

SCHOOL OF CIVIL ENGINEERING

M. Tech. Structural Engineering

(M. Tech - MST)

Curriculum

(2024-2025 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- **World class Education**: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- **Cutting edge Research**: An innovation ecosystem to extend knowledge and solve critical problems.
- **Impactful People**: Happy, accountable, caring and effective workforce and students.
- **Rewarding Co-creations**: Active collaboration with national & international industries & universities for productivity and economicdevelopment.
- Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF CIVIL ENGINEERING

• To be internationally recognized for ground-breaking contributions, exceptional leadership, strong commitment to creative problem-solving and professional integrity.

MISSION STATEMENT OF THE SCHOOL OF CIVIL ENGINEERING

- The School of Civil Engineering inspires and nurtures innovative leaders.
- Preparedness to address the complex societal-scale challenges in areas of resilient infrastructure, smart and sustainable cities, water and energy security, climate change, mobility of goods and people, and environmental protection.
- Pioneering the emerging skills in Civil Engineering.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

PROGRAMME OUTCOMES (POs)

- PO_01: An ability to independently carry out research/investigation and development work to solve practical problems.
- PO_02: An ability to write and present a substantial technical report/document.
- PO_03: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Structural Engineering) programme, graduates will be able to

- PSO_01: Analyse and design reinforced concrete structures and steel structures as per the standard design of codes.
- PSO_02: Address the societal needs by interdisciplinary approach through advanced courses and get exposed to the latest technologies to be industry ready or to pursue advanced research.
- PSO_03: Independently carry out research / investigation to solve practical problems and write / present a substantial technical report / document.

CREDIT STRUCTURE

Programme Credit Structure	Credits
Discipline Core Courses	24
Skill Enhancement Courses	05
Discipline Elective Courses	12
Open Elective Courses	03
Project/ Internship	26
Total Graded Credit Requirement	70

DETAILED CURRICULUM

Discipline core courses

24

S. No.	Course Code	Course Title	L	Т	Р	С
1.	MMAT502L	Advanced Mathematical Methods	3	0	0	3
2.	MSTE501L	Theory of Elasticity and Plasticity	3	0	0	3
3.	MSTE502L	Design of Concrete Structural Systems	3	1	0	4
4.	MSTE503L	Structural Dynamics	3	1	0	4
5.	MSTE504L	Advanced Design of Steel Structures	2	1	0	3
6.	MSTE505L	Finite Element Analysis	2	1	0	3
7.	MSTE505P	Finite Element Analysis Lab	0	0	2	1
8.	MSTE506L	Prestressed Concrete Structures	2	1	0	3

Skill Enchantment Courses

Course **Course Title** Т С S. No. L Р Code 1. **Technical Report Writing** 4 2 MENG501P 0 0 2. MSTS501P **Qualitative Skills Practice** 0 0 3 1.5 3. Quantitative Skills practice MSTS502P 0 0 3 1.5

Discipline Elective Courses

Sl. No.	Course Code	Course Title		Т	Р	С
1.	MSTE601L	Matrix Methods of Structural Analysis	2	1	0	3
2.	MSTE602L	Design of Bridges	2	1	0	3
3.	MSTE603L	Prefabricated Structures	2	1	0	3
4.	MSTE604L	Stability of Structures	2	1	0	3
5.	MSTE605L	Advanced Concrete Materials and Technology	2	1	0	3
6.	MSTE606L	Advanced Foundation Design	3	0	0	3
7.	MSTE607L	Earthquake Resistant Design	2	1	0	3
8.	MSTE608L	Analysis and Design of Tall Structures	2	1	0	3
9.	MSTE609L	Offshore Structures	2	1	0	3
10.	MSTE610L	Repair and Rehabilitation of Structures	3	0	0	3
11.	MSTE611L	Energy Efficient Buildings	3	0	0	3

Open Elective Courses

Engineering Disciplines / Social Sciences

Project and Internship

S. No.	Course Code	Course Title	L	Т	Р	С
1.	MSET695J	Project Work				4
2.	MSTE698J	Internship I / Dissertation I				10
3.	MSTE699J	Internship II / Dissertation II				12

12

03

Discipline core courses

		L	Т	Р	С
MMAT502L	ADVANCED MATHEMATICAL METHODS	3	0	0	3
Pre-requisite	Nil	Syl	labus	s vers	sion
Course Objecti	ves:				
1. Provide	the students with sufficient exposure to advanced mat	hema	atical	met	hods
and tool	s that are relevant to engineering research.				
2. Improvin	g the computational skills of students by giving suffic	cient	knov	wledg	ge of
analytica	al and numerical techniques useful for solving pr	oble	ms a	rising	g in
Mechan	ical Engineering.				
3. Imparting	g the knowledge of real time applications of Autonom	ious	syste	ms, l	Non-
linear sy	stems of ordinary differential equations and partial diff	ferent	tial e	quati	ons.
Expected Cours	se Outcomes:				
At the end of the	course students are able to				
1. Disting	guish and analyse a variety of tools for solving linear sy	ystem	is and	d find	ling
eigenv	alues of these systems.				
2. Derive	and use the numerical techniques needed for the soluti	ion of	f a gi	ven	
engine	ering problems				
3. Under	stand and correlate the analytical and numerical method	ls			
4. Demor	nstrate their ability to write coherent mathematical proo				C
argum		n dif	feren	tial	
1	on models.				
	nstrate the understanding of how physical phenomena a	ire m	odell	ed by	1
	differential equations				
	genvalue Problems			hou	
	value problems-Eigenvalues and Eigenvectors-G	ersch	ıgorii	n Ci	rcles
	auser method, Power method, Inverse Power method.				
	eration Methods			hou	
Sturm sequence Lanczo's method	e, Jacobi method, Given's method, Householder r	netho	od, I	Defla	tion,
	alculus of Variations			0 h	ours
	equation –Isoperimetric problems, Rayleigh–Ritz method -	Galer	·kin n		
Euler Eugrange 5	equation isoperimetric problems, raylorgi ratz metrod	Oulei	KIII II	letilot	*•
Module: 4 Sy	stem of First Order Ordinary Differential Equation	IS	6	hou	rs
Linear Systems	- Homogeneous linear systems with constant coefficie	ents ·	- Aut	tonor	nous
systems - Phase	Plane Phenomena - Critical Points - Stability for linear	syste	ems.		
Module: 5 No	onlinear systems		6	hou	rs
Simple critical p	oints of nonlinear systems-Stability by Liapunov's met	hod -	_		_
Non- Linear Me	chanics: Conservative systems.				

		(Deemed to b	10	3 of UGC Act,	956)	
	dule: 6	Partial Differential Equati				5 hours
		on of Second-Order Parti			1 /	gnificance of
		ic curves, Canonical Form,	Sturm-Liou	iville p	oroblems and I	Eigen function
ex	pansions.					
Mo	dule: 7	Wave equation				6 hours
Dis	placemen	ts in a long string – a long stri	ng under its	weigh	t – a bar with p	rescribed force
on	one end -	- free vibrations of a string.	Method of	Separat	ion of variable	es, Solution by
me	thod of La	aplace transforms				
Mo	dule: 8	Contemporary Issues				2 hours
Ind	ustry Exp	ert Lecture				
]	Fotal L	ecture hours	45 hours
Tey	xt Book(s)				
1		tial Equations: Theory, Tech	-			s, S. G. Krantz,
		GrawHill Publishing, 2007.				
2	Element	s of Partial differential equat	ions, Ian N.	Snedd	on, Dover Pub	lications, New
	York, 20	006. (Topics from Chapters 3,	5)			
3		cal Methods for Scientific and	-	-	-	
		R. K. Jain, New Age Internat	tional publis	shers, 7	th edition, Ne	w Delhi, 2019.
	· 1	from Chapter 3, 7)				
4		tory Methods of Numerical A	•	S. Sast	ry, PHI Pvt. Lt	d., 5th Edition,
		lhi, 2015. (Topics from Chap				
5		culus of Variations, Bruce va	n Brunt, Sp	ringer,	2004. (Topics	from Chapters
	2, 4, 5)					
	ference B		1.0			
1		ntial Equations and Dynamic	al Systems,	Lawre	nce Perko, 3rd	ed., Springer-
2	Verlag,		· 1 E · ·			0 1 1
2		duction to Ordinary Differen	-	ons, Jai	nes C. Robins	on, Cambridge
2		ity Press, New York, 2008 (4t	- ·	D:1		Durant's a Hall
3		ary Applied Partial Different	ial Equation	is, Rici	ard Haberman	, Prentice Hall
4		onal, 1998.		~ 10th	Edition Cono	
4		cal Analysis, R. L. Burden and ition, 2015.	J. D. Faire	s, 10	Edition, Ceng	age Learning,
Мо		,	nant Tasta	Einal A	accoment Test	Dicital
		aluation: Continuous Assessr , Quizzes.	nent rests,	i mai A	ssessment resi	i, Digital
	-	led by Board of Studies	05.07.202	2		
		y Academic Council	05.07.202	Date		
L L L	Proved D			Date		

MSTE5)1L	THEORY OF ELASTICITY AND PLASTICITY	L	Τ	P	C
	, 11		3	0	0	3
Pre-requ	isite	Nil	Syl	labus	s vers	sion
Course Obj	ectives:		1			
1. To Anal	yse the s	tresses and strains for two dimensional and three dimensional	al eler	nents	5	
2.To Unders	tand the	equilibrium and compatibility condition				
3.To Unders	tand the	compatibility conditions in polar coordinates				
4.To Solve t	he probl	ems on Torsion for different shaped bars				
5.To Unders	tand the	concept of plasticity				
Expected C	ourse O	utcome:				
At the end of	the cours	se, the student will be able to				
1. Analyse	the stres	ses and strains for elasticity approach.				
2. Solve tw	o dimen	sional elements problems in Cartesian coordinates				
3. Understa	and the b	bending of cantilever beams and circular arc beams				
4. Know th	e 3D pro	oblems in Cartesian coordinates				
5. Understa	and the c	compatibility conditions in polar coordinates				
6. Solve the	e problei	ms on Torsion for different shaped bars.				
7. Understa	and the c	concept of plastic analysis and yield criteria.				
Module: 1	Elasti	city		6 ha	ours	
Analysis of	Stress an	nd Strain - Elasticity approach – Definition and notation of st	ress –	Con	npone	ents
of stress and	strain –	Generalized Hooke's law				
Module: 2	Elasti	city Solutions		5 ho	ours	
Plane stress	and pla	ain strain problems with practical examples - Equations	of eq	uilibr	ium	and
compatibility	y condi	tions in Cartesian coordinates – Two dimensional Prob	lems	in (Carte	sian
Coordinates						
Module: 3	Carte	sian Coordinates		6 ha	ours	
Airy's stress	functio	n - Bending of cantilever beams- Axi-symmetrical problem	ns - T	hick	cylin	nder
		ure - Circular arc beams subjected to pure bending.			•	
Module: 4	Elasti	city 3D Solution		8 ha	ours	
Principal st	resses a	nd strains for three dimensional element - Equations of	of equ	iilibr	ium	and
compatibility	y conditi	ions for 3D problems in Cartesian co-ordinates - Transforma	tion c	of stre	esses	and
strains.						
Module: 5	Polar	Co-ordinates		6 ha	ours	
Equations of	equilib	rium and compatibility conditions in Polar coordinates- Ax	i-sym			
		f curved bars	2			
problems-be		on-Non-Circular Sections		6 ha	ours	
Module: 6	1	f various shaped bars - Pure torsion of prismatic bars - Pra	ndtle'			rane
Module: 6	orsion of	various shaped bars - Fulle torsion of prismatic bars - Fra	nativ	5 11		
Module: 6 Torsion - To		thin walled tubes and hollow shafts	nane	5 11		

