

SCHOOL OF ELECTRICAL ENGINEERING

M. Tech Control and Automation

(M.Tech CA)

Curriculum

(2024-2025 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

To offer an education in electrical engineering that provides strong fundamental knowledge, skills for employability, cross-disciplinary research and creates leaders who provide technological solutions to societal and industry problems.

MISSION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

- Provide personalized experiential learning in industry sponsored laboratories to prepare students in electrical engineering with strong critical thinking and employability skills.
- Foster design thinking, creativity and cross-disciplinary research with highly qualified faculty to create innovators and entrepreneurs in the broad area of electrical engineering.
- Collaborate with national and international partners to provide innovative solutions to societal and industry challenges.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

PROGRAMME OUTCOMES (POs)

- PO_01: Having an ability to apply mathematics and science in engineering applications
- PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints
- PO_03: Having an ability to design and conduct experiments, as well as to analyze and interpret data
- PO_04: Having an ability to use techniques, skills and modern engineering tools necessary for engineering practice
- PO_05: Having problem solving ability- solving social issues and engineering problems
- PO_06: Having adaptive thinking and adaptability
- PO_07: Having a clear understanding of professional and ethical responsibility
- PO_08: Having a good cognitive load management [discriminate and filter the available data] skills

ADDITIONAL PROGRAMME OUTCOMES (APOs)

APO_01: Having an ability to be socially intelligent with good SIQ (Social Intelligence Quotient) and EQ (Emotional Quotient)

APO_02: Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)

APO 03: Having design thinking capability

APO_04: Having computational thinking (Ability to translate vast data in to abstract concepts and to understand database reasoning

APO_05: Having Virtual Collaborating ability

APO_06: Having an ability to use the social media effectively for productive use

APO 07: Having critical thinking and innovative skills

APO_08: Having a good digital footprint

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Control and Automation) programme, graduates will be able to

- PSO1: Apply technical knowledge, skills and analytical ability to design and develop controllers as well as employ techniques for automation of systems using modern tools and technologies.
- PSO2: Analyse, interpret and solve problems related to process control, automation, measurement and control etc.
- PSO3: Solve research gaps and provide solutions to socio-economic, and environmental problems.

CREDIT STRUCTURE

Category-wise Credit distribution

Credits Breakup						
	CREDITS					
Discipline Core	24					
Discipline Elective	12					
Projects and Internship	26					
Open Elective	3					
Skill Enhancement	5					
Total	70					

DETAILED CURRICULUM

Discipline Core

Sl.no	Course Code	Course Title	L	T	P	Credit
1	MCOA501L	Applied Mathematical Methods in Control Engineering	3	1	0	4.0
2	MCOA502L	System Theory	3	0	0	3.0
3	MCOA502P	System Theory Lab	0	0	2	1.0
4	MCOA503L	Random Variables and State Estimation	3	0	0	3.0
5	MCOA504L	Smart Sensor Systems	3	0	0	3.0
6	MCOA505L	Process Dynamics and Control	3	0	0	3.0
7	MCOA505P	Process Dynamics and Control Lab	0	0	2	1.0
8	MCOA506L	Real Time Embedded Systems	2	0	0	2.0
9	MCOA506P	Real Time Embedded Systems Lab	0	0	2	1.0
10	MCOA507L	Industrial Automation	2	0	0	2.0
11	MCOA507P	Industrial Automation Lab	0	0	2	1.0

Discipline Elective

Sl.no	Course Code	Course Title	L	T	P	Credit
1	MCOA601L	Building Automation	3	0	0	3.0
2	MCOA602L	Industrial Robotics	3	0	0	3.0
3	MCOA603L	Control of Electric Drives	3	0	0	3.0
4	MCOA604L	Machine Learning	2	0	0	2.0
5	MCOA604P	Machine Learning Lab	0	0	2	1.0
6	MCOA605L	Advanced Python Programming	1	0	0	1.0
7	MCOA605P	Advanced Python Programming Lab	0	0	4	2.0
8	MCOA606L	Optimal Control Systems	3	0	0	3.0
9	MCOA607L	Adaptive and Robust Control	3	0	0	3.0
10	MCOA608L	Discrete Control Systems	3	0	0	3.0
11	MCOA609L	Multivariable Control System	3	0	0	3.0
12	MCOA610L	Industrial Data Networks	3	0	0	3.0
13	MCOA611L	Data Acquisition and Hardware Interfaces	3	0	0	3.0

Projects and Internship

Sl.no	Course Code	Course Title	L	Т	P	Credit
1	MCOA696J	Study Oriented Project	0	0	0	2.0
2	MCOA697J	Design Project	0	0	0	2.0
3	MCOA698J	Internship I/ Dissertation I	0	0	0	10.0
4	MCOA699J	Internship II/ Dissertation II	0	0	0	12.0

Open Elective

Sl.no	Course Code	Course Title	L	Т	P	Credit
1	MFRE501L	Français Fonctionnel	3	0	0	3.0
2	MGER501L	Deutsch fuer Anfaenger	3	0	0	3.0
3	MSTS601L	Advanced Competitive Coding	3	0	0	3.0

Skill Enhancement

Sl.no	Course Code	Course Title	L	Т	P	Credit
1	MENG501P	Technical Report Writing	0	0	4	2.0
2	MSTS501P	Qualitative Skills Practice	0	0	3	1.5
3	MSTS502P	Quantitative Skills Practice	0	0	3	1.5

Course Code	Course Title		L	Т	Р	С
MCOA501L	Applied Mathematical Methods in Control Engineering		3	1	0	4
Pre-requisite					/ersid	on
				1.0		

To present a clear exposition of basics of linear algebra, matrix theory, differential equations to represent the nonlinear systems through mathematical methods including,

- 1. Understanding of their physical significance and mathematical representation of nonlinear systems through modelling.
- 2. Existence and uniqueness of the solution of the models, computation of equilibrium points and visualize their behaviour through phase plane analysis.
- 3. Stability analysis and controller design for nonlinear systems.

Course Outcome:

On completion of the course, the student will be able to

- Analyse and interpret the physical significance of different mathematical tools such as vector space, convergence, continuity, eigen values, eigen vectors and matrix norm to represent the dynamical systems and their applications to control theory as well as visualize the behaviour of the dynamical system in different coordinate dimensional coordinates.
- 2. Represent the dynamical systems in the form of differential equation and check the existence of the solution of the differential equation and learn different methods for solving it.
- 3. Analyse the behaviour and properties of nonlinear systems such as equilibrium points, limit cycles through phase plane technique.
- 4. Utilize different mathematical tools such as convergence, continuity and differentiability to analyse the stability criteria of the nonlinear systems, describing function method to analyse stability in frequency domain.
- 5. Utilize different design techniques such as feedback linearization, back stepping method and feedback control to design controller for nonlinear dynamical systems.

Module:1 Basics of Linear Algebra:

7 hours

Introduction to set theory, vector fields, Physical Interpretation of Linear Vector Spaces, Supremum and infimum, Physical Interpretation of Normed Linear Spaces, Banach and Hilbert Spaces, Physical Interpretation of Convergence, Continuity, Differentiability and Applications

Module:2 Matrix Theory:

8 hours

Physical Interpretation of Eigenvalues and Eigenvectors and its applications, Matrix Transformations, Physical Interpretation of Induced Norms and Matrix Measures, Similarity Transformation-Diagonalization, Singular values, Singular Value Decomposition (SVD) and its Applications, Pseudo Inverse, Jacobian matrix, Linear matrix inequalities, concept of rank, and nullity

Module:3 Differential Equations:

6 hours

Existence, Physical Interpretation of Uniqueness, Physical Interpretation of Well-posedness of Solutions, Approximation of Solutions, Lipchitz condition, Comparison functions and their applications

Module:4 Analysis of Dynamical Systems:

8 hours

Introduction, Features of Linear and Nonlinear Systems: Examples of phenomena, models &

derivation of system equations. Fundamental properties: Existence & uniqueness, Dependence on initial conditions & parameters, Equilibrium points, Taylor's series, Types of non-linearity, Common nonlinearities in control systems, Typical Examples Module:5 **Phase Plane Analysis:** 8 hours Concepts of phase plane analysis, Construction of phase portrait, Phase plane analysis of linear system and nonlinear system, Existence of limit cycles Stability Analysis: Module:6 10 hours Lyapunov stability of autonomous and nonautonomous systems, LaSalle's invariance Principle, Stability analysis of nonlinear systems in frequency domain: Describing function fundamentals, describing functions of common nonlinearities, Describing function analysis of nonlinear systems, Limit cycles, Stability of Oscillations Module:7 10 hours **Case Studies: Controller Design Problems and Solutions** Feedback linearization method, Backstepping method, Feedback control technique, Introduction to Linear programming. Module:8 **Contemporary Issues** 3 hours **Total Lecture hours:** 60 hours Textbook(s) Alexander S. Poznyak, "Advanced Mathematical Tools for Automatic Control Engineers", Elsevier, First Edition, 2008 Slotine and Li, "Applied Nonlinear Control", Prentice Hall Inc., 2005. **Reference Books** H. K. Khalil, "Nonlinear Systems", Prentice Hall, 2015. 2. M. Vidyasagar, "Nonlinear Systems Analysis", Prentice Hall, 2002. 3. D. Smith, M. Eggen and R. St. Andre, "A Transition to Advanced Mathematics" Cengage Learning International Edition, 2014. K A. Ross "Elementary Analysis" Springer, 2013. 4. 5. H. Logemann and E. P. Ryan "Ordinary Differential Equations", Analysis, Qualitative Theory and Control, Springer, 2014. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 09-07-2022 Approved by Academic Council No. 67 Date 08-08-2022

Course Code	Course Title	L	Т	Р	С
MCOA502L	System Theory	3	0	0	3
Pre-requisite	NIL	Sylla	bus	versi	on
			1.0	0	

To present a clear exposition of the basics of modern control including

- Create state models of practical systems after understanding state modelling concepts
- 2. Analyse the models for the five properties of stability, controllability, observability, stabilizability and detectability
- 3. Design a controller, observer and reduced-order observer for the models of the systems

Course Outcome:

On completion of the course, the student will be able to

- 1. Model dynamical systems and realize them in different canonical forms
- 2. Solve the linear and nonlinear state equations
- 3. Analyze the state models for the five properties of the systems
- 4. Design a state feedback controller and state observer for simple practical dynamic systems.
- 5. Analyze linear and nonlinear system models for stability

Module:1 State Variable Representation:

6 hours

Introduction-Concept of State-State equation for Dynamic Systems-Time invariance and linearity-Non uniqueness of state model-canonical forms - State Diagrams-Physical System and State Assignment

Module:2 Solution of State Equation:

6 hours

Existence and uniqueness of solutions to continuous-time state equations-Solution of linear time varying and linear time invariant state equations-Evaluation of matrix exponential-System modes-Role of Eigenvalues and Eigenvectors.

Module:3 Properties of the System:

6 hours

Stability, Controllability and Observability - Stabilizability and Detectability-Test for Continuous time systems- Time varying and Time invariant case.

Module:4 Controller and Observer Design:

6 hours

Introduction-Controllable and Observable Companion Forms-SISO and MIMO Systems- The Effect of State Feedback on Controllability and Observability-Pole Placement by State Feedback for both SISO and MIMO Systems-Full Order and Reduced Order Observers.

Module:5 | Lyapunov Stability:

6 hours

Introduction-Equilibrium Points-Stability in the sense of Lyapunov-BIBO Stability-Stability of LTI Systems-Equilibrium Stability of Nonlinear Continuous Time Autonomous Systems.

Module:6 Lyapunov's Direct Method:

6 hours

The Direct Method of Lyapunov and the Linear Continuous-Time Autonomous Systems-Finding Lyapunov Functions for Nonlinear Continuous Time Autonomous Systems-Krasovskii and Variable-Gradient Method.

Module:7 Realization:

6 hours

Output Controllability-Reducibility- System Realizations minimal realization, balanced realization

Mod	dule:8	Contemporary Issues		<u> </u>	3 hours					
IVIOC	uule.o	Contemporary issues			3 Hours					
			Total	Lecture h	nours: 45 hours					
Textbook(s)										
1.	Ogata,	"Modern Control Engine	ering", 5th Editio	n, Prentic	e Hall India, 2010.					
2.	M. Gop	oal, "Modern Control Syst	tem Theory", 3 rd	edition, No	ew Age International, 2014.					
Refe	erence E	Books								
1.	Slotine	and Li, "Applied Nonline	ar Control", Pren	tice Hall I	nc., 2005.					
2.	Hassar	n K Khalil, "Nonlinear Co	ntrol", Pearson, E	Boston, 20)15.					
Mod	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar									
Reco	ommend	ed by Board of Studies	09-07-2022		·					
Approved by Academic Council No. 67 Date 08-08-2022										

Co	urse Code		Course T	itle		L	Т	Р	С
МС	OA502P		System Theo	ry Lab		0	0	2	1
Pre	-requisite	NIL				Syllab	us \	ers/	ion
							1.0		
Coi	urse Objectiv	es							
	1. Analyse th	ne behaviour of linea	ar and nonlinea	ır dynamic	systems				
	2. Design co	ntroller, observer ar	nd reduced-ord	er observe	r				
Co	urse Outcome	es							
On		this course, the stud							
		ne response and pro ntroller, observer, a							
		ng Experiments (I			or ioi iiricar s	зузісні	•		
1.		ling of armature-cor	•				21	nour	
2.		ling of field-controlle						nour	
3.	+	ling of dc generator					+=-	nour	
4.		ling of de generator					+	nour	
5.		ling of bridge circuit					+		
6.		ling of magnetic sus		m			2 hours 2 hours		
7.	+	ling of magnetic sus		11			2 hours		
8.		ty and observability		ntrolled do	motor		2 hours		
9.	+	ty and observability			IIIOtoi		2 hours		
10.		ty and observability					2 hours		
11.		ty and observability			vstem		+	nour	
12.		ate feedback contro		•			1	nour	
13.	-	oserver for balancing			lick problem		+	nour	
14.		ate feedback contro			nrohlem wi	th	+	nour	
14.	observer	ate reedback contro	med balancing	DIOOIIISUCE	, bropiem m	uı	- 1	loui	3
15.	Stability ana	lysis of straight and	inverted pend	ulum			2 ł	nour	s
	,	, ,	•						
				Total	Laboratory	Hours	30	ho	urs
Мо	de of assessm	ent: Continuous ass	sessment, FAT				1		
Tex	t Book								
1.	Ogata, "Mode	ern Control Enginee	ring", 5th Editio	on, Prentice	e Hall India,	2010.			
2.		nop, 'Modern Contro							
			-						
Ref	erence Book	s							
1.	1. Norman S. Nise, "Control Systems Engineering', 8th Ed., Wiley, 2019								
2.	2. M. Gopal, "Modern Control System Theory", 3rd Ed., New Age International, 2014.								
Мо	·	on: Assignment, FA				· · · · · · · · · · · · · · · · · · ·			
		y Board of Studies	09-07-2022						
		demic Council	No. 67	Date	08-08-202	2			

Course Code	Course Title				Р	С
MCOA503L	Random Variables and State Estimation	3	0	0	3	
Pre-requisite NIL			llab	us v	ers	ion
				1.0		

- 1. Impart knowledge on random processes and the estimation process
- 2. Explore prediction and identification methods to recognize and control random processes
- 3. Estimate a system model using parametric and non-parametric approaches

Course Outcome

On the completion of this course the student will be able to:

- Characterize the random variables based on single and multiples random variables functions
- 2. Analyze the behavior of a random process using statistical tools
- 3. Design optimal estimators for variables and systems having stochastic nature
- 4. Apply the concepts of filtering and prediction for a random process
- 5. Conduct experiments to build and test parametric and non-parametric system models

Module:1 Random Variables

Hours: 6

Probability: Sample space, Conditional probability, Bayes theorem; Random variable: Cumulative Distribution Function (CDF), Probability Density Function (PDF), Conditional CDF; Multiple random variable: Joint Cumulative Distribution Function, Joint Probability Density Function; Computation of Expected Values

Module:2 Random Process and their characteristics

Hours: 7

Random Process Characterization: Densities & Joint densities, Mean, Variance, Expectation of a Random Process; Classification of Random Processes: SSS, WSS, Ergodic, joint stationary; Correlation functions: Autocorrelation, autocovariance, cross-correlation, cross-covariance function; Temporal and Spatial Characteristics; White Noise

Module:3 | Parameter Estimation

Hours: 8

Bayes Performance Measure, Statistical Characterizations of Data; Cramer-Rao bounds; Bayes Estimation: Maximum a posteriori (MAP) estimation, Minimum Mean Square Error (MMSE) Estimate: Linear MMSE Estimation, Nonlinear MMSE Estimation; Estimation of Nonrandom Parameters: Maximum Likelihood Estimation

Module:4 | Wiener Estimation

Hours: 6

Optimum Filter Formulation: Prediction of a Random Process, Filtering out Noise, Interpolation for Random Processes; Wiener Hoff Equation; Wiener filter design: FIR Wiener filter, Linear Time-Invariant Noncausal Filter (IIR), Linear Time-Invariant Causal Filter (IIR); Application of Weiner's theory in feedback control system

Module:5 | Kalman Estimation

Hours: 6

State Dynamics with Random Excitations, Markov Sequence Model, Observation Model; Kalman Filter estimator: Anatomy and Physiology of the Kalman Filter; Prediction: Fixed lead prediction, sliding window; Steady state equivalence of the Kalman and Wiener filter: Kalman filter formulation, Wiener filter formulation

Module:6 Nonparametric Model Estimation

Hours: 5

Correlation and spectral analysis for non-parametric model identification, obtaining estimates of the plant impulse, step and frequency responses from identification data.

