference Books Advanced digital signal process Wiley, New Delhi, 2015 Digital Signal Processing: Fundar ode of Evaluation: Continuous Asse	applications, Da ork, 2015 ing noise reduc mentals and App	g Strann tion, Sae	edV.Vasaghi, Fourth edition, by Li Tan, First edition 2007

Course Code	Course Title			Т	Р	С
MAME607P	Digital Signal Processing and its Applications Lab			0	2	1
Pre-requisite Nil Syll		llab	us v	ers/	ion	
				1.0		

The course is aimed at:

- 1. Introducing the concepts of sampling, digital filter, adaptive digital system
- 2. Providing the concepts of information theory and source coding different applications
- 3. Teaching methods and algorithms which would enable communication to happen as close to the maximum information transfer rate as possible

Course Outcome

- 1. Gain insight into digital models and algorithms to process the signals, after due conversion of signals from analog to digital
- 2. Determine the techniques to perform analog to digital and digital to analog conversion process
- 3. Design adaptive filters based on the signal processing and communication concepts
- 4. Analyse the signal spectrum from the received signal and modulation scheme suitable for information transmission
- 5. Determine the statistical properties of the signal
- 6. Find different ways of minimizing the number of bits, needed to represent a given amount of information
- 7. Find methods to minimize the probability of communication errors, without affecting the rate of communication process

Indi	cative Experiments					
1.	Auto correlation	2 hours				
	 To implement auto-correlation using Matlab 					
2.	LMS algorithm	4 hours				
	 To implement the algorithm using Matlab 					
3.	RLS algorithm	4 hours				
	 To implement the algorithm using Matlab 					
4.	ASK, FSK, PSK	4 hours				
	 To implement digital modulation techniques using Matlab 					
5.	Complex modulation	4 hours				
	 To implement complex modulation techniques using Matlab 					
6.	6. Reed-Solomon encoding and decoding					
	 To perform reed-Solomon encoding and decoding 					
7.	CRC encoding and decoding	4 hours				
	 To perform cyclic redundancy check 					
8.	Polynomial division and linear feedback shift registers	4 hours				
	 To perform division using LFSR 					
	Total Laboratory Hours	30 hours				
Mod	Mode of Assessment: Continuous Assessment and Final Assessment Test					
Rec	Recommended by Board of Studies 28-07-2022					
App	Approved by Academic Council No. 67 Date 08-08-2022					

Course Code	Course Title	L T P C			
MAME608L	Open Source Hardware and Software	System Design 3 0 0 3			
Pre-requisite	Nil	Syllabus version			
		1.0			
Course Objectiv	es	·			
The course is aim	ned at:				
 Introducin 	g to the students the foundation of open s	ource programming.			
Understar	nd client-server architectural model for well	applications.			
3. Teaching	the students the basis of Automation using	g Raspberry Pi.			
Course Outcome					
	course, the student will be able to				
	nd the importance of Open Source program				
	nd apply appropriate server side programn	ning for web based applications			
	nd various database operations				
	end the operation of different type of Socke				
	nd the details of Raspberry Pi fundamental				
	nd implement the various Raspberry Pi pr	oject			
7. Explore G	PIO Interface				
Module:1 Basic	CS .	5 hours			
	basic operators - decision making - lo				
	e and Time - Functions - Modules - Fi				
Objects	s and time transfers meadles th				
	and Web programming	7 hours			
	ming - Tkinter Widgets - CGI - Web				
	and POST methods – Passing information				
Module:3 Data		6 hours			
	base connection - Creating database tab				
	MMIT – ROLEBACK				
	ork Programming	7 hours			
	socket - Client Socket - General Socket				
	n attachment as an email	consumg an error			
	berry Pi fundamentals	6 hours			
	etting up the Raspberry Pi - Interacting				
	erial port – Connect Pi to network				
<u> </u>	berry Basic Projects	7 hours			
	rightness of LED - Buzzing sound - Swi				
	ays – controlling high voltage AC device -				
	t types of motors – servo motor – DC mo				
HD images – Play		ner etopper meter Biopiaying			
	inced Raspberry projects	5 hours			
Exploring GPIO Interface – Controlling GPIO output – Detecting GPIO input – Work with					
switches – keypads – Interfacing various sensors – measuring light – detecting methane –					
• •	eration – measuring temperature – measuring	• •			
flash drive					
	emporary Issues	2 hours			
	Total Lecture hours:	45 hours			

Text Book(s)

1. Python programming for Raspberry Pi in 24 hours, Richard Blum and Christine Bresnahan, Sams Teach Yourself, Indiana, 2015

Reference Books

1.	Raspberry Pi Cookbook, Simon Monk, O'Reilly, California, 2015					
	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test					
Red	Recommended by Board of Studies 28-07-2022					
App	Approved by Academic Council No. 67 Date 08-08-2022					

Course Code	Course Title	L	T	Р	С
MAME609L	3	0	0	3	
Pre-requisite	NIL	Syllabus versio			on
		1.0			

The course is aimed at:

- 1. Providing the basic concepts of digital image processing and related algorithms
- 2. Introducing the concepts of motion estimation, multi camera view processing and depth estimation
- 3. Elaborating on automation considerations and automotive components testing

Course Outcomes

At the end of the course, the student will be able to

- 1. Understand the elements of computer vision based systems
- 2. Acquaint with image formation and processing methods
- 3. Understand advanced algorithms for depth estimation and multi-camera views
- 4. Understand various feature extraction techniques
- 5. Acquaint with motion estimation and SLAM algorithms
- 6. Understand various operational behaviours of Components in Automation
- 7. Comprehend the operation of different type of Cylinder blocks, detecting missing balls and behaviours
- 8. To apply machine vision algorithms to solve challenging problems

Module:1 | Elements of Computer Vision System Industrial machine vision, System architecture, Sensors, Camera interfaces and video standards, adjacency conventions, Image acquisition hardware, speed considerations, Steps involved in Computer vision System: Data ingestion, Data preprocessing, Modelling process, Inference and logging. Module:2 | Digital Image Formation and Processing Photometric image formation, Geometric primitives and transformations, Point operators, Linear filtering, Non-linear filtering, Histogram processing, Geometric transformations, Fourier transforms, Pyramids and wavelets, Restoration Module:3 Depth estimation and Multi-camera views 7 hours Stereo vision: Perspective, Binocular Stereopsis, Camera and Epipolar Geometry; Homography, Rectification, DLT, RANSAC, 3-D reconstruction framework; Autocalibration. Module:4 | Feature Extraction in Vision based Systems Edge detectors: Canny, LOG, DOG; Line detectors Hough Transform, Corners -Harris and Hessian Affine, SIFT, SURF, HOG, GLOH Module:5 | Motion estimation and SLAM 6 hours Geometric intrinsic calibration, Two-frame structure from motion, Multi-frame structure from motion, Simultaneous Localization and Mapping (SLAM), Translational alignment, Parametric motion, Optical flow, Layered motion. Module:6 | Automation considerations 6 hours Design of conveyor belts - Choice of various light sources - Design of separators -Grippers – Control of motors – vision / manipulator interface