Intro	duction	to plasticity – Stress – S	Strain diagram –	Plastic a	nalysis – Yi	eld criteria – St.				
Vena	Venant's theory – Von mises criterion – Plastic work – Strain hardening									
Mod	lule: 8	Contemporary issues:				2 hours				
				Total Lec	ture hours	45 hours				
Text	Book(s)									
1. 7	Timoshe	nko and Goodier, (2000), T	heory of Elasticity	y, McGraw	Hill Compa	ny, New York.				
Refe	rence Bo	ooks								
1. N	Mendels	on, A., (2002), Plasticity: T	heory and Applica	ations, Ma	c Millanand (Co., New York.				
2. \$	Sadhu Si	ngh, (2004), Theory of Plas	sticity, Dhanpat Ra	ai sons Pri	vate Limited,	New Delhi.				
3. <i>I</i>	Ansel. C	. Ugural and Saul. K. Fenst	er, (2003), Advane	ced Streng	th and Applie	ed Elasticity,				
H	Fourth E	dition, Prentice Hall Profes	sional technical R	eference, N	New Jersey					
4. (Chakraba	arty. J, (2006), Theory of P	lasticity, Third Ed	ition, Elsev	vier Butterwo	orth - Heinmann –				
ι ι	UK.									
	C A			A ·	· E' 1					
Mode	e of Ass	essment: Continuous Asses	, ,	zes, Assign	iments, Final	Assessment Test				
Reco	ommend	ed by Board of Studies	05.07.2022							
Appr	roved by	Academic Council		Date						

MSTE502I		DESIGN OF CONCRETE STRUCTURAL	L T P C
		SYSTEMS	3 1 0 4
Pre-requisit	te	Nil	Syllabus version
Course Obje	ctives:		<u> </u>
1. To know t	he elasti	c and inelastic behaviour of beam.	
2. To analyze	e the frar	ne for various loading conditions.	
3. To give an shear wall	-	re to the various structural systems like flat slab, Deep	beam, corbels and
Expected Cor	urse Out	come:	
<u> </u>		for deflection and estimation of crack width.	
•		torey frame for various loading condition.	
-		c moment capacity of continuous beam.	
4. Design the	e deep be	am and corbels.	
		o, spandrel beam.	
6. Design the	e slender	column using SP16.	
7. Analyse the	e shear w	all structure.	
Module: 1	Basic D	esign Concepts	6 hours
Limit state me	ethod - D	esign of beams- Short-term and long-term deflection o	f reinforced
concrete beam	ns and sla	b- Estimation of crack width in reinforced concrete me	embers
Module: 2	Frame	Analysis and Design	6 hours
Static and dyn	namic loa	ding of structures	
Module: 3	Inelasti	c Behaviour of Concrete Beams	6 hours
Moment curva	ature rela	tionship – plastic hinge formation-moment redistributi	on in continuous
beams			
Module: 4	Deep B	eams and Corbels	6 hours
Strut and tie n	nethod of	f analysis for corbels and deep beams, Design of corbel	ls, Design of deep
beams			
Module: 5	Flat Sla	ıb	7 hours
Design of flat	slabs an	d flat plates according to IS method – Check for shear ·	- Design of
spandrel beam	ns -Yield	line theory and Hillerborg's strip method of design of	slabs - Grid floor
Module: 6		· Columns	6 hours
-		mns subjected to combined bending moment and axial	force using IS
456-2000 and			1
Module: 7	Shear V		6 hours
-	-	shear wall framed buildings	1
Module: 8	Conte	mporary issues:	2 hours

		P			
			Total Lec	ture hours	45 hours
			Tuto	rial Hours	15 hours
Text	t Book(s)				
1.	Subramanian. N., (2013), Design Of	Reinforced C	oncrete St	ructures, Oxfo	ord University
	Press, New Delhi.				
Refe	erence Books				
1.	Gambhir. M. L., (2012), Design of R	Reinforced Co	ncrete Stru	ctures, Prenti	ce Hall of India,
	New Delhi.				
2.	Varghese. P.C., (2011), Advanced R	einforced Cor	ncrete Desi	ign, PHI Lear	ning Pvt. Ltd.,
	New Delhi.				
3.	IS 456 Plain and Reinforced Concret	te - Code of P	ractice		
4.	IS 13920 Ductile Detailing of Reinfo	orced Concrete	e Structure	es Subjected to	o Seismic Forces
4.	-Code of Practice				
5.	IS 1893 Criteria for earthquake resis	tant design of	structures	-Code of Prac	ctice
6.	SP 16- Design Aids for Reinforced C	Concrete			
Mod	le of Assessment: Continuous Assess	ment Test, Qu	izzes, Ass	ignments, Fin	al Assessment
Test					
Reco	ommended by Board of Studies	05.07.2022			
Арр	roved by Academic Council		Date		

MSTE503	21	STRUCTURAL DYNAMICS	L	Т	P	C			
MIS I ESU.)L	STRUCTURAL DINAMICS	3	1	0	4			
Pre-requis	site	Nil	Syllabus versio						
Course Obje	ectives	:							
1. To know w	various	dynamic forces acting on a building and their response.							
		edge on modes of failure and remedial solutions.							
		lysis procedure for calculating the response of structures.							
		e linear and no-linear behaviour of structures.							
Expected Co	ourse	Outcome:							
—		f this course, the student will be able to							
1 1		atic and dynamic behavior of structures and their physical pr	operti	ies.					
		odel a single degree of freedom system subjected to dynamic	-						
•		sponse of single storied building subjected to dynamic load.							
		odel a multi degree of freedom system subjected to dynamic	load.						
		sponse of multi-storied building subjected to dynamic load.							
6. Evaluate	the dy	namic behavior of beams.							
7. Describe	the no	nlinearity of a system by various techniques.							
Module: 1	Intr	oduction		6 ha	ours				
History of vi	bration	n - Dynamic analysis and their importance to structural engin	neerin	g pro	blen	18 -			
Degrees of fr	eedon	n - D'Alembert's principle - Lagrange's equation - Simple h	armor	nic m	otior	1.			
Module: 2		le Degree of Freedom		6 ha					
Mathematica	l mod	el for SDOF systems - Free vibration - Undamped - Damped	l - Cri	itical	dam	ping			
- Measureme	nt of c	lamping - Vibration measuring instruments.							
Module: 3	Resp	oonse of SDOF Systems		6 ha	ours				
Response of	SDO	F system to Harmonic Loading, Periodic loading and	Impul	se L	oadi	ng -			
Transmissibi	lity - F	Fourier series - Duhamel's integral - Numerical integration.							
Module: 4	Mul	ti Degree of Freedom System		7 ho	ours				
Equation of	motio	n - Free vibration - Undamped - Damped - Evaluation of	struc	tural	prop	perty			
matrices - M	ode sh	ape - Orthogonality relationship.							
Module: 5	Resp	oonse of MDOF Systems		6 ha	ours				
Rayleigh's m	ethod	- Rayleigh-Ritz method - Stodola's method - Stiffness meth	od - N	Aode	;				
superposition	n meth	od.							
Module: 6	Con	tinuous Systems		6 ha	ours				
Differential e	quatio	on of motion - Transverse vibration - Axial vibration - Natur	al frec	Juena	cy an	d			
		ple beams with different end conditions - Variable cross sec							
Orthogonalit									
Module: 7	Non	-linear Numerical Techniques		6 ha	ours				
Wilson Theta	a meth	od - Newmark Beta method –Runge-Kutta method.	<u>. </u>						

Mod	ule:8	Contemporary issues:				2 hours
			Tota	al Lect	ure hours	45 hours
				Tutor	rial Hours	15 hours
Mini	mum of	three problems to be work	ted out by students in	every t	utorial class.	
Text	Book(s)				
1.	Mario F	Paz and William Leigh (2	010), Structural Dyna	amics	- Theory and	Computation,
	Springer	ſ.				
Refe	rence B	ooks				
1.	Clough	and Penzien (2015), Dyna	mics of Structures, C	CBS Pu	blishers and I	Distributors, New
1.	Delhi.					
2.	Chopra.	A. K. (2011), Dynamics	s of Structures - The	eory an	d Application	ns to Earthquake
<i>Z</i> .	Enginee	ring, 4 th edition, Prentice H	Iall, London.			
3.	Roy R.C	Craig, Jr. Andrew J. Kurdila	a (2011), Fundamenta	ls of St	ructural Dyna	mics, John Wiley
<i>3</i> .	and Son	s, London.				
Mod	e of ass	essment: Continuous Asse	essment Test, Quizzes	, Assig	nments, Final	Assessment Test
Reco	ommend	led by Board of Studies	05.07.2022			
Ann	rovod h	y Academic Council	Da	ate		

MSTE504L	ADVANCED DESIGN OF STEEL STRUCTURES			Р	С
NIS I E304L	ADVANCED DESIGN OF STEEL STRUCTURES	2	1	0	3
			Syll	abus	
Pre-requisite	Nil		ver	sion	
Course Objectives					
5	structures and analyse the frame for wind loads.				
2. To design the v					
	gauge steel members, steel - concrete composite and hollow s	sectio	ons.		
Expected Course					
Upon completion of	of this course, the student will be able to				
1. Classify the str	uctures and wind load analysis for frames.				
2. Design the well	ded connections.				
3. Understand the	fatigue and the factors that influence fatigue.				
4. Analyse and de	esign the beams and frames using plastic method.				
5. Design the Light	ht gauge structures.				
6. Design the Stee	el- Concrete Composite sections.				
7. Design the Hol	low sections.				
Module: 1 Stab	ility and Plate Buckling		4]	hours	5
Classification of st	ructures-wind load analysis				
Module: 2 Bear	n- column Connections/Semi Rigid Connections		4]	hours	5
Throat and Root S	tresses in Fillet Welds - Seated Connections Unstiffened and	d Sti	ffen	ed se	ated
Connections – Mo	ment Resistant Connections – Clip angle Connections – Split l	beam	n Coi	nnect	ions
- Framed Connecti	ons				
Module: 3 Fatig	gue		4]	hours	5
Types of fatigue le	eading and failure- Fatigue test, endurance limit- S-N diagram	n-V	ariou	ıs fai	lure
relations- Factors i	nfluencing fatigue strength- Influence of stress concentration of	on fa	tigue	test	
Module: 4 Plast	tic Analysis and Design of Structures		4]	hours	5
Introduction - Shap	pe factors - Mechanisms - Plastic hinge - Analysis of beams a	nd p	ortal	fram	nes -
-	d continuous beams.	-			
Module: 5 Desig	gn of Light Gauge Steel Structures		4]	hours	5
Types of cross sect	tions - Local buckling and lateral buckling - Design of compres	ssion	n and	tensi	ion
members - Beams	- Deflection of beams- Cold formed steel structures-Pre-engine	eerec	l met	al	
buildings- long spa	in structures.				
Module: 6 Desig	gn of Steel -concrete Composite Sections		4]	hours	5
Design of beam – o	columns- composite slabs				
Module: 7 Desig	gn of Steel Members with Hollow Sections		4]	hours	5
mounter / Desig					
	l steel hollow sections				