Module:7 | Parametric Model Estimation

Hours: 5

Prediction Error Model Structures, parametric estimation using one-step ahead prediction error model structures and estimation techniques for ARX, ARMAX, Box-Jenkins, FIR, Output Error models. Nonlinear model estimation: NAR, NARX, NARMA, NARMAX models

Мо	dule:8	Contemporary Issues				2 hours			
-			Total I	_ecture h	ours:	45 hours			
Tex	xt Book	S							
1.	1. Ludeman, L. C. (2010). Random processes: filtering, estimation, and detection. John Wiley & Sons, Inc.								
2.	2. Lennart Ljung, (2012). System Identification: A Theory for the User, Prentice-Hall, 2nd edition								
Re	ference	Books							
1.		H., & Woods, J. (2012). Ra m Variables for Engineers		s. Probab	ility, Statistic	s, and			
2.	Tangira CRC P	ala, A. K. (2018). Principle Press.	s of system ident	tification:	theory and pi	ractice.			
3.		lis, A., & Pillai, S. U. (2014 ses. Tata McGraw-Hill Ed			ables, and st	ochastic			
Мо	de of Ev	aluation: Continuous Ass	sessment Tests, 0	Quizzes, A	Assignment,	Final			
Ass	Assessment Test								
Re	commer	nded by Board of Studies	09-07-2022						
Ap	Approved by Academic Council No. 67 Date 08-08-2022								

Course Cod	e Course Title	L	Т	Р	С
MCOA504L	Smart Sensor Systems	3	0	0	3
Pre-requisite		Syllab	us v	ersi	on
-			1.0		
Course Obje					
	knowledge on Smart sensing technology and its application uce the standards and protocols used for smart sensing.	S.			
Course Outo	come:				
On the comp	letion of this course the student will be able to:				
1. Select the	e right sensor for a given application.				
•	asic building blocks for a Smart sensor.				
	ompensators and perform calibration for smart sensors.				
•	ynthesize and layout a VLSI sensor and design micro power	genera	tion		
systems					
•	the standards and protocols used for the smart sensor designor Health, Industrial and Home related applications.	n and ap	эріу :	sma	π
361130131	or riediti, industrial and riothe related applications.				
Module:1	Smart Sensor Introduction:		6	ho	urs
Classic vs Sr	nart sensors, Architecture of Smart Sensors: Important comp	onents.	thei	r	
	nolithic integrated smart sensor, Hybrid integrated smart sen				rs:
	ensing system, Smart temperature sensor, Smart Wind sens				•
sensor.		,			
Module:2	Linearization:			' ho	urs
	using shunt resistance, Divider circuit, higher order linearizing	•		ear	
•	Piecewise linearization, Lookup table approach, Adaptive fil	ters bas	ea		
approach.					
Module:3	Calibration and Compensation:		6	ho	
Calibration a	•				urs
	nd Self Calibration of smart sensors. Offset compensation	on, Erro	or ar	nd D	
compensatio	nd Self Calibration of smart sensors, Offset compensation, Lead wire compensation, Temperature effect and compens				rift
compensatio					rift
·	n, Lead wire compensation, Temperature effect and compens		Incer	taint	Prift
Module:4	n, Lead wire compensation, Temperature effect and compens VLSI Sensors:	sation. U	Incer 6	taint ho i	rift ties
Module:4 Analog Nume	N. Lead wire compensation, Temperature effect and compens VLSI Sensors: erical computation - CORDIC Computation. Adaptive filtering	sation. U	Incer 6	taint ho i	rift ties
Module:4 Analog Nume	n, Lead wire compensation, Temperature effect and compens VLSI Sensors:	sation. U	Incer 6	taint ho i	rift ties
Module:4 Analog Nume Bit stream m	VLSI Sensors: erical computation - CORDIC Computation. Adaptive filtering ultiplication. Analog VLSI based Neural Network.	sation. U	Incer 6 algor	hourithm	Drift ties urs
Module:4 Analog Nume Bit stream me	VLSI Sensors: erical computation - CORDIC Computation. Adaptive filtering ultiplication. Analog VLSI based Neural Network. Micro-power Generation:	ation. U	Incer 6 algor	taint ho i	Drift ties urs
Module:4 Analog Nume Bit stream me Module:5 Introduction,	VLSI Sensors: Prical computation - CORDIC Computation. Adaptive filtering altiplication. Analog VLSI based Neural Network. Micro-power Generation: Energy storage system, Thermoelectric energy harvesting, \	ation. U	Incer 6 algor	hourithm	oriff ties urs
Module:4 Analog Nume Bit stream me Module:5 Introduction,	VLSI Sensors: erical computation - CORDIC Computation. Adaptive filtering ultiplication. Analog VLSI based Neural Network. Micro-power Generation:	ation. U	Incer 6 algor	hourithm	Drift ties u rs
Module:4 Analog Nume Bit stream me Module:5 Introduction,	VLSI Sensors: Prical computation - CORDIC Computation. Adaptive filtering altiplication. Analog VLSI based Neural Network. Micro-power Generation: Energy storage system, Thermoelectric energy harvesting, \	ation. U	algor and	hourithm	urs
Module:4 Analog Nume Bit stream me Module:5 Introduction, Motion energy Module:6 Introduction,	VLSI Sensors: Prical computation - CORDIC Computation. Adaptive filtering cultiplication. Analog VLSI based Neural Network. Micro-power Generation: Energy storage system, Thermoelectric energy harvesting, Vy harvesting, Far-Field RF energy harvesting, Photovoltaic. Standards and protocols: IEEE 1451 Standard, Network technologies, LonTalk, CEBU	LMS	e algoriand	hour hour	urs
Module:4 Analog Nume Bit stream me Module:5 Introduction, Motion energy Module:6 Introduction,	VLSI Sensors: Prical computation - CORDIC Computation. Adaptive filtering altiplication. Analog VLSI based Neural Network. Micro-power Generation: Energy storage system, Thermoelectric energy harvesting, Vy harvesting, Far-Field RF energy harvesting, Photovoltaic. Standards and protocols:	LMS	e algoriand	hour hour	urs
Module:4 Analog Nume Bit stream me Module:5 Introduction, Motion energy Module:6 Introduction, protocol for s	VLSI Sensors: Perical computation - CORDIC Computation. Adaptive filtering altiplication. Analog VLSI based Neural Network. Micro-power Generation: Energy storage system, Thermoelectric energy harvesting, Very harvesting, Far-Field RF energy harvesting, Photovoltaic. Standards and protocols: IEEE 1451 Standard, Network technologies, LonTalk, CEBU mart home, J1850 Bus, Plug-n-Play Smart Sensor Protocol.	LMS	algoriand	hour hour hour hour hour hour hour hour	urs urs
Module:4 Analog Nume Bit stream mi Module:5 Introduction, Motion energy Module:6 Introduction, protocol for s Module:7	VLSI Sensors: Perical computation - CORDIC Computation. Adaptive filtering cultiplication. Analog VLSI based Neural Network. Micro-power Generation: Energy storage system, Thermoelectric energy harvesting, Variation, Photovoltaic. Standards and protocols: IEEE 1451 Standard, Network technologies, LonTalk, CEBU mart home, J1850 Bus, Plug-n-Play Smart Sensor Protocol. Case Studies:	- LMS /ibration	algoriand	hoo	urs
Module:4 Analog Nume Bit stream me Module:5 Introduction, Motion energy Module:6 Introduction, protocol for s Module:7 Design and I	VLSI Sensors: Perical computation - CORDIC Computation. Adaptive filtering altiplication. Analog VLSI based Neural Network. Micro-power Generation: Energy storage system, Thermoelectric energy harvesting, Very harvesting, Far-Field RF energy harvesting, Photovoltaic. Standards and protocols: IEEE 1451 Standard, Network technologies, LonTalk, CEBU mart home, J1850 Bus, Plug-n-Play Smart Sensor Protocol.	- LMS /ibration	algori and 7 munic	6 hourithm	urs urs urs

2 hours

sensors, Biosensors and applications.

Module:8

Contemporary Issues

			То	tal Lectu	re hours:	45 hours	
Text B	ook(s	5)			<u>'</u>		
1.	Manabendra Bhuyan, "Intelligent Instrumentation: Principles and Applications", CRC Press, 2011.						
2.	Gerard Meijer, Kofi Makinwa, Michiel Pertijs, "Smart Sensor Systems: Emerging Technologies and Applications", IEEE press, Wiley, 2014.						
Refere	nce E	Books					
1.		in Yallup, Krzysztof Iniewski on", CRC Press, 2014.	, "Technologies for	or Smart S	Sensors and	d Sensor	
2.	Krzy	sztof Iniewski, "Smart Sens	ors for Industrial	Applicatio	ns", CRC P	ress, 2013.	
Mode	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar						
Recom	mend	led by Board of Studies	09-07-2022				
Approv	Approved by Academic Council No. 67 Date 08-08-2022					22	

Course Code Course Title			L	T	Р	С		
MCOA505L	Process Dynamics and control		3	0	0	3		
Pre-requisite	NIL	Sylla	bu	s v	ersi	on		
			1.0					
Course Objective	es:							
1. Introduce the	modelling of various physical processes using first principal	ple						
	arious control modes and tuning of controller.	•						
3. Study advanced control strategies based on process model.								
Course Outcome:								

On the completion of this course the student will be able to:

- 1. Develop mathematical models for dynamic processes
- 2. Select and tune PID controllers for the given systems.
- 3. Choose necessary final control element for a given application.
- 4. Design a control strategy for a process involving multiple variables and constraints.
- 5. Design and Conduct experiments, as well as analyse and interpret data

Module:1 Process Dynamics:

7 hours

Need for Process Control; objective of modelling: models of level, thermal and flow processes; Integrating and non-integrating systems; Degrees of Freedom; Continuous and batch processes; Self-regulation; Lumped and Distributed parameter models; Linearization of nonlinear systems; P&ID diagram

Module:2 Dynamic and Steady State Behaviour of Process:

4 hours

Dynamic response of a first order process; First order plus dead time process; Second order process; Pure capacitive process; Pure dead time; Higher order process; Inverse response; Pade approximation.

Module:3 | Control Actions:

7 hours

Concept of servo and regulatory problems; Selection of measured, manipulated and controlled variables; Types of controller; Characteristic of on-off controller; proportional, integral and derivative controllers; P+I,P+D and P+I+D control modes; anti-reset windup; bumpless transfer; practical forms of PID control; selection of control modes for different processes.

Module:4 Design of feedback controller:

6 hours

Evaluation criteria: IAE, ISE, ITAE and ¼ decay ratio; Tuning methods: Process reaction curve method; Continuous cycling method; Direct synthesis

Module:5 Final Control Elements:

6 hours

I/P converter; Pneumatic and electric actuators; Valve Positioner; Control Valves; Characteristic of Control Valves: Inherent and Installed characteristics; Valve body; Commercial valve bodies; Control valve sizing; Cavitation and flashing; Selection criteria.

Module:6 Enhancement to single loop regulatory control:

7 hours

Feed forward controller: design with steady state model, design with dynamic model; combination of feed forward-feedback structure; Cascade control: analysis and design; Ratio control; Split range control; Override control; Inferential control.

Module:7 Model based control:

6 hours

IMC structure – development and design - IMC based PID control – MPC: Dynamic matric control, Generalized predictive control; Multi-loop Control: Introduction; Process Interaction; Pairing of Inputs and Outputs; The Relative Gain Array (RGA).

Modul	e:8	Contemporary Issues				2 hours
			To	tal Lectu	re hours:	45 hours
Text B	Book(s)			,	
1.		org, Dale E., Duncan A. N le, "Process dynamics an	•		•	
2.	Stephanopoulos, George, "Chemical Process Control: An Introduction to Theory and Practice", Pearson India Education Services, 2015					
Refere	ence	Books				
1.		ighanowr, Donald R., and trol", McGraw-Hill, 2009.	Lowell B. Koppe	el, "Proces	ss systems ana	llysis and
2.	Joh 201	nson, Curtis D, "Process o 3.	control instrumer	ntation ted	chnology", Pren	tice Hall,
3.		ák, Béla G., ed. "Process nemann, 2013.	Control: Instrum	ent Engin	eers' Handboo	k. Butterworth-
4.		uette, B.W., "Process Cor a, 2010.	ntrol Modeling, D	esign and	d Simulation", F	Prentice Hall of
Mode of Test	of Ev	aluation: Continuous Asse	essment Test, Qu	uizzes, As	ssignments, Fin	al Assessment
Recon	nmen	ded by Board of Studies	09-07-2022			
Approved by Academic Council No. 67 Date 08-08-2022						

Co	urse Code	Course Title	L	T P	C
MC	OA505P	Process Dynamics and Control Lab	0	0 2	2 1
Pre	-requisite	NIL Sy	yllabus	vers	sion
			1.	0	
Со	urse Objectiv	res			
	1. Gain adeo	quate knowledge on the practical implementation of various	control		
		for real-time processes			
		nd Implementation of Cascade, Ration, Feed-forward and a	dvance	d Co	ntrol
	schemes	using the facilities available in the Process Control lab.			
	urse Outcom				
On	•	this course, the students will be able to:	_		
		various process parameter and design suitable control sche	mes to	r	
		type process.	4 : 1	ما د د .	_4: _ 1
	•	eed Forward, Cascade and Multiloop PID controllers for the	typicai	inaus	striai
Ind	process.	rimonto			
1.	interacting	e dynamics of first order, second order, interacting and non-			
2		tal Study of PID controller on Level process station			
3.		and Control of Pressure Process station			
4.		tal Study of ON-OFF and PID controller on Temperature			
→.	Process	tal Study of ON-OFF and FID controller on Temperature			
5.		inherent and installed characteristics of control valves			
6.		tal Study of Cascade / Ratio Control for a Level-Flow Proce	SS		
7.	•	ce comparison of PID controller tuning methods using			
٠.	MATLAB	oc companson or rib controller turning methods doing			
8.		of nonlinear processes using MATLAB			
9.		ce comparison of single and multi-loop controllers			
10		d verification of Feed Forward controller			
11		e rejection assessment of IMC-PI controller			
12		d implementation of Velocity and Position form of PID Contro	ol		
-	_	using MATLAB	•		
13		of PID controllers using LabVIEW			
14		n level control using PID controller in LabVIEW			
		Total Laboratory Hou	urs 30) hou	ırs
Мо	de of assessn	nent: Continuous assessment, FAT			
Tex	kt Book				
1.	Seborg, Dale	E., Duncan A. Mellichamp, Thomas F. Edgar, and Francis	J.		
	Doyle, "Proc	ess dynamics and control", 4 th edition, John Wiley & Sons, 2	2016.		
2.		ulos, George, "Chemical Process Control: An Introduction to		y and	t
		earson India Education Services, 2015			
Re	ference Book				
1.		, Donald R., and Lowell B. Koppel, "Process systems analy	sis and	cont	rol",
	McGraw-Hill,				
2.		rtis D, "Process control instrumentation technology", Prentic		0046	`