		Automotive componen				
	Differentiating types of cylinder blocks – detecting holes in a camshaft – detecting					
		ılls in bearings – checl				
dif	ferentiatiı	ng gear types – detectir	ng a lack	of sealing	ng comp	ound – detecting
im	proper as	ssembly of a fuse box – C	hecking an	LCD pa	nel.	
Mo	dule:8	Contemporary Issues				2 hours
			Total	Lecture	hours:	45 hours
Te	xt Books	 6				
1.	Compu	ter Vision: Algorithms a	nd Applica	ations, R	Richard S	Szeliski, 2nd ed.,
	Springe	er, 2022, ISBN: 97830303	43712.			
2.	Compu	ter and machine vision	: Theory,	Algorithr	m and F	Practicalities, E.R.
	Davies,	Fourth Edition (Kindle Ed	dition), 201	2, ISBN-	9780123	869081
Re	ference	Books				
1.	Mathen	natics for Machine Learn	ning. Marc	Peter D	eisenroth	n, A. Aldo Faisal,
	Cheng	Soon Ong. Cambridge U	niversity Pr	ess. 202	0. ISBN:	9781108679930.
2.	Artificia	I Intelligence, Machine	Learning	, and	Deep L	earning. Oswald
	Campe	sato. Mercury Learning &	Information	1.2020. I	SBN: 978	31683924661
3.	Intellige	ent Vision systems for Indu	ustry, Bruc	e G. Bato	chelor an	d Paul F. Whelan,
Springer, London, 2012, ISBN: 9781447104315						
Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and						
Final Assessment Test						
Recommended by Board of Studies 07-06-2023						
An	proved b	y Academic Council	No. 70	Date	24-06-2	2023

Course Code	Course Title	L	Т	Р	С
MAME609P	Machine Vision System for Automotive		0	2	1
	Lab				
Pre-requisite	NIL	Sylla	bus '	versi	on
		1.0			

The course is aimed at:

- 1. Providing the basic concepts of digital image processing and related algorithms
- 2. Introducing the concepts of motion estimation, multi camera view processing and depth estimation
- 3. Elaborating on automation considerations and automotive components testing

Course Outcomes

At the end of the course, the student will be able to

- 1. Understand the elements of computer vision based systems
- 2. Acquaint with image formation and processing methods
- 3. Understand advanced algorithms for depth estimation and multi-camera views
- 4. Understand various feature extraction techniques
- 5. Acquaint with motion estimation and SLAM algorithms
- 6. Understand various operational behaviours of Components in Automation
- 7. Comprehend the operation of different type of Cylinder blocks, detecting missing balls and behaviours
- 8. To apply machine vision algorithms to solve challenging problems

Indicativ	e Experiments	
1	To perform digital image filtering using various masks	4 Hours
2	To Explore Wavelets and Pyramids for frequency domain	4 Hours
	image processing	
3	To implement binocular stereopsis process	4 Hours
4	To extract features using edge detectors, line detectors,	4 Hours
	corner detectors	
5	Implement object tracking using optical flow technique	4 Hours
6	Perform welding inspection of motor parts using image	4 Hours
	processing	
7	Implement program for missing-roller inspection for bearings	6 Hours
	Total	30 Hours

Text Books

- 1. Computer Vision: Algorithms and Applications, Richard Szeliski, 2nd ed., Springer, 2022, ISBN:9783030343712,
- 2. Computer and machine vision: Theory, Algorithm and Practicalities, E.R. Davies, Fourth Edition (Kindle Edition), 2012, ISBN- 9780123869081

Reference Books

1. Mathematics for Machine Learning. Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong. Cambridge University Press. 2020. ISBN: 9781108679930.

2.	Artificial Intelligence, Machine Lea	arning, an	d Deep	Learning.	Oswald			
	Campesato. Mercury Learnin	g &	Informat	ion.2020.	ISBN:			
	9781683924661							
3.	Intelligent Vision systems for Industry, Bruce G. Batchelor and Paul F.							
	Whelan, Springer, London, 2012, IS	SBN: 9781	4471043	315				
	-							
Mode of	Evaluation: Continuous Assessment	Test and F	inal Ass	sessment T	est			
Recomm	ended by Board of Studies	07-06-20	23					
Approved by Academic Council		No. 70	Date	24-06-202	23			

Course Code	Course Title				Р	С
MAME610L	MAME610L Automotive Fault Diagnostics				0	4
Pre-requisite	Nil	Syllabus version			ion	
				1.0)	

The course is aimed at:

- 1. Familiarising students with the basic concepts of automotive fault diagnostics
- 2. Teaching students about the fault sensors output waveforms
- 3. Elaborating the operation of Automotive Oscilloscopes, OBD II and Fault code readers

Course Outcome

At the end of the course, the student will be able to

- 1. Understand the basic concepts of fault diagnosis in automotive field.
- 2. Comprehend MIL for various automotive faults.
- 3. Have a brief idea of various sensors and assess ECU failures with the help of oscilloscope
- 4. Comprehend the operation of fault-finding systems (OBD)
- 5. Identify and rectify the faults of automotive sensors and fuel injection systems.
- 6. Analyze the various failure modes in Electronic control unit of chassis and body units
- 7. Understand the concepts of Electrical systems fault diagnostics

Module:1 Diagnostic Diagnostic Techniques - diagnostic process - diagnostics on paper - mechanical diagnostic techniques - electrical diagnostic techniques - fault codes - on and off-board diagnostics -Data sources Module:2 | Tools and Equipment 6 hours Basic equipment - Oscilloscopes - Scanners - Fault code readers - Engine Analysers Module:3 Oscilloscope diagnostics 4 hours Sensors - Actuators - Ignition System - Other components Module:4 On-board diagnostics 6 hours A first perspective - Petrol / Gasoline on-board diagnostics monitors - a second perspective Module:5 | Engine Systems 7 hours Diagnostics of Engine operation - Fuel system - Ignition - Emission - Fuel Injection - Diesel injection - Engine management - Fault finding information - air supply and exhaust systems - cooling - lubrication - batteries - starting system - charging system Module:6 | Chassis System 7 hours Diagnostics of brakes - anti-lock brakes diagnostics - traction control diagnostics - steering and types diagnostics - suspension diagnostics Module:7 Electrical System

Electronic components and circuits diagnosis - multiplexing - lighting - diagnosing auxiliary system faults - in car entertainment security and communication - body electrical system faults - diagnosing instruments system faults - HVAC diagnostics - Cruise control diagnostics - Air bags and belt tensions diagnostics

Module:8	Contemporary Issues	2 hours
	Total Lecture hours:	45 hours

Text Book(s)

1. Automotive Technician Training, Tom Denton, Taylor and Francis, New York, 2015

Reference Books

- Automobile Electrical and Electronic Systems: Automotive Technology Vehicle Maintenance and Repair, Tom Denton, Fourth Edition, Elsevier, New York, 2015
- Advanced Automotive Fault Diagnosis: Automotive Technology Vehicle Maintenance and Repair, Tom Denton, Third Edition, Elsevier, New York, 2012.