			Total I	Lecture hours	30 hours			
			Т	utorial Hours	15 hours			
Tex	Text Book(s)							
1.	1. GalyordandGalyord (2012), Design of Steel Structures, Tata McGraw Hill, Education							
Ref	erence Books							
1.	Duggal.S.K., (2014), Limit State D	Design of Steel Stru	uctures, Ta	nta McGraw-Hil	l Education,			
1.	New Delhi.							
2.	Subramanian. N., (2011), Design of	of Steel Structures,	Oxford U	niversity Press,	New Delhi.			
3.	Bhavikatti. S.S., (2012), Design of	Steel Structures, I	.K. Interna	ational Publishi	ng House Pvt.			
5.	Ltd. New Delhi.							
4.	IS 800 General Construction in Ste	eel — Codeof Prac	tice					
5.	IS 801Code of Practice for use of 0	Cold-Formed Ligh	t Gauge St	teel Structural M	Iembers in			
5.	General Building Construction							
6.	IS 811Specification for Cold forme	ed light gauge strue	ctural Stee	el sections				
7.	IS 11384 Code of practice for com	posite constructior	n in structu	aral steel and co	ncrete			
Mo	de of Assessment: Continuous Asse	essment Test, Quiz	zzes, Assig	gnments, Final A	As			
Rec	commended by Board of Studies	05.07.2022						
Ap	proved by Academic Council		Date					

MSTE505	T	FINITE ELEMENT ANALYSIS	L	Τ	Р	С		
M19 I E903	L	FINITE ELEMENT ANAL 1919	2	1	0	3		
Pre-requis	ite	MSTE501L Theory of Elasticity and Plasticity	TE501L Theory of Elasticity and Plasticity Syllabus versi					
Course Obje	ctives	:						
1. To have a methods	detail	ed knowledge and understanding of the fundamental concept	ots of	finite	e elei	nent		
2. To introdu	ice ba	sic aspects of finite element technology, including domain d	liscret	izati	on,			
polynomia	al inte	rpolation, application of boundary conditions, assembly of g	global	arra	ys, ai	nd		
solution o	f the r	esulting algebraic systems.						
		ficiency in the application of the finite element methods (mo on of results) to realistic engineering problems	deling	g, an	alysi	s,		
Expected Co	urse (Dutcome:						
Upon comple	ting th	is course, the students will be able to:						
1. Understan	d the	e fundamental theory of finite element methods						
2. Develop t differentia		lity to generate the governing FE equations for systems gov ation	erned	by p	artia	1		
	-	e role and significance of shape functions in finite element for	ormul	ation	s and	d		
		ratic, and cubic shape functions for interpolation						
4. Acquire k	nowle	edge in direct and formal (basic energy and weighted residuated)	ıl) me	thods	s for			
deriving f	inite e	lement equations						
		nto the use of the basic finite elements for structural applicat ad plane elements	ions u	ising	truss	3,		
		priate space (planar (plane stress or strain), axisymmetric, or	r spati	al),				
•		be of element), and modeling techniques	1	,,				
		professional level finite element software to solve the	engin	eerin	g			
problems		1	U		0			
Module: 1	Intr	oduction		4	hou	rs		
Background -	- Gene	eral description of the method – Analysis procedure - Princip	oles of					
Stress and stra	ain ve	ctors – Strain displacement equations – Linear constitutive e	equati	ons –	- Ove	erall		
stiffness matr	ix – O	overall load matrix	-					
Module: 2	The	ory of Finite Element		4	hou	rs		
Concept of an	elem	ent – Various element shapes – Displacement models – App	roxin	natio	n			
displacements	s by p	olynomials - Convergence requirements - Shape functions -	– Elen	nent	strai	ns		
and stresses -	Anal	ysis of beams						
Module: 3	Natı	ıral Coordinates		4	hou	ſS		
Area and volu	ime co	oordinates- Discretisation of a body or structure – Minimiza	tion o	f ban	d wi	dth		
		tiffness matrix and loads for the assemblage – Boundary con						

Module: 4 Two and Three Dimensional Problems	5 hours								
Analysis of plane truss, space truss, plane frame and grid- Axisymmetric elements									
Module: 5Plane StressandPlane Strain Conditions5 hours									
CST, LST & QST elements - solutions of problems									
Module: 6 Isoparametric Formulation	4 hours								
Iso parametric Bar element - Plane bilinear isoparametric element - Plane stress element									
Quadratic plane elements - Application of Gauss Quadrature formulation – Lagrange	e's and								
serendipity elements									
Module: 7 Introduction to 3-D Elements	2 hours								
Three dimensional elasticity-Governing differential equations- Higher order Isopara	metric solid								
elements									
Module: 8 Contemporary issues:	2 hours								
Total Lecture hours	30 hours								
Tutorial Hours	15 hours								
Text Book(s)									
1. Krishnamoorthy, C.S, "Finite Element Analysis ; Theory and programming",	, Tata McGraw								
Hill Publishing Co. Ltd., (2017)									
Reference Books									
1. Cook R.D., Malkas D.S. &Plesha M.E, "Concepts and applications of 1 Applevic", John Wilson & Some (2007)	Finite Element								
 Analysis", John Wiley & Sons., (2007) 2. Reddy, J, "An Introduction to Finite Element Methods", McGraw Hill Co., (201 	2)								
2. Reddy,J, "An Introduction to Finite Element Methods", McGraw Hill Co., (201 Zeinkeiwich O.C.,R.L.Tayler " The Finite Element Method for Solid									
3. Mechanics", Butterworth-Heinemann,(2013).	and Structural								
Mode of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final A	ssessment Test								
Mode of Assessment: Continuous Assessment Test, Quizzes, Assignments, Final A	ssessment								
Test									
Recommended by Board of Studies 05.07.2022									
Approved by Academic Council Date									

Μ	ISTE505P	FINITE ELEMENT ANALYSIS LABORATORY	L	Τ	Р	С
171			0	0	2	1
Pro	e-requisite	MSTE501L Theory of Elasticity and Plasticity	Syllabus versio			
Cour	rse Objectives	:				
1. T	To have a detai	led knowledge and understanding of the fundamental concep	ots of	finite	e eler	nent
	nethods					
		sic aspects of finite element technology, including domain d				
-	-	rpolation, application of boundary conditions, assembly of g	global	array	ys, ai	ıd
		resulting algebraic systems.		~ ~ ~	1	:_
		ficiency in the application of the finite element methods (mo on of results) to realistic engineering problems	denn	ig, ai	larys	18,
	ected Course					
-		his course, the students will be able to:				
-	1 0	e fundamental theory of finite element methods				
		lity to generate the governing FE equations for systems gov	erned	by p	artia	1
	lifferential equ			• 1		
3. D	Demonstrate th	e role and significance of shape functions in finite element for	ormul	ation	is and	d use
li	inear, quadrati	c, and cubic shape functions for interpolation				
	-	edge in direct and formal (basic energy and weighted residua	ıl) me	thods	s for	
	-	element equations				
		nto the use of the basic finite elements for structural applicat	ions u	ising	truss	\$,
		nd plane elements		a 1)		
	• • • •	priate space (planar (plane stress or strain), axisymmetric, or pe of element), and modelling techniques	r spau	ai),		
		professional level finite element software to solve the	engin	eerin	a	
	oroblems	professional level finite clement software to software	engin	cerm	5	
-		ts (Indicative)		3	hou	rs
1	Discretisation	n of geometry		3	hou	rs
2	Meshing a red	ctangular plate using 4 node elements		3	hou	rs
3	Meshing a cir	cular plate using 3 node and 4 node elements		3	hou	rs
4	Analysis of a	spring assembly using 1D elements		3	hou	rs
5	Analysis of a	n assembly of bar elements		3	hou	rs
6	Analysis of a	stepped bar		3	hou	rs
7	Analysis of a	nlane trucs		2	hou	rs

8	Analysis of a space truss			2 hours		
9	Analysis of a fixed-fixed beam			2 hours		
10	Analysis of a 2D frame			2 hours		
11	Analysis of a 3D frame			2 hours		
12	Analysis of a grid			2 hours		
		Total	Laboratory Hou	irs 30 hours		
Tex	xt Book(s)			·		
1.	Krishnamoorthy, C.S, "Finite El	ement Analysis ; Theor	ry and programmi	ng", Tata McGraw		
	Hill Publishing Co. Ltd., (2017)					
Ref	erence Books					
1.	Cook R.D., Malkas D.S. & Plesha	M.E, "Concepts and app	lications of Finite	Element Analysis",		
	John Wiley &Sons., (2007)					
2.	Reddy, J, "An Introduction to Finit	e Element Methods", N	IcGraw Hill Co., ((2013).		
3.	Zeinkeiwich O.C.,R.L.Tayler "	The Finite Element	Method for Sol	id and Structural		
5.	Mechanics", Butterworth-Heinem	ann,(2013).				
Mode of Evaluation: Continuous Assessment Test & Final Assessment Test						
Rec	commended by Board of	05.07.2022				
Stu	dies	03.07.2022				
Ap	proved by Academic Council	Date				