09-07-2022

Date

No. 67

08-08-2022

Recommended by Board of Studies
Approved by Academic Council

Course Code Course Title				Т	Р	С
MCOA506L Real Time Embedded systems					0	2
Pre-requisite	Pre-requisite NIL S			ous v	vers	ion
				1.0		

- 1. Identify modern embedded systems requirements and its' design constraints
- 2. Acquire hardware and software skills required for the role of embedded system engineer
- 3. Build automated control systems for real world problems using low cost embedded platforms

Course Outcomes:

On the completion of this course the student will be able to:

- 1. Identify a microcontroller based on application specifications.
- 2. Develop embedded software using commercial integrated development environments
- 3. Interface sensors and actuators using suitable communication protocols
- 4. Design data acquisition system for embedded measurement and control applications
- 5. Design and implement real-time embedded control applications

Module:1 Embedded systems

2 hours

Embedded system components; Examples of embedded system; Attributes; Characteristics; Challenges in embedded computing system design; Typical embedded system software operations

Module:2 ARM Cortex-M Architecture

3 hours

CPU core: Architecture, Registers, Operating modes; Memory organization; Instructions: Instruction formats, and addressing modes; Exceptions and Interrupts; Commercial ARM Cortex-M microcontrollers

Module:3 Programming Embedded Systems

3 hours

Embedded C programming: Number systems, Data types, Data structures, Functions, Bitwise operations; Improving responsiveness: Interrupts, Finite state machines; Concurrency; Scheduling; Context switching; Real-time systems; Embedded software development: Host and target, Compiler, Assembler, Linker, and Loader; Hardware and software debugging, In system programming

Module:4 Peripherals and Interfacing

5 hours

Memory mapped IO; GPIO programming: Push-Pull, Open-Drain modes, Pull up and Pull down modes, Input and output devices; Timing generation and measurements: Timers, and PWM, Input capture; ADC, DAC, Analog comparator; Block data transfer using DMA; Real Time Clock (RTC); Power management

Module:5 | Serial Communication Protocols

5 hours

Serial communication protocols: UART, I2C, SPI, and CAN; Architecture; electrical considerations; message formats; message types; transmission and arbitration; Data visualization using logic analysers

Module:6 Data acquisition System Design

5 hours

Analog interfacing and data acquisition; Transducers; Current to voltage circuit, Instrumentation amplifier, isolation, Anti-aliasing filters; Nyquist theory to determine sampling rate; Measurement of voltage, current, and temperature; Analysis of noise; Techniques to reduce noise; Optical encoders for speed and position measurement; Data acquisition case studies

Module:7 | Embedded Control System

5 hours

Closed loop control system: Set-point control and trajectory tracking; Design process for a PID controller; Fixed point vs. Floating point representation, Implementation of PID controller; Implementation of digital filters, Quantization, Overflow and resource issues; Case

stud	dies: Dig	ital power supply design a	and motor con	trol				
Мо	dule:8	Contemporary Issues				2 hours		
				Total Le	cture hours:	30 hours		
Text Book(s)								
1.	Alexan	der G Dean, Embedded S	Systems Funda	amentals	with Arm Corte	ex-M based		
	Microc	ontrollers: A Practical App	roach, ARM E	ducation	Media, 2021.			
2.	Jonathan W. Valvano, Embedded Microcomputer Systems: Real Time Interfacing, Third							
	Edition	, Cengage Learning, 2010	0.					
Ref	erence	Books						
1.	_	Zhu, Embedded Systems		ortex-M M	icrocontrollers	in Assembly		
	Langu	age and C, Third Edition,	2018.					
2.		Wolf, Computers as Con		ciples of	Embedded Co	mputing Design,		
		Edition, Morgan Kaufmanı	•					
3.	-	imal, Embedded Systems		Program	ming and Des	ign, Third Edition,		
		w Hill Education India, 20						
Мо	de of Ev	valuation: CAT, Laborato	ry Assessmen	t/Assignm	nent / Quiz / F	AT		
Red	commen	ded by Board of Studies	09-07-2022					
App	proved b	y Academic Council	No. 67	Date	08-08-2022			

Course Code		Course Titl	е		L	. T	Р	С
MCOA506P	Real Time	e Embedded S	Systems I	_ab	C	0	2	1
Pre-requisite	NIL				Syllab	us ve	ersio	n
-						1.0		
Course Objectiv	es			· ·				
Acquire page	rogramming and hard	ware skills in ty	pical emb	edded s	ystem de	velop	omen	it
cycle								
	ate the different em	bedded syste	m desig	ın conce	pts using	cort	ex-M	
microcont	roller							
Course Outcome								
	this course, the stude				مردما ما ماد	.4	al a a : a	
	ern software and hardy							ın
Indicative Exper	embedded system to s	olve real world	Control at	iu autori	nation pro	blen	15	
	ation of simple C progr	camming conc	nte in IDE	: Ditwice				
•	control blocks and fu	•	יאני ווו פולי	ב. טונשוט	-			
	ramming: Interfacing i		ıt devices			\dashv		
	olling and interrupts us			troller		\dashv		
	of PWM signals for th				e usina			
timers	or r vvivi orginalo for a	io givoir iroque	noy and a	ary by or	o domig			
	ation of analog interfac	ina usina ADC	Program	mina wit	:h			
potentiome		3 3	3	3				
6. Measureme	ent of voltage and curr	ent for data ac	quisition s	system c	lesign			
	ent of process variable							
speed	·	•						
	I2C based 3-axis acce							
	ation of CAN network a	•						
	ation of digital FIR filte							
11. Design and position col	l implementation of rea ntrol of motor	al-time PID cor	ntrol syste	m for sp	eed or			
	e task scheduling	using RTOS	kernel	for mu	Ititasking			
application	<u>s</u>							
			T = 4 : 1.2	-1		1	1	
Mada of	anti Cantirii	compant FAT	i otai La	aporato	ry Hours	30	hou	rs
Text Book	nent: Continuous asse	ssment, FAT						
	Dean, Embedded Sys	stome Fundem	antale with	Arm C	ortov M h	0000	1	
	ers: A Practical Appro					aseu	l	
	Valvano, Embedded I					acino	Thi	rd
	gage Learning, 2010.	viiorocompater	Cysterns.	rtoai ii		aomig	,	·u
	<u>,g. =g, = </u>							
Reference Book	<u> </u>							
	Embedded Systems w	ith ARM Corte	c-M Micro	controlle	rs in Ass	embl	У	
_	nd C, Third Edition, 20						-	
	wn, Discovering the S		ntroller, In	diana U	niversity.	2016).	
	on: Assignment, FAT		,		<u>, , , , , , , , , , , , , , , , , , , </u>			
	•	T = = = = =						
	y Board of Studies	09-07-2022						
Approved by Aca	demic Council	No. 67	Date	08-08-2	2022			

Course Code Course Title		L	T	Р	С
MCOA507L Industrial Automation		2	0	0	2
Pre-requisite NIL		Sylla	abus	ver	sion
			1.	.0	

- 1. Deliver a strong foundation to solve batch process and continuous process control
- 2. Technical competence through hands-on experience with industrial automation tools like PLC. DCS. and SCADA.
- 3. Exposure to various communication protocols used in industrial automation

Course Outcomes:

On the completion of this course the student will be able to:

- 1. Outline the basic concepts of computer-based automation, data communication and Industry 4.0.
- 2. Identify the main parts of PLC and describe their functions.
- 3. Develop a PLC ladder logic and Function block diagram to automate the process.
- 4. Elaborate the requirements of PLC enclosure, noise reduction techniques, proper grounding practices, and troubleshooting procedures.
- 5. Identify the hardware and software components of HMI, SCADA and Distributed Control System and configure a DCS programming.

Module:1 Role of Computers in Automation:

4 hours

Data loggers; Data Acquisition Systems (DAS); Functional block diagram of computer based control system; Sampling considerations; Automation: Definition, Benefits, Examples, Evolution of Automation; Automation Components: Discrete Switches, Analog Sensors, Relays, Actuators, and Automation tools.

Module:2 Programmable Logic Controller (PLC) : Architecture and basic 4 hours Ladder Instructions

Definition; PLC Architecture: input/output modules, power supplies, and isolators, programming device; Program Scan; IEC61131-3 Standard programming languages and their selection; PLC Basic Instructions; Input and Output Addressing; Ladder Diagram for Boolean Gates; Concept of Latching and Unlatching; Programming Timers and Counters; Applications

Module:3 | Advanced PLC Instructions and Functions

4 hours

Arithmetic functions; Comparison functions; Program control Instructions; Data transfer Instructions; Sequencer functions; Shift register functions; Analog PLC operation; PLC-PID functions; Applications; Networking of PLC; Design of interlocks and Alarm annunciator sequence (ISA 18.1 Standard)

Module:4 PLC Installation and Troubleshooting

4 hours

PLC Enclosure; Electrical Noise; Leaky inputs and outputs; Grounding; Voltage Variations and surges; preventive maintenance; Troubleshooting: Processor Module, I/O Malfunctions, PLC program.

Module:5 | Supervisory Control and Data Acquisition (SCADA)

4 hours

SCADA Components: Human Machine Interface, Supervisory System, Remote Terminal Unit, Controller, Intelligent Electronic Devices; Types of SCADA Architectures; SCADA Communication: IEC61850, Modbus, Distributed Network Protocol (DNP), OPC UA

IEC62541 S	tandard						
Module:6	Distributed Control S	System (DCS)			4 hours		
	Distributed Control System						
	Input and Output Unit,	•		•			
commissioning and Configuration ; Programming a DCS ; Redundancy concept ; Selection							
of DCS ; Case Studies: Thermal power plant , Water treatment plant							
Module:7	Advances in Industri	ial Autamatian			4 hauna		
					4 hours		
	inication: HART Protocol ; F						
	IEEE 802.11- IEEE 802.15	·			andard for		
	4th Industrial revolution In	dustry 4.0 ; Build	ing block	(S OT			
Industrial lo	Contemporary Issue				2 hours		
Module:0	Contemporary issue	<u>S</u>			2 Hours		
			Total	Lecture hours:	30 hours		
			I Otal	Lecture mours.	30 HOUIS		
Text Book(s							
	ank D Petruzella, "Program 16	imable Logic Coi	ntrollers",	McGraw Hill, Ne	w York,		
2. St	uart A Boyer, "SCADA: Տսր	pervisory Control	and Dat	a Acquisition Sys	tems", ISA		
Pr	ess, 2010						
Reference E	Books						
		hompson and		Shaw, "Indust	rial Data		
	ommunications", 5 th Edition						
	hn Park, Steve Mackay, Ed		ictical Da	ta Communicatio	ns for		
	strumentation and Control",		Unterpet	of Things" Kindle	Edition		
	asdair Gilchrist, "Industry 4 bress, New York, 2016	.o. The moustria	memet	or mings kindle	: ⊏uilion,		
	aluation: CAT / Assignmer	nt / Quiz / FAT					
INIOGO OI EV	aidationi O/(1//Assignino)	it / QuiZ / I / I					
	led by Board of Studies	09-07-2022					
Approved by Academic Council No. 67 Date 08-08-2022							

Course Code	Code Course Title				Р	С
MCOA507P	Industrial Automation Lab 0					1
Pre-requisite	te NIL Sylla			IS V	ersi	on
				1.0		

- 1. Identify the hardware and software requirements of process and factory automation.
- 2. Configure and construct both PLC and DCS programs to implement process and factory automation.

Course Outcomes

On completion of this course, the students will be able to:

- 1. Develop a ladder program for a given automation application using Timer, counter, and Advanced Function block instructions.
- 2. Configure DCS and create a Function block diagram for the closed-loop process control and Monitoring application.

Indicative Experiments Create a Ladder program to automate the continuous filling system using basic instructions in PLC. 2 Create a Ladder program to implement Alarm annunciator sequence (ISA 18.1 Standard) using Timer Instructions Create a Ladder program to design an Automatic Parking System using 3. Counter instructions in PLC Construct a Ladder/Function Block program to design an Automatic 4. weighing system Program a ladder/Function Block program to control traffic in four-way 5. Sequencer Output Instruction in PLC 6. Interface the Analog /Digital Input /Output devices with Industrial type Standalone PLC.(Temperature Sensor /Limit Switch/ Photo Sensor/ Hooter/Light Indicator/Relay) 7. HMI Configuration and Programming of Discrete Control Sequence 8. DCS commissioning and hardware configuration (Al, AO, DI and DO Modules). 9. Construct a DCS functional block programming to design an Interlock system Interfacing Filed devices with DCS and build PID configuration in DCS 10. 11. SCADA configuration and programming of Level /Temperature process control and Monitoring Realization of various closed loop control schemes of Pilot plant 12.

Total Laboratory Hours

30 hours

Mode of assessment: Continuous assessment, FAT

(Level/Flow/Temperature/Pressure Process) using DCS

IoT Based Level/Temperature Monitoring System

Text Book

- 1. Frank D Petruzella, "Programmable Logic Controllers", McGraw Hill, New York, 2016
- 2. Popovic Bhatkar and Vijay P. Bhatkar, "Distributed Computer control for Industrial Automation", Imprint- Routledge, New York, 2017, https://doi.org/10.1201/9781315141404.

Reference Books

1. Hugh Jack, "Automating Manufacturing Systems with PLCs", Lulu.com, 2010, eBook, ISBN-13: 978-0557344253

2.	David Bailey and Edwin Wright "Practical SCADA for Industry" IDC Technologies,						
	Newness, Imprint of Elsevier, 2003.						
Мо	Mode of Evaluation: Continuous Assessments and FAT						
Re	Recommended by Board of Studies 09-07-2022						
Ap	Approved by Academic Council No. 67 Date 08-08-2022						

Course Code	Course Code Course Title				Р	С
MCOA601L Building Automation				0	0	3
Pre-requisite NIL Sy			labı	ıs v	ersi	on
		1.0				

- 1. To impart knowledge on various systems involved in a building management system.
- 2. To give exposure on factors influencing controller design for building automation

Course Outcome:

On the completion of this course the student will be able to:

- 1. Demonstrate the importance of building automation and design fire alarm system for building automation
- 2. Construct the access control system with enhanced security and examine the various components of HVAC
- 3. Design, implement and evaluate the performance of controllers for BAS to meet various factors.
- 4. Develop and enhance the efficiency of energy management system.
- 5. Formulate a building management system for a given problem.

Module:1 Introduction:

4 hours

Concept and application of Building Management System (BMS) and Automation: requirements and design considerations and its effect on functional efficiency of building automation system, architecture and components of BMS

Module:2 | Fire Alarm System:

6 hours

Fundamentals: Fire modes, History, Components, and Principles of Operation. FAS Components: Different fire sensors, smoke detectors and their types, Fire control panels, design considerations for the FA system. Field Components, Panel Components, Applications. FAS Architectures: Types of Architectures, Examples. FAS loops: Classification of loops, Examples. Fire Standards: FAS Design procedure in brief, NFPA 72A, BS 5839, IS Concept of IP enabled fire & alarm system, design aspects and components of PA system.

Module:3 | Access Control System:

8 hours

CCTV: Camera: Operation & types, Camera Selection Criteria, Camera Applications, DVR Based system, DVM, Network design, Storage design. Components of CCTV system like cameras, types of lenses, typical types of cables, controlling system.