Mode of Evaluation: Continuous Ass Assessment Test	essment Test	, Digital	Assignment,	Quiz	and	Final
Recommended by Board of Studies	28-07-2022					
Approved by Academic Council	No. 67	Date	08-08-2022			

Course Code	de Course Title				Р	С
MAME611L	AME611L Emission Control and Diagnosis				0	3
Pre-requisite	Nil	Syllabus versi				ion
		1.0				

The course is aimed at:

- 1. Preparing the students to analyze automotive pollution control techniques
- 2. Introducing the concepts of formation and control techniques of pollutants like sulphur, CO, NOx and particulate matter
- 3. Preparing the students to analyze smoke for both SI and CI engines

Course Outcome

At the end of the course, the student will be able to

- 1. Get details of the emission from automobiles
- 2. Analyze emission from Spark Ignition Engine
- 3. Analyze emission from Compression Ignition Engine
- 4. Explain about the exhaust emissions
- 5. Comprehend the Emission Control Legislation I
- 6. Comprehend the Emission Control Legislation II
- 7. Understand about the Exhaust gas measuring techniques

Module:1 | Emission From Automobiles 6 hours 8 Sources of Air Pollution. Various emissions from Automobiles — Formation — Effects of pollutants on environment and human beings. Emission control techniques - Modification of fuel, after treatment 11 devices. Emission standards. Automotive waste management, old vehicle disposal, recycling, tyre recycling Module:2 Emission From Spark Ignition Engine And 7 hours Its Control Emission formation in SI Engines- Carbon monoxide & Carbon di oxide - Unburned hydrocarbon, NOx, Smoke —Effects of design and operating variables on emission formation - controlling of pollutants - Catalytic converters, Charcoal Canister, CCS, Positive Crank case ventilation system, Secondary air injection, thermal reactor, Laser Assisted Combustion Module:3 Emission From Compression Ignition 6 hours **Engine And Its Control** Formation of White, Blue, and Black Smokes, NOx, soot, sulphur particulate and Intermediate Compounds – Physical and Chemical delay — Significance Effect of Operating variables on Emission formation — Fumigation, Split injection, Catalytic Coating, EGR, HCCI, Particulate Traps, SCR, Fuel additives — Cetane number Effect. Module:4 | Exhaust Emissions 6 hours Combustion products, Properties of exhaust gas components Module:5 | Emission control legislation - I 6 hours Overview, CARB legislation, EPA legislation, EU legislation, Japanese legislation Module:6 Emission control legislation - II 6 hours US test cycles for passenger cars and light duty trucks, European test cycles for passenger cars and light duty trucks, Japanese test cycles for passenger cars and light duty trucks, test cycles for heavy commercial vehicles Module:7 Exhaust gas measuring techniques – I 6 hours Exhaust gas test on chassis dynamometers, Exhaust gas measuring devices, Diesel smoke emission test, Evaporative emission test Module:8 | Contemporary Issues 2 hours

		T	otal Lecture ho	urs:	45 hours		
Te	xt Book(s)						
1.	G.P.Springer ad [D.J.Patterson,	Engine Emissio	ns, Pollut	ant formation, Plenum Press,		
	New York, 1986.		J				
2.	D.J.Patterson and	N.A.Henin, 'En	nission from Cor	nbustion	Engine and their control', Anna		
	Arbor Science Pub	lication, 1985.					
3.	Autmotive Handbo	ok – 9th Edition	n – 2015, BOSC	Н			
Re	ference Books						
1.	V.Ganesan, 'Interr	nal combustion	Engines', Tata	McGraw	Hill Book Co, Eighth Reprint,		
	2005.						
2.	Crouse and Angli	in, 'Automotive	Emission Con	trol', McC	Graw Hill company.,Newyork		
3.	1993.						
	Charles K. Alexan	der, Matthew N	I. O. Sadiku, "Fu	undament	als of Electric Circuits," 2015,		
	5th Edition, Tata M	cGraw Hill Edu	ication Private L	imited, No	ew Delhi, India.		
Мо	de of Evaluation:	Continuous As	sessment Test	Digital	Assignment, Quiz and Final		
Ass	Assessment Test						
Re	commended by Boa	rd of Studies	28-07-2022				
Ap	proved by Academic	Council	No. 67	Date	08-08-2022		

Course Code	Course Title		L	Т	Р	С
MAME612L	Vehicle Safety Systems		2	0	0	2
Pre-requisite	Nil	Syll	abı	us \	/ers	ion
				1.0		

The course is aimed at:

- 1. Have a better understanding of good design practices which will enable product improvement that manifests significantly less risk to humans, machines and the environment
- 2. Gain the ability to design and demonstrate the vehicle safety critical systems to reduce the system errors and faults
- 3. Introducing the students to do design safety systems using MATLAB simulation

Course Outcome

- 1. Understand the basic concept of vehicle safety
- 2. Understand the operation of braking system design and its operation
- 3. Understand the braking system for passenger vehicles
- 4. Know the working principle of ABS and traction control systems
- 5. Understand the concepts of braking systems for commercial vehicles
- 6. Understand the vehicle stabilization for commercial vehicles
- 7. Understand about the airbag system for passenger safety