MSTE506L		PRESTRESSED CONCRETE STRUCTURES		Т	Р	C
WIS112300	L	TRESTRESSED CONCRETE STRUCTURES	2	1	0	3
Pre-requis	ite	MSTE502L Design of Concrete Structural systems	Sy	llabus	s vers	ion
Course Obje	ectives	S:				
1. To lea	arn the	e principles, materials, methods and systems of prestressing				
2. To kn	ow th	e different types of losses and deflection of prestressed meml	bers			
3. To lea	arn the	e design of prestressed concrete beams for flexural members				
Expected Co	ourse	Outcome:				
Upon comple	etion o	f this course, the student will be able to				
1. Under	rstand	the concepts of pre-tensioning and post-tensioning members	5			
		estressed concrete beam accounting for losses				
3. Evalu	ate the	e deflection and crack width of prestressed members				
4. Desig	n the	member subjected to flexure and shear.				
5. Desig	n the	member subjected to torsion.				
6. Desig	n the	anchorage zone reinforcement				
7. Analy	vse and	d design the indeterminate structures.				
Module: 1	Intro	oduction	atra		ours	<u> </u>
Module: 1 Introduction	Intro – Dev n and t	oduction elopment of Pre-stressed Concrete, General Principles of Pre types of pre-stressing, Stages of loading, Materials – Concret		ssed C	oncre	
Module: 1 Introduction - Classification	Intro – Dev and t eristic	oduction elopment of Pre-stressed Concrete, General Principles of Pre types of pre-stressing, Stages of loading, Materials – Concret		ssed C l Steel	oncre	
Module: 1 Introduction - Classification strain charact Module: 2	Intro – Deven and t eristic Loss	oduction elopment of Pre-stressed Concrete, General Principles of Pre types of pre-stressing, Stages of loading, Materials – Concret cs.		ssed C l Steel	oncre - stre	
Module: 1 Introduction - Classification strain charact Module: 2	Intro – Deven and t eristic Loss of loss	oduction elopment of Pre-stressed Concrete, General Principles of Pre types of pre-stressing, Stages of loading, Materials – Concret cs. ses in Pre-stress		ssed C l Steel 3 h o	oncre - stre	
Module: 1 Introduction - Classification strain charact Module: 2 Significance - Module: 3	Intro – Deven and t eristic Loss of loss Defle	oduction elopment of Pre-stressed Concrete, General Principles of Pre- types of pre-stressing, Stages of loading, Materials – Concret es. Sees in Pre-stress s of Pre-stress, Immediate losses and time dependent losses		ssed C l Steel 3 h o	oncre - stre Durs	
Module: 1 Introduction - Classification strain charact Module: 2 Significance - Module: 3	Intro – Deven and t eristic Loss of loss Defle calcula	oduction elopment of Pre-stressed Concrete, General Principles of Pre- types of pre-stressing, Stages of loading, Materials – Concret es. Sees in Pre-stress s of Pre-stress, Immediate losses and time dependent losses ections		ssed C l Steel 3 ho 7 ho	oncre - stre Durs	
Module: 1 Introduction - Classification strain charact Module: 2 Significance Module: 3 Deflections- Module: 4 Design For F	Intro – Deven and the eristice Loss of loss Defle calcula Designed	oduction elopment of Pre-stressed Concrete, General Principles of Pre types of pre-stressing, Stages of loading, Materials – Concrete cs. ses in Pre-stress s of Pre-stress, Immediate losses and time dependent losses ections ation for short term/immediate and long term deflection gn for Flexure and Shear e and shear– Flexural analysis of beams for limit state of ser	e and	ssed C l Steel 3 ho 7 ho 4 ho	oncre - stre ours ours ours	ss,
Module: 1 Introduction - Classification strain charact Module: 2 Significance - Module: 3 Deflections - Module: 4 Design For F for simply su	Intro – Deven and t eristic Loss of loss Defle calcula lexure pporte	oduction elopment of Pre-stressed Concrete, General Principles of Pre- types of pre-stressing, Stages of loading, Materials – Concrete es. ses in Pre-stress s of Pre-stress, Immediate losses and time dependent losses ections ation for short term/immediate and long term deflection gn for Flexure and Shear e and shear– Flexural analysis of beams for limit state of ser ed beams for limit state of collapse – Shear and Diagonal tens	e and	ssed C l Steel 3 ho 7 ho 4 ho	oncre - stre ours ours ours	ss,
Module: 1 Introduction - Classification strain charact Module: 2 Significance - Module: 3 Deflections - Module: 4 Design For F for simply su	Intro – Deven and t eristic Loss of loss Defle calcula lexure pporte	oduction elopment of Pre-stressed Concrete, General Principles of Pre types of pre-stressing, Stages of loading, Materials – Concrete cs. ses in Pre-stress s of Pre-stress, Immediate losses and time dependent losses ections ation for short term/immediate and long term deflection gn for Flexure and Shear e and shear– Flexural analysis of beams for limit state of ser	e and	ssed C l Steel 3 ho 7 ho 4 ho	oncre - stre ours ours ours	ss,
Module: 1 Introduction - Classification strain charact Module: 2 Significance - Module: 3 Deflections - Module: 4 Design For F for simply su	Intro – Deven and t eristic Loss of loss Defle calcula lexure pporte onal cr	oduction elopment of Pre-stressed Concrete, General Principles of Pre- types of pre-stressing, Stages of loading, Materials – Concrete es. ses in Pre-stress s of Pre-stress, Immediate losses and time dependent losses ections ation for short term/immediate and long term deflection gn for Flexure and Shear e and shear– Flexural analysis of beams for limit state of ser ed beams for limit state of collapse – Shear and Diagonal tens	e and	ssed C l Steel 3 ho 7 ho 4 ho ability, n Un-o	oncre - stre ours ours ours	ss,
Module: 1 Introduction - Classification strain charact Module: 2 Significance Module: 3 Deflections- Module: 4 Design For F for simply su beams, Diago Module: 5 Torsion in co	Intro – Deven and the eristic Loss of loss of loss Defle calculat lexure pporter onal cr Desi	oduction elopment of Pre-stressed Concrete, General Principles of Pre- types of pre-stressing, Stages of loading, Materials – Concrete cs. ses in Pre-stress s of Pre-stress, Immediate losses and time dependent losses ections ation for short term/immediate and long term deflection gn for Flexure and Shear e and shear– Flexural analysis of beams for limit state of ser ed beams for limit state of collapse – Shear and Diagonal tens cating in shear, shear design for Limit state of collapse	e and	ssed C l Steel 3 ho 7 ho 4 ho ability, n Un-o 4 ho	oncre - stre ours ours ours , desig cracke	gn ed
Module: 1 Introduction - Classification strain charact Module: 2 Significance Module: 3 Deflections - Module: 4 Design For F for simply su beams, Diago Module: 5 Torsion in co Collapse	Intro – Deven and the eristic Loss of loss Defle calcula lexure pporteconal cr Desi ncrete	oduction elopment of Pre-stressed Concrete, General Principles of Pre types of pre-stressing, Stages of loading, Materials – Concrete cs. ses in Pre-stress s of Pre-stress, Immediate losses and time dependent losses ections ation for short term/immediate and long term deflection gn for Flexure and Shear e and shear– Flexural analysis of beams for limit state of ser ed beams for limit state of collapse – Shear and Diagonal tens cracking in shear, shear design for Limit state of collapse gn for Torsion e structures – Torsional design for pre-stressed concrete struct	e and	ssed C l Steel 3 ho 7 ho 4 ho ability, n Un-o 4 ho – Lim	oncre - stre ours ours ours , desig cracke ours nit Sta	gn ed
Module: 1 Introduction Classification strain charact Module: 2 Significance Module: 3 Deflections- Module: 4 Design For F for simply su beams, Diago Module: 5 Torsion in co Collapse Module: 6	Intro – Deven and the eristic Loss of loss Defle calcula Desi lexure pporteconal cr Desi ncrete Desi	oduction elopment of Pre-stressed Concrete, General Principles of Pre types of pre-stressing, Stages of loading, Materials – Concrete cs. ses in Pre-stress s of Pre-stress, Immediate losses and time dependent losses ections ation for short term/immediate and long term deflection gn for Flexure and Shear e and shear– Flexural analysis of beams for limit state of ser ed beams for limit state of collapse – Shear and Diagonal tens cacking in shear, shear design for Limit state of collapse gn for Torsion e structures – Torsional design for pre-stressed concrete struct gn of End Anchorages	e and	ssed C l Steel 3 ho 7 ho 4 ho ability, n Un-o 4 ho – Lim	oncre - stre ours ours ours , desig cracke	gn ed
Module: 1 Introduction Classification strain charact Module: 2 Significance Module: 3 Deflections- Module: 4 Design For F for simply su beams, Diago Module: 5 Torsion in co Collapse Module: 6	Intro – Deven and the eristic Loss of loss Defle calcula Desi lexure pporteconal cr Desi ncrete Desi	oduction elopment of Pre-stressed Concrete, General Principles of Pre types of pre-stressing, Stages of loading, Materials – Concrete cs. ses in Pre-stress s of Pre-stress, Immediate losses and time dependent losses ections ation for short term/immediate and long term deflection gn for Flexure and Shear e and shear– Flexural analysis of beams for limit state of ser ed beams for limit state of collapse – Shear and Diagonal tens cracking in shear, shear design for Limit state of collapse gn for Torsion e structures – Torsional design for pre-stressed concrete struct	e and	ssed C l Steel 3 ho 7 ho 4 ho ability, n Un-o 4 ho – Lim	oncre - stre ours ours ours , desig cracke ours nit Sta	gn ed

Co	ncept of c	oncordant cable and profil	e – sketching of pre	ssure line	es for continuo	us beams.
Mo	dule: 8	Contemporary issues				2 hours
			Т	otal Lec	ture hours	30 hours
				Tuto	orial hours	15 hours
Tey	kt Book(s)				
1.		Raju. N., (2014), Pre-stres tors, Pvt. Ltd., New Delhi.		olems and	d Solutions, CE	3S Publishers and
Ref	ference B	ooks				
1.	Praveen	Nagarajan, Advanced Cor	ncrete Design, Perso	on, 2013		
2.	N. Rajag Delhi	gopalan., (2013), Prestress	ed Concrete – Secor	nd Editio	n, Narosa Pul	olishers, New
3.	IS: 1343	: Indian Standard code of	practice for Prestres	sed conc	rete, BIS, New	Delhi.
4.	IS: 3370 New De	-Indian Standard code of I lhi.	practice for concrete	structur	es for storage o	of liquids, BIS,
Mo	de of Eva	duation: Continuous Asse	essment Test, Quizz	es, Assig	nments, Final	Assessment Test
Ree	commend	ed by Board of Studies	05.07.2022			
Ap	proved by	y Academic Council]	Date		

Discipline Elective Courses

	MATRIX METHODS OF STRUCTURAL	L	Τ	Р	C	
MSTE601L	ANALYSIS	2	1	0	3	
Pre-requisite	Nil	Syllabus version				
Course Objecti	ves:	1				
1. To under	stand the significance of degrees of freedom and the con-	cept o	f pri	ncip	e	
of superp	oosition					
2. To recog	nize the concept of strain energy and principle of virtual	work				
3. To learn	the transformation of system matrices and element matrice	ces fo	r the			
determin	ate and indeterminate structures.					
4. To analy	se the forces in structures like continuous beam, truss and	d fram	les u	sing		
stiffness	and flexibility method.					
5. To comp	rehend the behaviour of structures due to thermal expans	ion ar	nd lao	ck of	fit.	
Expected Cours	se Outcome:					
On completion of	f the course, the students will be able to					
1. Apply th	e basic concepts of matrix methods in structural analysis					
2. Develop	stiffness and flexibility matrices					
3. Analyse	the structures using flexibility and stiffness method					
4. Analyse	space truss and frame					
5. Analyse	grid structures					
6. Compute	the forces in various members due to lack of fit and ther	mal e	xpan	sion		
Module: 1 En	ergy Concepts		4 h	ours		
conditions - Stat	of Coordinates - Basic assumptions - Types of loads - Co ic and kinematic indeterminacy - Principles of superposit s for beam element from strain energy	-	-			
Module: 2 Ma	atrix Methods		4 ho	urs		
Properties of stif	fness and flexibility matrices- solution of simple problem	ns				
Module: 3 Fle	exibility Method		4 ho	urs		
Flexibility meth	od applied to statically indeterminate structures - Analy	ysis o	f coi	ntinu	ous	
beam, plane trus	s and plane frame					
Module: 4 Sti	ffness Method		4 ho	urs		
Stiffness method	applied to kinematically indeterminate structures - Anal	ysis o	of cor	ntinu	ous	
beam, plane trus	s and plane frame					
Module: 5 Sp	ace Truss		4 ho	urs		