Security Design: Security system design for verticals. Concept of automation in access control system for safety, Physical security system with components, RFID enabled access control with components, Computer system access control – DAC, MAC, RBAC.

Module:4 HVAC system:

8 hours

Fundamentals: Introduction to HVAC, HVAC Fundamentals, Basic Processes (Heating, Cooling etc)

Basic Science: Air Properties, Psychometric Chart, Heat Transfer mechanisms, Examples.

Human Comfort: Human comfort zones, Effect of Heat, Humidity, Heat loss. **Processes:** Heating Process & Applications (i.e., Boiler, Heater), Cooling Process &

Applications (i.e., Chiller), Ventilation Process & Applications (i.e., Central Fan System, AHU, Exhaust Fans), Unitary Systems (VAV, FCU etc).

Module:5 | Field Control System and Networking Protocols:

5 hours

Instrumentation Basics, Field components & use, DDC, DCS & applications. Control Panel: HVAC Control Panel, MCC Basics, Panel Components Communication: Communication Basics, Networks, BACNet, Modbus, LON **Energy Management System:** 6 hours Module:6 ASHRAE Symbols - Energy Management: Energy Savings concept & methods, lighting control, Building Efficiency improvement, Green Building, Concept & Examples. Module:7 **Building Management System:** 6 hours BMS (HVAC, Fire & Security) project cycle, Project steps BMS. Verticals: Advantages & Applications of BMS, Examples Integration: IBMS. Architecture, Normal & Emergency operation. Advantages of BMS Module:8 **Contemporary Issues** 2 hours Total Lecture hours: 45 hours Textbook(s) Gerardus Blokdyk, "Building Management Systems a Complete Guide", Emereo Pty Limited, 2020 2. Jim Sinopoli, Butterworth-Heinemann, "Smart Buildings", imprint of Elsevier, 2nd ed., 2010. Albert Ting-Pat So, WaiLok Cha, "Intelligent Building Systems", Kluwer Academic publisher, 3rd ed., 2012. **Reference Books** Robert Gagnon, "Design of Special Hazards and Fire Alarm Systems", Jones & Bartlett Learning, 2016. Ronnie J. Auvil, "HVAC Control Systems", American Technical Publishers, 2017 2. Mode of Evaluation: CAT / Assignment / Quiz / FAT Recommended by Board of Studies 09-07-2022 Approved by Academic Council No. 67 Date 08-08-2022

Course Code	Course Title		L	Т	Р	С
MCOA602L	Industrial Robotics		3	0	0	3
Pre-requisite	NIL	Syl	llab	us \	ers	ion
				1.0		
Course Objective	es					

- 1. To understand the importance of robotics in scientific and industrial domains.
- 2. To introduce mathematical aspects of robotics such as spatial transformations. Kinematics and dynamics of the manipulator.
- 3. To develop a controller for tracking a desire trajectory and path planning by a robot.

Course Outcome

At the end of the course, the students will be able to

- 1. Understand the concept of forward and inverse kinematic of robot manipulators.
- 2. Develop the dynamics of the robotic manipulator using Euler Lagrangian approach.
- 3. Demonstrate an ability to generate joint trajectories for motion planning.
- 4. Implement the PD and PID controller for independent joint control.
- 5. Formulate solutions to solve problems related to robotics.

Module:1 Introduction to Robotics	5 hours						
Basic definitions- Fundamentals about robot technology-Deg	ree of freedom- Serials parallel						
manipulator, work space, classification of robots- Industrial R							
Module:2 Kinematics	8 hours						
Position and orientation of links-Coordinate transformation-d-							
variable and position of end effectors-Inverse kinematic analy							
Module:3 Velocity and static force analysis	9 hours						
Translational and rotational velocities-Velocity transformation of velocity-Static force/torque transformations-Recursive of force/torque relationships.	equations of motion and static						
Module:4 Trajectory generation	5 hours						
Point -to-point vs Continuous motion- Cubic and Quintic with parabolic blends-Via points-Cartesian paths- Kinematic	control.						
Module:5 Manipulator Dynamics	9 hours						
Newton Euler formulation of robot dynamics- Actua considerations.							
Module:6 Robot Positional Control	5 hours						
Independent joint control-Feed forward control based on PD	•						
Computed Torque control-Linear and Nonlinear controller de							
Module:7 Application of Robotics	2 hours						
Applications of robotics in active perception, medical robotics acres.							
Module:8 Contemporary Issues	2 hours						
Total Lecture hours: 45 hours							
Text Book(s)							
John J. Craig, Introduction to Robotics: Mechanics and Control, 4th Edition, 2022, ISBN-13: 9780137848744, Pearson Internationals.							
2. Mark W. Spong, Seth Hutchinson, M. Vidyasagar, Robot Modeling and Control, 2020, 2nd edition, ISBN 9781119524045, Wiley.							
Reference Books							
1. M.P. Groover, et.al., Industrial Robots: Technology, Programming and applications,							

	McGraw Hill, 2 nd Indian edition, 2017.								
2.	M O Tokhi, A K M Azad, Flexible robot manipulator :modelling, simulation and control 2 nd Edition, 2017.								
3.	Ashitava Ghosal. Robotic fundamental Concept and Analysis, Oxford University Press 11 th Impression 2015.								
Мо	Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final Assessment								
Tes	Test								
Re	Recommended by Board of Studies 09-07-2022								
App	Approved by Academic Council No. 67 Date 08-08-2022								

Course Co	Course Code Course Title					Р	С		
MCOA603L					0	0	3		
Pre-requisi	ite	NIL	Syll			ersi	on		
Course Objectives:									
		concepts and basic operation of electric drive system solid state control of dc, induction and synchronous n	nachir	h ar	rivo	2			
		design techniques of drive system	iaciiii	ie u	IIVE	•			
o. 10 piov	140 1110	accign toominques of anive system							
Course Ou									
	•	of this course the student will be able to:							
		ed of various, electrical machines, power converters ar		ntrol	sys	tems	} .		
		ase controlled and chopper controlled DC motor drives namic model and control of IM Drives.	•						
		erformance of permanent magnet machines Drives.							
		nt control algorithms/ techniques for control of electric o	rives						
Module:1		duction to Electric Drives				ho			
		drive system, electrical machines, power converters a				ffere	nt		
		ountered in drive applications, Dynamics of drive syste	ms, s	tartı	ıng,				
braking, and	u spee	u-control.							
Module:2	Phas	e Controlled DC motor drives:			5	ho	urs		
Single quad	rant, T	wo –quadrant and four quadrant rectifier fed dc separa	ately e	excit	ed o	d.c.			
		p operation of rectifier fed drive, design of controller							
Module:3		pper Controlled DC motor drives:	4 - 1			ho			
		wo –quadrant and four quadrant chopper fed dc separ ration of chopper fed drive, design of controller	ately	exc	itea	mot	or		
- Closed lo	op ope	ration of chopper led drive, design of controller							
Module:4	Dyna	mic Modelling of Induction Machines			8	ho	ırs		
Model of a	Two ph	nase induction machine, Three phase to two phase trar	nsform	natio	on- F	Powe	er		
		ralised Model in Arbitrary reference Frames, Electroma							
		Frames Model , Rotor Reference Frames Model , Sync					j		
Reference I	rames	s Model							
Module:5	Cont	rol of Induction Motor Drive:	1		8	ho	urs		
			<u> </u>						
		ontrol, Slip Energy Recovery Scheme , Voltage-Sou							
•		ource Induction Motor Drives , V/f control, need for vect	or cor	ntrol	, air	ect a	ına		
munect vec	ioi con	trol of induction motor drives.							
Module:6		anent-Magnet Synchronous and Brushless DC			5	ho	ırs		
	Moto	r Drives							
Permanent Magnets and Characteristics, Permanent synchronous motor drive, Sensor less									
control of Permanent synchronous motor drive, Permanent Magnet Brushless DC motor,									
Sensor less	contro	ol of PMBLDCM Drive.							
Module:7	Intall	igant Control of Floatric Privace	<u> </u>			ho	urc		
Module:7 Intelligent Control of Electric Drives:					C	1101	21 S		

Fuzzy Logic Control of ac and dc Drives, Artificial Neural Network control of ac and dc

Drives	, Hyb	rid Fuzzy/PI Control of ac	and dc Drives,					
Module:8		Contemporary Issues				2 hours		
			Tot	tal Lectur	e hours:	45 Hours		
Text Book(s)								
1.	Krishnan, Electric Motor Drives: Modelling, Analysis and Control, Pearson Education, 2015							
Refere	ence	Books						
1	Bim 201	al K. Bose, "Modern Powe 5.	er Electronics an	d AC Driv	es", Pearso	n Education,		
2	Muhammad H. Rashid , Power Electronics: Circuits, Devices and Applications, Pearson Education , 2014							
3	Orłowska-Kowalska, Teresa, Blaabjerg, Frede, Rodríguez, José ,"Advanced and Intelligent Control in Power Electronics and Drives", Springer, 2014							
4	Ned Mohan, "Electrical Machines and Drives: A First course", Wiley Publications, 2011.							
5	Tze-Fun Chan, Keli Shi, "Applied Intelligent Control of Induction Motor Drives", Wiley, 2011							
6	G'K.DUBEY , Fundamentals of Electric drives , Narosa publications, second edition , 2010							
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar								
Recom	Recommended by Board of Studies 09-07-2022							
Approv	ed b	y Academic Council	No. 67	Date	08-08-202	22		

Course Code	Course Title		L	T	Р	С
MCOA604L	Machine Learning		2	0	0	2
Pre-requisite	NIL	Sy	llab	us	vers	ion
				1.0)	

- 1. To provide the student with a broad understanding of machine learning algorithms and their applications.
- 2. To Understand and Interpret machine learning concepts, such as to robotic control, data mining, autonomous navigation, bioinformatics, speech recognition, and text and web data processing to the real world applications.

Course Outcome:

At the end of the course, the student will be able to:

- 1. Apply gradient descent approach for regression problems and Instant based learning for Classification problems.
- 2. Analyze and interpret the data using multiple classes and text classification problems.
- 3. Analyze the data using SVM, LDA and PCA
- 4. Apply Reinforcement learning by formulating MDP and computing optimal policy for continuous variables or higher dimension.
- 5. Conduct experiments to design a component or a product applying all the relevant standards with realistic constraints.

Module:1 Introduction, Regression Problem and Gradient Descent 4 hours

Introduction: Prediction, Classification, Forecasting, Filtering, Regression, Clustering. Review of Linear Algebra, Probability and Statistics. Data Exploration and Pre-processing: Data Objects and Attributes; Statistical Measures, Visualization, Data Cleaning and Integration, Linear Regression; Gradient Descent, Batch Gradient Descent, Stochastic Gradient Descent, The Concept of Under fitting and Overfitting.

Module:2 Classification Problem and Instance Based Learning 4 hours

The Concept of Parametric Algorithms and Non-parametric Algorithms: Locally Weighted Regression, The motivation of Logistic Regression, Logistic Regression and Perceptron Learning Algorithm.

Module:3 | Multiple Classes and Text Classification | 4 hours

Softmax Regression Discriminative Algorithms, Generative Algorithms, Gaussian Discriminant Analysis (GDA) and Naive Bayes algorithm.

Module:4 | Support Vector Machine Algorithm

4 hours

Intuitions about Support Vector Machine (SVM): Notation for SVM, Functional and Geometric Margins.

Module:5 Dimensionality Reduction

4 hours

Linear Discriminant Analysis (LDA); Principal Component Analysis (PCA); Transform Domain and Statistical Feature Extraction and Reduction.

Module:6 Markov Decision Process and Reinforcement Learning 4 hours

Applications of Reinforcement Learning: Markov Decision Process (MDP); Defining Value & Policy Functions, Value Function and Optimal Value Function.

Module:7 | Computing an Optimal Policy

4 hours

Value Iteration: Policy Iteration; Generalization to Continuous States; Discretization & Curse of Dimensionality and Fitted Value Iteration algorithm.

Module	e:8	Contemporary Issues			2 hours				
Total Lecture hours:					30 hours				
Text B	Text Book(s)								
1.	Ton	n Mitchell, "Machine Learn	ing", McGraw-H	ill Educat	tion, 2010.				
2.	Dau	ıme, H. III, "A Course in M	achine Learning	", 2015;	http://ciml.info/				
Refere	nce	Books							
1.	Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2013.								
2.	Balas K Natarajan, "Machine Learning", Elsevier Science, 2014.								
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Lab / Seminar									
Recom	Recommended by Board of Studies 09-07-2022								
Approv	ed b	y Academic Council	No. 67	Date	08-08-2022				

Cour	rse Code		Course Tit	e	L	Т	Р	С
	A604P	Ma	chine Learnii		0	0	2	1
	requisite	NIL		3	Syllab	us v	ersi	on
					- ,	1.0		
Cour	rse Objective	es						
		d the implementation	procedures fo	r the machine learni	ng algor	ithm	s us	ina
-		Python, Weka.						
2. Understand modern notions in data analysis-oriented computing and conduct								
		ts to design a compo					ndar	ds
with realistic constraints.								
Course Outcomes								
		this course, the studer						
		opriate data sets to the						
		d apply Machine Lear	ning algorithm	is to solve real world	probler	ns		
	ative Experi							
1.		he non-parametric Lo						
		lata points. Select app	propriate data	set for your experim	ent			
2.	and draw gi		a nuthan Cal-	ot appropriate data	not for	-		
۷.	•	inear regression using ment and plot the grap	, , ,	ci appropriate data s	set ioi			
3.		gram to construct a Ba		rk considering media	ral	-		
J.		nis model to demonstr						
		eart Disease Data Set	•	•	_			
	classes.	an Biodass Baia est		oavan yanon me	. u. y			
4.		gram to implement k-N	Nearest Neigh	bour algorithm to cla	ssify			
		set. Print both correct						
		es can be used for thi		•				
5.		c-means clustering for						
6.	•	an algorithm to demon	nstrate the sig	nificance of genetic				
	algorithm							
7.		gram to demonstrate t						
		m. Use an appropriat		O	on tree			
0		nis knowledge to class	•	•	lla a	_		
8.	•	PCA, LDA for dimension	•	•	Use			
		o demonstrate the dia EG Data Set.	ignosis oi Epii	epsy patients using				
9.		SVM tool for the de	etection of th	e Enilensy nationts	. Heina	-		
J.	•	EG Data Set. Also u		· · · • ·	•			
		eart disease.	oo olahaala l	.cart Diocaso Data	231 10			
10.		tion of popular archite	ectures related	to CNN, RNN, LST	M and	1		
	Auto-encod			, , ,				
11.	Implementa	tion of Time Series Cl	lustering and a	alignment algorithms	<u> </u>			
12.	Implementa	tion of Reinforcement	Learning algo	orithms.				
				Total Laboratory	Hours	30	hou	rs
	Books							
		"Machine Learning", I						
		"A Course in Machine	e Learning", 2	015				
	rence Books							
		ishop, "Pattern Recog			ringer, 2	2013.		
		ajan, "Machine Learn	ing", Elsevier	Science, 2014.				
Mode	e of Evaluation	n: Assignment, FAT						
Door	mmonded by	Poord of Studios	00 07 2022					
		Board of Studies	09-07-2022 No. 67	Data 100 00 an	122			
whhi	oved by Acac	lemic Council	INU. U <i>I</i>	Date 08-08-20	122			