Module:1	Basic concepts of vehicle safety	4 hours
	principles-cause and effect -safety factors-	
component	safety factor-Digital models and man testing -co	ompliance
Module:2	Braking systems	4 hours
Definitions-	-principles-design and components of	braking system-brake-circuit
	ons-braking system design	
Module:3	Braking system for passenger cars and	4 hours
	light utility vehicles	
	ter-brake master cylinder-braking force limiters-	
Module:4	Vehicle stabilization systems for	4 hours
	passenger cars	
Anti-Lock	O , , ,	system(TCS)-Electronic stability
	SP)-Electrohydraulic brakes	·
Module:5	Braking system for commercial vehicles	4 hours
•	d configuration-air supply and processing-Tra	ansmission device-wheel brakes-
	ke system-retarder braking system	,
Module:6	Vehicle stabilization system for	4 hours
	commercial vehicles	
Electronic	stability program(ESP) for commercial v	
	B)-function-system design-components-electro p	
Module:7	Occupant injury prevention and distracted	4 hours
	driver	
	n-proper use of head restraints-Airbags-distract	ors and risk reduction-information
processing		
Module:8	Contemporary Issues	2 hours
		,
	Total Lecture hours:	30 hours
Text Book	1 /	
1. George	e A. Peters, Barbara J. Peters, "Automotive vehi	icle safety", Taylor and Francis,3rd

	edition, 2015							
Reference Books								
1. Robert Bosch, "Automotive handbook",9th edition,2015								
2.	2. Bimal K Bose, "Power Electronics and Motor Drive: Advances and Trends", Elsevier,							
	Inc., 2006							
Мо	de of Evaluation: Continuous As	sessment Test	, Digital	Assignment, Quiz and Final				
Assessment Test								
Re	Recommended by Board of Studies 28-07-2022							
Approved by Academic Council No. 67 Date 08-08-2022								

Course Code	Course Title		L	T	Р	С
MAME613L Vehicle Bodies		2	0	0	2	
Pre-requisite	Nil	Syllabus version				ion
		1.0				

The course is aimed at:

- 1. Giving insight into the vehicle construction
- 2. Design and construction of vehicular bodies for passenger car and commercial vehicles
- 3. Providing an overview of lighting in vehicles

Course Outcome

- 1. Understand Road-vehicle systematics
- 2. Understand Vehicle bodies for passenger cars
- 3. Comprehend and analyze commercial vehicles bodies
- 4. Classify External lighting technologies
- 5. Classify Internal lighting technologies
- 6. Brief about Automotive windshield and window glass
- 7. Comprehend the windshield and rear-window cleaning systems

	Road-vehicle systematics	2 hours
Classificat	ion according to ECE, Classification according to	USA
Module:2	Vehicle bodies- passenger cars	4 hours
Main dim	ensions, Body design, Aerodynamics, Aeroa	coustics, body structure, Body
materials,	Body surface, Body finishing components, Safety	,
Module:3	Vehicle bodies-commercial vehicles	4 hours
Commercia	al vehicles, Light utility vans, Medium and heavy	y-duty trucks and tractor vehicles,
Buses, Pas	ssive safety in commercial vehicles	
Module:4	Lighting technology-I	5 hours
Functions,	Regulations and equipment, Definitions and te	rms, Main headlamps, European
system, M	lain headlamps, European regulations, Head	lamps, USA, Headlamps, US
regulations	s, Headlamp leveling, Europe, Headlamp cleanii	ng systems, Fog lamps, Auxiliary
driving lam	ps	
	Lighting technology-II	5 hours
	lamps, Hazard-warning and turn-signal flashers	
	king lamps, License-plate lamps, Stop lamps, R	
	ytime running lamps, Reversing lamps, Daytin	ne running lamps, other lighting
	otor-vehicle bulbs.	
	Automotive windshield and window glass	4 hours
	al properties of glass, Automotive glazing, Functi	
Module:7	Windshield and rear-window cleaning	4 hours
	systems	
	I wiper systems, Rear-window wiper systems, He	eadlamp cleaning systems, Wiper
	ashing systems	
Module:8	Contemporary Issues	2 hours
	,	
	Total Lecture hours:	30 hours
Text Book	(s)	
	ski J., "Vehicle Body Engineering", Business bo	oks limited, London.1970
Reference		,
	t Bosch, "Automotive handbook", 9th edition, SAI	E publication 2015
		·

Mode of Evaluation: Continuous As Assessment Test	sessment Test	, Digital	Assignment,	Quiz	and	Final
Recommended by Board of Studies	28-07-2022					
Approved by Academic Council	No. 67	Date	08-08-2022			

Course Title	Course Title		T	Р	С
Engine Peripherals		2	0	0	2
Nil	Syll	abı	us v	ers	ion
		•	1.0		
1	Engine Peripherals	Engine Peripherals	Engine Peripherals 2	Engine Peripherals 2 0	Engine Peripherals 2 0 0

The course is aimed at:

- 1. Preparing the students to understand engine peripherals connections and operation theory
- 2. Introducing the basics of engine cooling and lubrication
- 3. Preparing to study and analyze emission reduction techniques

Course Outcome

- 1. Get an overview of Engine
- 2. Comprehend the techniques for Engine Cooling
- 3. Understand about Engine lubrication
- 4. Demonstrate knowledge on Air filtration
- 5. Comprehend the concepts of engine peripherals
- 6. Understand turbochargers and superchargers for IC engines

	derstand amission reduction			9	
	derstand emission reduction	i systems and e	knaust g	•	
Module:1	Overview of Engine	- · ·		3 hours	
	eration, Engine components	s, Engine types	1		
	Engine Cooling			4 hours	
			l cooling	g, cooling module technology,	
_	hermal management, Exha	ust gas cooling	-		
	Engine lubrication			3 hours	
	Force feed lubrication syste	em, lubrication c	mponer		
	Air filtration			2 hours	
Air pollution	n, Air filters				
Module:5	Other engine peripheral	S		5 hours	
HVAC, alte	ernator, vacuum pump, stee	ring pump, air ir	take sys	stem, exhaust system	
Module:6	Turbochargers and sup	erchargers for	С	5 hours	
	engines				
Superchar	gers (mechanical driven)	, Pressure w	ave, Ex	xhaust gas and multistage	
supercharg	gers, Acceleration aids				
Module:7	Emission reduction sys	tems and exha	ıst	6 hours	
	gas systems				
Exhaust g	as recirculation systems,	secondary air i	jection,	Evaporative emission control	
system, cra	ankcase ventilation, Manifo	ld, Catalytic cor	verters,	particulate converters, muffers	
connecting	elements				
Module:8	Contemporary Issues			2 hours	
	T	otal Lecture ho	urs:	30 hours	
Text Book	(s)		l I		
	otive Handbook - BOSCH	- 9th Edition -20	15		
Reference					
		wton and Willi	m Stee	ds, "The Motor Vehicle" 13th	
Edition, Butterworth-Heinemann Limited, London, 2015					
2. Heinz Heisler, "Advanced Vehicle Technology", second edition, Butterworth -					
	mann, New York, 2002		,,	,	
		sessment Test	Digital	Assignment, Quiz and Final	
Assessme			J	J : -,	
	nded by Board of Studies	28-07-2022			
	oy Academic Council	No. 67	Date	08-08-2022	