An	alysis of s	space truss and space fra	me by stiffness	matrix me	thod	
M	odule: 6	Grid Structures				4 hours
	•	grid by matrix methods ng - initial and thermal s	- •	s procedu	res - static	condensation and
Mo	odule: 7	Special Conditions				4 hours
	fects of ter fness met	mperature change and la hod	ck of fit. Related	l numerica	al problems	by flexibility and
M	odule: 8	Contemporary issues				2 hours
			T	otal Lectu	ire hours	30 hours
				Tutor	ial hours	15 hours
Te	xt Book(s	;)			I	
1.	Bhavika	tti S S, (2011), Matrix M	Aethods of Struc	tural Anal	ysis, IK Pu	blishing, India
Re	ference B	sooks				
1.		n C, Revathi P., (2014), s, PHI,Prentice Hall of			ural Analys	sis: Theory and
2.		P. N., Sonparote R. S., S, PHI Learning Pvt. Ltd		014), Matr	ix Methods	s of Structural
	-	aluation: Continuous A		Quizzes,	Assignmen	ts, Final
	ommende	ed by Board of	05.07.2022			
4pp	roved by	Academic Council		Date		

MSTE602L	DESIGN OF BRIDGES	L	Т	Р	С		
MISTEOU2L	DESIGN OF BRIDGES	2	1	0	3		
Pre-requisite	Nil	Syl	labus	versi	0 n		
Course Objecti	ives:						
1. To understan	nd the basic concept of design of bridges						
2. To analyse box culvert							
3. To design T	and I girders						
4. To analyse a	and design cable stayed and suspension bridges						
5. To design pi	iers and abutments						
6. To design pi	ile foundation and bearings						
Expected Cour	se Outcome:						
Upon completio	on of this course, the student will be able to						
1. Classify the	different types of bridges.						
2. Analyse box	culvert and girder bridges by using different method.						
3. Design T gin	rders, I girders and Box girder bridges by IRC method.						
4. Analyse and	l design cable stayed and suspension bridges						
5. Design piers	s and abutments						
6. Design pile	foundation						
7. Design bear	ings and expansion joints.						
Module: 1 G	eneral		3 ho	urs			
Definition, Histo	ory, Different types (Permanent/Temporary), Classification base	d on m	ateria	l, spai	ı,		
structural form e	etc., Field Surveys and selection of site						
Module: 2 Bi	ridge Deck Analysis		4 ho	urs			
IRC loadings an	d introduction to bridge loading worldwide- Analysis of box culv	erts, se	olid sla	ab bri	dges		
by IRC/Effective	ve width method- Pigeaud's method etc.,- Analysis of girder	bridge	s by	Courb	on's		
method and Gril	llage method Introduction to other methods of analysis like Fini	te elen	nent, F	Finite	strip		
method etc.,.							
Module: 3 De	esign of Small Bridges & Culverts		5 ho	urs			
Design of box c	ulverts, short span slab decks in square & skew - Design of T &	I girde	r and				
Introduction to I	Box girder bridges by IRC method.						
Module: 4 Lo	ong span & Special type bridges		4 ho	urs			
Analysis & desi	gn principles of continuous bridges, arch bridges, integral bridge	s, cabl	e staye	ed brid	lges		
and suspension	bridges.						
	esign of Substructure		4 ho	urs			
Module: 5 De							
	s & abutments -Introduction to wing walls & returns and Reinfor	ced Ea	rth in	flyov	er		
	s & abutments -Introduction to wing walls & returns and Reinfor	ced Ea	rth in	flyov	er		
Design of piers approaches.	s & abutments -Introduction to wing walls & returns and Reinfor esign Foundations	ced Ea	urth in 4 ho	-	er		

Mo	dule: 7	Bridge Appurtenances				4 hours			
Des	Design of Bearings, Expansion joints, Deck drainage, Crash barriers & handrails.								
Mo	Module: 8Contemporary issues2 hours								
	Total Lecture hours 30 hours								
				Tutorial	Hours	15 hours			
Tex	kt Book(s	:)							
1.	Johnson	Victor. D., (2012), Essential	s of Bridge Enginee	ering, Oxfo	rd Publish	ing Company, New			
	Delhi								
Ref	ference B	ooks							
1.	Jain and	d Jai Krishna.,(2007), Plain	and reinforced con	crete, Vol.	2.,Nem Cl	hand Brothers, New			
	Delhi.								
2.	Krishna	Raju. N., (2014), Design of I	Bridges, Oxford and	d IBH Publ	ishing Co.,	, New Delhi			
3.	Rakshit	. K. S., (2010), Design and C	onstruction of High	nway Bridg	es, New ce	entral Book Agency,			
	New De	elhi.							
3	Standar	d specifications and code of p	ractice for road brid	lges, (2005) – IRC sec	ction I, II, III and IV.			
4	Ponnusy	wamy (2008), Bridge Enginee	ering, McGraw-Hill	l Education	(India) Pv	vt Limited			
Mo	Mode of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test								
Rec	commend	led by Board of Studies	05.07.2022						
Ap	proved b	y Academic Council		Date					

MSTE603	BL	PREFABRICATED STRUCTURES	L 2	T 1	P 0	C 3		
				-	s vers	_		
Pre-requis	site	Nil	Byn					
Course Obje	ectives	:						
1. To s	tudy t	he design principles related to prefabrication.						
2. To u	inderst	tand the concepts of precast floors, beams etc.,						
Expected Co	ourse	Outcome:						
Upon comple	etion o	f this course, the student will be able to						
1. Under	rstand	the principles behind prefabricated structure						
2. Desig	n the j	precast concrete floor						
3. Under	rstand	the composite and non- composite precast beam						
4. Desig	n the	precast column and walls						
5. Under	rstand	the principles of joint mechanism						
6. Under	rstand	the various connection between the precast structural eleme	ents					
7. Identi	fy the	machinery and equipment for precast manufacturing						
Module: 1	Desi	gn Principles		3	8 hou	rs		
prefabrication Components	n plar - Pref	gineering requirements, specific requirements for plann at. IS Code specifications. Types of foundation - Modu abrication systems and structural schemes - Design consider assment of handling and erection spaces	ılar c	o-orc	linati	on –		
Module: 2		ast Concrete Floors		3	8 hou	rs		
Precast floori Beams and ro		tions-flooring arrangements-design of individual units-design ments	of co	mpos	site flo	oors-		
Module: 3	Prec	ast Concrete Beams		4	hou	rs		
Types of com	posite	es -non composite-reinforced beam -pre stressed beam						
Module: 4	Colu	mns and Shear Wall		6	6 hou	rs		
Precast colur forces	nn des	sign -precast shear walls- infill walls-cantilever walls -distr	ibutio	n of	horiz	ontal		
Module: 5	Join	ts		5	5 hou	rs		
Basic mecha	anism-	compression joint-shear joint - tension joint						
Module: 6	Con	nections		5	5 hou	rs		
-		ction-moment resisting connections- beam to column- column	n four	datio	on			
connections								
Module: 7		hinery and Equipment		2	2 hou	rs		
Plant machin	ery, ca	asting yard- casting and stacking						

	(Decented to be Oniversity under section 3 of OGC Act, 1950)					
Mo	odule: 8	Contemporary issues				2 hours
				Tota	al Lecture hours	30 hours
					Tutorial Hours	15 hours
Te	xt Book(s)			·	
1.	Kims S.	Elliot (2017), Precast Con	crete Structures, C	CRC Press,	Taylor & Francis	
Re	ference B	ooks				
1.	Handboo	ok of Precast Concrete But	ildings (2016) ICI	publicatio	ns	
2.	•	Smith, (2010), Prefab Arc ley and Sons. Inc. London		e to Modul	ar Design and Con	struction,
		Bachmann, Alfred Steinle,		onoroto Str	naturas Ernst & Co	hn Wilou
3.	Publicat	, , ,	(2011), FICCASE CO	JICICIC SI	uctures, Ernst & SO	
Mo	ode of Eva	aluation: Continuous Asse	essment Test, Quiz	zes, Assig	nments, Final Asse	ssment Test
Re	commend	led by Board of Studies	05.07.2022			
Ap	proved by	y Academic Council		Date		