MACO 4 00 = 1	Course Title							
MCOA605L	Advanced Python programming		1 (1			
Pre-requisite	NIL	Syl	labus		ion			
			1	.0				
Course Objectives:								
1. Design and apply programming constructs in Python to solve engineering problems.								
2. Apply em	pedded programming features in Python							
Course Outcom								
Acquire programming skills in python								
2. Perform c	oding using loops and conditional execution.							
3. Ability to o	reate and use different data structures.							
4. Create fui	ctions, modules and packages to facilitate reusal	oility of the c	ode.					
5. Developin	g python constructs for control engineering applic	ations						
Module:1 Fu	ndamentals of Python Programming			2 ho	urs			
History of python	Python shell- Programming using IDE- Indentati	on-Commer	nts, Va	ariable	es-			
	ersion- Operators-Different forms of Assignment-F							
functions								
	ow controls			2 ho	urs			
	s using If, else, elif-For loop-For loop using in ran	ge-while loo	p- Lo	ор				
	g pass, break ,continue and else.							
	ta structures			2 ho	urs			
structures	-Dictionaries-Various operations on data structure	es-user defir	ned d	ata				
Module:4 Fu	nctions and Files							
Defining a function-calling a function- local and global scope of variables-lambda function-								
Defining a function	n-calling a function- local and global scope of var , write, append, close	iables-lamb	da fur					
Defining a function	•	iables-lambo	da fur		•			
Defining a function Files-create, read Module:5 St	, write, append, close			ction-				
Defining a function Files-create, read Module:5 Strings -various of	, write, append, close ring handling			ction-	urs			
Defining a function Files-create, read Module:5 Strings -various of Module:6 Module-Institute Module-Institu	, write, append, close ring handling perations on strings- Regular expressions-Matche odules and packages mporting module-in built modules-user defined mod	ing, replace,	, patte	2 hoerns 2 ho	urs			
Defining a function Files-create, read Module:5 Strings -various of Module:6 Module-Imatplotlib, control	, write, append, close ring handling perations on strings- Regular expressions-Matche odules and packages mporting module-in built modules-user defined mod	ing, replace,	, patte	2 hoerns 2 ho	urs urs			
Defining a function Files-create, read Module:5 Strings -various of Module:6 Module-matplotlib, control Module:7 Communication Control Module:7 Communication Control Module:7 Control Control Module:7 Control Control Module:7 Control Contr	, write, append, close ring handling perations on strings- Regular expressions-Matche odules and packages mporting module-in built modules-user defined modules	ing, replace,	, patte	2 hoerns 2 hoenns 2 hoenns 3 ho	urs urs			
Defining a function Files-create, read Module:5 Strings -various of Module:6 Module-Imatplotlib, control Module:7 Control Time response ar	write, append, close ring handling perations on strings- Regular expressions-Matchedules and packages mporting module-in built modules-user defined modules packages introl Engineering using Python	ing, replace,	, patte	2 hoerns 2 hoenns 2 hoenns 3 ho	urs urs			
Defining a function Files-create, read Module:5 Strings -various of Module:6 Module:1 Creating module-Imatplotlib, control Module:7 Control Time response an analysis-state feet	write, append, close ring handling perations on strings- Regular expressions-Matche dules and packages mporting module-in built modules-user defined mod packages introl Engineering using Python alysis-Stability analysis-Root locus-Bode plot-PID of	ing, replace,	, patte	2 ho erns 2 ho nump	urs urs y,			
Defining a function Files-create, read Module:5 Strings -various of Module:6 Module:1 Creating module-Imatplotlib, control Module:7 Control Time response an analysis-state feet	write, append, close ring handling perations on strings- Regular expressions-Matche odules and packages mporting module-in built modules-user defined mod packages introl Engineering using Python alysis-Stability analysis-Root locus-Bode plot-PID of	ing, replace,	, patte	2 hoerns 2 hoenns 2 hoenns 3 ho	urs urs y,			
Defining a function Files-create, read Module:5 St Strings -various of Module:6 Module:6 Creating module-Imatplotlib, control Module:7 Co Time response an analysis-state feed Mode of evaluat	write, append, close ring handling perations on strings- Regular expressions-Matche dules and packages mporting module-in built modules-user defined mod packages introl Engineering using Python alysis-Stability analysis-Root locus-Bode plot-PID of lback, observer design on: No separate evaluation for theory	ing, replace,	, patte	2 ho erns 2 ho nump	urs urs y,			
Defining a function Files-create, read Module:5 Strings -various of Module:6 Module:7 Company of Co	write, append, close ring handling perations on strings- Regular expressions-Matchedules and packages mporting module-in built modules-user defined modules packages introl Engineering using Python alysis-Stability analysis-Root locus-Bode plot-PID of lback, observer design on: No separate evaluation for theory Total Lecture hours:	ing, replace, lules-Overvio	ew of	2 hoerns 2 hoenump 3 hoence	urs urs v,			
Defining a function Files-create, read Module:5 Strings -various of Module:6 Module:7 Computing Text Book(s) Defining a function Files-create, read Module:5 Strings -various of Module:6 Module:6 Module:7 Computing Text Book(s) Smith, E. (Computing Text Book(s))	myrite, append, close ring handling perations on strings- Regular expressions-Matchedules and packages mporting module-in built modules-user defined modules packages mtrol Engineering using Python alysis-Stability analysis-Root locus-Bode plot-PID of lback, observer design on: No separate evaluation for theory Total Lecture hours: 2020). Python, the Fundamentals. In Introduction (pp. 19-50). Springer, Cham.	ing, replace, lules-Overvio	ew of te spa	2 hoerns 2 hoenump 3 hoence	urs urs y, urs			
Defining a function Files-create, read Module:5 Strings -various of Module:6 Module:6 Creating module-I matplotlib, control Module:7 Computing Smith, E. (Computing Lynch, S.)	write, append, close ring handling perations on strings- Regular expressions-Matchedules and packages mporting module-in built modules-user defined modules and packages mtrol Engineering using Python alysis-Stability analysis-Root locus-Bode plot-PID of black, observer design on: No separate evaluation for theory Total Lecture hours: 2020). Python, the Fundamentals. In Introduction (pp. 19-50). Springer, Cham. 2018). Dynamical systems with applications using	ing, replace, lules-Overvio	ew of te spa	2 hoerns 2 hoenump 3 hoence	urs urs y, urs			
Defining a function Files-create, read Module:5 St Strings -various of Module:6 Mo Creating module-I matplotlib, control Module:7 Co Time response ar analysis-state fee Mode of evaluat Text Book(s) 1. Smith, E. (Computing 2. Lynch, S. Springer In	myrite, append, close ring handling perations on strings- Regular expressions-Matchedules and packages mporting module-in built modules-user defined modules packages mtrol Engineering using Python alysis-Stability analysis-Root locus-Bode plot-PID of lback, observer design on: No separate evaluation for theory Total Lecture hours: 2020). Python, the Fundamentals. In Introduction (pp. 19-50). Springer, Cham.	ing, replace, lules-Overvio	ew of te spa	2 hoerns 2 hoenump 3 hoence	urs urs y, urs			

Padmanabhan, T. R. (2016). *Programming with python* (Vol. 349). Springer. McGrath, M. (2018). *Python in easy steps: Covers Python 3.7*. In Easy Steps.

2.

3	Gowrishankar, S., & Veena, A. (2018). <i>Introduction to python programming</i> . CRC Press.						
4	Sharma, V. K., Kumar, V., Shar <i>Practical Approach</i> . Chapman a		, S. (2021). Python Programming: A			
Mode	e of Evaluation : No separate eva	aluation for theor	y class				
Reco	mmended by Board of Studies	09-07-2022					
Appro	oved by Academic Council	No. 67	Date	08-08-2022			

	irse Code		Course			l	_ T	Р	С
	OA605P		d Python P	rogrammin	g Lab	`	0 0	4	2
Pre	-requisite	NIL				Sylla			on
0	Obi4i						1.0		
	rse Objectiv		f4 : F), 4l 4 l			عدد ا ما		
	1. Apply embe	edded programming	reatures in F	ytnon to so	ve engineer	ing pro	ppien	ıs.	
Cal	ırse Outcom	00							
		this course, the stud	onto will bo	able to:					
		rogramming skills in		able to.					
		nd analysis of control		cations usin	a python				
	cative Exper				9 7				
1.		gram to perform vari	ous athemat	ic operation	on two num	bers			
2		gram to find simple a							
3.		gram to find the prim			nge				
4.		gram to calculate dis			•	nates			
	by taking in	puts from user							
5.	Write a pro	gram to find whether			en or odd				
6.		gram to generate Fil							
7.		gram to count numb			a file				
8.		gram to find the facto							
9.		ction two find roots o		equation					
10		inction to compute go							
11	•	gram to detect and r	•						
12		gram to find union ar							
13		gram to separate po		•	pers from a	list			
14		gram to map lists int							
15		gram to capitalize a							
16		gram to find a value							
17		gram to sort a list us				je sort			
18		gram to check wheth			inarome				
19 20		gram to detect subst onse analysis of first o							
21	•	alysis using root locu		15			_		
22		alysis using bode plo							
23		state feedback contr					_		
20	Design run	State recupack corn	Olici	Total	Laboratory	Hours	60	hou	ıre
Mod	le of assessm	nent: Continuous ass	essment FA		Laboratory	. 10013	, 100		3
	t Book		2300	• •					
		20). Python, the Fun	damentals. I	n <i>Introductio</i>	on to the To	ols of S	Scien	tific	
		op. 19-50). Springer,		5.6.6.6.		3. (,		
2.		018). Dynamical syst		olications us	ing python.	Switze	rland	:	
		rnational Publishing.	1.1		- · ·				
Ref	erence Book	S							
1.	Sharma, V. K	K., Kumar, V., Sharm	a, S., & Path	ak, S. (202	1). Python P	rogran	nming	g: A	
	Practical App	<i>roach</i> . Chapman an	d Hall/CRC.						
2.	Gowrishanka	nr, S., & Veena, A. (2	018). <i>Introdu</i>	iction to pyti	hon progran	nming.	CRC	Pre	SS.
Mod		on: Assignment, FAT							
		y Board of Studies	09-07-2022		100.00.00	<u> </u>			
Арр	roved by Aca	demic Council	No. 67	Date	08-08-20	<u> </u>			

Course Code	e Course Title				Р	С
MCOA606L	Optimal Control Systems	Optimal Control Systems				3
Pre-requisite	NIL	Syl	labı	IS V	ersi	on
				1.0		

The course is designed to enable the students to

- 1. Understand the optimal control theory fundamentals and apply the dynamic programming method for finding the optimal control law
- 2. Use the variational approach for solving the constrained optimal problem and
- 3. Compare the different iterative methods used for solving the optimal control problems

Course Outcome

At the end of the course, the student will be able to

- 1. Formulate the optimal control problem and find an optimal solution for the functionals with boundary conditions.
- 2. Determine an optimal control law using dynamic programming technique for a practical dynamic system.
- 3. Solve the optimal control problems using variational approach and determine a control law for optimal tracking and regulatory problems.
- 4. Design a controller for achieving the desired output in minimum time and with optimal control effort.
- 5. Determine an optimal control using different numerical techniques with MATLAB tool.

Module:1 | Introduction 6 hours Optimal Problem formulation: Mathematical model, Physical constraints, Performance measure – Form of optimal control – Performance measures for optimal control problem – Selecting a performance measure. Module:2 Calculus of Variations Basic concepts: Function and functionals, Increment, Differential and variation – Functionals of a single function - Functionals involving several independent functions - Piecewisesmooth extremals - Constrained extrema: Direct method, Lagrange multiplier method. Module:3 Dynamic Programming 7 hours Optimal control law - Principle of optimality - Dynamic programming: Computational procedure, Interpolation – Recurrence relation of dynamic programming — Characteristics of dynamic programming solution. Module:4 Variational Approach 5 hours Hamilton-Jacobi-Bellman equation - Continuous linear regulator problems - Variational approach to optimal control problems: Necessary conditions for optimal control. Module:5 | Linear Quadratic Optimal Control Systems 6 hours Finite time linear regulator problems - Finite time Linear tracking problems - Solution of general continuous time optimal control problem – Continuous time Linear Quadratic Regulator

design – Riccati equation – Pontryagin's minimum principle – state inequality constraints.

Time optimal control of LTI system - Fuel optimal control systems - Energy optimal control

Two point boundary-value problems - Method of steepest decent - variation of extremals -

5 hours

6 hours

2 hours

Module:6 | Constrained Optimal Control Systems

Module:7 | Iterative Numerical Techniques

Module:8 | Contemporary Topics

systems - Singular intervals in optimal control problems.

Quasilinearization – Gradient projection algorithm – Case studies.

		•	Γotal Lecture ho	ours:	45 hours
Tex	kt Book	(s)			
1.	Donald	l E. Kirk (2004). Optimal C	ontrol Theory: Ar	n Introduc	tion, Dover Publications.
2.	Desine	ni Subbaram Naidu (2009). Optimal Contro	l Systems	s , CRC Press.
Ref	ference	Books			
1.		Lewis, Draguna L. Vrabie, Viley & Sons, Inc., Hoboke		os (2012).	Optimal Control, 3 rd edition,
2.		T Aschepkov, Dmitriy V D al Control, Springer.	olgy, Taekyun K	im and Ra	avi P Agarwal (2016).
3.		n P. Sethi (2019). Optimal conomics, 3 rd Edition, Sprir		Application	ns to Management Science
Мо	de of Ev	aluation: Continuous Ass	essment Tests, C	Quizzes, A	ssignment, Final
Ass	sessmer	nt Test			
		ided by Board of Studies	09-07-2022		
App	proved b	y Academic Council	No. 67	Date	08-08-2022

Course Code	se Code Course Title				Р	С
MCOA607L	Adaptive and Robust Control		3	0	0	3
Pre-requisite	MCOA502L, MCOA502P	Sy	llak	ous v	ers	ion
				1.0		

- 1. Expose to techniques of system identifications for time varying systems
- 2. Design of Adaptive Control Systems
- 3. Analyze uncertain systems and design robust control systems.

Course Outcome:

On the completion of this course the student will be able to:

- 1. Estimate system parameters and design self-tuning regulators
- 2. Apply Lyapunov theory and MIT rule to design Model-Reference Adaptive Control schemes
- 3. Utilize vector fields to analyze variable structured systems and design sliding mode control law
- 4. Analyze the stability of systems with unstructured uncertainty and design robust control loops satisfying system norms
- 5. Utilize simulation tools to design, implement and test adaptive and robust control strategies

Module:1 | Adaptive Control Approach

6 hours

Background: Linear feedback, Effects of process variations, Adaptive control schemes; Estimation: Parameter estimation, Least squares and Regression models; Estimating Parameters in Dynamical Systems; Recursive least squares (RLS) estimate

Module:2 | Self-Tuning Regulators (STR)

6 hours

Controller design: Minimum degree pole placement (MDPP) design; Direct and Indirect self-tuning regulators; Continuous-time self-tuners; Stochastic self-tuning regulators; Minimum variance controller design, Minimum average controller design; Linear Quadratic STR, Adaptive Predictive Control

Module:3 | Model-Reference Adaptive Control (MRAC)

6 hours

Series and Parallel MRAC schemes; The MIT Rule, Determination of adaptation gain; Lyapunov Theory: Design of MRAC Using Lyapunov Theory; Bounded-Input Bounded-Output Stability; Applications to Adaptive Control, MRAC via Output Feedback; Relations between MRAS and STR.