Course Code	Course Title		L	T	Р	С
MAME615L	Vehicle Security and Comfort Systems		3	0	0	3
Pre-requisite	Nil	Syll	abı	us v	ers	ion
		1.0				

The course is aimed at:

- 1. Teaching the students about locking systems and theft-deterrent systems
- 2. Providing the technical knowhow of acoustic signalling devices and occupantprotection systems
- 3. Discussing about the Power-window drives, comfort and safety functions in the passenger compartment and driver assistance systems

Course Outcome

- 1. Understand about locking systems
- 2. Understand the concept of theft-deterrent systems
- 3. Understand about the acoustic signalling devices
- 4. Demonstrate the knowledge about occupant-protection systems
- 5. Brief about power-window drives
- 6. Identify the technique for comfort and safety functions in the passenger compartment
- 7. Understand about driver-assistance systems
- 8. Design and implement vehicle security and comfort systems

Module:1 Locking systems	6 hours				
Function, structure, operating principle, Open by wire, Electrical locking system, Central					
locking system, Electronic vehicle immobilizer, functional description Comfort Entry/Go					
system					
Module:2 Theft-deterrent systems	6 hours				
Regulations, Permissible alarm signals. System design,	alarm detectors, Alarm system				
control unit, Alarm siren, Tilt sensor, Interior monitoring					
Module:3 Acoustic signaling devices	6 hours				
Acoustic signaling devices applications, Horn, Fanfare horn	s				
Module:4 Occupant-protection systems	6 hours				
Seat belts and seat-belt pretensioners, Front airbag, Sic	le airbag, Components, Rollover				
protection systems					
Module:5 Power-window drives	6 hours				
Power-window motors, Power-window control, Power sunro	oof drives				
Module:6 Comfort and safety functions in the	6 hours				
passenger compartment					
Electrical seat adjustment, Electrical steering-column adjus	tment, Multi purpose actuator				
Module:7 Driver-assistance systems	7 hours				
Critical driving situations, Causes of accidents and	possible action Applications				
Convenience and safety functions, Sensors for all round					
fusion.	, , , , , , , , , , , , , , , , , , ,				
Module:8 Contemporary Issues	2 hours				
Total Lecture hours:	45 hours				
Text Book(s)					
1. Automotive Handbook – BOSCH – 9th Edition -2015					
1. / tatorriotivo riariabook Docorr otir Edition Edito	ı				

1.	Bosch, "Safety, Comfort & Convenience Systems" 7th Edition - 2016						
	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test						
Recommended by Board of Studies 28-07-2022							
App	proved by Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title	L	Т	Р	С
MAME616L	Automotive IoT	3	0	0	3
Pre-requisite	NIL	Syll	Syllabus version		ion
			1.0		

The course is aimed at making the students to

- 1. Acquire the required Automotive fundamentals for IoT System Design
- 2. Get an exposure about the IoT applications in automotive systems.
- 3. Develop design skills in automotive IoT Systems.

Course Outcomes

At the end of the course, the students will be able to

- Understand the required fundamentals for Automotive IoT and Comprehend the applications of Networked Vehicles using IoT
- 2. Realize the IoT Safety Management in Automotive
- 3. Realize the Efficiency management using IoT.
- 4. Associate the Automotive Cyber Security with IoT Systems.
- 5. Identify the need and importance of Smart Vehicles and Connected Cars
- 6. Design IoT based solutions for real time automotive applications.

Module:1 | Elements of Automotive IoT (AIoT)

Fundamentals of Automotive Onboard Diagnostics, Automotive IoT applications: Infotainment, Navigation and control, Electronic toll collection, Automated parking reservation and payment systems, Smart Transportation, Smart Grid

Module:2 Networked Vehicles using IoT

5 hours

7 hours

Vehicle collision avoidance, Lane change algorithm, Optimal traffic control using Smart applications in IoT, Green traffic management using IoT. Intra vehicle connectivity, Vehicle to internet connectivity

Module:3 | IoT Safety Management in Automotive

6 hours

Tire pressure Monitoring using IoT, Immobilizers and Vehicle alarm systems, Remote Diagnostics using IoT, Vehicle tracking, Integrated infotainment systems, emergency calling systems using IoT.

Module:4 | Efficiency management using IoT

5 hours

Start, stop and micro hybrids, mild hybrids, Self-driving and ADAS - Advanced driver assistance services, Automated fuel injection mechanisms, Advanced locomotives using IoT.

Module:5 | IoT based Navigation

8 hours

Traffic Information - Sharing, Forwarding, optimal paths, Online routing and planning. 5G: Evolving LTE to 5G, Research Challenges and 5G New Radio -, 5G technologies (core network): Network slicing, C-RAN, NFV, SDN. 5G Automotive Use Cases: Cellular Vehicle-2-Everything (C-V2X).

Module:6 | Automotive Cyber Security

8 hours

Security in Automotive systems, CMAP - CAN bus mapper, Security risks at High tech vehicles, Mandated legislation and Non mandated communication based threats, Stolen vehicle tracking and recovery, Attack vectors - remote vehicle theft, exfiltration, Virtual non-existence.

Module:7 | Smart Vehicles and Connected Cars Training

4 hours

Smart vehicles, V2V Communication, single vehicle applications, Connected cars - Opportunities, risks and turmoil. Policies and Standards

Мо	dule:8	Contemporary Issues				2 hours
			Total	Lecture	hours:	45 hours
	kt Book					
1.		rmesan, Digitizing the Indi				
	Digital and Virtual Worlds, Jan 2016, River Publishers, The Netherlands					
2.		Schule, Beate Müller, Ge				
		otive Applications: Smart	Systems f	or Greei	n and Ai	utomated Driving,
		Springer Publishers, USA.				
Ref	<u>ference</u>	Books				
1.		ermesan Internet of Thir				
	Enviro	nments and Integrated	Ecosystem	ıs, 2015	, River	Publishers, The
	Nether					
2.		Minouli, Building the Inter	net of Thir	ngs with	IPv4 and	d IPv6, Oct 2015,
		Viley, USA				
3.	1	ahlman, Johan Skold, and				
		ss Access Technology, 20				
		Wolf, Secure In-Vehicle C				
		ternet of Things and Conne				
		valuation: Continuous Ass	sessment T	est, Dig	tal Assiç	gnment, Quiz and
		ssment Test				
-		nded by Board of Studies	07-06-202	23		
Apı	proved l	by Academic Council	No. 70	Date	24-06-2	2023

Course Code	Course Title	L	T	Р	С
MAME617L	Augmented and Virtual Reality for Automotive Applications	3	0	0	3
Pre-requisite	NIL	Sylla	Syllabus versio		
			1.0		

The course is aimed at making the students to

- 1. Understand the concepts of Computer Graphics, VR systems and Virtual Environment.
- 2. Understand the concepts of Augmented Reality.
- 3. Apply Augmented and Virtual Reality for automotive applications.