NAUTECOA		L	Т	Р	С
MSTE604	L STABILITY OF STRUCTURES	2	1	0	3
Pre-requisi	ite Nil –	Sy	llabus	s versi	on
Course Obje	ctives:				
1. To uno	derstand the difference between stability and instability.				
2. To eva	aluate the structural stability of columns				
3. To ana	alyse the stability of beam column				
4. To ana	alyse stability of frames				
5. To uno	derstand deformation characteristics of torsional buckling				
6. To ide	ntify the differential equation of buckling of plates and shells				
Expected Co	urse Outcome:				
Upon complet	tion of this course, the student will be able to				
1. Under	stand the difference between stability and instability.				
2. Evalua	ate the structural stability of columns				
3. Analys	se the stability of beam column				
4. Analys	se stability of frames				
5. Under	stand deformation characteristics of torsional buckling				
6. Identif	Ty the differential equation of buckling of plates and shells				
Module: 1	Introduction		3	hour	s
-	rium – Governing equation for columns – Analysis for various	s bou	ındary	7	
conditions.					
Module: 2	Analysis of Column		4	hour	S
	Analysis of Column loaded column and Initial Imperfect column -Numerical Prob	lems		hour	s
		lems		hour hour	
Eccentrically Module:3 Theory of Be	loaded column and Initial Imperfect column -Numerical Prob Beam column am column – Stability analysis of beam column with differ		5	hour	s
Eccentrically Module:3 Theory of Be	loaded column and Initial Imperfect column -Numerical Prob Beam column am column – Stability analysis of beam column with differ		5	hour	s
Eccentrically Module:3 Theory of Be Failure of bea Module: 4	loaded column and Initial Imperfect column -Numerical Prob Beam column am column – Stability analysis of beam column with differ m columns. Analysis and Stability of Frames	rent	5 types 5	hour	s ids
Eccentrically Module:3 Theory of Be Failure of bea Module: 4	loaded column and Initial Imperfect column -Numerical Prob Beam column am column – Stability analysis of beam column with differ m columns.	rent	5 types 5	hour of loa	s ids
Eccentrically Module:3 Theory of Be Failure of bea Module: 4	loaded column and Initial Imperfect column -Numerical Prob Beam column am column – Stability analysis of beam column with differ m columns. Analysis and Stability of Frames	rent	types 5 od	hour of loa	s ids s
Eccentrically Module:3 Theory of Be Failure of bea Module: 4 Various Boun Module: 5	loaded column and Initial Imperfect column -Numerical Prob Beam column am column – Stability analysis of beam column with differ m columns. Analysis and Stability of Frames dary Conditions – Differential equations – Slope Deflection m	rent	types 5 od 5	5 hour of loa 5 hour 5 hour	s ids s s
Eccentrically Module:3 Theory of Be Failure of bea Module: 4 Various Boun Module: 5 Torsional loa	loaded column and Initial Imperfect column -Numerical Prob Beam column am column – Stability analysis of beam column with differ m columns. Analysis and Stability of Frames dary Conditions – Differential equations – Slope Deflection m Torsional Buckling	rent	types 5 od 5	5 hour of loa 5 hour 5 hour	s ids s s
Eccentrically Module:3 Theory of Be Failure of bea Module: 4 Various Boun Module: 5 Torsional loa	loaded column and Initial Imperfect column -Numerical Prob Beam column am column – Stability analysis of beam column with differ m columns. Analysis and Stability of Frames dary Conditions – Differential equations – Slope Deflection m Torsional Buckling ad-Deformation characteristics of structural members- strain e	rent	types 5 od 5 y of te	5 hour of loa 5 hour 5 hour	s ids s -
Eccentrically Module:3 Theory of Be Failure of bea Module: 4 Various Boun Module: 5 Torsional loa Torsional and Module: 6	loaded column and Initial Imperfect column -Numerical Prob Beam column am column – Stability analysis of beam column with differ m columns. Analysis and Stability of Frames dary Conditions – Differential equations – Slope Deflection m Torsional Buckling ad-Deformation characteristics of structural members- strain e d flexural torsional buckling of columns	nethe	types 5 od 5 y of to 3	hour of loa hour hour orsion	s ids s -
Eccentrically Module:3 Theory of Be Failure of bea Module: 4 Various Boun Module: 5 Torsional loa Torsional and Module: 6 Differential I	loaded column and Initial Imperfect column -Numerical Prob Beam column am column – Stability analysis of beam column with differ m columns. Analysis and Stability of Frames dary Conditions – Differential equations – Slope Deflection m Torsional Buckling ad-Deformation characteristics of structural members- strain e d flexural torsional buckling of columns Buckling of Plates	nethe	types 5 od 5 y of to 3	hour of loa hour hour orsion	s ids s -
Eccentrically Module:3 Theory of Be Failure of bea Module: 4 Various Boun Module: 5 Torsional loa Torsional and Module: 6 Differential I	loaded column and Initial Imperfect column -Numerical Prob Beam column am column – Stability analysis of beam column with differ m columns. Analysis and Stability of Frames dary Conditions – Differential equations – Slope Deflection m Torsional Buckling ad-Deformation characteristics of structural members- strain e d flexural torsional buckling of columns Buckling of Plates Equation of plate buckling –linear theory – critical load of a p	nethe	types 5 od 5 y of to 3 unifor	hour of loa hour hour orsion	s ids s - s
Eccentrically Module:3 Theory of Be Failure of bea Module: 4 Various Boun Module: 5 Torsional loa Torsional and Module: 6 Differential I compressed i Module: 7	loaded column and Initial Imperfect column -Numerical Prob Beam column am column – Stability analysis of beam column with differ m columns. Analysis and Stability of Frames dary Conditions – Differential equations – Slope Deflection m Torsional Buckling ad-Deformation characteristics of structural members- strain e d flexural torsional buckling of columns Buckling of Plates Equation of plate buckling –linear theory – critical load of a p in one direction.	nethe	types 5 od 5 y of to 3 unifor	bour of loa bour bour orsion bour mly	s s s s
Eccentrically Module:3 Theory of Be Failure of bea Module: 4 Various Boun Module: 5 Torsional loa Torsional and Module: 6 Differential I compressed i Module: 7	loaded column and Initial Imperfect column -Numerical Prob Beam column am column – Stability analysis of beam column with differ m columns. Analysis and Stability of Frames dary Conditions – Differential equations – Slope Deflection m Torsional Buckling ad-Deformation characteristics of structural members- strain e d flexural torsional buckling of columns Buckling of Plates Equation of plate buckling –linear theory – critical load of a p in one direction. Buckling of Shells	nethe	types types od y of to a unifor 3	bour of loa bour bour orsion bour mly	s s s s s s s

			Tuto	rial Hours	15 hours		
Tex	Text Book(s)						
1.	1. Iyengar. N.G.R., (2007), Elastic Stability of Structural Elements, McMillan, New Delhi						
Ref	Reference Books						
1	Galambos. T.V., Surovek A. E(200	08), Structural Sta	bility of St	eel: Concep	ts and		
1.	Galambos. T.V., Surovek A. E(200 Applications for Structural Engine	ers, Wiley, Londo	n				
Mo	de of Evaluation: Continuous Ass	sessment Test, Qu	izzes, Ass	signments, F	Final Assessment		
Test	t						
Rec	Recommended by Board of Studies 05.07.2022						
Ap	proved by Academic Council		Date				

MSTE605L	ADVANCED CONCRETE MATERIALS AND	L	Τ	Р	С
WIST LOUSL	TECHNOLOGY	2	1	0	3
Pre-requisite	Nil	Sy	llabu	s ver	sion
Course Objective	2.				
1. To study t	he roles of concrete constituent materials, the requirements an	ld pr	operti	es of	the
materials a	and their effects on concrete.				
2. To underst	and the behaviour of fresh and hardened of concrete with and	l witl	hout		
admixture	S.				
3. To study t	he concrete mix design using different methods.				
4. To study t	he mechanical properties and durability of concrete.				
5. To study t	he testing procedure of different non-destructive testing method	ods.			
6. To study t	he different types of special concrete and concreting methods.				
Expected Course	Outcome:				
Upon completion	of this course, the student will be able to				
1. Identify ar	d explain the role of ingredients of concrete and their effect of	on co	ncret	e	
properties					
2. Explain th	e behaviour of fresh and hardened properties of concrete.				
3. Design of	concrete mix using different methods.				
4. Apply the	destructive and non-destructive testing methods to assess the	harc	lened	prope	erties
of concrete	2.				
5. Describe t	esting procedures for durability properties of concrete.				
	e different types of special concretes				
	crete Materials and Admixtures			ours	
Cement, Fine and applications.	Coarse aggregates –Mineral and Chemical Admixtures – Pro	perti	es an	d	
	aviour of Fresh Concrete and Hardened Concrete		4 h	ours	
	crete with and without admixtures - Modern trends in concre	ete n			e and
	ues - Ready mix concrete - Rheological behaviour of fresh co				
concrete.					
	crete Mix Design		4 h	ours	
	esign-Design of concrete mixes by using IS code method and	AC	CI me	thod	
	chanical Properties of Concrete		4 h	ours	
	ngth test- Split tensile strength test-Flexural test- Modulus of e	lasti	city of	f conc	rete-
-	Stress-strain characteristics- Dynamic modulus- Factors at		-		
			0 -	8	
concrete.			21		
concrete.	-destructive Testing of Concrete		3 h	ours	
concrete. Module: 5 Non	-destructive Testing of Concrete test – UPV test – Half cell Potential test – Thermography – P	ull c			
concrete. Module: 5 Non Rebound hammer		ull c	out tes		
concrete.Module: 5NonRebound harmerModule: 6Dur	test – UPV test – Half cell Potential test – Thermography – P		out tes 4 h	st. ours	id

Mo	dule: 7	Special Concrete and Con	creting Me	ethods		5 hours		
Hig	h perforr	nance concrete- Lightweight con	crete – High	density co	oncrete - Poly	mer concrete - Fibre		
reir	reinforced concrete – Self compacting concrete - Cold weather concreting - Hot weather concreting							
-Pro	e-packed	concrete - Vacuum concrete						
Mo	dule: 8	Contemporary issues				2 hours		
	Total Lecture hours30 hours							
	Tutorial Hours 15 hours							
Tex	kt Book(s	5)						
1.	Metha.F	P.K, (2005), Concrete: Microstru	cture, Prope	rties and	Materials, M	cGraw-Hill, New		
1.	Delhi.							
Ref	ference H	Books						
1.	Neville.	A.M.,Brooks.J.J., (2008), Concr	ete Technolo	ogy, Pears	on Education	n, New Delhi.		
2.	Gambir	.M.L., (2009), Concrete Technol	ogy, Tata M	c-Graw H	lill-Education	n, New Delhi.		
3.	Shetty.N	A.S.,(2017), Concrete Technolog	gy, S. Chand	and Com	pany Ltd, Ne	ew Delhi.		
4.	IS: 122	69, Specification for 53 grade or	dinary Portla	and Ceme	ent, BIS, New	/ Delhi		
5.	IS : 383	, Specification for Coarse and fin	ne natural so	urces for	Concrete, BI	S, New Delhi		
6.	IS:1026	2, Concrete Mix Proportioning -	Guidelines					
7.		1.1-91 Reapproved 2009, Standa	rd Practice f	or selection	ng Proportior	ns for Normal,		
<i>'</i> .	Неаvум	eight, and Mass Concrete.						
Mo	de of Ev	aluation: Continuous Assessme	nt Test, Quiz	zzes, Assi	gnments, Fin	al Assessment Test		
Ree	commen	ded by Board of Studies	05.07.2022					
Ap	proved b	y Academic Council		Date				