Module:4 | Gain Scheduling Control

7 hours

Principle; Design approach: Linearization of nonlinear actuators, Measurement of auxiliary variable, Time scaling based on production rate, Nonlinear transformation of the system dynamics; Application of gain scheduling controllers; Case studies: Industrial adaptive controllers, ship steering

Module:5 | Sliding Mode Control

6 hours

Variable structure systems, Vector field; Sliding surfaces; Continuous approximations of switching control laws; Modeling and Performance Trade-Offs; Relay control for multi-input systems

Module:6 | Model Uncertainty

6 hours

Unstructured uncertainty and system model; Stability under unstructured uncertainties; Robust stability criteria; Robust performance analysis: Small gain theorem, μ - Analysis and Synthesis, Lyapunov approach

	H₂ and H∞ Control	6 hours					
Norms: Co	mputation of H_2 and $H_∞$ norms; Standard LQR, LQG control pro	blem; Robust					
Control Problem as H₂ and H∞ Control; H₂ and H∞ control synthesis; LQG as special H₂							
controller; Case study on aircraft hovering							
,	,						
Module:8	Contemporary Issues	2 hours					
	Total Lecture hours:	45 hours					
Text Book	(s)						
1. Ast	rom, K. J., & Wittenmark, B. (2013). Adaptive control. Courier C	Corporation.					
2. Liu	K. Z., & Yao, Y. (2016). Robust control: theory and application	s. John Wiley &					
Sor	ns.	Ť					
Reference	Books						
1. Sas	stry, S. & Bodson, M., & Bartram, J. F. (2011). Adaptive control:	stability,					
con	vergence, and robustness. Dover Publications, New York	·					
2. Pet	ros A Ioannou and Jing Sun. (2013). Robust adaptive control. [Dover Publications.					
3. Ma	ckenroth, U. (2013). Robust control systems: theory and case s	tudies. Springer					
Sci	ence & Business Media.						
Mode of E	valuation: CAT, Assignment, Quiz, FAT						
	ded by Board of Studies 09-07-2022						
Approved b	y Academic Council No. 67 Date 08-08-202	2					

Course Code	Course Title		L	T	Р	С
MCOA608L	Discrete Control System	s	3	0	0	3
Pre-requisite	NIL		Sy	/llabu		rsior
				1	.0	
Course Objective						
analysis of	ne in-depth knowledge of control theory discrete systems by state space analysis. he concepts of realizing discrete systems		differ	rent c	contro	ollers,
Course Outcor	nes:					
	on of this course the student will be able to	D:				
 Propose the domain. Design and Design and 	crete-time systems by using the z-transfor model and analyze the response and sta realize digital controllers. analysis of discrete systems using state s Practical implementation of discrete systems	bility of syster	ch			nte
	ntroduction to Discrete Control System		Totalo		hou	
	ntinuous versus digital control- sampling ne system representation-Z-transform-M					
	Discrete Time System Modelling and Rounction-Signal flow graph-Stability	.	ıry		hour lity-B	
Pulse transfer ransformation-		analysis-Ju		Stabi	lity-B	iline
Pulse transfer ransformation- system	function-Signal flow graph-Stability	analysis-Ju		Stabi of sec	lity-B	iline orde
Pulse transfer ransformation-system Module:3 Discretization of echniques-Z- p	function-Signal flow graph-Stability Time Response-Transient and steady	analysis-Ju state respon er design usin	se c	Stabi of sec 8 ansfor	lity-B cond hour	iline orde 's
Pulse transfer ransformation-system Module:3 Discretization or echniques-Z- poeat controller-I	function-Signal flow graph-Stability Time Response-Transient and steady Design of Digital Controller: Continuous transfer functions-Controlle Lane specifications-Design in the w don	analysis-Ju state respon er design usin	se c	Stabi of secondary 8 ansfor	lity-B cond hour	iline orde s on dead
Pulse transfer ransformation-system Module:3 Discretization of echniques-Z-poeat controller-I Module:4 Introduction to s	function-Signal flow graph-Stability Time Response-Transient and steady Design of Digital Controller: To continuous transfer functions-Controlle Ilane specifications-Design in the w don Dahlin's controller- Root Locus design.	analysis-Ju state respon er design usin nain- Digital I	ng tra	Stabi of seconds 8 ansfor contro	hour hour mati- oller-	iline orde s on dead
Pulse transfer transformation-system Module:3 Discretization of techniques-Z-poeat controller-Introduction to state specific production to state specific production-state specific production to state specific productio	function-Signal flow graph-Stability Time Response-Transient and steady Design of Digital Controller: To continuous transfer functions-Controlle Itane specifications-Design in the w don Dahlin's controller- Root Locus design. Discrete state space model: Tate space-state equation-solutions-controller and controller- solutions and controller- solution to discrete state	analysis-Ju state respon er design usin nain- Digital I	ng tra	Stabi of seconds 8 ansfor contro 7 space	hour maticoller- hour	iline orde s on dead
Pulse transfer transformation-system Module:3 Discretization of echniques-Z- poeat controller-Introduction to struction-state specific controllability-Oleman (Controllability-Oleman)	function-Signal flow graph-Stability Time Response-Transient and steady Design of Digital Controller: To continuous transfer functions-Controlled Italiane specifications-Design in the w don Dahlin's controller- Root Locus design. Discrete state space model: Tate space-state equation-solutions-controlled To pace modeling-solution to discrete state Design via State space:	analysis-Justate responser design using nain- Digital lawersion of state equation.	ng tra	Stabi of seconds 8 ansfor contro 7 space	hour maticaller- hour to tra	iline orde s on dead
Pulse transfer transformation-system Module:3 Discretization of techniques-Z- poeat controller-I Module:4 Introduction to struction-state system Module:5 Controllability-Olobserver design-	function-Signal flow graph-Stability Time Response-Transient and steady Design of Digital Controller: Continuous transfer functions-Controlled Iane specifications-Design in the w don Dahlin's controller- Root Locus design. Discrete state space model: Itate space-state equation-solutions-controlled Design via State space: Design via State space: Design via State space:	analysis-Justate responser design using nain- Digital lawersion of state equation.	ng tra	8 ansfor contro 7 space 8 back-	hour maticaller- hour to tra	iline orde s on dead rs ansf
Pulse transfer transformation-system Module:3 Discretization of techniques-Z- poeat controller-Introduction to see function-state system Module:5 Controllability-Observer design- Module:6 Quantization eff	function-Signal flow graph-Stability Time Response-Transient and steady Design of Digital Controller: Continuous transfer functions-Controlle Iane specifications-Design in the w don Dahlin's controller- Root Locus design. Discrete state space model: Itate space-state equation-solutions-con Discrete state space model: Discrete state space mode	analysis-Justate responser design using nain- Digital lawersion of state equation.	ng tra PID ate s	Stabilof seconds ansfor control space 8 back-	hour maticaller- hour to tra	rs on dead rs on ord
Pulse transfer transformation-system Module:3 Discretization of techniques-Z- poeat controller-Introduction to struction-state system Module:5 Controllability-Observer design- Module:6 Quantization efficample rate reduction-	function-Signal flow graph-Stability Time Response-Transient and steady Design of Digital Controller: Continuous transfer functions-Controlle Iane specifications-Design in the w don Dahlin's controller- Root Locus design. Discrete state space model: Itate space-state equation-solutions-con Discrete state space model: Discrete state space mode	analysis-Justate responser design using nain- Digital lawersion of state equation.	ng tra PID ate s	8 ansfor contro 8 back-	hour maticaller- hour to tra	rs ord
Pulse transfer transformation-system Module:3 Discretization of techniques-Z- poeat controller-Introduction to sfunction-state system Module:5 Controllability-Observer design- Module:6 Quantization eff Sample rate reduction of the controllability of	function-Signal flow graph-Stability Time Response-Transient and steady Design of Digital Controller: Continuous transfer functions-Controlled Idane specifications-Design in the w don Dahlin's controller- Root Locus design. Discrete state space model: Itate space-state equation-solutions-controlled Design via State space: Deservability- stability-Pole placement Reduced order observer design. Design via State space: Deservability- stability-Pole placement Reduced order observer design. Design via State space: Deservability- stability-Pole placement Reduced order observer design.	analysis-Justate responser design using nain- Digital Inversion of state and state by state	ag tra PID ate s feed	Stabilof seconds ansfor control space 8 back-cles a 4 t, canda t,	hour hour hour Full hour and c	iline orders son dead

Total Lecture hours:

45 hours

Tex	Text Book(s)							
1.	Jacquot, R.G., 2019. Modern digital control systems. Routledge.							
2	Nise, N. S. (2020). Control systems engineering. John Wiley & Sons.							
Re	ference Books							
1.	Rabbath, C. A., & Léchevin, N. (20			ontrol system design with				
1.	applications. Springer Science & E	Business Me	edia.					
2.	Gopal, M. (2012). Digital cont & st	ate var met	. Tata Mc	Graw-Hill Education.				
Мо	de of Evaluation: Continuous Ass	essment Te	sts, Quiz	zes, Assignment, Final				
	sessment Test							
Re	commended by Board of Studies	09-07-202	2					
App	proved by Academic Council	No. 67	Date	08-08-2022				

MCOA609L	Course Title	LTPC				
MCOA609L	Multivariable Control System	3 0 0 3				
Pre-requisite	NIL	Syllabus version				
		1.0				
Course Objective						
	be the fundamentals of multivariable control design					
	strate the performance of state feedback and ou	itput feedback control				
techniques		oling ashamas				
3. TO arrange	e the effects of decentralized control and decoup	oling schemes.				
Course Outcome						
	course, the student will be able to					
Develop mathematical models of a multivariable process						
	ultivariable systems and multi-loop control sche	mes				
	entralized control to MIMO systems					
4. Analyze M	IMO systems using state space analysis					
Design cor	ntrollers for MIMO systems using optimization te	echniques				
	duction to Multivariable Control:	6 hours				
	ems – Transfer function for MIMO systems – Fu					
	ations imposed by time delays, RHP-zeros and i					
	ar System Analysis:	7 hours				
	ne response – stability conditions – gain – fre					
	- Block system structure - model reduction					
hierarchical contro	selection – control structures – two degree of fro	eedom controller -				
	ntralized Control:	6 hours				
	nt decomposition, grouping of variables – Multi-					
	gain array(RGA), integrity, diagonal dominance					
application.	g, (· · · , , · · · · · g · · · , ; · · · · · g · · · · · · · · ·					
Module:4 Deco	upled Control:	6 hours				
	nes: Feedforward, feedback, SVD - Enhancing S					
	nde control- Sequential-Hierarchical design and					
	ralised Closed-loop Control:	6 hours				
	output feedback – rejection of deterministic unm					
	output leedback – rejection of deterministic unit	leasurable disturbances –				
case study.	•					
case study. Module:6 Optin	nisation based control:	6 hours				
case study. Module:6 Optim Optimal state feed	nisation based control: Display	6 hours				
case study. Module:6 Optim Optimal state feed optimal disturbance	nisation based control: dback – optimal output feedback – predictive conce rejection problem – case study.	6 hours ntrol – Generalised				
case study. Module:6 Optim Optimal state feed optimal disturband Module:7 Design	nisation based control: dback – optimal output feedback – predictive conce rejection problem – case study.	6 hours				
case study. Module:6 Optim Optimal state feed optimal disturband Module:7 Designingle	nisation based control: black – optimal output feedback – predictive conce rejection problem – case study. gning for Robustness and	6 hours				
Case study. Module:6 Optim Optimal state feed optimal disturband Module:7 Designingle Uncertainty and femethodologies	nisation based control: dback – optimal output feedback – predictive conce rejection problem – case study. gning for Robustness and ementation: eedback – trade-offs and design guidelines – role-controller synthesis – control implementation:	6 hours ntrol – Generalised 6 hours oustness analysis ntation – implementation				
case study. Module:6 Optim Optimal state feed optimal disturband Module:7 Designingle Uncertainty and femethodologies - technologies - Co	nisation based control: dback - optimal output feedback - predictive conce rejection problem - case study. gning for Robustness and ementation: eedback - trade-offs and design guidelines - roker controller synthesis - control implementation Schemes for Distillation Column, CSTR and entered control co	6 hours ntrol – Generalised 6 hours oustness analysis ntation – implementation d Four-tank system				
case study. Module:6 Optim Optimal state feed optimal disturband Module:7 Designingle Uncertainty and femethodologies	nisation based control: dback - optimal output feedback - predictive conce rejection problem - case study. gning for Robustness and ementation: eedback - trade-offs and design guidelines - roker controller synthesis - control implementation Schemes for Distillation Column, CSTR and entered control co	6 hours Introl – Generalised 6 hours Oustness analysis Intation – implementation d Four-tank system				
case study. Module:6 Optim Optimal state feed optimal disturband Module:7 Designingle Uncertainty and femethodologies - technologies - Co	nisation based control: dback - optimal output feedback - predictive conce rejection problem - case study. gning for Robustness and ementation: eedback - trade-offs and design guidelines - roke-controller synthesis - control implementation Schemes for Distillation Column, CSTR and emporary Issues	6 hours ntrol – Generalised 6 hours oustness analysis ntation – implementation d Four-tank system 2 hours				
case study. Module:6 Optim Optimal state feed optimal disturband Module:7 Designingle Uncertainty and femethodologies - technologies - Co	nisation based control: dback - optimal output feedback - predictive conce rejection problem - case study. gning for Robustness and ementation: eedback - trade-offs and design guidelines - roker controller synthesis - control implementation Schemes for Distillation Column, CSTR and entered control co	6 hours ntrol – Generalised 6 hours oustness analysis ntation – implementation d Four-tank system 2 hours				
case study. Module:6 Optim Optimal state feed optimal disturband Module:7 Designingle Uncertainty and feed methodologies - technologies - Content Module:8 Content Optimal state feed optimal disturband imple imple Content Optimal State feed optimal disturband	nisation based control: dback - optimal output feedback - predictive conce rejection problem - case study. gning for Robustness and ementation: eedback - trade-offs and design guidelines - roke-controller synthesis - control implementation Schemes for Distillation Column, CSTR and emporary Issues	6 hours ntrol – Generalised 6 hours oustness analysis ntation – implementation d Four-tank system 2 hours				
Case study. Module:6 Optim Optimal state feed optimal disturband Module:7 Designimple Uncertainty and femethodologies - technologies - Commodule:8 Contemple Text Book(s) Albertos Ped	nisation based control: dback - optimal output feedback - predictive conce rejection problem - case study. gning for Robustness and ementation: eedback - trade-offs and design guidelines - role-controller synthesis - control implementation Schemes for Distillation Column, CSTR and emporary Issues Total Lecture hours:	6 hours ntrol – Generalised 6 hours oustness analysis ntation – implementation d Four-tank system 2 hours 45 hours				
Case study. Module:6 Optim Optimal state feed optimal disturband Module:7 Designimple Uncertainty and feed methodologies - technologies - Conto Module:8 Conto Text Book(s) Albertos, Ped	nisation based control:	6 hours ntrol – Generalised 6 hours oustness analysis ntation – implementation d Four-tank system 2 hours 45 hours				
Case study. Module:6 Optim Optimal state feed optimal disturband Module:7 Designimple Uncertainty and femethodologies - technologies - Co Module:8 Conte	nisation based control: dback - optimal output feedback - predictive conce rejection problem - case study. gning for Robustness and ementation: eedback - trade-offs and design guidelines - role-controller synthesis - control implementation Schemes for Distillation Column, CSTR and emporary Issues Total Lecture hours:	6 hours ntrol – Generalised 6 hours oustness analysis ntation – implementation d Four-tank system 2 hours 45 hours s: An Engineering				

Re	Reference Books							
1.	Bhattacharyya, Shankar P., and Lee H. Keel. Linear Multivariable Control Systems.							
١.	Cambridge University Press, 2022.							
2.	Gu, Da-Wei, Petko Petkov, and l		ntinov. Ro	bust control design with				
	MATLAB, 2 nd Edition, Springer, 2							
3.	W.M. Wonham, "Linear Multivari	able Control: A G	eometric .	Approach", Springer, 2013				
Мо	de of Evaluation: Continuous Ass	sessment Tests, (Quizzes, <i>P</i>	Assignment, Final				
Ass	sessment Test							
Re	commended by Board of Studies	09-07-2022						
Apı	proved by Academic Council	No. 67	Date	08-08-2022				

Course Code	Course Title		L	Т	Р	С
MCOA610L	MCOA610L Industrial Data Networks		3	0	0	3
Pre-requisite	NIL	Syllabus version		ion		
		1.0				

- 1. To describe the different network topologies and protocols
- 2. To identify the requirements of data communications including encoding, synchronization and protocols.
- 3. To analyze the features and operations of Modbus, HART and ProfiBus.

Course Outcome

edition, 2017.