Course Outcomes

At the end of the course, the students will be able to

- 1. Comprehend the basics of computer graphics.
- 2. Comprehend the geometric modelling and Geometric Transformations
- 3. Comprehend VR systems, VR Hardware, Virtual Environment and Augmented Reality
- 4. Design and Develop a Prototype
- 5. Develop a Product for automotive applications.
- 6. To apply augmented and virtual reality to solve challenging problems in automotive industry.

Module:1 Geometric Modelling and Geometric 6 hours Transformations

Geometric Modelling: Introduction, from 2D to 3D, 3D space curves, 3D boundary representation Geometrical Transformations: Introduction, Frames of reference, Modelling transformations, Instances, Picking, Flying, Scaling the VE, Collision detection.

Module:2 Virtual Reality and Computer Graphics 7 hours

Virtual Reality and Virtual Environment: Introduction, Computer graphics, Real time computer graphics, Flight Simulation, Virtual environment requirement, benefits of virtual reality, Historical development of VR, Scientific Landmark. 3D Computer Graphics: Introduction, The Virtual world space, positioning the virtual observer, the perspective projection, human vision, stereo perspective projection, 3D clipping, Colour theory, Simple 3D modelling, Illumination models, Reflection models, Shading algorithms, Radiosity, Hidden Surface Removal, Realism -Stereographic image.

Module:3 VR systems and Hardware 4 hours

Generic VR system: Introduction, Virtual environment, Computer environment, VR technology, Model of interaction, VR Systems. VR Hardware: Introduction, sensor hardware, Head-coupled displays, Acoustic hardware, Integrated VR systems.

Module:4 Virtual Environment 7 hours

Animating the Virtual Environment: Introduction, The dynamics of numbers, Linear and Non-linear interpolation, the animation of objects, linear and non-linear translation, shape & object inbetweening, free from deformation, particle system. Physical Simulation: Introduction, Objects falling in a gravitational field, Rotating wheels, Elastic collisions, projectiles, simple pendulum, springs, Flight dynamics of an aircraft.

Module:5 | Augmented Reality

6 hours

Taxonomy, technology and features of augmented reality, difference between AR and VR, Challenges with AR, AR systems and functionality, Augmented reality methods, visualization techniques for augmented reality, enhancing interactivity in AR environments, evaluating AR systems.

Module:6 | Design and Development of Prototype

6 hours

Automotive Design Process: Development of concept in 3D - Design the process - VR-based collaborative environment creation, Virtual Prototyping for vehicle design: Modelling the process - Modifying concepts and overcoming the inherent limitations and demands on resources associated with physical modelling - VR-based visualization of idea and Validation of a new vehicle's entire electronic system.

Module:7 | Product Development, Manufacturing and Training

7 hours

AR and Product Development: Repairing existing models and designing new ones - AR-based remote assistance in real-time - AR-based visualization of new components fit into existing vehicle designs, AR and VR in Vehicle Manufacturing: Virtual assembly line: reconfiguration and optimization of the manufacture assembly lines - AR-based retrofitting - Creation of immersive environment for designers, researchers and engineers, VR and Digital Training: Efficient and cost-effective training delivery methods - Simulation-based training - Learning outcomes while reducing risk and training costs.

Module:8 | Contemporary Issues

2 hours

Total Lecture hours:

45 hours

Text Book(s)

- 1. Ella Hassanien, Deepak Gupta, Ashish Khanna, Adam Slowik, "Virtual and Augmented Reality for Automobile Industry: Innovation Vision and Applications", Springer International Publishing, 2022
- 2. John Vince, "Virtual Reality Systems", Pearson Education Asia, 2007.

Reference Books

- 1. Alan B. Craig, "Understanding Augmented Reality, Concepts and Applications", Morgan Kaufmann, 2013.
- 2. Adams, "Visualizations of Virtual Reality", Tata McGraw Hill, 2000.
- 3. Grigore C. Burdea, Philippe Coiffet, "Virtual Reality Technology", Wiley Inter Science, 2nd Edition, 2016.
- 4. William R. Sherman, Alan B. Craig, "Understanding Virtual Reality: Interface, Application and Design", Morgan Kaufmann, 2008.
- 5. Aukstakalnis S. Practical augmented reality: "A guide to the technologies, applications, and human factors for AR and VR". Addison-Wesley Professional; 2016.

Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test

Recommended by Board of Studies	07-06-2023		
Approved by Academic Council	No. 70	Date	24-06-2023

Course Code	Course Title	L	T	Р	С
MAME618L	Soft Computing Techniques	3	0	0	3
Pre-requisite	NIL	Syllabus version			on
		1.0			

The course is aimed at making the students to

- 1. Understanding about the fundamentals of machine learning, neural networks, optimization and Deep Learning
- 2. Enabling the students to acquire knowledge about data selection and classification
- 3. Apply soft computing techniques to solve practical problems.

Course Outcomes

At the end of the course, the students will be able to

- 1. Comprehend the categorization of machine learning algorithms and concepts of python programming.
- 2. Acquaint with artificial neural network terminologies.
- 3. Understand advanced algorithms for artificial neural networks.
- 4. Acquaint with the working mechanisms of evolutionary algorithms
- 5. Apply genetic algorithms to solve soft computing problems
- 6. Understand advanced algorithms for object detection and image segmentation and comprehend advanced neural networks for natural language processing.

Module:1 Learning Problems and Python programming 5 hours concepts

Different approaches to learning problems (such as Supervised, Semi-supervised, and Unsupervised), Python: Data structures (Lists, Tuples, Dictionary, Sets), String manipulation, Conditional statements, Functions, Objects and classes.

Module:2 | Artificial Neural Network - I

4 hours

Biological inspiration and historical context, Activation functions and their properties, Forward propagation and the role of weights and biases, McCulloch-Pitts Neuron, Perceptron, Training a single-layer neural network, Limitations of single-layer networks, Applications of single-layer neural networks.

Module:3 | Artificial Neural Network – II

4 hours

Introduction to Multilayer Perceptron (MLP), Backpropagation algorithm for training MLPs, Stochastic Gradient Descent algorithm and weight optimization techniques, Hyperparameter tuning in MLPs, Applications of MLP.