MSTE606	L ADVANCED FOUNDATION DESIGN	L	Τ	Р	С			
		3	0	0	3			
Pre-requisi	te Nil	Sy	llabu	s vers	sion			
Course Obje	ctives:							
To in	part the knowledge in the area of analysis and design of founda	tions	and	earth				
retain	ing structures.							
Expected Co	ourse Outcome:							
Upon comple	tion of this course, the student will be able to:							
1. Estim	ate bearing capacity of raft foundation							
2. Deter	mine safe load carrying capacity of pile for a given site condition	n						
3. Desig	n a reinforced earth wall and analyse its stability							
•	rse sheet pile and find embedment depth							
	guish f piled-raft and load sharing between raft and pile							
	ate stability of well foundation							
	fy suitable type of cofferdam for a given construction problem		1					
Module: 1	Raft Foundations		6 hours					
	city of rafts; Rafts on clays and sands; Compensated raft; Flexibl	le an	d rigio	d rafts	(IS			
2950); Settle	ment analysis of rafts (under embankment loading).		r –					
Module: 2	Pile Foundations		7 hours					
Load capacit	y of piles in sands and clays; α - method; Brom's analysis; La	teral	ly loa	ded p	oiles			
Uplift capaci	y of piles; Pile group capacity; Pile load test. Analysis of stress w	vaves	in pi	le driv	ving			
Module: 3	Piled Rafts		7 hours					
Concept of a	a piled raft - Examples, definitions and terminology; Piled	raft a	as a	comp	osite			
construction;	Advantages of piled rafts; Performance and design of a piled ra	ft; St	eps ii	nvolv	ed ir			
piled raft des	gn.		-					
Module: 4 Well Foundations					6 hours			
Module: 4								
	tions - Types of wells or caissons - Drilled shafts and cais	ssons	s - D	esign				
Well Foundat		ssons	1		and			
Well Foundation construction Module: 5	Deep Excavation Protection Systems		6	hou	anc rs			
Well Founda construction Module: 5 Sheeting and		il typ	es - 0	hou Cantil	anc rs			
Well Founda construction Module: 5 Sheeting and sheet piles, A	Deep Excavation Protection Systems bracing systems in shallow and deep open cuts in different so	il typ	bes - 0 agm v	hou Cantil	and rs lever			
Well Founda construction Module: 5 Sheeting and sheet piles, <i>A</i> Module: 6 Types of Cof	Deep Excavation Protection Systems bracing systems in shallow and deep open cuts in different so nchored sheet piles; Stability and design of braced supports. Di	il typ aphr	bes - 0 agm v	hou Cantil walls hou	and rs leven			
Well Founda construction Module: 5 Sheeting and sheet piles, <i>A</i> Module: 6 Types of Cof	Deep Excavation Protection Systems bracing systems in shallow and deep open cuts in different so nchored sheet piles; Stability and design of braced supports. Di Coffer Dams fer dams, merits and demerits; Design of single wall coffer dams	il typ aphr	bes - 0 agm v bility	hou Cantil walls hou	and rs leven rs cts,			
Well Founda construction Module: 5 Sheeting and sheet piles, <i>A</i> Module: 6 Types of Cof TVA method Module: 7	Deep Excavation Protection Systems bracing systems in shallow and deep open cuts in different so nchored sheet piles; Stability and design of braced supports. Di Coffer Dams fer dams, merits and demerits; Design of single wall coffer dams and Cumming's method.	il typ aphra s; Sta	bes - 0 agm v bility	b hou Cantil valls b hou b hou	and rs even rs cts, rs			

Mo	odule: 8	Contemporary issues				3 hours	
				Т	Cotal Lecture hours	45 hours	
Te	xt Book(s)					
1.	Bowles, J. E., (2011), Foundation Analysis and Design, 7th Edition, McGraw Hill Book Co., New York.						
2.	2. Das. B. M., (2010), Principles of Foundation Engineering, CL Engineering.						
Re	Reference Books						
1.	1. Fang. H.Y.,(2012), Foundation Engineering Handbook, Springer Science and Business Media.						
2.	2. Varghese. P. C., (2009), Design of Reinforced Concrete Foundations, Prentice Hall of India, New Delhi.						
3.	Murthy. Delhi.	V. N. S., (2009), Soil Mecha	nics and I	Foundatio	on Engineering - CBS	Publications,	
4.		Saran ., (2010), Reinforced So onal Pvt Ltd.	oil and Its	Engineer	ring Applications., I. I	Χ.	
5.		Saran., (2006), Analysis and I lishing Company Pvt. Limite	-	Substruc	tures: Limit State Des	ign, Oxford &	
6.		on M and Woodward J. (2003 nd Francis.	8). Pile D	esign and	Construction Practice	e" 5 th Edition.	
7.	 Fleming K, Weltman A, Randolph M and Elson K (2009). Piling Engineering. 3rd Edition. Taylor and Francis. 					. 3 rd Edition.	
8.	K. R. Ar	ora., (2011) Soil Mechanics a	and Found	lation En	gineering, Standard p	ublishers	
	ode of Eva	aluation: Continuous Assess	ment Test	, Final A	Assessment Test, Quiz	Ζ,	
Re	commend	led by Board of Studies	05.07.20	22			
Ap	proved b	y Academic Council		Date			

	71		L	Т	Р	C			
MSTE607	/L	EARTHQUAKE RESISTANT DESIGN	2	1	0	3			
Pre-requis	site	MSTE503L Structural Dynamics	Syllabus version						
Course Obje	ectives	S:							
 To un To studie Upon complete Identia Under Analy condia Desigation Analy studie 	 To understand the strength and capacity design principles of earthquake resistant design. To study the behavior of various types of buildings under static and dynamic forces. To study the elastic and inelastic deformations and significance of ductility in beam-column joints. To study the seismic behavior of masonry and concrete shear wall systems. To study the significance of energy dissipating devices in seismic resistant design. Expected Course Outcome: Upon completion of this course, the student will be able to Identify the characteristics of seismic waves and its measures. Understand the principles of earthquake resistant design and response spectrum. Analyze and design the various types of structures under static and dynamic loading conditions. Design various beam-column joints as per ductility requirements. Analyze and design unreinforced and reinforced masonry and concrete shear wall structures. 								
design Module: 1		mology and Earthquake		6 ho	ours				
seismic wave	es and	f the earth, continental drift and plate tectonics, Faults, Elasticharacteristics, earthquake size, strong ground motion, seismard assessment.							
Module: 2	Prin	ciples of Earthquake Resistant Design		3 ho	ours				
Application of	of resp	losophy - Principles of earthquake resistant design - Respon onse spectrum theory to seismic design of structures -Capacit r strength - Stiffness and ductility.							
Module: 3	Seisi	mic Analysis of Moment Resisting Frames		5 ho	ours				
		lesign lateral forces as per IS: 1893-2016 – equivalent station. Effect of infill stiffness on analysis of frames – Equivalent d			•	ımic			
Module: 4	Mod	lelling, Analysis and Design of Structures		3 ho	ours				
		and design of RC structures using software - static and dynamicesponse spectrum and time history methods.	ic me	thods	_				
Module: 5	Desi	gn of Beam Column Junctions		5 ho	ours				
	meml	tic deformations of structures – ductility of the composite sys bers – beam column junction detailing – strong column - w 16.							
Module: 6		gn of Shear Walls		3 ho					
Unreinforce	Unreinforced and reinforced masonry shear walls – analysis and design of reinforced concrete								

sh	ear walls.							
Mo	odule: 7	Vibration Control Tec	hniques			3 hours		
	Vibration control – energy dissipating devices – principles and application, basic concept of base isolation – various systems - case studies.							
Mo	odule: 8	Contemporary issues				2 hours		
Total Lecture hours 30 hours								
				Tuto	orial Hours	15 hours		
Тех	xt Book(s))			·			
1.	0	Agarwal and Manish Shrik Hall India Pvt. Ltd., New		rthquake r	esistant desig	n of structures,		
Ref	erence B	ooks						
1.	•	nd Priestly. (1992), Seism Id Sons, London.	ic design of reinfo	orced conci	ete and maso	nry buildings, John		
2.		ehle (2015), Seismic Desi n, New Delhi.	gn of Reinforced (Concrete B	buildings, Mc	Graw-Hill		
3.	IS: 1893	:2016 (Part 1), Criteria for	r earthquake resista	ant design	of structures.			
4.	IS: 1392	0: 2016, Ductile detailing	of reinforced conc	crete struct	ures subjecte	d to seismic forces.		
Mo	de of Eva	luation: Continuous Asse	essment Test, Quiz	zes, Assig	nments, Fina	l Assessment Test		
Rec	commend	ed by Board of Studies	05.07.2022					
Ap	proved by	y Academic Council		Date				

		L	Т	Р	С		
MSTE608L	ANALYSIS AND DESIGN OF TALL STRUCTURES	2	1	0	3		
Pre-requisite	MSTE504L Advanced Design of Steel Structures	Syllabus version					
Course Objective	es:						
	tand the behaviour of tall structures subjected to dynamic loads						
2. To study the	he behaviour of different types of tall structural systems						
Expected Course	e Outcome:						
Upon completion	of this course, the student will be able to						
1. Analyse th	ne tall structure for gravity and lateral loads						
2. Evaluate	the structural systems in tall buildings						
3. Understand	d the behaviour of various structural systems under gravity and la	teral	loadin	g			
4. Examine d	lifferent types of outrigger system						
5. Understar	nd shear wall systems						
6. Identify the	e importance of infilled frames						
7. Examine	three dimensional analysis of floors						
Module: 1 Typ	pes of Buildings and Loads Calculations		5 ho	ours			
Classification of b	puildings according to NBC – Wind load – Seismic load – Quasi	static	e appr	oach-	-		
combination of loa	ading						
Module: 2 Rig	, jid frame		4 ho	ours			
	viour- analysis of gravity loading-Substitute frame method for horizontal loading- Portal - Cantilever and factor methods – Kani's						
frame method- Di	aphragm openings						
Module: 3 Bra	aced Frame		4 ho	urs			
Types of bracing-	behaviour of bracing- methods of analysis- member force analysis	is- dri	ft an	alysi	S		
Module:4 Con	re and Outrigger System		4 ho	ours			
Behaviour- optim	num location of single outrigger- optimum location of two out	trigge	r- fra	med	tube		
systems							
Module:5 She	ear Wall System		5 ho	ours			
Behaviour and ana	alysis of shear wall- coupled shear wall						
Module:6 In-f	filled Frame Systems		3 ho	ours			
Importance – Me	ethods of analysis – Equivalent truss and frame method – Force-di	isplac	emen	t			
	of perforation in the in-filled frame.						
Module:7 Th	ree Dimensional Analysis		3 ho	ours			
Basic principles –	Centre of rotation of a rigid floor, Force displacement method	-					
Module:8 Contemporary issues 2 hours							
	Total Lecture hours		30 h	ours			

Tex	Text Book(s)						
1.	B.S. Taranath (2011), Structural an	B.S. Taranath (2011), Structural analysis and design of tall building, CRC Press					
Ref	Reference Books						
1.	1.Ghali.A., Neville.A.M and Brown.T.G, (2003), Structural Analysis – A unified classical and Matrix Approach (Fifth Edition), Span press						
2.	. IS 13920 Ductile detailing of reinforced concrete structures, BIS, India						
3.	IS 1893 Criteria for earthquake res	istant design BIS, India					
4.	IS 875 Code of practice for design	loadsBIS, India					
Mo	de of Evaluation: Continuous Asse	ssment Test, Quizzes, Assignments, Final Assessment Test					
Rec	commended by Board of Studies	05.07.2022					
Ap	proved by Academic Council	Date					