At the end of this course, the student will be able to:

- 1. Describe the rudiments of how industrial devices communicate.
- 2. Infer the standards in network design and ensure the best practice followed in installing and commissioning data networks
- 3. Analyze Industrial Ethernet protocol for interfacing higher layer devices in automation pyramid.
- 4. Explain master-slave functioning of Modbus and implement for networking devices like smart meters.
- 5. Interpret HART handheld controller for calibration of field devices and interface field level devices using Fieldbus protocol.

Module:1	Introduction to Networks:	6 hours
Network to	pology -Classification of networks: LANs, MANs,	WANs, GANs- OSI Model-
Foundation	ns of OSI Model. Protocol – Standards.	
Module:2	Physical Interface Standards:	5 hours
EIA 232 ov	verview, EIA 485 overview, EIA 484 Installation, n	oise problems, current loop &
EIA convei		
Module:3	Industrial Ethernet:	7 hours
Introductio	n-IEEE Standards-Ethernet MAC layer-IEEE 802	2.2 and Ethernet SNAP- OSI and
	3 standard. Ethernet transceivers, Ethernet type:	
	rnet, 100 Mbps Ethernet, Gigabit Ethernet. TCP /	IP Overview- Internet Layer
	Host-to-Host layer	
Module:4	Modbus:	7 hours
Overview-l	Protocol Structure-Example Function codes. Mod	bus Plus protocol- Overview,
	g Modbus plus. Data Highway Plus/DH485 Overv	iew, AS – interface Overview-
	perating Characteristics.	
Module:5	HART Overview:	5 hours
	n to HART and smart instrumentation, HART Pro	tocol, Physical layer, Data link
	application layer, Application in SCADA	
	ProfiBus overview:	6 hours
Introductio	n, ProfiBus protocol stack, ProfiBus communication	on model, communication
	rformance, system operation, ProfiBus in Automa	
	Foundation Fieldbus overview:	7 hours
	n to Foundation Fieldbus- Architecture- physical I	ayer and wiring rules, data link
	cation layer and user layer.	
Module:8	Contemporary Issues	2 hours
	Total Lecture hours:	45 hours
Text Book	(s)	
	 : (s) uz A. Forouzan, "Data Communications and Netv	vorking", Tata McGraw-Hill, 5 th

2.	Sen, Sunit Kumar. Fieldbus and N Edition, 2021.	·					
Re	ference Books						
1.	Steve Mackay, Edwin Wright, Deon Reynders, John Park, Practical Industrial Data						
١.	Networks, Design, Installation and	l Troubleshootin	g, Newne	s, Elsevier, 2004.			
2.	Bela G. Liptak, "Instrument Engineers' Handbook: Process Software and Digital						
۷.	Networks", Third Volume, 4th Edition	on, CRC Press,	2011.				
3.		Theodore S. Rappaport, "Wireless Communications: Principles and Practice", 2nd					
٥.	edition, Pearson, 2009.						
4.	Axelsson, Björn, and Geoff Eastor	n, eds. Industrial	networks	: a new view of reality.			
٦.	Routledge, 2016.						
Мо	ode of Evaluation: Continuous Asse	ssment Tests, C	Quizzes, A	ssignment, Final			
Ass	Assessment Test						
Re	Recommended by Board of Studies 09-07-2022						
Apı	Approved by Academic Council No. 67 Date 08-08-2022						

Course Code	Course Code Course Title		L	T	Р	С
MCOA611L	Data Acquisition and Hardware Interfaces			0	0	3
Pre-requisite	NIL	Syllabus version		ion		
				1.0		

- 1. To impart an in-depth knowledge in data acquisition, and analysis.
- 2. To provide a comprehensive coverage of data acquisition methods and hardware interface cards available commercially
- 3. To provides knowledge of different data acquisition systems used in industry.

Course Outcome:

On the completion of this course the student will be able to:

- 1. Interpret the elements of data acquisition techniques.
- 2. Comprehend the function of signal conditioning for various sensor and grounding for data acquisition system
- 3. Design and simulate Virtual Instrumentation using Lab view and different NI DAQ card
- 4. Comprehend the functioning of different communication interface for data acquisition system
- 5. Design Hardware in loop using Lab view and MATLAB DSPACE

Module:1 Fundamentals of Data acquisition:

6 hours

Generalized instrumentation system, PC-Based instrumentation system, Principles of data acquisition, Generalized data acquisition system, S/H circuits, and Multi-channel data acquisition systems.

Module:2 | Signal conditioners for Data acquisition:

6 hours

Signal conditioners- voltage conditioners-integrated signal conditioners for temperature sensors, strain gages, piezoelectric sensors and linear position sensors. Signal conditioning modules for plug-in board, two-wire transmitter, and high speed digital transmitter. Field wiring and signal measurement-grounded and floated signal source-single ended and differential ended measurements. Ground loop and system isolation-noise and interference-shielding.

Module:3 | Basic Virtual Instrumentation:

7 hours

LabVIEW - Graphical user interfaces - Controls and Indicators - 'G' programming - Data type, Format, Precision and representation - Data flow programming - Debugging and Running Virtual instrument - Functions and Libraries. FOR loops, WHILE loops, CASE structure, formula nodes -Math script -Sequence structures, , Real-Time System, VISA Field Point I/O, Compact RIO I/O and Intelligent Real-Time Embedded Controller. PCI or PXI R Series device,

Module:4 Common interface standards for data acquisition systems:

6 hours

RS232C, RS485, GPIB standard IEEE488.2, Distributed and standalone data loggersstorage and retrieval- USB, HART Protocol, Foundation Fieldbus, Device net, Profibus, Control net, and Industrial, Ethernet, Sigsbee, Bluetooth & Internal Calibration

Module:5 | NI DAQ cards for Data acquisition systems :

hours

Data acquisition systems using USB DAQ card, MiRIO , PCI or PXI R Series device, CDAQ, MyRIO , CRIO, NI ELVIS.

Module:6 Real Time Hardware interface implementation using

6 hours

		Lab VIEW and NI DAQ O	ard:				
Rea	l Time	Hardware Interface using L	.abVIEW. H	Hardware	in the loop (HIL) for temperature	
		ent, DC motor speed contro				ased solar PV	
bas	based system , Electric vehicle. System, Robotics control						
Mod	dule:7	Real Time Hardware into	erface imp	lementa	tion using	6 hours	
		MATLAB/SIMULINK and	I DSPACE	DAQ CA	ARD:		
Rea	I Time	Hardware Interface using N	//ATLAB/S	IMULINK	K, Hardware in th	ne loop (HIL) for	
tem	peratur	e measurement, DC motor	speed con	trol, Indu	ction motor cont	trol, MPPT based	
sola	r PV ba	ased system , Electric vehic	cle. System	n, Robotio	cs control		
Mod	dule:8	Contemporary Issues				2 hours	
				Total L	ecture hours:	45 hours	
Tex	t Book	(s)					
1.	Mauriz	zio Di Paolo Emilio, "Data A	cquisition	systems-	from fundamen	tals to Applied	
	Design	n", Springer, 2013.	•	•		• •	
Ref	erence	Books					
4.	Rober	t H King, "Introduction to D	ata Acquis	ition with	LabVIEW", McC	Fraw Hill, 2nd	
	edition	ı, 2012.			·	·	
5.	Rober	t H. Bishop, National Instru	ments, Inc	., "LabVII	EW Student Edit	tion", Prentice Hall,	
	2014.	•					
6.	Karel I	Perutka, MATLAB for Engir	neers - App	olications	in Control, Elec	trical Engineering,	
	IT and Robotics, 2011, EBOOK (PDF) ISBN978-953-51-5591-1 , Intech publishers						
Mod	Mode of Evaluation : Continuous Assessment Tests, Quizzes, Assignment, Final						
	Assessment Test						
Rec	ommer	ided by Board of Studies	09-07-202	22			
App	roved b	y Academic Council	No. 67	Date	08-08-2022		

Course Code	Course Title	L	Т	Р	С
MCOA696J	Study Oriented Project				02
Pre-requisite	NIL	Syll	abus	vers	sion
			1.0		

- 1. The student will be able to analyse and interpret published literature for information pertaining to niche areas.
- 2. Scrutinize technical literature and arrive at conclusions.
- 3. Use insight and creativity for a better understanding of the domain of interest.

Course Outcome:

- 1. Retrieve, analyse, and interpret published literature/books providing information related to niche areas/focused domains.
- 2. Examine technical literature, resolve ambiguity, and develop conclusions.
- 3. Synthesize knowledge and use insight and creativity to better understand the domain of interest.
- 4. Publish the findings in the peer reviewed journals / National / International Conferences.

Module (Content	(Project du	ration: One semester)

This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty.

Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science, Engineering Technology.

Recommended by Board of Studies	09-07-202	09-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022	

Course Code	Course Title	L	Т	Р	С
MCOA697J	Design Project				02
Pre-requisite	NIL	Syllabus version			ion
		1.0			

- 1. Students will be able to design a prototype or process or experiments.
- 2. Describe and demonstrate the techniques and skills necessary for the project.
- 3. Acquire knowledge and better understanding of design systems.

Course Outcome:

- 1. Develop new skills and demonstrate the ability to upgrade a prototype to a design prototype or working model or process or experiments.
- 2. Utilize the techniques, skills, and modern tools necessary for the project.
- 3. Synthesize knowledge and use insight and creativity to better understand and improve design systems.
- 4. Publish the findings in the peer reviewed journals / National / International Conferences.

Module Content	(Project duration: One semester)
Students are expected to develop new skills a	and demonstrate the ability to develop prototypes
to design prototype or working models related	d to an engineering product or a process.

Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science, Engineering Technology.

Recommended by Board of Studies	09-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	L	Т	Р	С
MCOA698J	Internship I/ Dissertation I				10
Pre-requisite	NIL	Syllabus version		ion	
		1.0			

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field and also to give research orientation.

Course Outcome:

- 1. Considerably more in-depth knowledge of the major subject/field of study, including deeper insight into current research and development work.
- 2. The capability to use a holistic view to critically, independently and creatively identify, formulate and deal with complex issues.
- 3. A consciousness of the ethical aspects of research and development work.
- 4. Publications in the peer reviewed journals / International Conferences will be an added advantage.

Module Content (Project duration: one semester)

- 1. Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.
- 2. Dissertation should be individual work.
- 3. Carried out inside or outside the university, in any relevant industry or research institution.
- 4. Publications in the peer reviewed journals / International Conferences will be an added advantage.

Mode of Evaluation: Assessment on the project - Dissertation report to be submitted, presentation, project reviews and Final Oral Viva Examination.

Recommended by Board of Studies	09-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	L	Т	Р	С
MCOA699J	Internship II/ Dissertation II				12
Pre-requisite	NIL	Syll	abus	vers	ion
			1.0)	

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field.

Course Outcome:

Upon successful completion of this course students will be able to

- 1. Formulate specific problem statements for ill-defined real life problems with reasonable assumptions and constraints.
- 2. Perform literature search and / or patent search in the area of interest.
- 3. Conduct experiments / Design and Analysis / solution iterations and document the results.
- 4. Perform error analysis / benchmarking / costing.
- 5. Synthesize the results and arrive at scientific conclusions / products / solution.
- 6. Document the results in the form of technical report / presentation.

Module Content (Project duration: one semester)

- 1. Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.
- 2. Dissertation should be individual work.
- 3. Carried out inside or outside the university, in any relevant industry or research institution.
- 4. Publications in the peer reviewed journals / International Conferences will be an added advantage.

Mode of Evaluation: Assessment on the project - Dissertation report to be submitted, presentation, project reviews and Final Oral Viva Examination.

Recommended by Board of Studies	09-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course code	Course Title	L	Т	Р	С
MGER501L	Deutsch für Anfänger	3	0	0	3
Pre-requisite	NIL	Sy	/llat	ous ve	rsion
		1.0			

- 1. Demonstrate competency in reading, writing and speaking in Basic German.
- 2. Achieve proficiency in German culture oriented view point.
- 3. Develop basic vocabulary in the technical field.

Course Outcome

At the end of the course, the student will be able to

- 1. Communicate in German language in their daily life communicative situations.
- 2. Apply the German language skill in writing corresponding letters, E-Mailsetc.
- 3. Create the talent of translating passages from English-German and vice versa and to

frame simple dialogues based on given situations.

4. Understand and demonstrate the comprehension of some particular new range of unseen

written materials.

5. Develop a general understanding of German culture and society.

Module:1 Die erste Begegnung

6 hours

Einleitung, Begrüssungs formen, Länder und Sprachen, Alphabet, Buchstabieren, Personalpronomen, Zahlen (1-100), Telefonnummer und E-Mail Addressenennen W-fragen, Aussagesätze, Nomen – Singular und Plural und Artikel

Lernziel:

Verständnisvon Deutsch, Genus- Artikelwörter

Module:2 Hobbys und Berufe

6 hours

Über Hobbyssprechen, Wochentage, Jahreszeiten, und Monatenennen, Uhrzeitensagen, über Arbeit, Berufe und Arbeitszeitensprechen, Zahlen (Hundertbiseine Million) Aritel (bestimmter, unbestimmter), Plural der Substantive, Konjugation der Verben (regelmässig /unregelmässig), Ja-/Nein- Frage, Imperativmit Sie.

Lernziel:

Sätzeschreiben, überHobbyserzählen, über Berufesprechenusw.

Module:3 Alltag und Familie

7 hours

Über die Familiesprechen, eine Wohnungbeschreiben, Tagesablaufschreiben, Mahlzeiten, Lebensmittel, Getränke Possessivpronomen, Negation, Kasus- Akkusatitv und Dativ (bestimmter, unbestimmter Artikel), trennnbareverben, Modalverben, Adjektive, Präpositionen Lernziel:

Sätzemit Modalverben, Verwendung von Artikel, über Familiesprechen, eine Wohnungbeschreiben.

Module:4 Situations gespräche

6 hours

Dialoge:

- a) Gespräche mit Familienmitgliedern, am Bahnhof,
- b) Gespräche beim Einkaufen, in einem Supermarkt, in einer Buchhandlung
- c) Gespräche in einem Hotel/ in einem Restaurant, Treffen im Cáfe, Termin beim Arzt.

Module:5 Korrespondenz

6 hours

Leseverständnis, Mindmapmachen, Korrespondenz- Briefe, Postkarten, E-Mail **Lernziel**:

Wortschatzbildung und aktiverSprachgebrauch

Module:6 Aufsatzschreiben

6 hours

Aufsätze :

Meine Universität, Das Essen, mein Freund odermeine Freundin, meine Familie, einFest in Deutschlandusw.

Module:7 Übersetzungen

6 hours

Übersetzungen : (Deutsch – Englisch / Englisch –Deutsch)

Lernziel:

Gram	nmatik -	- Wortschatz – Übung				
Modu	ule:8	Trainierung den Sprach	fähigkeiten			2 hours
				Total L	ecture hours:	45 hours
Text	Book(s	5)				
4	Netzw	erk A1, Stefanie Dengler, F	Paul Rusch, l	Helen Sc	hmitz, Tanja Sie	eber, Ernst Klett
1.	Sprac	hen GmbH, Stuttgart, 2017				
Refe	rence E	Books				
1.	Studio	d A1 Deutsch als Fremds	orache, Hern	nann Fun	k, Christina Kuh	nn, Silke
		ne: Heuber Verlag, Muench				
2.		e ,Hartmut Aufderstrasse,			•	•
3.		che SprachlehrefürAusländ	•		•	
4.		en Aktuell 1, Hartmurt Aufd elmut Müller, 2010, Muenc		eiko Bocł	k, MechthildGer	des, Jutta Müller
	www.g	goethe.de				
	wirtsc	haftsdeutsch.de				
	hueber.de, klett-sprachen.de					
	www.deutschtraning.org					
Mode	Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final					
	ssment					
	Recommended by Board of Studies 19-05-2022					
Approved by Academic Council No.66 Date 16-06-2022						

Course code	urse code Course Title				Р	С
MFRE501L	Français Fonctionnel		3	0	0	3
Pre-requisite	NIL	Syl	labı	us v	ers	ion
			1	.0		

- 1. Demonstrate competence in reading, writing, and speaking basic French, including knowledge of vocabulary (related to profession, emotions, food, workplace, sports/hobbies, classroom and family).
- 2. Achieve proficiency in French culture oriented view point.