Module:4 Optimization in Soft Computing-I

9 hours

Overview of optimization in soft computing, Basic Evolutionary Processes, Evolutionary Systems as Problem Solvers, Canonical Evolutionary Algorithms - Evolutionary Programming, Evolution Strategies, A Unified View of Simple EAs, Population Size. Applications of Optimization in Soft Computing: Feature selection and dimensionality reduction, Data clustering and classification

Module:5 | Optimization in Soft Computing-II

7 hours

Introduction to Genetic algorithms, Biological Background, Traditional Optimization and Search Techniques, Genetic Algorithm and Search Space, Operators in Genetic Algorithm, Stopping Conditions for Genetic Algorithm Flow, Problem Solving Using Genetic Algorithm: Maximizing a Function

	Detection and Segmentation	
Background of Object Detection, R-C		
RetinaNet; Segmentation: FCN, Se		nd Application:
Object detection for Self driving cars	using Python/ Simulink.	
Module:7 Deep Learning: Natura	I Language Processing	7 hours
N-gram Language Models, Part Of S		
and Recurrent Neural Networks,	Semantic Analysis, Informat	ion Extraction,
Machine Translation, Application: Sp	eech Recognizer.	
Module:8 Contemporary Issues	-	2 hours
	Total Lecture hours:	45 hours
Text Books		
1. Machine Learning Algorithms	and Applications, Mohsser	n Mohammed,
Muhammad Badruddin Khan, Ei	ihab Bashier Mohammed Bashi	er, CRC Press,
2017.		
2. Deep Learning, Ian Goodfellow,	YoshuaBengio and Aaron Courv	ille, MIT Press,
ISBN: 9780262035613, 2016.	-	
3. Hands-On Machine Learning		
Concepts, Tools, And Technique		Aurélien Géron,
O'Reilly Media, Inc., ISBN: 9781		
4. Principles of Soft Computing,		pa, Wiley (3rd
edition), ISBN: 9788126577132,	2018	
Reference Books		
1. Mathematics for Machine Lear		
Cheng Soon Ong. Cambridge U		
2. Artificial Intelligence, Machine		
Campesato. Mercury Learning 8		
3. Natural Language Processing		ian McMahan,
O'Reilly Media, Inc. ISBN: 9781	491978238, 2019	
Mode of Evaluation: Continuous As	sessment Test, Digital Assignr	ment, Quiz and
Final Assessment Test		
Recommended by Board of Studies	07-06-2023	
Approved by Academic Council	No. 70 Date 24-06-202	23

Course Code		Course Title		L	Т	Р	С
MEDS501L		Embedded System Design		3	0	0	3
Pre-requisite	NIL		Sy	llab	us v	ers	ion
•					1.0		
Course Objecti	ves		•				

The course aimed at

- 1. Ability to understand comprehensively the technologies and techniques underlying in building an embedded solution to a wearable, mobile and portable system.
- 2. Analyze UML diagrams and advanced Modelling schemes for different use cases.
- 3. Understand the building process of embedded systems

Course Outcome

The students will be able to

- 1. Define an embedded system and compare with general purpose system.
- 2. Appreciate the methods adapted for the development of a typical embedded system.
- 3. Get introduced to RTOS and related mechanisms.
- 4. Classify types of processors and memory architecture
- 5. Differentiate the features of components and networks in embedded systems
- 6. Develop real-time working prototypes of different small-scale and medium-scale embedded Systems.
- 7. Apprehend the various concepts in Multi-Tasking

Module:1 Introduction to Embedded System 5 hours Embedded system processor, hardware unit, software embedded into a system, Example of an embedded system, Embedded Design life cycle, Layers of Embedded Systems. Module:2 Embedded System Design Methodologies Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML notation, Requirement Analysis and Use case Modelling, Design Examples Module:3 | Building Process For Embedded Systems 4 hours Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Map Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System. Module:4 System design using general purpose 7 hours processor Microcontroller architectures (RISC, CISC), Embedded Memory, Strategic selection of processor and memory, Memory Devices and their Characteristics, Cache Memory and Various mapping techniques, DMA. Module:5 | Component Interfacing & Networks 9 hours Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embedded systems- USB, PCI, PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluetooth, Zigbee, Wi-Fi., 6LoWPAN, Evolution of Internet of things (IoT). 7 hours Module:6 | Operating Systems Introduction to Operating Systems, Basic Features & Functions of an Operating System, Kernel & its Features [polled loop system, interrupt driven system, multi rate system], Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispatcher. Module:7 | Multi Tasking Context Switching, Scheduling and various Scheduling algorithms, Inter-process Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchronization (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Priority Ceiling Protocol & Priority Inheritance Protocol Module:8 | Contemporary Issues 2 hours **Total Lecture hours:** 45 hours

Text Book(s) Raj Kamal, "Embedded systems Architecture, Programming and Design", Tata McGraw- Hill, 2016. Wayne Wolf "Computers as components: Principles of Embedded Computing System Design", The Morgan Kaufmann Series in Computer Architecture and Design, 2013. Reference Books Lyla B. Das," Embedded Systems an Integrated Approach", Pearson Education, 2013. Shibu K V," Introduction to Embedded Systems", McGraw Hill Education(India) Private Limited, 2014 Sriram V Iyer, Pankaj Gupta " Embedded Real Time Systems Programming", Tata McGraw- Hill, 2012 Steve Heath, "Embedded Systems Design", EDN Series, 2013.

Mode of Evaluation. Continuous Asse	ssment, Digital i	Assignine	ni, Quiz and Finai		
Assessment Test					
Recommended by Board of Studies	28-07-2022				
Approved by Academic Council	No. 67	Date	08-08-2022		

Course Code	Course Title		Т	Р	С
MEDS601L	Electromagnetic Interference and Compatibility		0	0	3
Pre-requisite	NIL	Syllabus version		ion	
			1	.0	

The course is aimed at:

- 1. Imparting knowledge about EMI environment
- 2. Teaching EMI coupling principles, EMI control techniques and design of PCBs for EMC
- 3. Giving exposure to EMI Standards, Regulations and Measurements

Course Outcomes

At the end of the course, the student will be able to

- 1. Understand terminologies of EMI and EMC
- 2. Analyze and understand various EMI coupling mechanisms
- 3. List various EMI Test and Measurement methods
- 4. Analyze various techniques needed to suppress EMI
- 5. Perceive different EMC regulations followed worldwide
- 6. Ability to design an Electromagnetic Compatible systems.
- 7. Analyze and comprehend different techniques needed for Signal Integrity and ability to understand various models for EMI/EMC