MSTE609	9T.	OFFSHORE STRUCTURES	L	Τ	Р	С
			2	1	0	3
Pre-requis	Syllabus version					
Course Obje	ectives	:	I			
1. To lea	arn the	types and functions of offshore structure.				
		e behavior of structures subjected to hydrodynamic loads				
	•	fferent analysis procedures for different offshore structure	es and	also	study	/ the
		ure interaction.				
Expected Co						
		f this course, the student will be able to				
		the types and functions of offshore structure				
		e loads experienced by offshore structure				
		the concept of fixed offshore structures				
		the wave hydrodynamics				
		e wave forces on offshore structures				
-	-	framed structure in offshore.				
Module: 1		offshore structures subjected to dynamic loads.		4 ho		
			ora ati			
		Structures-Types of Offshore Platforms -Functions of offsh ypical Offshore Structure	lore su	uctui	es-	
Module: 2	1	Is on Offshore Structures		4 ho	1116	
		4 110	uis			
Module:3		d Load- Offshore Loads- Fatigue Load-Seismic Loads. cepts of Fixed Platform Jacket and Deck		4 ho	urs	
		edundant framing arrangement-Launch and Lift ja	ckets-			Deck
	-	Lift and float- Over installations- In-service and Pre-service		-		
Module: 4	1	e Theories		4 ho		/
Wave genera	ation a	nd Propagation - Small and finite amplitude wave theories	s - Wa	ve er	ergy	and
pressure dist					- 01	
Module: 5	Wav	e force on Offshore Structures		4 ho	urs	
		Cylindrical Members-Linearization of Nonlinear Wave Drag			ve	
	rbitra	ily Oriented Cylindrical Members - Wave Forces on Large	Diam	eter		
Structures	T					
Module: 6		lamental Considerations for Framed Offshore ctural Analysis		4 ho	urs	
Site Charact		s and Modelling Procedures for Analysis-Hydrostatic Press	sure ar	nd		
		Element Applications for Framed Offshore Structural Analy				
Module: 7		siderations for Dynamic Analysis		4 ho	urs	
Characterizat	Offsho	re St	uctu	res-		
MDOF Syste	ems	-				
Module: 8	Cor	ntemporary issues		2 ho	urs	
		Total Lecture hours		30 ha		
		Tutorial Hours		15 ho	ours	

Text Book(s)							
1.	D.V. Reddy, A. S. J. Swamidas(2014), Essentials of Offshore Structures, CRC Press, Taylor & Francis Group						
Ref	Reference Books						
1.	Mohamed A. El-Reedy (2012), Offshore Structure, Design, Construction and Maintenance, Gulf Professional Publishing,						
2.	API (2014), Recommended Practice for Planning, designing and Construction, Fixed offshore platform, American Petroleum Institute publication, RP2A, Dallas, Texas.						
3.	Günther Clauss, Eike Lehmann, Carsten Östergaard, M.J. Shields (2012), Offshore Structures: Volume I: Conceptual Design and Hydromechanics: 1, Springer- Verlag.						
4.	4. Eugenio Fortaleza (2012), Active Control of Offshore Structures, Lambert Academic Publication.						
Mode of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test							
Recommended by Board of Studies 05.07.2022							
Ap	Approved by Academic CouncilDate						

MSTE610L	REPAIR AND REHABILITATION OF STRUCTURES		T	P	<u>C</u>
		3	0	0	3
Pre-requisite	Nil	Sy	nadu	s vers	<u>10n</u>
Course Objec	tives:	<u> </u>			
1. To imp	part broad knowledge in the area of repair and rehabilitation of str	ucture	es		
2. To unc	lerstand about various causes of deterioration of structures				
3. To obt	ain the knowledge about corrosion of structures				
4. To und	lerstand the properties of repair materials				
5. To kno	w various repair techniques and strengthening methods				
Expected Cou	irse Outcome:				
Upon complet	ion of this course, the student will be able to				
	y the role of the maintenance engineer				
2. Unders	stand the causes of deterioration of structures				
3. Identif	y the effect of corrosion on structures				
4. Apply	the NDT techniques to assess the condition of the structures				
5. Evalua	te various properties and applications of repair materials				
6. Assess	ing the techniques for repairing				
7. Apply	the strengthening techniques for distressed buildings				
Module: 1	Introduction			5 hou	irs
Importance of	maintenance - Types of maintenance - Decay of structures- Ro	le of	the N	lainter	nanc
Engineer - Qu	ality Assurance for concrete construction - Design and construction	on erre	ors.		
Module: 2	Deterioration of Structures			6 hou	irs
Causes of det	erioration of concrete, steel, masonry and timber structures - s	urfac	e det	eriorat	ion
efflorescence ·	- Causes and preventive measures.				
Module: 3	Corrosion of Structures		6 hours		
Corrosion med	chanism - Effects of cover thickness and cracking - Methods of a	corros	sion p	rotect	ion -
Inhibitors - Co	patings - Cathodic protection for reinforcements.				
Module: 4	Inspection and Assessment of Distressed structures			6 hou	irs
Visual inspec	tion - Non-destructive tests -Ultrasonic pulse velocity method	– R	eboui	nd har	nme
technique- Pu	llout tests – Core test.				
Module: 5	Materials for Repair			6 hou	irs
Special concre	etes and mortar - Concrete chemicals - Special elements for acce	lerate	d stre	ngth g	gain
Expansive cer	nent- Polymer concrete - Ferro cement, Fibre reinforced concre	ete -	Fibre	reinfo	orce
plastics.					
Module: 6	Techniques for Repair			6 hou	irs
Techniques fo	r repairing of spalling and disintegration of structures - Grouting	-Auto	ogeno	us hea	ling
-	ncrete- Protective surface coating.		-		

Μ	odule: 7	Strengthening of distre	ssed buildings			6 hours		
Rep	Repairs to overcome low member strength – Deflection - Chemical disruption - Weathering wear - Fire							
leal	leakage - Marine exposure- Use of FRP- NDT tests							
M	Module: 8 Contemporary issues							
	Total Lecture hours							
Te	xt Book(s)							
1.	1. Modi, P.I., Patel, C.N. (2016). Repair and Rehabilitation of Concrete Structures, PHI India, New Delhi.							
Reference Books								
1.	IABSE,	(2010). Case Studies of	Rehabilitation,	Repair, Re	etrofitting, and Stre	engthening of		
1.	^{1.} Structures, Volume 12, Structural Engineering Documents (SED), Switzerland.							
2.	Varghese, P.C. (2014), Maintenance, Repair & Rehabilitation and Minor Works of Buildings, PHI							
Ζ.	^{2.} India, New Delhi.							
2	Bhattacharjee, J. (2017), Concrete Structures Repair Rehabilitation And Retrofitting, CBS							
3. Publishers & Distributors, New Delhi.								
Mode of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test								
Re	Recommended by Board of Studies 05.07.2022							
Ap	proved by	y Academic Council		Date				

		(Deemed to be University under section 3 of UGC Act, 1956)	1	Т		, 				
MSTE611L		ENERGY EFFICIENT BUILDINGS			P	C				
					0	3				
Pre-requisite Nil					Syllabus version					
Course Objec	ctives	•	1							
1. To und	lersta	nd the concept of reduction in energy consumption through	low e	nerg	y buil	ding				
design										
2. To Uno	dersta	and the sources of Renewable Energy								
3. To Hig	ghligh	t strategies to integrate daylighting and low energy heating/o	coolii	ng in	build	lings				
4. To Mo	del ai	r flow and Ventilation								
5. To kno	w ill	umination requirements artificial lighting and factors affective	cting	day	lighti	ng				
6. To Des	sign f	or climatic zones								
Expected Cou	ırse (Dutcome:								
On con	nplet	ion of this course, the students will be able to:								
1. Unders	stand	the concept of reduction in energy consumption through low	v ener	gy b	uildir	ıg				
design				0.		U				
2. Unders	stand	the sources of renewable Energy								
3. Examin	ne str	ategies to integrate day lighting and low energy heating / co	oling	in bı	uildin	gs				
4. Unders	stand	model air flow and Ventilation								
5. Know	illum	ination requirements artificial lighting and factors affecting	ng da	y ligl	nting					
6. Desig	n for	climatic zones								
Module: 1	Gree	n Buildings, Energy and Environment		6	hour	s				
Green Buildin	gs wi	thin the Indian Context, Types of Energy, Energy Efficiency	and	Reb	ound					
Effect, Pollutio	on, B	etter Buildings, Reducing energy consumption, Low energy	desig	gn.						
Module: 2	Rene	wable Energy sources	7 hours							
Solar energy, I	Passiv	ve Solar Heating, Passive Solar collection, Wind and other re	enew	ables	. A p	assive				
solar strategy:	Dire	ct gain - Trombe wall, convective air loop, Photovoltaics,	Clim	ate a	nd E	nergy,				
Macro and Mi	crocl	imate - Indian Examples.								
Module: 3	Heat	ing and Cooling		8 ł	nours	i				
Building Form	n Su	rface area and Fabric Heat Loss, utilizing natural energy	y, Int	terna	l Pla	nning,				
Grouping of b	ouildi	ngs – Robin's Spatial Proportion – Orientation of building	g —He	eat tr	ansm	ission				
through buildings -Thermal properties of building materials - Thermal Comfort -Psychrometric										
Chart –Heat transfer – Cosine Effect - Insulation - Cooling buildings, passive cooling, and mechanical										
cooling – Measurement of heating and cooling loads.										
Module: 4 Ventilation and Infiltration					8 hours					
		and forced ventilation in commercial buildings, passive co	ooling	g, mo	odelli	ng air				
		n – stack effect - ventilation calculation – Mass effect lighting and Artificial Lighting								
			ours							
	-	rements - Concepts of daylight factors and day lighting, dayl	-			•				
_		agram, sky exposure angle, sun protection, shading coefficie			-	-				
		ath-Target and apparent size, illuminance calculation, penetr								
sky compone	ent, ar	tificial lighting, efficacy, Radiant barriers - new light source	sky component, artificial lighting, efficacy, Radiant barriers - new light sources -luminaries - light							

	Legits (De	eemed to be University under section 3 of U	JGC Act, 1956)				
shelves - Supplementary artificial lighting design - light distribution - electric lighting control							
Module: 6 Design for Clima	3 hours						
Energy efficient building strategies for various climatic zones – cold and cloudy – cold and sunny							
- composite - warm and humic	l – moo	derate – hot and dry	y – case st	udies.			
Module: 7EnergyAssessment and Compliances Procedures3 hours							
Energy awareness, monitoring energy consumption, Building Environmental Assessment-							
environmental criteria – embod		•••					
tools (e.g. GRIHA, LEED) - Ec	cohome	es - Sustainable are	chitecture	and urban d	esign – principles of		
environmental architecture.							
Module: 8 Contemporary	issues				2 hours		
		,	Total Lect	ture hours	45 hours		
Text Book(s)							
1. Satyajit Ghosh and Abhina	v Dhak	a (2015), Green St	ructures: E	Energy Effic	ient Buildings, Ane		
Books.							
Reference Books							
1. Charles Eley (2016), Design	n Profe	ssional's Guide to 2	Zero Net E	Energy Build	lings, Island Press.		
2. Ian M. Shapiro (2016), Ene	rgy Au	dits and Improvem	ents for C	ommercial H	Buildings, John		
^{2.} Wiley & Sons.							
3. Moncef Krarti (2016), Energy Audit of Building Systems: An Engineering Approach, Second Edition.							
 4. EngHwa Yap., (2017), Energy Efficient Building, Published by InTech., Crotia. 							
 Lal Jayamaha (2006), Energy-Efficient Building Systems: Green Strategies for Operation and Maintenance, McGraw Hill Professional. 							
Mode of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test							
Recommended by Board of Studies 05.07.2022							
Approved by Academic Counc	cil		Date				
		I		I			