Course Outcome

At the end of the course, the student will be able to

- 1. Remember the daily life communicative situations via personal pronouns, emphatic pronouns, salutations, negations, interrogations etc.
- 2. Create communicative skill effectively in French language via regular / irregular verbs.
- 3. Demonstrate comprehension of the spoken / written language in translating simple sentences.
- 4. Understand and demonstrate the comprehension of some particular new range of unseen written materials.
- 5. Demonstrate a clear understanding of the French culture through the language studied.

Saluer, Se présenter, Etablir des contacts. Compétences en lecture - consulter un dictionnaire, appliquer des stratégies de lecture, lire pour comprendre. 9 hours

Les nombres cardinaux- Les 7 jours de la semaine-Les 12 mois de l'année- La date-Les saisons-Les Pronoms personnels sujets-Les Pronoms Toniques- La conjugaison des verbes réguliers- er / - ir /-re verbes (Le présent)- La conjugaison des verbes irréguliers- avoir /être / aller / venir / faire /vouloir /pouvoir etc.

Savoir-faire pour: saluer, et se présenter – épeler en français – communiquer en classe – utiliser des stratégies pour comprendre un texte en français.

Module:2	Présenter quelqu'un, Chercher un(e) correspondant(e), Demander des nouvelles d'une personne.	7 hours
La conjuga	aison des verbes Pronominaux (s'appeler/ s'amuser/ se promen	er)- La Négation-

L'interrogation avec 'Est-ce que ou sans Est-ce que'- Répondez négativement.

Module:3 Situer un objet ou un lieu, Poser des questions

Les articles (défini/ indéfini)- Les prépositions (à/en/au/aux/sur/dans/avec etc.)- L'article contracté- L'heure- La Nationalité du Pays- Les professions- L'adjectif (La Couleur, l'adjectif possessif, l'adjectif démonstratif, l'adjectif interrogatif (quel/quelle/quels/quelles)-

L'interrogation avec Comment/ Combien / Où etc., Pronoms relatifs simples (qui/que/dont/où).

Module:4	indiquer le chemin.	5 hours
La traduction	on simple d'un texte/ dialogue :(français-anglais / anglais –françai	s)
Module:5	Trouver les questions, Répondre aux questions générales en français, Écouter des vidéos (site internet, YouTube) qui aident à améliorer leur prononciation/ vocabulaire et leurs compétences orales	6 hours
L'article De	artitif (du/ do la / do l'/ dos). Egitos una phrasa avoc los mots do	nnás Mattaz las

L'article Partitif (du/ de la / de l'/ des) -Faites une phrase avec les mots donnés- Mettez les phrases en ordre, masculin/féminin ; singulier/pluriel- Associez les phrases- les adverbes de temps (ensuite/hier/puis....)

1011160 (0111	raite, men, pare	
	Comment écrire un passage - développer des ompétences rédactionnelles. Discussion de groupe (donnez un sujet et demandez aux élèves de partager	5 hours

		leurs idées)				
	Décrivez La Famille -La Maison -L'université -Les Loisirs-La Vie quotidienne- La ville natale-					
	Un personnage célèbre					
		Comment écrire un dialogu	ie			5 hours
	ogue					
		r un billet de train				
		ıx amis qui se rencontrent au	café			
		membres de la famille				
		patient et le médecin				
,		professeur et l'étudiant(e)			1	0 h a
IVIOC	dule:8	Contemporary Topics				2 hours
		Т			1	
			Tot	al Lectur	e hours:	45 hours
Text	t Book(s)				
	Adom	ania 1, Méthode de français	s, CelineHimbe	r, Corina I	Brillant, So	phie Erlich.
1.	Publis	ner HACHETTE, February 20	16.			
2.	Encha	nté 1 !, Méthode de français,	Rachana Sagai	^r Private L	imited, Jar	า 2017.
Reference Books						
1.	Le français pour vous 1, Méthode de français, VinodSikri, Anna Gabriel Koshy, Prozopublishing, Jan 2019.					
2.						
3.	3. Apprenons le français 1 Méthode de français, Mahitha Ranjit & Monica Singh, Jan 2019					
Modeof Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final						
Assessment Test						
Rec	Recommended by Board of Studies 19-05-2022					
App	roved b	y Academic Council	No. 66	Date	16-06-202	22

Course code	Course Title		Т	Р	С
MENG501P	Technical Report Writing	0	0	4	2
Pre-requisite	Nil	Syll	abu	s ver	sion
			1	.0	

- 1. To develop writing skills for preparing technical reports.
- 2. To analyze and evaluate general and complex technical information.
- 3. To enable proficiency in drafting and presenting reports.

Course Outcome

At the end of the course, the student will be able to

- 1. Construct error free sentences using appropriate grammar, vocabulary and style.
- 2. Apply the advanced rules of grammar for proofreading reports.
- 3. Interpret information and concepts in preparing reports.
- 4. Demonstrate the structure and function of technical reports.

5. lm	prove the ability of presenting technical reports.			
Indic	cative Experiments			
	Basics of Technical Communication			
1.	General and Technical communication,			
	Process of communication, Levels of communication			
	Vocabulary& Editing			
2.	Word usage: confusing words, Phrasal verbs			
	Punctuation and Proof reading			
	Advanced Grammar			
3.	Shifts: Voice, Tense, Person, Number Clarity: Pronoun reference, Misplace and unclear modifiers			
	Elements of Technical writing			
4.	Developing paragraphs, Eliminating unnecessary words, Avoiding clichés and slang			
4.	Sentence clarity and combining			
	The Art of condensation			
5.	Steps to effective precis writing,			
0.	Paraphrasing and summarizing			
6.	Technical Reports: Meaning, Objectives, Characteristics and Categories			
7	Formats of reports and Prewriting: purpose, audience, sources of information,			
7.	organizing the material			
8.	Data Visualization			
0.	Interpreting Data - Graphs - Tables – Charts - Imagery - Info graphics			
9.	Systematization of Information: Preparing Questionnaire			
J.	Techniques to Converge Objective-Oriented data in Diverse Technical Reports			
10.	Research and Analyses: Writing introduction and literature review, Reference styles,			
10.	Synchronize Technical Details from Magazines, Articles and e-content			
	Structure of Reports			
11	Title – Preface – Acknowledgement - Abstract/Summary – Introduction - Materials and			
	Methods – Results – Discussion - Conclusion - Suggestions/Recommendations			
12.	Writing the Report: First draft, Revising,			
	Thesis statement, Developing unity and coherence Writing scientific abstracts: Parts of the abstract, Revising the abstract			
13.	Avoiding Plagiarism, Best practices for writers			
	Supplementary Texts			
14.	Appendix – Index – Glossary – References – Bibliography - Notes			
15	Presentation			

	Presenting Technical Reports					
	Planning, creating anddigital pres	entation of re	norts			
	r lanning, or oating arradigital proc			tory hours :	60 hours	
Text	Book(s)			itery fredito i	oo nouro	
1.	Raman, Meenakshi and Sangeet Principles and Practice, Third edi					
Refe	rence Books					
1.	Aruna, Koneru, (2020). Englis Education, Noida.	sh Language	Skills f	or Engineers	. McGraw Hill	
2.	Rizvi,M. Ashraf (2018)Effective Technical Communication Second Edition. McGraw Hill Education, Chennai.					
3.	Kumar, Sanjay and Pushpalatha, for Engineers, Oxford University I	, , -	sh Langu	lage and Com	munication Skills	
4.	Elizabeth Tebeaux and Sam Communication, Fifth Edition, Ox			he Essential	s of Technical	
_	Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final Assessment Test					
Reco	ommended by Board of Studies	19-05-2022				
Appr	oved by Academic Council	No. 66	Date	16-06-2022		

Course Code	Course Title	L	Т	Р	С
MSTS501P	Qualitative Skills Practice	0	0	3	1.5
Pre-requisite	Nil	Syll	Syllabus versio		rsion
			1	.0	

- 1. To develop the quantitative ability for solving basic level problems.
- 2. To improve the verbal and professional communication skills.

Course Outcome:

At the end of the course, the student will be able to

- 1. Execute appropriate analytical skills.
- 2. Solve problems pertaining to quantitative and reasoning ability.
- 3. Learn better vocabulary for workplace communication.
- 4. Demonstrate appropriate behavior in an organized environment.

	Business Etiquette: Social and Cultural Etiquette; Writing	
Module:1	Company Blogs; Internal Communications and Planning:	9 hours
	Writing press release and meeting notes	

Value, Manners- Netiquette, Customs, Language, Tradition, Building a blog, Developing brand message, FAQs', Assessing Competition, Open and objective Communication, Two way dialogue, Understanding the audience, Identifying, Gathering Information,. Analysis, Determining, Selecting plan, Progress check, Types of planning, Write a short, catchy headline, Get to the Point –summarize your subject in the first paragraph., Body– Make it relevant to your audience.

Module:2 Time management skills 3 hours

Prioritization, Procrastination, Scheduling, Multitasking, Monitoring, Working under pressure and adhering to deadlines

	Presentation skills – Preparing presentation; Organizing	
Module:3	materials; Maintaining and preparing visual aids; Dealing	7 hours
	with questions	

10 Tips to prepare PowerPoint presentation, Outlining the content, Passing the Elevator Test, Blue sky thinking, Introduction, body and conclusion, Use of Font, Use of Color, Strategic presentation, Importance and types of visual aids, Animation to captivate your audience, Design of posters, Setting out the ground rules, Dealing with interruptions, Staying in control of the questions, Handling difficult questions.

Module:4	QuantitativeAbility-L1-Numberproperties; Averages;	11 hours
	Progressions; Percentages; Ratios	11 Hours

Number of factors, Factorials, Remainder Theorem, Unit digit position, Tens digit position, Averages, Weighted Average, Arithmetic Progression, Geometric Progression, Harmonic Progression, increase and Decrease or Successive increase, Types of ratios and proportions.

Module:5	odule:5 Reasoning Ability - L1 – Analytical Reasoning		
Data Arrangement (Linear and circular & Cross Variable Relationship), Blood Relations,			
Ordering / r	anking / grouping, Puzzle test, Selection Decision table.		
Module:6	Verbal Ability -L1 – Vocabulary Building	7 hours	

Synonyms & Antonyms, One word substitutes, Word Pairs, Spellings, Idioms, Sentence completion, Analogies.						
	, , , , , , , , , , , , , , , , , , , 					
			Total Le	ecture hours:	45 hours	
Refe	erence Books			•		
1.	Kerry Patterson, Joseph Grenny, Ron McMillan and Al Switzler, (2017).2 nd Edition,					
	Crucial Conversations: Tools for	Talking when	Stakesar	e High .McGraw-Hill		
	Contemporary, Bangalore.					
2.	Dale Carnegie,(2016).How to Wir York.	n Friends and	Influence	People. Gallery Bo	oks, New	
3.	Scott Peck. M, (2003). Road Less	s Travelled. B	antam Pre	ess, New York City.		
4.	SMART, (2018). Place Mentor, 1	st edition. Oxfo	ord Unive	rsity Press, Chennai		
5.	FACE, (2016). Aptipedia Aptitude	e Encyclopedia	a. Wiley p	ublications, Delhi.		
6.	ETHNUS, (2013). Aptimithra. Mc	Graw – Hill Ed	lucation F	Pvt .Ltd, Bangalore.		
Web	osites:					
1.	www.chalkstreet.com					
2.	www.skillsyouneed.com					
3.	www.mindtools.com					
4.	www.thebalance.com					
5.	www.eguru.ooo					
Mod Test	le of Evaluation: Continuous Asses t	ssment Tests,	Quizzes,	Assignment, Final A	ssessment	
Rec	ommended by Board of Studies	19-05-2022				
App	pproved by Academic Council No.66 Date 16-06-2022					

Course Code	Course Title	L	Т	Р	С
MSTS502P	Quantitative Skills Practice	0	0	3	1.5
Pre-requisite	Nil	Syllabus version		sion	
			1.0		

- 1. To develop the students' advanced problem solving skills.
- 2. To enhance critical thinking and innovative skills.

Course Outcome:

At the end of the course, the student will be able to

- 1. Create positive impression during official conversations and interviews.
- 2. Demonstrate comprehending skills of various texts.
- 3. Improve advanced level thinking ability in general aptitude.
- 4. Develop emotional stability to tackle difficult circumstances.

Module:1	Resume skills – Resume Template; Use of power verbs;	2 hauma
	Types of resume; Customizing resume	2 hours

Structure of a standard resume, Content, color, font, Introduction to Power verbs and Write up, Quiz on types of resume, Frequent mistakes in customizing resume, Layout-Understanding different company's requirement, Digitizing career portfolio.

Module:2	Interview skills – Types of interview; Techniques to face	3 hours
	remote interviews and Mock Interview	

Structured and unstructured interview orientation, Closed questions and hypothetical questions, Interviewers' perspective, Questions to ask/not ask during an interview, Video interview, Recorded feedback, Phone interview preparation, Tips to customize preparation for personal interview, Practice rounds.

Module:3 Emotional Intelligence - L1 – Transactional Analysis; Brain storming; Psychometric Analysis; SWOT analysis

Introduction, Contracting, ego states, Life positions, Individual Brainstorming, Group Brainstorming, Stepladder Technique, Brain writing, Crawford's Slip writing approach, Reverse brainstorming, Star bursting, Charlette procedure, Round robin brainstorming, Skill Test, Personality Test, More than one answer, Unique ways, SWOT analysis.

Module:4	Quantitative Ability - L3–Permutation - Combinations; Probability; Geometry and menstruation; Trigonometry; Logarithms; Functions; Quadratic Equations; Set Theory	14 hours
----------	--	----------

Counting, Grouping, Linear Arrangement, Circular Arrangements, Conditional Probability, Independent and Dependent Events, Properties of Polygon, 2D & 3D Figures, Area & Volumes, Heights and distances, Simple trigonometric functions, Introduction to logarithms, Basic rules of logarithms, Introduction to functions, Basic rules of functions, Understanding Quadratic Equations, Rules & probabilities of Quadratic Equations, Basic concepts of Venn Diagram.

М	odule:5	Reasoning ability - L3 – Logical reasoning; Data Analysis	7 hours	l
wodule.5	odule.5	and Interpretation	/ Hours	l

me	pretatio	on-Advanced, Interpretation tables, pie charts & bar chats.	
Module:6		Verbal Ability - L3 – Comprehension and Critical reasoning	7 hours
Rea	ding co	mprehension, Para Jumbles, Critical Reasoning (a) Premise and Cor	nclusion,
(b) <i>F</i>	Assump	tion & Inference, (c) Strengthening & Weakening an Argument.	
		Total Lecture hours:	45 hours
Refe	erence		40 110010
1.	Michael Farra and JIST Editors,(2011).Quick Resume & Cover Letter Book: Write and Use an Effective Resume in Just One Day. Jist Works, Saint Paul, Minnesota.		
2.	Flage Daniel E, (2003). The Art of Questioning: An Introduction to Critical Thinking. Pearson, London.		
3.	David Allen, (2015).Getting Things done: The Art of Stress-Free productivity. Penguin Books, New York City.		
4.	SMART, (2018). Place Mentor 1 st edition. Oxford University Press, Chennai.		
5.	FACE, (2016). Aptipedia Aptitude Encyclopedia. Wileypublications, Delhi.		
6.	ETHNUS, (2013).Aptimithra. McGraw-Hill Education Pvt Ltd, Bangalore.		
Web	sites:		
1.	www.c	chalkstreet.com	
2.	www.skillsyouneed.com		
3.	www.mindtools.com		
4.	www.thebalance.com		
5.	www.eguru.ooo		
Asse	essmen		
		ded by Board of Studies 19-05- 2022	
App	roved b	y Academic Council No.66 Date 16-06-2022	