Module:1EMI Environment4 hoursEMI-EMC Definitions and units of Parameters, Sources of EMI, conducted and radiated EMI, Transient EMIModule:2EMI Coupling Mechanisms6 hoursConducted, Radiated and Transient Coupling, Common Coupling, Radiated Common Mode and Ground Loop Coupling, Radiated Differential Mode Coupling, Near Field Cable to Cable Coupling, Power Mains and Power Supply Coupling.Coupling, Power Mains and ShoursModule:3EMI Test and Measurements8 hours

EMI Specification / Standards / Limits: Units of specifications, Civilian standards Military standards. EMI Test Instruments / Systems, EMI Test, EMI Shielded Chamber, Open Area Test Site, TEM Cell Antennas, Conductors Sensors/Injectors/Couplers. EMI Measurement Methods: Military Test Method and Procedures, Calibration Procedures, Modeling interferences

Module:4 EMI Control Techniques

7 hours

Shielding, Filtering, Grounding, Bonding, Isolation Transformer, Transient Suppressors, Cable Routing, Signal Control, Component Selection and Mounting, Electrostatic discharge protection schemes

Module:5 EMC Standards and Regulations

5 hours

National and Intentional standardizing organizations- FCC, CISPR, ANSI, DOD, IEC, CENEEC, FCC CE and RE standards, CISPR, CE and RE Standards, IEC/EN, CS standards, SAE Automotive EMC standard, Frequency assignment - spectrum conversation.

Module:6 | System Design for EMC

8 hours

PCB Traces Cross Talk, Impedance Control, Power Distribution Decoupling, Zoning, Motherboard Designs and Propagation Delay Performance Models,

System Enclosures, Power line filter placement, Interconnection and Number of Printed Circuit Boards, PCB and subsystem decoupling							
		Signal Integrity and EMI			ig	5 hours	
	Effect of terminations on line wave forms, Matching schemes for Signal Integrity,						
		ne discontinuities, Statistica				J J	
		Contemporary Issues				2 hours	
Gue	est Lectu	ires from Industry and, Re	search ar	nd Develo	pment	Organizations	
			Total I	_ecture l	hours:	30 hours	
Tex	t Book(s)					
1.		R. Paul,Introduction		magnetio	ccompa	ntibility,2010, 2	
		, Wiley & Sons, New Jers	sey				
	erence						
1.	,	/.ott, Electromagnetic Co	mpatibility	y Engine	eering,	2011, 1sted. John	
	,	nd Sons, NewJersey.					
2.	Patrick G. André and Kenneth Wyatt, EMI Troubleshooting Cookbook for						
	Product Designers 2014, 1st ed., SciTech Publishing, New Jersey						
Mode of Evaluation: Continuous Assessment, Digital Assignment, Quiz and Final							
Assessment Test							
Red	Recommended by Board of Studies 07-06-2023						
App	Approved by Academic Council No. 70 Date 24-06-2023						

Course Code	Course Title	L	T	Р	С
MEDS616L Machine Leaning and Deep Learning			0	0	3
Pre-requisite NIL		Syllabus version			
			1.0)	

The course is aimed at

- 1. Understanding about the fundamentals of machine learning and neural networks
- 2. Enabling the students to acquire knowledge about pattern recognition.
- 3. Motivating the students to apply deep learning algorithms for solving real life problems.

Course Outcomes

At the end of the course the student will be able to

- 1. Comprehend the categorization of machine learning algorithms.
- 2. Understand the types of neural network architectures, activation functions
- 3. Acquaint with the pattern association using neural networks
- 4. Explore various terminologies related with pattern recognition
- 5. Adopt different feature selection and classification techniques
- 6. Understand the architectures of convolutional neural networks and Comprehend advanced neural network architectures such as RNN, Autoencoders, and GANs.

Module:1 Learning Problems and Algorithms

4 hours

Various paradigms of learning problems, Supervised, Semi-supervised and Unsupervised algorithms

Module:2 | Neural Network - I

8 hours

Differences between Biological and Artificial Neural Networks - Typical Architecture, Common Activation Functions, Multi-layer neural network, Linear Separability, Hebb Net, Perceptron, Adaline, Standard Back propagation

Module:3 | Neural Network - II

8 hours

Training Algorithms for Pattern Association - Hebb rule and Delta rule, Hetero associative, Auto associative, Kohonen Self Organising Maps, Examples of Feature Maps, Learning Vector Quantization, Gradient descent, Boltzmann Machine Learning

Module:4 Machine Learning: Terminologies

7 hours

Classifying Samples: The confusion matrix, Accuracy, Precision, Recall, F1- Score, the curse of dimensionality, training, testing, validation, cross validation, overfitting, under-fitting the data, early stopping, regularization, bias and variance

Module:5 Machine Learning: Feature Selection and Classification

7 hours

Feature Selection, normalization, dimensionality reduction, Classifiers: KNN, SVM, Decision trees, Naïve Bayes, Binary classification, multi class classification, clustering.

Module:6 | Convolutional Neural Networks

5 hours

Feed forward networks, Activation functions, backpropagation in CNN, optimizers, batch normalization, convolution layers, pooling layers, fully connected layers, dropout, Examples of CNNs.

Мо	dule:7	RNNs, Auto encoders an	d GANs			4 hours	
State, Structure of RNN Cell, LSTM and GRU, Time distributed layers, Generating							
	Text, Auto encoders: Convolutional Auto encoders, De-noising auto encoders,						
		auto encoders, GANs: The	discrimina	ator, gen	erator, DC	CGANs	
Мо	dule:8	Contemporary Issues				2 hours	
Gu	est Lect	ures from Industry and, Res	earch and	d Develo	pment Or	ganizations	
			Tota	l Lecture	e hours:	45 hours	
Tex	kt Book	(s)					
1.	J. S. R	. Jang, C. T. Sun, E. Mizu	tani, Neu	ro Fuzz	y and Sc	oft Computing -	
	A Com	iputational Approach to L	earning a	and Mad	hine Inte	elligence, 2012,	
	PHI le	arning					
2.	Deep	Learning, Ian Good fellow,	Yoshua I	Bengio a	and Aaror	n Courville, MIT	
	Press,	ISBN: 9780262035613, 201	16.				
Ref	ference	Books					
1.	1. The Elements of Statistical Learning. Trevor Hastie, Robert Tibshirani and						
	Jerome Friedman. Second Edition. 2009.						
2.	2. Understanding Machine Learning. ShaiShalev-Shwartz and Shai Ben-David.						
Cambridge University Press. 2017.							
Mode of Evaluation: Continuous Assessment, Digital Assignment, Quiz and Final							
Assessment Test							
Red	Recommended by Board of Studies 07-06-2023						
App	oroved b	y Academic Council	No. 70	Date	24-06-20)23	